blob: de13369819e7f55a3ea0c481b838dbe18d6dbe89 [file] [log] [blame]
//===--- COWOpts.cpp - Optimize COW operations ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes begin_cow_mutation and end_cow_mutation patterns.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "cow-opts"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "llvm/Support/Debug.h"
using namespace swift;
namespace {
/// Constant folds the uniqueness result of begin_cow_mutation instructions.
///
/// If it can be proved that the buffer argument is uniquely referenced, the
/// uniqueness result is replaced with a constant boolean "true".
/// For example:
///
/// \code
/// %buffer = end_cow_mutation %mutable_buffer
/// // ...
/// // %buffer does not escape here
/// // ...
/// (%is_unique, %mutable_buffer2) = begin_cow_mutation %buffer
/// cond_br %is_unique, ...
/// \endcode
///
/// is replaced with
///
/// \code
/// %buffer = end_cow_mutation [keep_unique] %mutable_buffer
/// // ...
/// (%not_used, %mutable_buffer2) = begin_cow_mutation %buffer
/// %true = integer_literal 1
/// cond_br %true, ...
/// \endcode
///
/// Note that the keep_unique flag is set on the end_cow_mutation because the
/// code now relies on that the buffer is really uniquely referenced.
///
/// The optimization can also handle def-use chains between end_cow_mutation and
/// begin_cow_mutation which involve phi-arguments.
///
/// An additional peephole optimization is performed: if the begin_cow_mutation
/// is the only use of the end_cow_mutation, the whole pair of instructions
/// is eliminated.
///
class COWOptsPass : public SILFunctionTransform {
public:
COWOptsPass() {}
void run() override;
private:
using InstructionSet = SmallPtrSet<SILInstruction *, 8>;
using VoidPointerSet = SmallPtrSet<void *, 8>;
AliasAnalysis *AA = nullptr;
bool optimizeBeginCOW(BeginCOWMutationInst *BCM);
static void collectEscapePoints(SILValue v,
InstructionSet &escapePoints,
VoidPointerSet &handled);
};
void COWOptsPass::run() {
SILFunction *F = getFunction();
if (!F->shouldOptimize())
return;
LLVM_DEBUG(llvm::dbgs() << "*** RedundantPhiElimination on function: "
<< F->getName() << " ***\n");
AA = PM->getAnalysis<AliasAnalysis>();
bool changed = false;
for (SILBasicBlock &block : *F) {
auto iter = block.begin();
while (iter != block.end()) {
SILInstruction *inst = &*iter++;
if (auto *beginCOW = dyn_cast<BeginCOWMutationInst>(inst))
changed |= optimizeBeginCOW(beginCOW);
}
}
if (changed) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
}
bool COWOptsPass::optimizeBeginCOW(BeginCOWMutationInst *BCM) {
VoidPointerSet handled;
SmallVector<SILValue, 8> workList;
SmallPtrSet<EndCOWMutationInst *, 4> endCOWMutationInsts;
// Collect all end_cow_mutation instructions, used by the begin_cow_mutation,
// looking through block phi-arguments.
workList.push_back(BCM->getOperand());
while (!workList.empty()) {
SILValue v = workList.pop_back_val();
if (SILPhiArgument *arg = dyn_cast<SILPhiArgument>(v)) {
if (handled.insert(arg).second) {
SmallVector<SILValue, 4> incomingVals;
if (!arg->getIncomingPhiValues(incomingVals))
return false;
for (SILValue incomingVal : incomingVals) {
workList.push_back(incomingVal);
}
}
} else if (auto *ECM = dyn_cast<EndCOWMutationInst>(v)) {
endCOWMutationInsts.insert(ECM);
} else {
return false;
}
}
// Collect all uses of the end_cow_instructions, where the buffer can
// potentially escape.
handled.clear();
InstructionSet potentialEscapePoints;
for (EndCOWMutationInst *ECM : endCOWMutationInsts) {
collectEscapePoints(ECM, potentialEscapePoints, handled);
}
if (!potentialEscapePoints.empty()) {
// Now, this is the complicated part: check if there is an escape point
// within the liverange between the end_cow_mutation(s) and
// begin_cow_mutation.
//
// For store instructions we do a little bit more: only count a store as an
// escape if there is a (potential) load from the same address within the
// liverange.
handled.clear();
SmallVector<SILInstruction *, 8> instWorkList;
SmallVector<SILInstruction *, 8> potentialLoadInsts;
llvm::DenseSet<SILValue> storeAddrs;
// This is a simple worklist-based backward dataflow analysis.
// Start at the initial begin_cow_mutation and go backward.
instWorkList.push_back(BCM);
while (!instWorkList.empty()) {
SILInstruction *inst = instWorkList.pop_back_val();
for (;;) {
if (potentialEscapePoints.count(inst) != 0) {
if (auto *store = dyn_cast<StoreInst>(inst)) {
// Don't immediately bail on a store instruction. Instead, remember
// it and check if it interfers with any (potential) load.
storeAddrs.insert(store->getDest());
} else {
return false;
}
}
if (inst->mayReadFromMemory())
potentialLoadInsts.push_back(inst);
// An end_cow_mutation marks the begin of the liverange. It's the end
// point of the dataflow analysis.
auto *ECM = dyn_cast<EndCOWMutationInst>(inst);
if (ECM && endCOWMutationInsts.count(ECM) != 0)
break;
if (inst == &inst->getParent()->front()) {
for (SILBasicBlock *pred : inst->getParent()->getPredecessorBlocks()) {
if (handled.insert(pred).second)
instWorkList.push_back(pred->getTerminator());
}
break;
}
inst = &*std::prev(inst->getIterator());
}
}
// Check if there is any (potential) load from a memory location where the
// buffer is stored to.
if (!storeAddrs.empty()) {
// Avoid quadratic behavior. Usually this limit is not exceeded.
if (storeAddrs.size() * potentialLoadInsts.size() > 128)
return false;
for (SILInstruction *load : potentialLoadInsts) {
for (SILValue storeAddr : storeAddrs) {
if (!AA || AA->mayReadFromMemory(load, storeAddr))
return false;
}
}
}
}
// Replace the uniqueness result of the begin_cow_mutation with an integer
// literal of "true".
SILBuilderWithScope B(BCM);
auto *IL = B.createIntegerLiteral(BCM->getLoc(),
BCM->getUniquenessResult()->getType(), 1);
BCM->getUniquenessResult()->replaceAllUsesWith(IL);
// Try the peephole optimization: remove an end_cow_mutation/begin_cow_mutation
// pair completely if the begin_cow_mutation is the only use of
// end_cow_mutation.
if (auto *singleEndCOW = dyn_cast<EndCOWMutationInst>(BCM->getOperand())) {
assert(endCOWMutationInsts.size() == 1 &&
*endCOWMutationInsts.begin() == singleEndCOW);
if (singleEndCOW->hasOneUse()) {
BCM->getBufferResult()->replaceAllUsesWith(singleEndCOW->getOperand());
BCM->eraseFromParent();
singleEndCOW->eraseFromParent();
return true;
}
}
for (EndCOWMutationInst *ECM : endCOWMutationInsts) {
// This is important for other optimizations: The code is now relying on
// the buffer to be unique.
ECM->setKeepUnique();
}
return true;
}
void COWOptsPass::collectEscapePoints(SILValue v,
InstructionSet &escapePoints,
VoidPointerSet &handled) {
if (!handled.insert(v.getOpaqueValue()).second)
return;
for (Operand *use : v->getUses()) {
SILInstruction *user = use->getUser();
switch (user->getKind()) {
case SILInstructionKind::BeginCOWMutationInst:
case SILInstructionKind::RefElementAddrInst:
case SILInstructionKind::RefTailAddrInst:
break;
case SILInstructionKind::BranchInst:
collectEscapePoints(cast<BranchInst>(user)->getArgForOperand(use),
escapePoints, handled);
break;
case SILInstructionKind::CondBranchInst:
collectEscapePoints(cast<CondBranchInst>(user)->getArgForOperand(use),
escapePoints, handled);
break;
case SILInstructionKind::StructInst:
case SILInstructionKind::TupleInst:
case SILInstructionKind::UncheckedRefCastInst:
collectEscapePoints(cast<SingleValueInstruction>(user),
escapePoints, handled);
break;
default:
// Everything else is considered to be a potential escape of the buffer.
escapePoints.insert(user);
}
}
}
} // end anonymous namespace
SILTransform *swift::createCOWOpts() {
return new COWOptsPass();
}