blob: b44c699ecab7d13ba19eb6f7177e70990b0fd7dd [file] [log] [blame]
//===--- ResilienceDiagnostics.cpp - Resilience Inlineability Diagnostics -===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements diagnostics for @inlinable.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "TypeCheckAvailability.h"
#include "TypeCheckAccess.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DeclContext.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeDeclFinder.h"
using namespace swift;
bool TypeChecker::diagnoseInlinableDeclRefAccess(SourceLoc loc,
const ValueDecl *D,
const ExportContext &where) {
auto fragileKind = where.getFragileFunctionKind();
if (fragileKind.kind == FragileFunctionKind::None)
return false;
// Local declarations are OK.
if (D->getDeclContext()->isLocalContext())
return false;
auto *DC = where.getDeclContext();
// Public declarations are OK, even if they're SPI or came from an
// implementation-only import. We'll diagnose exportability violations
// from diagnoseDeclRefExportability().
if (D->getFormalAccessScope(/*useDC=*/nullptr,
fragileKind.allowUsableFromInline).isPublic())
return false;
auto &Context = DC->getASTContext();
// Dynamic declarations were mistakenly not checked in Swift 4.2.
// Do enforce the restriction even in pre-Swift-5 modes if the module we're
// building is resilient, though.
if (D->shouldUseObjCDispatch() && !Context.isSwiftVersionAtLeast(5) &&
!DC->getParentModule()->isResilient()) {
return false;
}
DowngradeToWarning downgradeToWarning = DowngradeToWarning::No;
// Swift 4.2 did not perform any checks for type aliases.
if (isa<TypeAliasDecl>(D)) {
if (!Context.isSwiftVersionAtLeast(4, 2))
return false;
if (!Context.isSwiftVersionAtLeast(5))
downgradeToWarning = DowngradeToWarning::Yes;
}
auto diagName = D->getName();
bool isAccessor = false;
// Swift 4.2 did not check accessor accessiblity.
if (auto accessor = dyn_cast<AccessorDecl>(D)) {
isAccessor = true;
if (!Context.isSwiftVersionAtLeast(5))
downgradeToWarning = DowngradeToWarning::Yes;
// For accessors, diagnose with the name of the storage instead of the
// implicit '_'.
diagName = accessor->getStorage()->getName();
}
// Swift 5.0 did not check the underlying types of local typealiases.
// FIXME: Conditionalize this once we have a new language mode.
if (isa<TypeAliasDecl>(DC))
downgradeToWarning = DowngradeToWarning::Yes;
auto diagID = diag::resilience_decl_unavailable;
if (downgradeToWarning == DowngradeToWarning::Yes)
diagID = diag::resilience_decl_unavailable_warn;
Context.Diags.diagnose(
loc, diagID,
D->getDescriptiveKind(), diagName,
D->getFormalAccessScope().accessLevelForDiagnostics(),
static_cast<unsigned>(fragileKind.kind),
isAccessor);
if (fragileKind.allowUsableFromInline) {
Context.Diags.diagnose(D, diag::resilience_decl_declared_here,
D->getDescriptiveKind(), diagName, isAccessor);
} else {
Context.Diags.diagnose(D, diag::resilience_decl_declared_here_public,
D->getDescriptiveKind(), diagName, isAccessor);
}
return (downgradeToWarning == DowngradeToWarning::No);
}
bool
TypeChecker::diagnoseDeclRefExportability(SourceLoc loc,
const ValueDecl *D,
const ExportContext &where) {
// Accessors cannot have exportability that's different than the storage,
// so skip them for now.
if (isa<AccessorDecl>(D))
return false;
if (!where.mustOnlyReferenceExportedDecls())
return false;
auto definingModule = D->getModuleContext();
auto downgradeToWarning = DowngradeToWarning::No;
auto originKind = getDisallowedOriginKind(
D, where, downgradeToWarning);
if (originKind == DisallowedOriginKind::None)
return false;
ASTContext &ctx = definingModule->getASTContext();
auto fragileKind = where.getFragileFunctionKind();
auto reason = where.getExportabilityReason();
if (fragileKind.kind == FragileFunctionKind::None) {
auto errorOrWarning = downgradeToWarning == DowngradeToWarning::Yes?
diag::decl_from_hidden_module_warn:
diag::decl_from_hidden_module;
ctx.Diags.diagnose(loc, errorOrWarning,
D->getDescriptiveKind(),
D->getName(),
static_cast<unsigned>(*reason),
definingModule->getName(),
static_cast<unsigned>(originKind));
D->diagnose(diag::kind_declared_here, DescriptiveDeclKind::Type);
} else {
ctx.Diags.diagnose(loc, diag::inlinable_decl_ref_from_hidden_module,
D->getDescriptiveKind(), D->getName(),
static_cast<unsigned>(fragileKind.kind),
definingModule->getName(),
static_cast<unsigned>(originKind));
}
return true;
}
bool
TypeChecker::diagnoseConformanceExportability(SourceLoc loc,
const RootProtocolConformance *rootConf,
const ExtensionDecl *ext,
const ExportContext &where) {
if (!where.mustOnlyReferenceExportedDecls())
return false;
auto originKind = getDisallowedOriginKind(ext, where);
if (originKind == DisallowedOriginKind::None)
return false;
ModuleDecl *M = ext->getParentModule();
ASTContext &ctx = M->getASTContext();
auto reason = where.getExportabilityReason();
if (!reason.hasValue())
reason = ExportabilityReason::General;
ctx.Diags.diagnose(loc, diag::conformance_from_implementation_only_module,
rootConf->getType(),
rootConf->getProtocol()->getName(),
static_cast<unsigned>(*reason),
M->getName(),
static_cast<unsigned>(originKind));
return true;
}