blob: a711d07f42bedd9af8727fbfef91e32987652f46 [file] [log] [blame]
//===--- ArrayElementValuePropagation.cpp - Propagate values of arrays ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "array-element-propagation"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "llvm/ADT/SmallVector.h"
using namespace swift;
/// Propagate the elements of array values to calls of the array's get_element
/// method, and replace calls of append(contentsOf:) with append(element:).
///
/// Array literal construction and array initialization of array values
/// associates element values with the array value. These values can be
/// propagated to the get_element method if we can prove that the array value
/// has not changed until reading the array value's element. These values can
/// also be used to replace append(contentsOf:) with multiple append(element:)
/// calls.
///
/// Propagation of the elements of one array allocation.
///
/// We propagate the elements associated with calls of
///
/// * Array.init(count:repeatedValue:)
/// The 'repeatedValue'.
/// TODO: this is not yet implemented.
///
/// * Array._adoptStorage(storage:count:)
/// The stores on the returned array element buffer pointer.
///
namespace {
/// Utility class for analysis array literal initializations.
///
/// Array literals are initialized by allocating an array buffer, and storing
/// the elements into it.
/// This class analysis all the code which does the array literal
/// initialization. It also collects uses of the array, like getElement calls
/// and append(contentsOf) calls.
class ArrayAllocation {
/// The array value returned by the allocation call.
SILValue ArrayValue;
/// The calls to Array get_element that use this array allocation.
llvm::SmallSetVector<ApplyInst *, 16> GetElementCalls;
/// The calls to Array append_contentsOf that use this array allocation.
llvm::SmallVector<ApplyInst *, 4> AppendContentsOfCalls;
/// A map of Array indices to element values
llvm::DenseMap<uint64_t, SILValue> ElementValueMap;
bool mapInitializationStores(SILValue ElementBuffer);
bool recursivelyCollectUses(ValueBase *Def);
bool replacementsAreValid();
// After approx. this many elements, it's faster to use append(contentsOf:)
static constexpr unsigned APPEND_CONTENTSOF_REPLACEMENT_VALUES_MAX = 6;
public:
/// Specifies the value with which a get-element call can be replaced.
struct GetElementReplacement {
ApplyInst *GetElementCall;
SILValue Replacement;
};
/// Specifies the set of elements with which an append-contentof call can be
/// replaced.
struct AppendContentOfReplacement {
ApplyInst *AppendContentOfCall;
llvm::SmallVector<SILValue, 4> ReplacementValues;
SILValue Array;
};
ArrayAllocation() {}
/// Analyzes an array allocation call.
///
/// Returns true if \p Alloc is the allocation of an array literal (or a
/// similar pattern) and the array values can be used to replace get_element
/// or append(contentof) calls.
bool analyze(ApplyInst *Alloc);
/// Gets the list of get_element calls which can be replaced.
void getGetElementReplacements(
llvm::SmallVectorImpl<GetElementReplacement> &Replacements);
/// Gets the list of append(contentof) calls which can be replaced by a
/// set of values.
void getAppendContentOfReplacements(
llvm::SmallVectorImpl<AppendContentOfReplacement> &Replacements);
};
/// Map the indices of array element initialization stores to their values.
bool ArrayAllocation::mapInitializationStores(SILValue ElementBuffer) {
assert(ElementBuffer &&
"Must have identified an array element storage pointer");
// Match initialization stores.
// %83 = struct_extract %element_buffer : $UnsafeMutablePointer<Int>
// %84 = pointer_to_address %83 : $Builtin.RawPointer to strict $*Int
// store %85 to %84 : $*Int
// %87 = integer_literal $Builtin.Word, 1
// %88 = index_addr %84 : $*Int, %87 : $Builtin.Word
// store %some_value to %88 : $*Int
auto *UnsafeMutablePointerExtract =
dyn_cast_or_null<StructExtractInst>(getSingleNonDebugUser(ElementBuffer));
if (!UnsafeMutablePointerExtract)
return false;
auto *PointerToAddress = dyn_cast_or_null<PointerToAddressInst>(
getSingleNonDebugUser(UnsafeMutablePointerExtract));
if (!PointerToAddress)
return false;
// Match the stores. We can have either a store directly to the address or
// to an index_addr projection.
for (auto *Op : PointerToAddress->getUses()) {
auto *Inst = Op->getUser();
// Store to the base.
auto *SI = dyn_cast<StoreInst>(Inst);
if (SI && SI->getDest() == PointerToAddress) {
// We have already seen an entry for this index bail.
if (ElementValueMap.count(0))
return false;
ElementValueMap[0] = SI->getSrc();
continue;
} else if (SI)
return false;
// Store an index_addr projection.
auto *IndexAddr = dyn_cast<IndexAddrInst>(Inst);
if (!IndexAddr)
return false;
SI = dyn_cast_or_null<StoreInst>(getSingleNonDebugUser(IndexAddr));
if (!SI || SI->getDest() != IndexAddr)
return false;
auto *Index = dyn_cast<IntegerLiteralInst>(IndexAddr->getIndex());
if (!Index)
return false;
auto IndexVal = Index->getValue();
// Let's not blow up our map.
if (IndexVal.getActiveBits() > 16)
return false;
// Already saw an entry.
if (ElementValueMap.count(IndexVal.getZExtValue()))
return false;
ElementValueMap[IndexVal.getZExtValue()] = SI->getSrc();
}
return !ElementValueMap.empty();
}
bool ArrayAllocation::replacementsAreValid() {
unsigned ElementCount = ElementValueMap.size();
if (ElementCount > APPEND_CONTENTSOF_REPLACEMENT_VALUES_MAX)
return false;
// Bail if elements aren't contiguous
for (unsigned i = 0; i < ElementCount; ++i)
if (!ElementValueMap.count(i))
return false;
return true;
}
/// Recursively look at all uses of this definition. Abort if the array value
/// could escape or be changed. Collect all uses that are calls to array.count.
bool ArrayAllocation::recursivelyCollectUses(ValueBase *Def) {
for (auto *Opd : Def->getUses()) {
auto *User = Opd->getUser();
// Ignore reference counting and debug instructions.
if (isa<RefCountingInst>(User) ||
isa<StrongPinInst>(User) ||
isa<DebugValueInst>(User))
continue;
// Array value projection.
if (auto *SEI = dyn_cast<StructExtractInst>(User)) {
if (!recursivelyCollectUses(SEI))
return false;
continue;
}
// Check array semantic calls.
ArraySemanticsCall ArrayOp(User);
if (ArrayOp) {
if (ArrayOp.getKind() == ArrayCallKind::kAppendContentsOf) {
AppendContentsOfCalls.push_back(ArrayOp);
continue;
} else if (ArrayOp.getKind() == ArrayCallKind::kGetElement) {
GetElementCalls.insert(ArrayOp);
continue;
} else if (ArrayOp.doesNotChangeArray()) {
continue;
}
}
// An operation that escapes or modifies the array value.
return false;
}
return true;
}
bool ArrayAllocation::analyze(ApplyInst *Alloc) {
ArraySemanticsCall Uninitialized(Alloc, "array.uninitialized");
if (!Uninitialized)
return false;
ArrayValue = Uninitialized.getArrayValue();
if (!ArrayValue)
return false;
SILValue ElementBuffer = Uninitialized.getArrayElementStoragePointer();
if (!ElementBuffer)
return false;
// Figure out all stores to the array.
if (!mapInitializationStores(ElementBuffer))
return false;
// Check if the array value was stored or has escaped.
if (!recursivelyCollectUses(ArrayValue))
return false;
return true;
}
void ArrayAllocation::getGetElementReplacements(
llvm::SmallVectorImpl<GetElementReplacement> &Replacements) {
for (auto *GetElementCall : GetElementCalls) {
ArraySemanticsCall GetElement(GetElementCall);
assert(GetElement.getKind() == ArrayCallKind::kGetElement);
auto ConstantIndex = GetElement.getConstantIndex();
if (ConstantIndex == None)
continue;
assert(*ConstantIndex >= 0 && "Must have a positive index");
auto EltValueIt = ElementValueMap.find(*ConstantIndex);
if (EltValueIt == ElementValueMap.end())
continue;
Replacements.push_back({GetElementCall, EltValueIt->second});
}
}
void ArrayAllocation::getAppendContentOfReplacements(
llvm::SmallVectorImpl<AppendContentOfReplacement> &Replacements) {
if (AppendContentsOfCalls.empty())
return;
if (!replacementsAreValid())
return;
llvm::SmallVector<SILValue, 4> ElementValueVector;
for (unsigned i = 0; i < ElementValueMap.size(); ++i)
ElementValueVector.push_back(ElementValueMap[i]);
for (auto *Call : AppendContentsOfCalls)
Replacements.push_back({Call, ElementValueVector, ArrayValue});
}
// =============================================================================
// Driver
// =============================================================================
class ArrayElementPropagation : public SILFunctionTransform {
public:
ArrayElementPropagation() {}
bool replaceAppendCalls(
ArrayRef<ArrayAllocation::AppendContentOfReplacement> Repls) {
auto &Fn = *getFunction();
auto &M = Fn.getModule();
auto &Ctx = M.getASTContext();
if (Repls.empty())
return false;
LLVM_DEBUG(llvm::dbgs() << "Array append contentsOf calls replaced in "
<< Fn.getName() << " (" << Repls.size() << ")\n");
FuncDecl *AppendFnDecl = Ctx.getArrayAppendElementDecl();
if (!AppendFnDecl)
return false;
FuncDecl *ReserveFnDecl = Ctx.getArrayReserveCapacityDecl();
if (!ReserveFnDecl)
return false;
auto Mangled = SILDeclRef(AppendFnDecl, SILDeclRef::Kind::Func).mangle();
SILFunction *AppendFn = M.findFunction(Mangled, SILLinkage::PublicExternal);
if (!AppendFn)
return false;
Mangled = SILDeclRef(ReserveFnDecl, SILDeclRef::Kind::Func).mangle();
SILFunction *ReserveFn = M.findFunction(Mangled, SILLinkage::PublicExternal);
if (!ReserveFn)
return false;
for (const ArrayAllocation::AppendContentOfReplacement &Repl : Repls) {
ArraySemanticsCall AppendContentsOf(Repl.AppendContentOfCall);
assert(AppendContentsOf && "Must be AppendContentsOf call");
NominalTypeDecl *AppendSelfArray = AppendContentsOf.getSelf()->getType().
getASTType()->getAnyNominal();
// In case if it's not an Array, but e.g. an ContiguousArray
if (AppendSelfArray != Ctx.getArrayDecl())
continue;
SILType ArrayType = Repl.Array->getType();
auto *NTD = ArrayType.getASTType()->getAnyNominal();
SubstitutionMap ArraySubMap = ArrayType.getASTType()
->getContextSubstitutionMap(M.getSwiftModule(), NTD);
AppendContentsOf.replaceByAppendingValues(M, AppendFn, ReserveFn,
Repl.ReplacementValues,
ArraySubMap);
}
return true;
}
void run() override {
auto &Fn = *getFunction();
// Propagate the elements an of array value to its users.
llvm::SmallVector<ArrayAllocation::GetElementReplacement, 16>
GetElementReplacements;
llvm::SmallVector<ArrayAllocation::AppendContentOfReplacement, 4>
AppendContentsOfReplacements;
for (auto &BB :Fn) {
for (auto &Inst : BB) {
if (auto *Apply = dyn_cast<ApplyInst>(&Inst)) {
ArrayAllocation ALit;
if (ALit.analyze(Apply)) {
ALit.getGetElementReplacements(GetElementReplacements);
ALit.getAppendContentOfReplacements(AppendContentsOfReplacements);
}
}
}
}
LLVM_DEBUG(if (!GetElementReplacements.empty()) {
llvm::dbgs() << "Array elements replaced in " << Fn.getName() << " ("
<< GetElementReplacements.size() << ")\n";
});
bool Changed = false;
// Perform the actual replacement of the get_element call by its value.
for (ArrayAllocation::GetElementReplacement &Repl : GetElementReplacements) {
ArraySemanticsCall GetElement(Repl.GetElementCall);
Changed |= GetElement.replaceByValue(Repl.Replacement);
}
Changed |= replaceAppendCalls(AppendContentsOfReplacements);
if (Changed) {
PM->invalidateAnalysis(
&Fn, SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
};
} // end anonymous namespace
SILTransform *swift::createArrayElementPropagation() {
return new ArrayElementPropagation();
}