blob: 813ccb92d627c37076655e02c31235fdd631bd09 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// An unordered collection of unique elements.
///
/// You use a set instead of an array when you need to test efficiently for
/// membership and you aren't concerned with the order of the elements in the
/// collection, or when you need to ensure that each element appears only once
/// in a collection.
///
/// You can create a set with any element type that conforms to the `Hashable`
/// protocol. By default, most types in the standard library are hashable,
/// including strings, numeric and Boolean types, enumeration cases without
/// associated values, and even sets themselves.
///
/// Swift makes it as easy to create a new set as to create a new array. Simply
/// assign an array literal to a variable or constant with the `Set` type
/// specified.
///
/// let ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
/// if ingredients.contains("sugar") {
/// print("No thanks, too sweet.")
/// }
/// // Prints "No thanks, too sweet."
///
/// Set Operations
/// ==============
///
/// Sets provide a suite of mathematical set operations. For example, you can
/// efficiently test a set for membership of an element or check its
/// intersection with another set:
///
/// - Use the `contains(_:)` method to test whether a set contains a specific
/// element.
/// - Use the "equal to" operator (`==`) to test whether two sets contain the
/// same elements.
/// - Use the `isSubset(of:)` method to test whether a set contains all the
/// elements of another set or sequence.
/// - Use the `isSuperset(of:)` method to test whether all elements of a set
/// are contained in another set or sequence.
/// - Use the `isStrictSubset(of:)` and `isStrictSuperset(of:)` methods to test
/// whether a set is a subset or superset of, but not equal to, another set.
/// - Use the `isDisjoint(with:)` method to test whether a set has any elements
/// in common with another set.
///
/// You can also combine, exclude, or subtract the elements of two sets:
///
/// - Use the `union(_:)` method to create a new set with the elements of a set
/// and another set or sequence.
/// - Use the `intersection(_:)` method to create a new set with only the
/// elements common to a set and another set or sequence.
/// - Use the `symmetricDifference(_:)` method to create a new set with the
/// elements that are in either a set or another set or sequence, but not in
/// both.
/// - Use the `subtracting(_:)` method to create a new set with the elements of
/// a set that are not also in another set or sequence.
///
/// You can modify a set in place by using these methods' mutating
/// counterparts: `formUnion(_:)`, `formIntersection(_:)`,
/// `formSymmetricDifference(_:)`, and `subtract(_:)`.
///
/// Set operations are not limited to use with other sets. Instead, you can
/// perform set operations with another set, an array, or any other sequence
/// type.
///
/// var primes: Set = [2, 3, 5, 7]
///
/// // Tests whether primes is a subset of a Range<Int>
/// print(primes.isSubset(of: 0..<10))
/// // Prints "true"
///
/// // Performs an intersection with an Array<Int>
/// let favoriteNumbers = [5, 7, 15, 21]
/// print(primes.intersection(favoriteNumbers))
/// // Prints "[5, 7]"
///
/// Sequence and Collection Operations
/// ==================================
///
/// In addition to the `Set` type's set operations, you can use any nonmutating
/// sequence or collection methods with a set.
///
/// if primes.isEmpty {
/// print("No primes!")
/// } else {
/// print("We have \(primes.count) primes.")
/// }
/// // Prints "We have 4 primes."
///
/// let primesSum = primes.reduce(0, +)
/// // 'primesSum' == 17
///
/// let primeStrings = primes.sorted().map(String.init)
/// // 'primeStrings' == ["2", "3", "5", "7"]
///
/// You can iterate through a set's unordered elements with a `for`-`in` loop.
///
/// for number in primes {
/// print(number)
/// }
/// // Prints "5"
/// // Prints "7"
/// // Prints "2"
/// // Prints "3"
///
/// Many sequence and collection operations return an array or a type-erasing
/// collection wrapper instead of a set. To restore efficient set operations,
/// create a new set from the result.
///
/// let primesStrings = primes.map(String.init)
/// // 'primesStrings' is of type Array<String>
/// let primesStringsSet = Set(primes.map(String.init))
/// // 'primesStringsSet' is of type Set<String>
///
/// Bridging Between Set and NSSet
/// ==============================
///
/// You can bridge between `Set` and `NSSet` using the `as` operator. For
/// bridging to be possible, the `Element` type of a set must be a class, an
/// `@objc` protocol (a protocol imported from Objective-C or marked with the
/// `@objc` attribute), or a type that bridges to a Foundation type.
///
/// Bridging from `Set` to `NSSet` always takes O(1) time and space. When the
/// set's `Element` type is neither a class nor an `@objc` protocol, any
/// required bridging of elements occurs at the first access of each element,
/// so the first operation that uses the contents of the set (for example, a
/// membership test) can take O(*n*).
///
/// Bridging from `NSSet` to `Set` first calls the `copy(with:)` method
/// (`- copyWithZone:` in Objective-C) on the set to get an immutable copy and
/// then performs additional Swift bookkeeping work that takes O(1) time. For
/// instances of `NSSet` that are already immutable, `copy(with:)` returns the
/// same set in constant time; otherwise, the copying performance is
/// unspecified. The instances of `NSSet` and `Set` share buffer using the
/// same copy-on-write optimization that is used when two instances of `Set`
/// share buffer.
@frozen
public struct Set<Element: Hashable> {
@usableFromInline
internal var _variant: _Variant
/// Creates an empty set with preallocated space for at least the specified
/// number of elements.
///
/// Use this initializer to avoid intermediate reallocations of a set's
/// storage buffer when you know how many elements you'll insert into the set
/// after creation.
///
/// - Parameter minimumCapacity: The minimum number of elements that the
/// newly created set should be able to store without reallocating its
/// storage buffer.
public // FIXME(reserveCapacity): Should be inlinable
init(minimumCapacity: Int) {
_variant = _Variant(native: _NativeSet(capacity: minimumCapacity))
}
/// Private initializer.
@inlinable
internal init(_native: __owned _NativeSet<Element>) {
_variant = _Variant(native: _native)
}
#if _runtime(_ObjC)
@inlinable
internal init(_cocoa: __owned __CocoaSet) {
_variant = _Variant(cocoa: _cocoa)
}
/// Private initializer used for bridging.
///
/// Only use this initializer when both conditions are true:
///
/// * it is statically known that the given `NSSet` is immutable;
/// * `Element` is bridged verbatim to Objective-C (i.e.,
/// is a reference type).
@inlinable
public // SPI(Foundation)
init(_immutableCocoaSet: __owned AnyObject) {
_internalInvariant(_isBridgedVerbatimToObjectiveC(Element.self),
"Set can be backed by NSSet _variant only when the member type can be bridged verbatim to Objective-C")
self.init(_cocoa: __CocoaSet(_immutableCocoaSet))
}
#endif
}
extension Set: ExpressibleByArrayLiteral {
/// Creates a set containing the elements of the given array literal.
///
/// Do not call this initializer directly. It is used by the compiler when
/// you use an array literal. Instead, create a new set using an array
/// literal as its value by enclosing a comma-separated list of values in
/// square brackets. You can use an array literal anywhere a set is expected
/// by the type context.
///
/// Here, a set of strings is created from an array literal holding only
/// strings.
///
/// let ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
/// if ingredients.isSuperset(of: ["sugar", "salt"]) {
/// print("Whatever it is, it's bound to be delicious!")
/// }
/// // Prints "Whatever it is, it's bound to be delicious!"
///
/// - Parameter elements: A variadic list of elements of the new set.
@inlinable
public init(arrayLiteral elements: Element...) {
if elements.isEmpty {
self.init()
return
}
let native = _NativeSet<Element>(capacity: elements.count)
for element in elements {
let (bucket, found) = native.find(element)
if found {
// FIXME: Shouldn't this trap?
continue
}
native._unsafeInsertNew(element, at: bucket)
}
self.init(_native: native)
}
}
extension Set: Sequence {
/// Returns an iterator over the members of the set.
@inlinable
@inline(__always)
public __consuming func makeIterator() -> Iterator {
return _variant.makeIterator()
}
/// Returns a Boolean value that indicates whether the given element exists
/// in the set.
///
/// This example uses the `contains(_:)` method to test whether an integer is
/// a member of a set of prime numbers.
///
/// let primes: Set = [2, 3, 5, 7]
/// let x = 5
/// if primes.contains(x) {
/// print("\(x) is prime!")
/// } else {
/// print("\(x). Not prime.")
/// }
/// // Prints "5 is prime!"
///
/// - Parameter member: An element to look for in the set.
/// - Returns: `true` if `member` exists in the set; otherwise, `false`.
///
/// - Complexity: O(1)
@inlinable
public func contains(_ member: Element) -> Bool {
return _variant.contains(member)
}
@inlinable
@inline(__always)
public func _customContainsEquatableElement(_ member: Element) -> Bool? {
return contains(member)
}
}
// This is not quite Sequence.filter, because that returns [Element], not Self
// (RangeReplaceableCollection.filter returns Self, but Set isn't an RRC)
extension Set {
/// Returns a new set containing the elements of the set that satisfy the
/// given predicate.
///
/// In this example, `filter(_:)` is used to include only names shorter than
/// five characters.
///
/// let cast: Set = ["Vivien", "Marlon", "Kim", "Karl"]
/// let shortNames = cast.filter { $0.count < 5 }
///
/// shortNames.isSubset(of: cast)
/// // true
/// shortNames.contains("Vivien")
/// // false
///
/// - Parameter isIncluded: A closure that takes an element as its argument
/// and returns a Boolean value indicating whether the element should be
/// included in the returned set.
/// - Returns: A set of the elements that `isIncluded` allows.
@inlinable
@available(swift, introduced: 4.0)
public __consuming func filter(
_ isIncluded: (Element) throws -> Bool
) rethrows -> Set {
// FIXME(performance): Eliminate rehashes by using a bitmap.
var result = Set()
for element in self {
if try isIncluded(element) {
result.insert(element)
}
}
return result
}
}
extension Set: Collection {
/// The starting position for iterating members of the set.
///
/// If the set is empty, `startIndex` is equal to `endIndex`.
@inlinable
public var startIndex: Index {
return _variant.startIndex
}
/// The "past the end" position for the set---that is, the position one
/// greater than the last valid subscript argument.
///
/// If the set is empty, `endIndex` is equal to `startIndex`.
@inlinable
public var endIndex: Index {
return _variant.endIndex
}
/// Accesses the member at the given position.
@inlinable
public subscript(position: Index) -> Element {
//FIXME(accessors): Provide a _read
get {
return _variant.element(at: position)
}
}
@inlinable
public func index(after i: Index) -> Index {
return _variant.index(after: i)
}
@inlinable
public func formIndex(after i: inout Index) {
_variant.formIndex(after: &i)
}
// APINAMING: complexity docs are broadly missing in this file.
/// Returns the index of the given element in the set, or `nil` if the
/// element is not a member of the set.
///
/// - Parameter member: An element to search for in the set.
/// - Returns: The index of `member` if it exists in the set; otherwise,
/// `nil`.
///
/// - Complexity: O(1)
@inlinable
public func firstIndex(of member: Element) -> Index? {
return _variant.index(for: member)
}
@inlinable
@inline(__always)
public func _customIndexOfEquatableElement(
_ member: Element
) -> Index?? {
return Optional(firstIndex(of: member))
}
@inlinable
@inline(__always)
public func _customLastIndexOfEquatableElement(
_ member: Element
) -> Index?? {
// The first and last elements are the same because each element is unique.
return _customIndexOfEquatableElement(member)
}
/// The number of elements in the set.
///
/// - Complexity: O(1).
@inlinable
public var count: Int {
return _variant.count
}
/// A Boolean value that indicates whether the set is empty.
@inlinable
public var isEmpty: Bool {
return count == 0
}
}
// FIXME: rdar://problem/23549059 (Optimize == for Set)
// Look into initially trying to compare the two sets by directly comparing the
// contents of both buffers in order. If they happen to have the exact same
// ordering we can get the `true` response without ever hashing. If the two
// buffers' contents differ at all then we have to fall back to hashing the
// rest of the elements (but we don't need to hash any prefix that did match).
extension Set: Equatable {
/// Returns a Boolean value indicating whether two sets have equal elements.
///
/// - Parameters:
/// - lhs: A set.
/// - rhs: Another set.
/// - Returns: `true` if the `lhs` and `rhs` have the same elements; otherwise,
/// `false`.
@inlinable
public static func == (lhs: Set<Element>, rhs: Set<Element>) -> Bool {
#if _runtime(_ObjC)
switch (lhs._variant.isNative, rhs._variant.isNative) {
case (true, true):
return lhs._variant.asNative.isEqual(to: rhs._variant.asNative)
case (false, false):
return lhs._variant.asCocoa.isEqual(to: rhs._variant.asCocoa)
case (true, false):
return lhs._variant.asNative.isEqual(to: rhs._variant.asCocoa)
case (false, true):
return rhs._variant.asNative.isEqual(to: lhs._variant.asCocoa)
}
#else
return lhs._variant.asNative.isEqual(to: rhs._variant.asNative)
#endif
}
}
extension Set: Hashable {
/// Hashes the essential components of this value by feeding them into the
/// given hasher.
///
/// - Parameter hasher: The hasher to use when combining the components
/// of this instance.
@inlinable
public func hash(into hasher: inout Hasher) {
// FIXME(ABI)#177: <rdar://problem/18915294> Cache Set<T> hashValue
// Generate a seed from a snapshot of the hasher. This makes members' hash
// values depend on the state of the hasher, which improves hashing
// quality. (E.g., it makes it possible to resolve collisions by passing in
// a different hasher.)
var copy = hasher
let seed = copy._finalize()
var hash = 0
for member in self {
hash ^= member._rawHashValue(seed: seed)
}
hasher.combine(hash)
}
}
extension Set: _HasCustomAnyHashableRepresentation {
public __consuming func _toCustomAnyHashable() -> AnyHashable? {
return AnyHashable(_box: _SetAnyHashableBox(self))
}
}
internal struct _SetAnyHashableBox<Element: Hashable>: _AnyHashableBox {
internal let _value: Set<Element>
internal let _canonical: Set<AnyHashable>
internal init(_ value: __owned Set<Element>) {
self._value = value
self._canonical = value as Set<AnyHashable>
}
internal var _base: Any {
return _value
}
internal var _canonicalBox: _AnyHashableBox {
return _SetAnyHashableBox<AnyHashable>(_canonical)
}
internal func _isEqual(to other: _AnyHashableBox) -> Bool? {
guard let other = other as? _SetAnyHashableBox<AnyHashable> else {
return nil
}
return _canonical == other._value
}
internal var _hashValue: Int {
return _canonical.hashValue
}
internal func _hash(into hasher: inout Hasher) {
_canonical.hash(into: &hasher)
}
internal func _rawHashValue(_seed: Int) -> Int {
return _canonical._rawHashValue(seed: _seed)
}
internal func _unbox<T: Hashable>() -> T? {
return _value as? T
}
internal func _downCastConditional<T>(
into result: UnsafeMutablePointer<T>
) -> Bool {
guard let value = _value as? T else { return false }
result.initialize(to: value)
return true
}
}
extension Set: SetAlgebra {
/// Inserts the given element in the set if it is not already present.
///
/// If an element equal to `newMember` is already contained in the set, this
/// method has no effect. In the following example, a new element is
/// inserted into `classDays`, a set of days of the week. When an existing
/// element is inserted, the `classDays` set does not change.
///
/// enum DayOfTheWeek: Int {
/// case sunday, monday, tuesday, wednesday, thursday,
/// friday, saturday
/// }
///
/// var classDays: Set<DayOfTheWeek> = [.wednesday, .friday]
/// print(classDays.insert(.monday))
/// // Prints "(inserted: true, memberAfterInsert: DayOfTheWeek.monday)"
/// print(classDays)
/// // Prints "[DayOfTheWeek.friday, DayOfTheWeek.wednesday, DayOfTheWeek.monday]"
///
/// print(classDays.insert(.friday))
/// // Prints "(inserted: false, memberAfterInsert: DayOfTheWeek.friday)"
/// print(classDays)
/// // Prints "[DayOfTheWeek.friday, DayOfTheWeek.wednesday, DayOfTheWeek.monday]"
///
/// - Parameter newMember: An element to insert into the set.
/// - Returns: `(true, newMember)` if `newMember` was not contained in the
/// set. If an element equal to `newMember` was already contained in the
/// set, the method returns `(false, oldMember)`, where `oldMember` is the
/// element that was equal to `newMember`. In some cases, `oldMember` may
/// be distinguishable from `newMember` by identity comparison or some
/// other means.
@inlinable
@discardableResult
public mutating func insert(
_ newMember: __owned Element
) -> (inserted: Bool, memberAfterInsert: Element) {
return _variant.insert(newMember)
}
/// Inserts the given element into the set unconditionally.
///
/// If an element equal to `newMember` is already contained in the set,
/// `newMember` replaces the existing element. In this example, an existing
/// element is inserted into `classDays`, a set of days of the week.
///
/// enum DayOfTheWeek: Int {
/// case sunday, monday, tuesday, wednesday, thursday,
/// friday, saturday
/// }
///
/// var classDays: Set<DayOfTheWeek> = [.monday, .wednesday, .friday]
/// print(classDays.update(with: .monday))
/// // Prints "Optional(DayOfTheWeek.monday)"
///
/// - Parameter newMember: An element to insert into the set.
/// - Returns: An element equal to `newMember` if the set already contained
/// such a member; otherwise, `nil`. In some cases, the returned element
/// may be distinguishable from `newMember` by identity comparison or some
/// other means.
@inlinable
@discardableResult
public mutating func update(with newMember: __owned Element) -> Element? {
return _variant.update(with: newMember)
}
/// Removes the specified element from the set.
///
/// This example removes the element `"sugar"` from a set of ingredients.
///
/// var ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
/// let toRemove = "sugar"
/// if let removed = ingredients.remove(toRemove) {
/// print("The recipe is now \(removed)-free.")
/// }
/// // Prints "The recipe is now sugar-free."
///
/// - Parameter member: The element to remove from the set.
/// - Returns: The value of the `member` parameter if it was a member of the
/// set; otherwise, `nil`.
@inlinable
@discardableResult
public mutating func remove(_ member: Element) -> Element? {
return _variant.remove(member)
}
/// Removes the element at the given index of the set.
///
/// - Parameter position: The index of the member to remove. `position` must
/// be a valid index of the set, and must not be equal to the set's end
/// index.
/// - Returns: The element that was removed from the set.
@inlinable
@discardableResult
public mutating func remove(at position: Index) -> Element {
return _variant.remove(at: position)
}
/// Removes all members from the set.
///
/// - Parameter keepingCapacity: If `true`, the set's buffer capacity is
/// preserved; if `false`, the underlying buffer is released. The
/// default is `false`.
@inlinable
public mutating func removeAll(keepingCapacity keepCapacity: Bool = false) {
_variant.removeAll(keepingCapacity: keepCapacity)
}
/// Removes the first element of the set.
///
/// Because a set is not an ordered collection, the "first" element may not
/// be the first element that was added to the set. The set must not be
/// empty.
///
/// - Complexity: Amortized O(1) if the set does not wrap a bridged `NSSet`.
/// If the set wraps a bridged `NSSet`, the performance is unspecified.
///
/// - Returns: A member of the set.
@inlinable
@discardableResult
public mutating func removeFirst() -> Element {
_precondition(!isEmpty, "Can't removeFirst from an empty Set")
return remove(at: startIndex)
}
//
// APIs below this comment should be implemented strictly in terms of
// *public* APIs above. `_variant` should not be accessed directly.
//
// This separates concerns for testing. Tests for the following APIs need
// not to concern themselves with testing correctness of behavior of
// underlying buffer (and different variants of it), only correctness of the
// API itself.
//
/// Creates an empty set.
///
/// This is equivalent to initializing with an empty array literal. For
/// example:
///
/// var emptySet = Set<Int>()
/// print(emptySet.isEmpty)
/// // Prints "true"
///
/// emptySet = []
/// print(emptySet.isEmpty)
/// // Prints "true"
@inlinable
public init() {
self = Set<Element>(_native: _NativeSet())
}
/// Creates a new set from a finite sequence of items.
///
/// Use this initializer to create a new set from an existing sequence, for
/// example, an array or a range.
///
/// let validIndices = Set(0..<7).subtracting([2, 4, 5])
/// print(validIndices)
/// // Prints "[6, 0, 1, 3]"
///
/// This initializer can also be used to restore set methods after performing
/// sequence operations such as `filter(_:)` or `map(_:)` on a set. For
/// example, after filtering a set of prime numbers to remove any below 10,
/// you can create a new set by using this initializer.
///
/// let primes: Set = [2, 3, 5, 7, 11, 13, 17, 19, 23]
/// let laterPrimes = Set(primes.lazy.filter { $0 > 10 })
/// print(laterPrimes)
/// // Prints "[17, 19, 23, 11, 13]"
///
/// - Parameter sequence: The elements to use as members of the new set.
@inlinable
public init<Source: Sequence>(_ sequence: __owned Source)
where Source.Element == Element {
self.init(minimumCapacity: sequence.underestimatedCount)
if let s = sequence as? Set<Element> {
// If this sequence is actually a native `Set`, then we can quickly
// adopt its native buffer and let COW handle uniquing only
// if necessary.
self._variant = s._variant
} else {
for item in sequence {
insert(item)
}
}
}
/// Returns a Boolean value that indicates whether the set is a subset of the
/// given sequence.
///
/// Set *A* is a subset of another set *B* if every member of *A* is also a
/// member of *B*.
///
/// let employees = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isSubset(of: employees))
/// // Prints "true"
///
/// - Parameter possibleSuperset: A sequence of elements. `possibleSuperset`
/// must be finite.
/// - Returns: `true` if the set is a subset of `possibleSuperset`;
/// otherwise, `false`.
@inlinable
public func isSubset<S: Sequence>(of possibleSuperset: S) -> Bool
where S.Element == Element {
guard !isEmpty else { return true }
let other = Set(possibleSuperset)
return isSubset(of: other)
}
/// Returns a Boolean value that indicates whether the set is a strict subset
/// of the given sequence.
///
/// Set *A* is a strict subset of another set *B* if every member of *A* is
/// also a member of *B* and *B* contains at least one element that is not a
/// member of *A*.
///
/// let employees = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isStrictSubset(of: employees))
/// // Prints "true"
///
/// // A set is never a strict subset of itself:
/// print(attendees.isStrictSubset(of: attendees))
/// // Prints "false"
///
/// - Parameter possibleStrictSuperset: A sequence of elements.
/// `possibleStrictSuperset` must be finite.
/// - Returns: `true` is the set is strict subset of
/// `possibleStrictSuperset`; otherwise, `false`.
@inlinable
public func isStrictSubset<S: Sequence>(of possibleStrictSuperset: S) -> Bool
where S.Element == Element {
// FIXME: code duplication.
let other = Set(possibleStrictSuperset)
return isStrictSubset(of: other)
}
/// Returns a Boolean value that indicates whether the set is a superset of
/// the given sequence.
///
/// Set *A* is a superset of another set *B* if every member of *B* is also a
/// member of *A*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees = ["Alicia", "Bethany", "Diana"]
/// print(employees.isSuperset(of: attendees))
/// // Prints "true"
///
/// - Parameter possibleSubset: A sequence of elements. `possibleSubset` must
/// be finite.
/// - Returns: `true` if the set is a superset of `possibleSubset`;
/// otherwise, `false`.
@inlinable
public func isSuperset<S: Sequence>(of possibleSubset: __owned S) -> Bool
where S.Element == Element {
for member in possibleSubset {
if !contains(member) {
return false
}
}
return true
}
/// Returns a Boolean value that indicates whether the set is a strict
/// superset of the given sequence.
///
/// Set *A* is a strict superset of another set *B* if every member of *B* is
/// also a member of *A* and *A* contains at least one element that is *not*
/// a member of *B*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees = ["Alicia", "Bethany", "Diana"]
/// print(employees.isStrictSuperset(of: attendees))
/// // Prints "true"
/// print(employees.isStrictSuperset(of: employees))
/// // Prints "false"
///
/// - Parameter possibleStrictSubset: A sequence of elements.
/// `possibleStrictSubset` must be finite.
/// - Returns: `true` if the set is a strict superset of
/// `possibleStrictSubset`; otherwise, `false`.
@inlinable
public func isStrictSuperset<S: Sequence>(of possibleStrictSubset: S) -> Bool
where S.Element == Element {
let other = Set(possibleStrictSubset)
return other.isStrictSubset(of: self)
}
/// Returns a Boolean value that indicates whether the set has no members in
/// common with the given sequence.
///
/// In the following example, the `employees` set is disjoint with the
/// elements of the `visitors` array because no name appears in both.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let visitors = ["Marcia", "Nathaniel", "Olivia"]
/// print(employees.isDisjoint(with: visitors))
/// // Prints "true"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: `true` if the set has no elements in common with `other`;
/// otherwise, `false`.
@inlinable
public func isDisjoint<S: Sequence>(with other: S) -> Bool
where S.Element == Element {
return _isDisjoint(with: other)
}
/// Returns a new set with the elements of both this set and the given
/// sequence.
///
/// In the following example, the `attendeesAndVisitors` set is made up
/// of the elements of the `attendees` set and the `visitors` array:
///
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// let visitors = ["Marcia", "Nathaniel"]
/// let attendeesAndVisitors = attendees.union(visitors)
/// print(attendeesAndVisitors)
/// // Prints "["Diana", "Nathaniel", "Bethany", "Alicia", "Marcia"]"
///
/// If the set already contains one or more elements that are also in
/// `other`, the existing members are kept. If `other` contains multiple
/// instances of equivalent elements, only the first instance is kept.
///
/// let initialIndices = Set(0..<5)
/// let expandedIndices = initialIndices.union([2, 3, 6, 6, 7, 7])
/// print(expandedIndices)
/// // Prints "[2, 4, 6, 7, 0, 1, 3]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set with the unique elements of this set and `other`.
@inlinable
public __consuming func union<S: Sequence>(_ other: __owned S) -> Set<Element>
where S.Element == Element {
var newSet = self
newSet.formUnion(other)
return newSet
}
/// Inserts the elements of the given sequence into the set.
///
/// If the set already contains one or more elements that are also in
/// `other`, the existing members are kept. If `other` contains multiple
/// instances of equivalent elements, only the first instance is kept.
///
/// var attendees: Set = ["Alicia", "Bethany", "Diana"]
/// let visitors = ["Diana", "Marcia", "Nathaniel"]
/// attendees.formUnion(visitors)
/// print(attendees)
/// // Prints "["Diana", "Nathaniel", "Bethany", "Alicia", "Marcia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func formUnion<S: Sequence>(_ other: __owned S)
where S.Element == Element {
for item in other {
insert(item)
}
}
/// Returns a new set containing the elements of this set that do not occur
/// in the given sequence.
///
/// In the following example, the `nonNeighbors` set is made up of the
/// elements of the `employees` set that are not elements of `neighbors`:
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// let nonNeighbors = employees.subtracting(neighbors)
/// print(nonNeighbors)
/// // Prints "["Chris", "Diana", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set.
@inlinable
public __consuming func subtracting<S: Sequence>(_ other: S) -> Set<Element>
where S.Element == Element {
return self._subtracting(other)
}
@inlinable
internal __consuming func _subtracting<S: Sequence>(
_ other: S
) -> Set<Element>
where S.Element == Element {
var newSet = self
newSet.subtract(other)
return newSet
}
/// Removes the elements of the given sequence from the set.
///
/// In the following example, the elements of the `employees` set that are
/// also elements of the `neighbors` array are removed. In particular, the
/// names `"Bethany"` and `"Eric"` are removed from `employees`.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.subtract(neighbors)
/// print(employees)
/// // Prints "["Chris", "Diana", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func subtract<S: Sequence>(_ other: S)
where S.Element == Element {
_subtract(other)
}
@inlinable
internal mutating func _subtract<S: Sequence>(_ other: S)
where S.Element == Element {
// If self is empty we don't need to iterate over `other` because there's
// nothing to remove on self.
guard !isEmpty else { return }
for item in other {
remove(item)
}
}
/// Returns a new set with the elements that are common to both this set and
/// the given sequence.
///
/// In the following example, the `bothNeighborsAndEmployees` set is made up
/// of the elements that are in *both* the `employees` and `neighbors` sets.
/// Elements that are in only one or the other are left out of the result of
/// the intersection.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// let bothNeighborsAndEmployees = employees.intersection(neighbors)
/// print(bothNeighborsAndEmployees)
/// // Prints "["Bethany", "Eric"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set.
@inlinable
public __consuming func intersection<S: Sequence>(_ other: S) -> Set<Element>
where S.Element == Element {
let otherSet = Set(other)
return intersection(otherSet)
}
/// Removes the elements of the set that aren't also in the given sequence.
///
/// In the following example, the elements of the `employees` set that are
/// not also members of the `neighbors` set are removed. In particular, the
/// names `"Alicia"`, `"Chris"`, and `"Diana"` are removed.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.formIntersection(neighbors)
/// print(employees)
/// // Prints "["Bethany", "Eric"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func formIntersection<S: Sequence>(_ other: S)
where S.Element == Element {
// Because `intersect` needs to both modify and iterate over
// the left-hand side, the index may become invalidated during
// traversal so an intermediate set must be created.
//
// FIXME(performance): perform this operation at a lower level
// to avoid invalidating the index and avoiding a copy.
let result = self.intersection(other)
// The result can only have fewer or the same number of elements.
// If no elements were removed, don't perform a reassignment
// as this may cause an unnecessary uniquing COW.
if result.count != count {
self = result
}
}
/// Returns a new set with the elements that are either in this set or in the
/// given sequence, but not in both.
///
/// In the following example, the `eitherNeighborsOrEmployees` set is made up
/// of the elements of the `employees` and `neighbors` sets that are not in
/// both `employees` *and* `neighbors`. In particular, the names `"Bethany"`
/// and `"Eric"` do not appear in `eitherNeighborsOrEmployees`.
///
/// let employees: Set = ["Alicia", "Bethany", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani"]
/// let eitherNeighborsOrEmployees = employees.symmetricDifference(neighbors)
/// print(eitherNeighborsOrEmployees)
/// // Prints "["Diana", "Forlani", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set.
@inlinable
public __consuming func symmetricDifference<S: Sequence>(
_ other: __owned S
) -> Set<Element>
where S.Element == Element {
var newSet = self
newSet.formSymmetricDifference(other)
return newSet
}
/// Replace this set with the elements contained in this set or the given
/// set, but not both.
///
/// In the following example, the elements of the `employees` set that are
/// also members of `neighbors` are removed from `employees`, while the
/// elements of `neighbors` that are not members of `employees` are added to
/// `employees`. In particular, the names `"Bethany"` and `"Eric"` are
/// removed from `employees` while the name `"Forlani"` is added.
///
/// var employees: Set = ["Alicia", "Bethany", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani"]
/// employees.formSymmetricDifference(neighbors)
/// print(employees)
/// // Prints "["Diana", "Forlani", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func formSymmetricDifference<S: Sequence>(
_ other: __owned S)
where S.Element == Element {
let otherSet = Set(other)
formSymmetricDifference(otherSet)
}
}
extension Set: CustomStringConvertible, CustomDebugStringConvertible {
/// A string that represents the contents of the set.
public var description: String {
return _makeCollectionDescription()
}
/// A string that represents the contents of the set, suitable for debugging.
public var debugDescription: String {
return _makeCollectionDescription(withTypeName: "Set")
}
}
extension Set {
/// Removes the elements of the given set from this set.
///
/// In the following example, the elements of the `employees` set that are
/// also members of the `neighbors` set are removed. In particular, the
/// names `"Bethany"` and `"Eric"` are removed from `employees`.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.subtract(neighbors)
/// print(employees)
/// // Prints "["Diana", "Chris", "Alicia"]"
///
/// - Parameter other: Another set.
@inlinable
public mutating func subtract(_ other: Set<Element>) {
_subtract(other)
}
/// Returns a Boolean value that indicates whether this set is a subset of
/// the given set.
///
/// Set *A* is a subset of another set *B* if every member of *A* is also a
/// member of *B*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isSubset(of: employees))
/// // Prints "true"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a subset of `other`; otherwise, `false`.
@inlinable
public func isSubset(of other: Set<Element>) -> Bool {
guard self.count <= other.count else { return false }
for member in self {
if !other.contains(member) {
return false
}
}
return true
}
/// Returns a Boolean value that indicates whether this set is a superset of
/// the given set.
///
/// Set *A* is a superset of another set *B* if every member of *B* is also a
/// member of *A*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(employees.isSuperset(of: attendees))
/// // Prints "true"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a superset of `other`; otherwise,
/// `false`.
@inlinable
public func isSuperset(of other: Set<Element>) -> Bool {
return other.isSubset(of: self)
}
/// Returns a Boolean value that indicates whether this set has no members in
/// common with the given set.
///
/// In the following example, the `employees` set is disjoint with the
/// `visitors` set because no name appears in both sets.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let visitors: Set = ["Marcia", "Nathaniel", "Olivia"]
/// print(employees.isDisjoint(with: visitors))
/// // Prints "true"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set has no elements in common with `other`;
/// otherwise, `false`.
@inlinable
public func isDisjoint(with other: Set<Element>) -> Bool {
return _isDisjoint(with: other)
}
@inlinable
internal func _isDisjoint<S: Sequence>(with other: S) -> Bool
where S.Element == Element {
guard !isEmpty else { return true }
for member in other {
if contains(member) {
return false
}
}
return true
}
/// Returns a new set containing the elements of this set that do not occur
/// in the given set.
///
/// In the following example, the `nonNeighbors` set is made up of the
/// elements of the `employees` set that are not elements of `neighbors`:
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// let nonNeighbors = employees.subtracting(neighbors)
/// print(nonNeighbors)
/// // Prints "["Diana", "Chris", "Alicia"]"
///
/// - Parameter other: Another set.
/// - Returns: A new set.
@inlinable
public __consuming func subtracting(_ other: Set<Element>) -> Set<Element> {
return self._subtracting(other)
}
/// Returns a Boolean value that indicates whether the set is a strict
/// superset of the given sequence.
///
/// Set *A* is a strict superset of another set *B* if every member of *B* is
/// also a member of *A* and *A* contains at least one element that is *not*
/// a member of *B*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(employees.isStrictSuperset(of: attendees))
/// // Prints "true"
/// print(employees.isStrictSuperset(of: employees))
/// // Prints "false"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a strict superset of
/// `other`; otherwise, `false`.
@inlinable
public func isStrictSuperset(of other: Set<Element>) -> Bool {
return self.isSuperset(of: other) && self != other
}
/// Returns a Boolean value that indicates whether the set is a strict subset
/// of the given sequence.
///
/// Set *A* is a strict subset of another set *B* if every member of *A* is
/// also a member of *B* and *B* contains at least one element that is not a
/// member of *A*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isStrictSubset(of: employees))
/// // Prints "true"
///
/// // A set is never a strict subset of itself:
/// print(attendees.isStrictSubset(of: attendees))
/// // Prints "false"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a strict subset of
/// `other`; otherwise, `false`.
@inlinable
public func isStrictSubset(of other: Set<Element>) -> Bool {
return other.isStrictSuperset(of: self)
}
/// Returns a new set with the elements that are common to both this set and
/// the given sequence.
///
/// In the following example, the `bothNeighborsAndEmployees` set is made up
/// of the elements that are in *both* the `employees` and `neighbors` sets.
/// Elements that are in only one or the other are left out of the result of
/// the intersection.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// let bothNeighborsAndEmployees = employees.intersection(neighbors)
/// print(bothNeighborsAndEmployees)
/// // Prints "["Bethany", "Eric"]"
///
/// - Parameter other: Another set.
/// - Returns: A new set.
@inlinable
public __consuming func intersection(_ other: Set<Element>) -> Set<Element> {
var newSet = Set<Element>()
for member in self {
if other.contains(member) {
newSet.insert(member)
}
}
return newSet
}
/// Removes the elements of the set that are also in the given sequence and
/// adds the members of the sequence that are not already in the set.
///
/// In the following example, the elements of the `employees` set that are
/// also members of `neighbors` are removed from `employees`, while the
/// elements of `neighbors` that are not members of `employees` are added to
/// `employees`. In particular, the names `"Alicia"`, `"Chris"`, and
/// `"Diana"` are removed from `employees` while the names `"Forlani"` and
/// `"Greta"` are added.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.formSymmetricDifference(neighbors)
/// print(employees)
/// // Prints "["Diana", "Chris", "Forlani", "Alicia", "Greta"]"
///
/// - Parameter other: Another set.
@inlinable
public mutating func formSymmetricDifference(_ other: __owned Set<Element>) {
for member in other {
if contains(member) {
remove(member)
} else {
insert(member)
}
}
}
}
extension Set {
/// The position of an element in a set.
@frozen
public struct Index {
// Index for native buffer is efficient. Index for bridged NSSet is
// not, because neither NSEnumerator nor fast enumeration support moving
// backwards. Even if they did, there is another issue: NSEnumerator does
// not support NSCopying, and fast enumeration does not document that it is
// safe to copy the state. So, we cannot implement Index that is a value
// type for bridged NSSet in terms of Cocoa enumeration facilities.
@frozen
@usableFromInline
internal enum _Variant {
case native(_HashTable.Index)
#if _runtime(_ObjC)
case cocoa(__CocoaSet.Index)
#endif
}
@usableFromInline
internal var _variant: _Variant
@inlinable
@inline(__always)
internal init(_variant: __owned _Variant) {
self._variant = _variant
}
@inlinable
@inline(__always)
internal init(_native index: _HashTable.Index) {
self.init(_variant: .native(index))
}
#if _runtime(_ObjC)
@inlinable
@inline(__always)
internal init(_cocoa index: __owned __CocoaSet.Index) {
self.init(_variant: .cocoa(index))
}
#endif
}
}
extension Set.Index {
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _guaranteedNative: Bool {
return _canBeClass(Element.self) == 0
}
/// Allow the optimizer to consider the surrounding code unreachable if
/// Set<Element> is guaranteed to be native.
@usableFromInline
@_transparent
internal func _cocoaPath() {
if _guaranteedNative {
_conditionallyUnreachable()
}
}
@inlinable
@inline(__always)
internal mutating func _isUniquelyReferenced() -> Bool {
defer { _fixLifetime(self) }
var handle = _asCocoa.handleBitPattern
return handle == 0 || _isUnique_native(&handle)
}
#endif
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _isNative: Bool {
switch _variant {
case .native:
return true
case .cocoa:
_cocoaPath()
return false
}
}
#endif
@usableFromInline @_transparent
internal var _asNative: _HashTable.Index {
switch _variant {
case .native(let nativeIndex):
return nativeIndex
#if _runtime(_ObjC)
case .cocoa:
_preconditionFailure(
"Attempting to access Set elements using an invalid index")
#endif
}
}
#if _runtime(_ObjC)
@usableFromInline
internal var _asCocoa: __CocoaSet.Index {
@_transparent
get {
switch _variant {
case .native:
_preconditionFailure(
"Attempting to access Set elements using an invalid index")
case .cocoa(let cocoaIndex):
return cocoaIndex
}
}
_modify {
guard case .cocoa(var cocoa) = _variant else {
_preconditionFailure(
"Attempting to access Set elements using an invalid index")
}
let dummy = _HashTable.Index(bucket: _HashTable.Bucket(offset: 0), age: 0)
_variant = .native(dummy)
defer { _variant = .cocoa(cocoa) }
yield &cocoa
}
}
#endif
}
extension Set.Index: Equatable {
@inlinable
public static func == (
lhs: Set<Element>.Index,
rhs: Set<Element>.Index
) -> Bool {
switch (lhs._variant, rhs._variant) {
case (.native(let lhsNative), .native(let rhsNative)):
return lhsNative == rhsNative
#if _runtime(_ObjC)
case (.cocoa(let lhsCocoa), .cocoa(let rhsCocoa)):
lhs._cocoaPath()
return lhsCocoa == rhsCocoa
default:
_preconditionFailure("Comparing indexes from different sets")
#endif
}
}
}
extension Set.Index: Comparable {
@inlinable
public static func < (
lhs: Set<Element>.Index,
rhs: Set<Element>.Index
) -> Bool {
switch (lhs._variant, rhs._variant) {
case (.native(let lhsNative), .native(let rhsNative)):
return lhsNative < rhsNative
#if _runtime(_ObjC)
case (.cocoa(let lhsCocoa), .cocoa(let rhsCocoa)):
lhs._cocoaPath()
return lhsCocoa < rhsCocoa
default:
_preconditionFailure("Comparing indexes from different sets")
#endif
}
}
}
extension Set.Index: Hashable {
/// Hashes the essential components of this value by feeding them into the
/// given hasher.
///
/// - Parameter hasher: The hasher to use when combining the components
/// of this instance.
public // FIXME(cocoa-index): Make inlinable
func hash(into hasher: inout Hasher) {
#if _runtime(_ObjC)
guard _isNative else {
hasher.combine(1 as UInt8)
hasher.combine(_asCocoa._offset)
return
}
hasher.combine(0 as UInt8)
hasher.combine(_asNative.bucket.offset)
#else
hasher.combine(_asNative.bucket.offset)
#endif
}
}
extension Set {
/// An iterator over the members of a `Set<Element>`.
@frozen
public struct Iterator {
// Set has a separate IteratorProtocol and Index because of efficiency
// and implementability reasons.
//
// Native sets have efficient indices. Bridged NSSet instances don't.
//
// Even though fast enumeration is not suitable for implementing
// Index, which is multi-pass, it is suitable for implementing a
// IteratorProtocol, which is being consumed as iteration proceeds.
@usableFromInline
@frozen
internal enum _Variant {
case native(_NativeSet<Element>.Iterator)
#if _runtime(_ObjC)
case cocoa(__CocoaSet.Iterator)
#endif
}
@usableFromInline
internal var _variant: _Variant
@inlinable
internal init(_variant: __owned _Variant) {
self._variant = _variant
}
@inlinable
internal init(_native: __owned _NativeSet<Element>.Iterator) {
self.init(_variant: .native(_native))
}
#if _runtime(_ObjC)
@usableFromInline
internal init(_cocoa: __owned __CocoaSet.Iterator) {
self.init(_variant: .cocoa(_cocoa))
}
#endif
}
}
extension Set.Iterator {
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _guaranteedNative: Bool {
return _canBeClass(Element.self) == 0
}
/// Allow the optimizer to consider the surrounding code unreachable if
/// Set<Element> is guaranteed to be native.
@usableFromInline @_transparent
internal func _cocoaPath() {
if _guaranteedNative {
_conditionallyUnreachable()
}
}
#endif
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _isNative: Bool {
switch _variant {
case .native:
return true
case .cocoa:
_cocoaPath()
return false
}
}
#endif
@usableFromInline @_transparent
internal var _asNative: _NativeSet<Element>.Iterator {
get {
switch _variant {
case .native(let nativeIterator):
return nativeIterator
#if _runtime(_ObjC)
case .cocoa:
_internalInvariantFailure("internal error: does not contain a native index")
#endif
}
}
set {
self._variant = .native(newValue)
}
}
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _asCocoa: __CocoaSet.Iterator {
get {
switch _variant {
case .native:
_internalInvariantFailure("internal error: does not contain a Cocoa index")
case .cocoa(let cocoa):
return cocoa
}
}
}
#endif
}
extension Set.Iterator: IteratorProtocol {
/// Advances to the next element and returns it, or `nil` if no next element
/// exists.
///
/// Once `nil` has been returned, all subsequent calls return `nil`.
@inlinable
@inline(__always)
public mutating func next() -> Element? {
#if _runtime(_ObjC)
guard _isNative else {
guard let cocoaElement = _asCocoa.next() else { return nil }
return _forceBridgeFromObjectiveC(cocoaElement, Element.self)
}
#endif
return _asNative.next()
}
}
extension Set.Iterator: CustomReflectable {
/// A mirror that reflects the iterator.
public var customMirror: Mirror {
return Mirror(
self,
children: EmptyCollection<(label: String?, value: Any)>())
}
}
extension Set: CustomReflectable {
/// A mirror that reflects the set.
public var customMirror: Mirror {
let style = Mirror.DisplayStyle.`set`
return Mirror(self, unlabeledChildren: self, displayStyle: style)
}
}
extension Set {
/// Removes and returns the first element of the set.
///
/// Because a set is not an ordered collection, the "first" element may not
/// be the first element that was added to the set.
///
/// - Returns: A member of the set. If the set is empty, returns `nil`.
@inlinable
public mutating func popFirst() -> Element? {
guard !isEmpty else { return nil }
return remove(at: startIndex)
}
/// The total number of elements that the set can contain without
/// allocating new storage.
@inlinable
public var capacity: Int {
return _variant.capacity
}
/// Reserves enough space to store the specified number of elements.
///
/// If you are adding a known number of elements to a set, use this
/// method to avoid multiple reallocations. This method ensures that the
/// set has unique, mutable, contiguous storage, with space allocated
/// for at least the requested number of elements.
///
/// Calling the `reserveCapacity(_:)` method on a set with bridged
/// storage triggers a copy to contiguous storage even if the existing
/// storage has room to store `minimumCapacity` elements.
///
/// - Parameter minimumCapacity: The requested number of elements to
/// store.
public // FIXME(reserveCapacity): Should be inlinable
mutating func reserveCapacity(_ minimumCapacity: Int) {
_variant.reserveCapacity(minimumCapacity)
_internalInvariant(self.capacity >= minimumCapacity)
}
}
public typealias SetIndex<Element: Hashable> = Set<Element>.Index
public typealias SetIterator<Element: Hashable> = Set<Element>.Iterator