blob: edf912af8c1721471e11921a62aa704798022df0 [file] [log] [blame]
//===--- OSLogOptimizer.cpp - Optimizes calls to OS Log ===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This pass implements SIL-level optimizations and diagnostics for the
/// os log APIs based on string interpolations. A mock version of the APIs
/// are available in the private module: OSLogTestHelper. This pass constant
/// evaluates the log calls along with the auto-generated calls to the custom
/// string interpolation methods, which processes the string interpolation
/// passed to the log calls, and folds the constants found during the
/// evaluation. The constants that are folded include the printf-style format
/// string that is constructed by the custom string interpolation methods from
/// the string interpolation, and the size and headers of the byte buffer into
/// which arguments are packed. This pass is closely tied to the implementation
/// of the log APIs.
///
/// Pass Dependencies: This pass depends on MandatoryInlining and Mandatory
/// Linking happening before this pass and ConstantPropagation happening after
/// this pass. This pass also uses `ConstExprStepEvaluator` defined in
/// `Utils/ConstExpr.cpp`.
///
/// Algorithm Overview:
///
/// This pass implements a function-level transformation that collects calls
/// to the initializer of the custom string interpolation type: OSLogMessage,
/// which are annotated with an @_semantics attribute, and performs the
/// following steps on each such call.
///
/// 1. Determines the range of instructions to constant evaluate.
/// The range starts from the first SIL instruction that begins the
/// construction of the custom string interpolation type: OSLogMessage to
/// the last transitive users of OSLogMessage. The log call which is marked
/// as @_transparent will be inlined into the caller before this pass
/// begins.
///
/// 2. Constant evaluates the range of instruction identified in Step 1 and
/// collects string and integer-valued instructions who values were found
/// to be constants. The evaluation uses 'ConsExprStepEvaluator' utility.
///
/// 3. After constant evaluation, the string and integer-value properties
/// of the custom string interpolation type: `OSLogInterpolation` must be
/// constants. This property is checked and any violations are diagnosed.
/// The errors discovered here may arise from the implementation of the
/// log APIs in the overlay or could be because of wrong usage of the
/// log APIs.
///
/// 4. The constant instructions that were found in step 2 are folded by
/// generating SIL code that produces the constants. This also removes
/// instructions that are dead after folding.
///
/// Code Overview:
///
/// The function 'OSLogOptimization::run' implements the overall driver for
/// steps 1 to 4. The function 'beginOfInterpolation' identifies the begining of
/// interpolation (step 1) and the function 'getEndPointsOfDataDependentChain'
/// identifies the last transitive users of the OSLogMessage instance (step 1).
/// The function 'constantFold' is a driver for the steps 2 to 4. Step 2 is
/// implemented by the function 'collectConstants', step 3 by
/// 'detectAndDiagnoseErrors' and 'checkOSLogMessageIsConstant', and step 4 by
/// 'substituteConstants' and 'emitCodeForSymbolicValue'. The remaining
/// functions in the file implement the subtasks and utilities needed by the
/// above functions.
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/OptimizationMode.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Demangling/Demangler.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILConstants.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/ConstExpr.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/BreadthFirstIterator.h"
#include "llvm/ADT/MapVector.h"
using namespace swift;
using namespace Lowering;
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&... args) {
// The lifetime of StringRef arguments will be extended as necessary by this
// utility. The copy happens in onTentativeDiagnosticFlush at the bottom of
// DiagnosticEngine.cpp, which is called when the destructor of the
// InFlightDiagnostic returned by diagnose runs.
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
namespace {
/// If the given instruction is a call to the compiler-intrinsic initializer
/// of String that accepts string literals, return the called function.
/// Otherwise, return nullptr.
static SILFunction *getStringMakeUTF8Init(SILInstruction *inst) {
auto *apply = dyn_cast<ApplyInst>(inst);
if (!apply)
return nullptr;
SILFunction *callee = apply->getCalleeFunction();
if (!callee || !callee->hasSemanticsAttr(semantics::STRING_MAKE_UTF8))
return nullptr;
return callee;
}
// A cache of string-related, SIL information that is needed to create and
// initalize strings from raw string literals. This information is
// extracted from instructions while they are constant evaluated. Though the
// information contained here can be constructed from scratch, extracting it
// from existing instructions is more efficient.
class StringSILInfo {
/// SILFunction corresponding to an intrinsic string initializer that
/// constructs a Swift String from a string literal.
SILFunction *stringInitIntrinsic = nullptr;
/// SIL metatype of String.
SILType stringMetatype = SILType();
public:
/// Extract and cache the required string-related information from the
/// given instruction, if possible.
void extractStringInfoFromInstruction(SILInstruction *inst) {
// If the cache is already initialized do nothing.
if (stringInitIntrinsic)
return;
SILFunction *callee = getStringMakeUTF8Init(inst);
if (!callee)
return;
this->stringInitIntrinsic = callee;
MetatypeInst *stringMetatypeInst =
dyn_cast<MetatypeInst>(inst->getOperand(4)->getDefiningInstruction());
this->stringMetatype = stringMetatypeInst->getType();
}
bool isInitialized() { return stringInitIntrinsic != nullptr; }
SILFunction *getStringInitIntrinsic() const {
assert(stringInitIntrinsic);
return stringInitIntrinsic;
}
SILType getStringMetatype() const {
assert(stringMetatype);
return stringMetatype;
}
};
/// State needed for constant folding.
class FoldState {
public:
/// Storage for symbolic values constructed during interpretation.
SymbolicValueBumpAllocator allocator;
/// Evaluator for evaluating instructions one by one.
ConstExprStepEvaluator constantEvaluator;
/// Information needed for folding strings.
StringSILInfo stringInfo;
/// Instruction from where folding must begin.
SILInstruction *beginInstruction;
/// Instructions that mark the end points of constant evaluation.
SmallSetVector<SILInstruction *, 2> endInstructions;
private:
/// SIL values that were found to be constants during
/// constant evaluation.
SmallVector<SILValue, 4> constantSILValues;
public:
FoldState(SILFunction *fun, unsigned assertConfig, SILInstruction *beginInst,
ArrayRef<SILInstruction *> endInsts)
: constantEvaluator(allocator, fun, assertConfig),
beginInstruction(beginInst),
endInstructions(endInsts.begin(), endInsts.end()) {}
void addConstantSILValue(SILValue value) {
constantSILValues.push_back(value);
}
ArrayRef<SILValue> getConstantSILValues() {
return ArrayRef<SILValue>(constantSILValues);
}
};
/// Return true if and only if the given nominal type declaration is that of
/// a stdlib Int or stdlib Bool.
static bool isStdlibIntegerOrBoolDecl(NominalTypeDecl *numberDecl,
ASTContext &astCtx) {
return (numberDecl == astCtx.getIntDecl() ||
numberDecl == astCtx.getInt8Decl() ||
numberDecl == astCtx.getInt16Decl() ||
numberDecl == astCtx.getInt32Decl() ||
numberDecl == astCtx.getInt64Decl() ||
numberDecl == astCtx.getUIntDecl() ||
numberDecl == astCtx.getUInt8Decl() ||
numberDecl == astCtx.getUInt16Decl() ||
numberDecl == astCtx.getUInt32Decl() ||
numberDecl == astCtx.getUInt64Decl() ||
numberDecl == astCtx.getBoolDecl());
}
/// Return true if and only if the given SIL type represents a Stdlib or builtin
/// integer type or a Bool type.
static bool isIntegerOrBoolType(SILType silType, ASTContext &astContext) {
if (silType.is<BuiltinIntegerType>()) {
return true;
}
NominalTypeDecl *nominalDecl = silType.getNominalOrBoundGenericNominal();
return nominalDecl && isStdlibIntegerOrBoolDecl(nominalDecl, astContext);
}
/// Return true if and only if the given SIL type represents a String type.
static bool isStringType(SILType silType, ASTContext &astContext) {
NominalTypeDecl *nominalDecl = silType.getNominalOrBoundGenericNominal();
return nominalDecl && nominalDecl == astContext.getStringDecl();
}
/// Return true if and only if the given SIL type represents an Array type.
static bool isArrayType(SILType silType, ASTContext &astContext) {
NominalTypeDecl *nominalDecl = silType.getNominalOrBoundGenericNominal();
return nominalDecl && nominalDecl == astContext.getArrayDecl();
}
/// Decide if the given instruction (which could possibly be a call) should
/// be constant evaluated.
///
/// \returns true iff the given instruction is not a call or if it is, it calls
/// a known constant-evaluable function such as string append etc., or calls
/// a function annotate as "constant_evaluable".
static bool shouldAttemptEvaluation(SILInstruction *inst) {
auto *apply = dyn_cast<ApplyInst>(inst);
if (!apply)
return true;
SILFunction *calleeFun = apply->getCalleeFunction();
if (!calleeFun)
return false;
return isConstantEvaluable(calleeFun);
}
/// Skip or evaluate the given instruction based on the evaluation policy and
/// handle errors. The policy is to evaluate all non-apply instructions as well
/// as apply instructions that are marked as "constant_evaluable".
static std::pair<Optional<SILBasicBlock::iterator>, Optional<SymbolicValue>>
evaluateOrSkip(ConstExprStepEvaluator &stepEval,
SILBasicBlock::iterator instI) {
SILInstruction *inst = &(*instI);
// Note that skipping a call conservatively approximates its effects on the
// interpreter state.
if (shouldAttemptEvaluation(inst)) {
return stepEval.tryEvaluateOrElseMakeEffectsNonConstant(instI);
}
return stepEval.skipByMakingEffectsNonConstant(instI);
}
/// Return true iff the given value is a stdlib Int or Bool and it not a direct
/// construction of Int or Bool.
static bool isFoldableIntOrBool(SILValue value, ASTContext &astContext) {
return isIntegerOrBoolType(value->getType(), astContext) &&
!isa<StructInst>(value);
}
/// Return true iff the given value is a string and is not an initialization
/// of an string from a string literal.
static bool isFoldableString(SILValue value, ASTContext &astContext) {
return isStringType(value->getType(), astContext) &&
(!isa<ApplyInst>(value) ||
!getStringMakeUTF8Init(cast<ApplyInst>(value)));
}
/// Return true iff the given value is an array and is not an initialization
/// of an array from an array literal.
static bool isFoldableArray(SILValue value, ASTContext &astContext) {
if (!isArrayType(value->getType(), astContext))
return false;
// If value is an initialization of an array from a literal or an empty array
// initializer, it need not be folded. Arrays constructed from literals use a
// function with semantics: "array.uninitialized_intrinsic" that returns
// a pair, where the first element of the pair is the array.
SILInstruction *definingInst = value->getDefiningInstruction();
if (!definingInst)
return true;
SILInstruction *constructorInst = definingInst;
if (isa<DestructureTupleInst>(definingInst) ||
isa<TupleExtractInst>(definingInst)) {
constructorInst = definingInst->getOperand(0)->getDefiningInstruction();
}
if (!constructorInst || !isa<ApplyInst>(constructorInst))
return true;
SILFunction *callee = cast<ApplyInst>(constructorInst)->getCalleeFunction();
return !callee ||
(!callee->hasSemanticsAttr("array.init.empty") &&
!callee->hasSemanticsAttr("array.uninitialized_intrinsic"));
}
/// Return true iff the given value is a closure but is not a creation of a
/// closure e.g., through partial_apply or thin_to_thick_function or
/// convert_function.
static bool isFoldableClosure(SILValue value) {
return value->getType().is<SILFunctionType>() &&
(!isa<FunctionRefInst>(value) && !isa<PartialApplyInst>(value) &&
!isa<ThinToThickFunctionInst>(value) &&
!isa<ConvertFunctionInst>(value));
}
/// Check whether a SILValue is foldable. String, integer, array and
/// function values are foldable with the following exceptions:
/// - Addresses cannot be folded.
/// - Literals need not be folded.
/// - Results of ownership instructions like load_borrow/copy_value need not
/// be folded
/// - Constructors such as \c struct Int or \c string.init() need not be folded.
static bool isSILValueFoldable(SILValue value) {
SILInstruction *definingInst = value->getDefiningInstruction();
if (!definingInst)
return false;
ASTContext &astContext = definingInst->getFunction()->getASTContext();
SILType silType = value->getType();
return (!silType.isAddress() && !isa<LiteralInst>(definingInst) &&
!isa<LoadBorrowInst>(definingInst) &&
!isa<BeginBorrowInst>(definingInst) &&
!isa<CopyValueInst>(definingInst) &&
(isFoldableIntOrBool(value, astContext) ||
isFoldableString(value, astContext) ||
isFoldableArray(value, astContext) || isFoldableClosure(value)));
}
/// Diagnose traps and instruction-limit exceeded errors. These have customized
/// error messages. \returns true if the given error is diagnosed. Otherwise,
/// returns false.
static bool diagnoseSpecialErrors(SILInstruction *unevaluableInst,
SymbolicValue errorInfo) {
SourceLoc sourceLoc = unevaluableInst->getLoc().getSourceLoc();
ASTContext &ctx = unevaluableInst->getFunction()->getASTContext();
UnknownReason unknownReason = errorInfo.getUnknownReason();
if (unknownReason.getKind() == UnknownReason::Trap) {
// We have an assertion failure or fatal error.
diagnose(ctx, sourceLoc, diag::oslog_constant_eval_trap,
unknownReason.getTrapMessage());
return true;
}
if (unknownReason.getKind() == UnknownReason::TooManyInstructions) {
// This should not normally happen. But could be because of extensions
// defined by users, or very rarely due to unknown bugs in the os_log API
// implementation. These errors may get hidden during testing as it is input
// specific.
diagnose(ctx, sourceLoc, diag::oslog_too_many_instructions);
return true;
}
return false;
}
/// Diagnose failure during evaluation of a call to a constant-evaluable
/// function that is not a specially-handled error. These are errors that
/// happen within 'appendInterpolation' calls, which must be constant
/// evaluable by the definition of APIs.
static void diagnoseErrorInConstantEvaluableFunction(ApplyInst *call,
SymbolicValue errorInfo) {
SILFunction *callee = call->getCalleeFunction();
assert(callee);
SILLocation loc = call->getLoc();
SourceLoc sourceLoc = loc.getSourceLoc();
ASTContext &astContext = callee->getASTContext();
// Here, we know very little about what actually went wrong. It could be due
// to bugs in the library implementation or in extensions created by users.
// Emit a general message here and some diagnostic notes.
std::string demangledCalleeName = Demangle::demangleSymbolAsString(
callee->getName(),
Demangle::DemangleOptions::SimplifiedUIDemangleOptions());
diagnose(astContext, sourceLoc, diag::oslog_invalid_log_message);
diagnose(astContext, sourceLoc, diag::oslog_const_evaluable_fun_error,
demangledCalleeName);
errorInfo.emitUnknownDiagnosticNotes(loc);
}
/// Detect and emit diagnostics for errors found during evaluation. Errors
/// can happen due to bugs in the implementation of the os log API, or
/// due to incorrect use of the os log API.
static bool detectAndDiagnoseErrors(SymbolicValue errorInfo,
SILInstruction *unevaluableInst) {
// TODO: fix the globalStrinTableBuiltin error after emitting diagnostics.
SILFunction *parentFun = unevaluableInst->getFunction();
ASTContext &astContext = parentFun->getASTContext();
if (diagnoseSpecialErrors(unevaluableInst, errorInfo))
return true;
// If evaluation of any constant_evaluable function call fails, point
// to that failed function along with a reason.
ApplyInst *call = dyn_cast<ApplyInst>(unevaluableInst);
if (call) {
SILFunction *callee = call->getCalleeFunction();
if (callee && isConstantEvaluable(callee)) {
diagnoseErrorInConstantEvaluableFunction(call, errorInfo);
return true; // abort evaluation.
}
}
// Every other error must happen in the top-level code containing the string
// interpolation construction and body of the log methods. If we have a
// fail-stop error, point to the error and abort evaluation. Otherwise, just
// ignore the error and continue evaluation as this error might not affect the
// constant value of the OSLogMessage instance.
if (isFailStopError(errorInfo)) {
SILLocation loc = unevaluableInst->getLoc();
diagnose(astContext, loc.getSourceLoc(), diag::oslog_invalid_log_message);
errorInfo.emitUnknownDiagnosticNotes(loc);
return true;
}
return false;
}
/// Given a 'foldState', constant evaluate instructions from
/// 'foldState.beginInstruction' until an instruction in
/// 'foldState.endInstructions' is seen. Add foldable, constant-valued
/// instructions discovered during the evaluation to
/// 'foldState.constantSILValues'.
/// \returns error information if the evaluation failed.
static Optional<SymbolicValue> collectConstants(FoldState &foldState) {
ConstExprStepEvaluator &constantEvaluator = foldState.constantEvaluator;
SILBasicBlock::iterator currI = foldState.beginInstruction->getIterator();
auto &endInstructions = foldState.endInstructions;
// The loop will break when it sees a return instruction or an instruction in
// endInstructions or when the next instruction to evaluate cannot be
// determined (which may happend due to non-constant branches).
while (true) {
SILInstruction *currInst = &(*currI);
if (endInstructions.count(currInst))
break;
// Initialize string info from this instruction if possible.
foldState.stringInfo.extractStringInfoFromInstruction(currInst);
Optional<SymbolicValue> errorInfo = None;
Optional<SILBasicBlock::iterator> nextI = None;
std::tie(nextI, errorInfo) = evaluateOrSkip(constantEvaluator, currI);
// If the evaluation of this instruction failed, check whether it should be
// diagnosed and reported. If so, abort evaluation. Otherwise, continue
// evaluation if possible as this error could be due to an instruction that
// doesn't affect the OSLogMessage value.
if (errorInfo && detectAndDiagnoseErrors(errorInfo.getValue(), currInst)) {
return errorInfo;
}
if (!nextI) {
// We cannnot find the next instruction to continue evaluation, and we
// haven't seen any reportable errors during evaluation. Therefore,
// consider this the end point of evaluation.
return None; // No error.
}
// Set the next instruction to continue evaluation from.
currI = nextI.getValue();
// If the instruction results are foldable and if we found a constant value
// for the results, record it.
for (SILValue instructionResult : currInst->getResults()) {
if (!isSILValueFoldable(instructionResult))
continue;
Optional<SymbolicValue> constantVal =
constantEvaluator.lookupConstValue(instructionResult);
if (constantVal.hasValue()) {
foldState.addConstantSILValue(instructionResult);
}
}
}
return None; // No error.
}
/// Generate SIL code to create an array of constant size from the given
/// SILValues \p elements. This function creates the same sequence of SIL
/// instructions that would be generated for initializing an array from an array
/// literal of the form [element1, element2, ..., elementn].
///
/// \param elements SILValues that the array should contain
/// \param arrayType the type of the array that must be created.
/// \param builder SILBuilder that provides the context for emitting the code
/// for the array.
/// \param loc SILLocation to use in the emitted instructions.
/// \return the SILValue of the array that is created with the given \c
/// elements.
static SILValue emitCodeForConstantArray(ArrayRef<SILValue> elements,
CanType arrayType, SILBuilder &builder,
SILLocation loc) {
ASTContext &astContext = builder.getASTContext();
assert(astContext.getArrayDecl() ==
arrayType->getNominalOrBoundGenericNominal());
SILModule &module = builder.getModule();
// Create a SILValue for the number of elements.
unsigned numElements = elements.size();
SILValue numElementsSIL = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), numElements);
// Find the SILFunction that corresponds to _allocateUninitializedArray.
FuncDecl *arrayAllocateDecl = astContext.getAllocateUninitializedArray();
assert(arrayAllocateDecl);
std::string allocatorMangledName =
SILDeclRef(arrayAllocateDecl, SILDeclRef::Kind::Func).mangle();
SILFunction *arrayAllocateFun =
module.findFunction(allocatorMangledName, SILLinkage::PublicExternal);
assert(arrayAllocateFun);
SILFunction *arrayFinalizeFun = nullptr;
if (numElements != 0) {
if (FuncDecl *arrayFinalizeDecl = astContext.getFinalizeUninitializedArray()) {
std::string finalizeMangledName =
SILDeclRef(arrayFinalizeDecl, SILDeclRef::Kind::Func).mangle();
arrayFinalizeFun =
module.findFunction(finalizeMangledName, SILLinkage::SharedExternal);
assert(arrayFinalizeFun);
module.linkFunction(arrayFinalizeFun);
}
}
// Call the _allocateUninitializedArray function with numElementsSIL. The
// call returns a two-element tuple, where the first element is the newly
// created array and the second element is a pointer to the internal storage
// of the array.
SubstitutionMap subMap = arrayType->getContextSubstitutionMap(
module.getSwiftModule(), astContext.getArrayDecl());
FunctionRefInst *arrayAllocateRef =
builder.createFunctionRef(loc, arrayAllocateFun);
ApplyInst *applyInst = builder.createApply(
loc, arrayAllocateRef, subMap, ArrayRef<SILValue>(numElementsSIL), false);
// Extract the elements of the tuple returned by the call to the allocator.
DestructureTupleInst *destructureInst =
builder.createDestructureTuple(loc, applyInst);
SILValue arraySIL = destructureInst->getResults()[0];
SILValue storagePointerSIL = destructureInst->getResults()[1];
if (elements.empty()) {
// Nothing more to be done if we are creating an empty array.
return arraySIL;
}
// Convert the pointer to the storage to an address. The elements will be
// stored into offsets from this address.
SILType elementSILType = elements[0]->getType();
PointerToAddressInst *storageAddr = builder.createPointerToAddress(
loc, storagePointerSIL, elementSILType.getAddressType(),
/*isStrict*/ true,
/*isInvariant*/ false);
// Iterate over the elements and store them into the storage address
// after offsetting it appropriately.
// Create a TypeLowering for emitting stores. Note that TypeLowering
// provides a utility for emitting stores for storing trivial and
// non-trivial values, and also handles OSSA and non-OSSA.
const TypeLowering &elementTypeLowering =
builder.getTypeLowering(elementSILType);
unsigned elementIndex = 0;
for (SILValue elementSIL : elements) {
// Compute the address where the element must be stored.
SILValue currentStorageAddr;
if (elementIndex != 0) {
SILValue indexSIL = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), elementIndex);
currentStorageAddr = builder.createIndexAddr(loc, storageAddr, indexSIL);
} else {
currentStorageAddr = storageAddr;
}
// Store the generated element into the currentStorageAddr. This is an
// initializing store and therefore there is no need to free any existing
// element.
elementTypeLowering.emitStore(builder, loc, elementSIL, currentStorageAddr,
StoreOwnershipQualifier::Init);
++elementIndex;
}
if (arrayFinalizeFun) {
FunctionRefInst *arrayFinalizeRef =
builder.createFunctionRef(loc, arrayFinalizeFun);
arraySIL = builder.createApply(loc, arrayFinalizeRef, subMap,
ArrayRef<SILValue>(arraySIL));
}
return arraySIL;
}
/// Given a SILValue \p value, return the instruction immediately following the
/// definition of the value. That is, if the value is defined by an
/// instruction, return the instruction following the definition. Otherwise, if
/// the value is a basic block parameter, return the first instruction of the
/// basic block.
SILInstruction *getInstructionFollowingValueDefinition(SILValue value) {
SILInstruction *definingInst = value->getDefiningInstruction();
if (definingInst) {
return &*std::next(definingInst->getIterator());
}
// Here value must be a basic block argument.
SILBasicBlock *bb = value->getParentBlock();
return &*bb->begin();
}
/// Given a SILValue \p value, create a copy of the value using copy_value in
/// OSSA or retain in non-OSSA, if \p value is a non-trivial type. Otherwise, if
/// \p value is a trivial type, return the value itself.
SILValue makeOwnedCopyOfSILValue(SILValue value, SILFunction &fun) {
SILType type = value->getType();
if (type.isTrivial(fun) || type.isAddress())
return value;
SILInstruction *instAfterValueDefinition =
getInstructionFollowingValueDefinition(value);
SILLocation copyLoc = instAfterValueDefinition->getLoc();
SILBuilderWithScope builder(instAfterValueDefinition);
const TypeLowering &typeLowering = builder.getTypeLowering(type);
SILValue copy = typeLowering.emitCopyValue(builder, copyLoc, value);
return copy;
}
/// Generate SIL code that computes the constant given by the symbolic value
/// `symVal`. Note that strings and struct-typed constant values will require
/// multiple instructions to be emitted.
/// \param symVal symbolic value for which SIL code needs to be emitted.
/// \param expectedType the expected type of the instruction that would be
/// computing the symbolic value `symVal`. The type is accepted as a
/// parameter as some symbolic values like integer constants can inhabit more
/// than one type.
/// \param builder SILBuilder that provides the context for emitting the code
/// for the symbolic value
/// \param loc SILLocation to use in the emitted instructions.
/// \param stringInfo String.init and metatype information for generating code
/// for string literals.
static SILValue emitCodeForSymbolicValue(SymbolicValue symVal,
Type expectedType, SILBuilder &builder,
SILLocation &loc,
StringSILInfo &stringInfo) {
ASTContext &astContext = expectedType->getASTContext();
switch (symVal.getKind()) {
case SymbolicValue::String: {
assert(astContext.getStringDecl() ==
expectedType->getNominalOrBoundGenericNominal());
StringRef stringVal = symVal.getStringValue();
StringLiteralInst *stringLitInst = builder.createStringLiteral(
loc, stringVal, StringLiteralInst::Encoding::UTF8);
// Create a builtin word for the size of the string
IntegerLiteralInst *sizeInst = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), stringVal.size());
// Set isAscii to false.
IntegerLiteralInst *isAscii = builder.createIntegerLiteral(
loc, SILType::getBuiltinIntegerType(1, astContext), 0);
// Create a metatype inst.
MetatypeInst *metatypeInst =
builder.createMetatype(loc, stringInfo.getStringMetatype());
auto args = SmallVector<SILValue, 4>();
args.push_back(stringLitInst);
args.push_back(sizeInst);
args.push_back(isAscii);
args.push_back(metatypeInst);
FunctionRefInst *stringInitRef =
builder.createFunctionRef(loc, stringInfo.getStringInitIntrinsic());
ApplyInst *applyInst = builder.createApply(
loc, stringInitRef, SubstitutionMap(), ArrayRef<SILValue>(args), false);
return applyInst;
}
case SymbolicValue::Integer: { // Builtin integer types.
APInt resInt = symVal.getIntegerValue();
assert(expectedType->is<BuiltinIntegerType>());
SILType builtinIntType =
SILType::getPrimitiveObjectType(expectedType->getCanonicalType());
IntegerLiteralInst *intLiteralInst =
builder.createIntegerLiteral(loc, builtinIntType, resInt);
return intLiteralInst;
}
case SymbolicValue::Aggregate: {
// Support only stdlib integer or bool structs.
StructDecl *structDecl = expectedType->getStructOrBoundGenericStruct();
assert(structDecl);
assert(isStdlibIntegerOrBoolDecl(structDecl, astContext));
assert(symVal.getAggregateType()->isEqual(expectedType) &&
"aggregate symbolic value's type and expected type do not match");
VarDecl *propertyDecl = structDecl->getStoredProperties().front();
Type propertyType = expectedType->getTypeOfMember(
propertyDecl->getModuleContext(), propertyDecl);
SymbolicValue propertyVal = symVal.lookThroughSingleElementAggregates();
SILValue newPropertySIL = emitCodeForSymbolicValue(
propertyVal, propertyType, builder, loc, stringInfo);
// The lowered SIL type of an integer/bool type is just the primitive
// object type containing the Swift type.
SILType aggregateType =
SILType::getPrimitiveObjectType(expectedType->getCanonicalType());
StructInst *newStructInst = builder.createStruct(
loc, aggregateType, ArrayRef<SILValue>(newPropertySIL));
return newStructInst;
}
case SymbolicValue::Array: {
assert(expectedType->isEqual(symVal.getArrayType()));
CanType elementType;
ArrayRef<SymbolicValue> arrayElements =
symVal.getStorageOfArray().getStoredElements(elementType);
auto elementSILType = builder.getModule().Types
.getLoweredType(AbstractionPattern::getOpaque(), elementType,
TypeExpansionContext(builder.getFunction()));
// Emit code for the symbolic values corresponding to the array elements.
SmallVector<SILValue, 8> elementSILValues;
for (SymbolicValue elementSymVal : arrayElements) {
SILValue elementSIL = emitCodeForSymbolicValue(elementSymVal,
elementSILType.getASTType(),
builder, loc, stringInfo);
elementSILValues.push_back(elementSIL);
}
SILValue arraySIL = emitCodeForConstantArray(
elementSILValues, expectedType->getCanonicalType(), builder, loc);
return arraySIL;
}
case SymbolicValue::Closure: {
assert(expectedType->is<AnyFunctionType>() ||
expectedType->is<SILFunctionType>());
SILModule &module = builder.getModule();
SymbolicClosure *closure = symVal.getClosure();
SILValue resultVal;
// If the closure was created in the context of this function where the code
// is generated, reuse the original closure value (after extending its
// lifetime by copying).
SingleValueInstruction *originalClosureInst = closure->getClosureInst();
SILFunction &fun = builder.getFunction();
if (originalClosureInst->getFunction() == &fun) {
// Copy the closure, since the returned value must be owned and the
// closure's lifetime must be extended until this point.
resultVal = makeOwnedCopyOfSILValue(originalClosureInst, fun);
} else {
// If the closure captures a value that is not a constant, it should only
// come from the caller of the log call. It should be handled by the then
// case and we should never reach here. Assert this.
assert(closure->hasOnlyConstantCaptures() &&
"closure with non-constant captures not defined in this function");
SubstitutionMap callSubstMap = closure->getCallSubstitutionMap();
ArrayRef<SymbolicClosureArgument> captures = closure->getCaptures();
// Recursively emit code for all captured values which must be mapped to a
// symbolic value.
SmallVector<SILValue, 4> capturedSILVals;
for (SymbolicClosureArgument capture : captures) {
SILValue captureOperand = capture.first;
Optional<SymbolicValue> captureSymVal = capture.second;
assert(captureSymVal);
// Note that the captured operand type may have generic parameters which
// has to be substituted with the substitution map that was inferred by
// the constant evaluator at the partial-apply site.
SILType operandType = captureOperand->getType();
SILType captureType = operandType.subst(module, callSubstMap);
SILValue captureSILVal = emitCodeForSymbolicValue(
captureSymVal.getValue(), captureType.getASTType(), builder, loc,
stringInfo);
capturedSILVals.push_back(captureSILVal);
}
FunctionRefInst *functionRef =
builder.createFunctionRef(loc, closure->getTarget());
SILType closureType = closure->getClosureType();
ParameterConvention convention =
closureType.getAs<SILFunctionType>()->getCalleeConvention();
resultVal = builder.createPartialApply(loc, functionRef, callSubstMap,
capturedSILVals, convention);
}
// If the expected type is a SILFunctionType convert the closure to the
// expected type using a convert_function instruction. Otherwise, if the
// expected type is AnyFunctionType, nothing needs to be done.
// Note that we cannot assert the lowering in the latter case, as that
// utility doesn't exist yet.
auto resultType = resultVal->getType().castTo<SILFunctionType>();
CanType expectedCanType = expectedType->getCanonicalType();
if (auto expectedFnType = dyn_cast<SILFunctionType>(expectedCanType)) {
assert(expectedFnType->getUnsubstitutedType(module)
== resultType->getUnsubstitutedType(module));
// Convert to the expected type if necessary.
if (expectedFnType != resultType) {
auto convert = builder.createConvertFunction(
loc, resultVal, SILType::getPrimitiveObjectType(expectedFnType),
false);
return convert;
}
}
return resultVal;
}
default: {
llvm_unreachable("Symbolic value kind is not supported");
}
}
}
/// Given a SILValue \p value, compute the set of transitive users of the value
/// (excluding value itself) by following the use-def chain starting at value.
/// Note that this function does not follow use-def chains though branches.
static void getTransitiveUsers(SILValue value,
SmallVectorImpl<SILInstruction *> &users) {
// Collect the instructions that are data dependent on the value using a
// fix point iteration.
SmallPtrSet<SILInstruction *, 16> visitedUsers;
SmallVector<SILValue, 16> worklist;
worklist.push_back(value);
while (!worklist.empty()) {
SILValue currVal = worklist.pop_back_val();
for (Operand *use : currVal->getUses()) {
SILInstruction *user = use->getUser();
if (visitedUsers.count(user))
continue;
visitedUsers.insert(user);
llvm::copy(user->getResults(), std::back_inserter(worklist));
}
}
// At this point, visitedUsers have all the transitive, data-dependent uses.
users.append(visitedUsers.begin(), visitedUsers.end());
}
/// Collect the end points of the instructions that are data dependent on \c
/// value. A instruction is data dependent on \c value if its result may
/// transitively depends on \c value. Note that data dependencies through
/// addresses are not tracked by this function.
///
/// \param value SILValue that is not an address.
/// \param fun SILFunction that defines \c value.
/// \param endUsers buffer for storing the found end points of the data
/// dependence chain.
static void
getEndPointsOfDataDependentChain(SILValue value, SILFunction *fun,
SmallVectorImpl<SILInstruction *> &endUsers) {
assert(!value->getType().isAddress());
SmallVector<SILInstruction *, 16> transitiveUsers;
// Get transitive users of value, ignoring use-def chain going through
// branches. These transitive users define the end points of the constant
// evaluation. Igoring use-def chains through branches causes constant
// evaluation to miss some constant folding opportunities. This can be
// relaxed in the future, if necessary.
getTransitiveUsers(value, transitiveUsers);
// Compute the lifetime frontier of all the transitive uses which are the
// instructions following the last uses. Every exit from the last uses will
// have a lifetime frontier.
SILInstruction *valueDefinition = value->getDefiningInstruction();
SILInstruction *def =
valueDefinition ? valueDefinition : &(value->getParentBlock()->front());
ValueLifetimeAnalysis lifetimeAnalysis =
ValueLifetimeAnalysis(def, transitiveUsers);
ValueLifetimeAnalysis::Frontier frontier;
bool hasCriticlEdges = lifetimeAnalysis.computeFrontier(
frontier, ValueLifetimeAnalysis::DontModifyCFG);
endUsers.append(frontier.begin(), frontier.end());
if (!hasCriticlEdges)
return;
// If there are some lifetime frontiers on the critical edges, take the
// first instruction of the target of the critical edge as the frontier. This
// will suffice as every exit from the visitedUsers must go through one of
// them.
for (auto edgeIndexPair : lifetimeAnalysis.getCriticalEdges()) {
SILBasicBlock *targetBB =
edgeIndexPair.first->getSuccessors()[edgeIndexPair.second];
endUsers.push_back(&targetBB->front());
}
}
/// Given a guaranteed SILValue \p value, return a borrow-scope introducing
/// value, if there is exactly one such introducing value. Otherwise, return
/// None. There can be multiple borrow scopes for a SILValue iff it is derived
/// from a guaranteed basic block parameter representing a phi node.
static Optional<BorrowedValue>
getUniqueBorrowScopeIntroducingValue(SILValue value) {
assert(value.getOwnershipKind() == OwnershipKind::Guaranteed &&
"parameter must be a guarenteed value");
return getSingleBorrowIntroducingValue(value);
}
/// Replace all uses of \c originalVal by \c foldedVal and adjust lifetimes of
/// original and folded values by emitting required destory/release instructions
/// at the right places. Note that this function does not remove any
/// instruction.
///
/// \param originalVal the SIL value that is replaced.
/// \param foldedVal the SIL value that replaces the \c originalVal.
/// \param fun the SIL function containing the \c foldedVal and \c originalVal
static void replaceAllUsesAndFixLifetimes(SILValue foldedVal,
SILValue originalVal,
SILFunction *fun) {
SILInstruction *originalInst = originalVal->getDefiningInstruction();
SILInstruction *foldedInst = foldedVal->getDefiningInstruction();
assert(originalInst &&
"cannot constant fold function or basic block parameter");
assert(!isa<TermInst>(originalInst) &&
"cannot constant fold a terminator instruction");
assert(foldedInst && "constant value does not have a defining instruction");
if (originalVal->getType().isTrivial(*fun)) {
assert(foldedVal->getType().isTrivial(*fun));
// Just replace originalVal by foldedVal.
originalVal->replaceAllUsesWith(foldedVal);
return;
}
assert(!foldedVal->getType().isTrivial(*fun));
assert(fun->hasOwnership());
assert(foldedVal.getOwnershipKind() == OwnershipKind::Owned &&
"constant value must have owned ownership kind");
if (originalVal.getOwnershipKind() == OwnershipKind::Owned) {
originalVal->replaceAllUsesWith(foldedVal);
// Destroy originalVal, which is now unused, immediately after its
// definition. Note that originalVal's destorys are now transferred to
// foldedVal.
SILInstruction *insertionPoint = &(*std::next(originalInst->getIterator()));
SILBuilderWithScope builder(insertionPoint);
SILLocation loc = insertionPoint->getLoc();
builder.emitDestroyValueOperation(loc, originalVal);
return;
}
// Here, originalVal is guaranteed. It must belong to a borrow scope that
// begins at a scope introducing instruction e.g. begin_borrow or load_borrow.
// The foldedVal should also have been inserted at the beginning of the scope.
// Therefore, create a borrow of foldedVal at the beginning of the scope and
// use the borrow in place of the originalVal. Also, end the borrow and
// destroy foldedVal at the end of the borrow scope.
assert(originalVal.getOwnershipKind() == OwnershipKind::Guaranteed);
Optional<BorrowedValue> originalScopeBegin =
getUniqueBorrowScopeIntroducingValue(originalVal);
assert(originalScopeBegin &&
"value without a unique borrow scope should not have been folded");
SILInstruction *scopeBeginInst =
originalScopeBegin->value->getDefiningInstruction();
assert(scopeBeginInst);
SILBuilderWithScope builder(scopeBeginInst);
SILValue borrow =
builder.emitBeginBorrowOperation(scopeBeginInst->getLoc(), foldedVal);
originalVal->replaceAllUsesWith(borrow);
SmallVector<SILInstruction *, 4> scopeEndingInsts;
originalScopeBegin->getLocalScopeEndingInstructions(scopeEndingInsts);
for (SILInstruction *scopeEndingInst : scopeEndingInsts) {
SILBuilderWithScope builder(scopeEndingInst);
builder.emitEndBorrowOperation(scopeEndingInst->getLoc(), borrow);
builder.emitDestroyValueOperation(scopeEndingInst->getLoc(), foldedVal);
}
return;
}
/// Given a fold state with constant-valued instructions, substitute the
/// instructions with the constant values. The constant values could be strings
/// or Stdlib integer-struct values or builtin integers.
static void substituteConstants(FoldState &foldState) {
ConstExprStepEvaluator &evaluator = foldState.constantEvaluator;
// Instructions that are possibly dead since their results are folded.
SmallVector<SILInstruction *, 8> possiblyDeadInsts;
for (SILValue constantSILValue : foldState.getConstantSILValues()) {
SymbolicValue constantSymbolicVal =
evaluator.lookupConstValue(constantSILValue).getValue();
SILInstruction *definingInst = constantSILValue->getDefiningInstruction();
assert(definingInst);
SILFunction *fun = definingInst->getFunction();
// Find an insertion point for inserting the new constant value. If we are
// folding a value like struct_extract within a borrow scope, we need to
// insert the constant value at the beginning of the borrow scope. This
// is because the borrowed value is expected to be alive during its entire
// borrow scope and could be stored into memory and accessed indirectly
// without a copy e.g. using store_borrow within the borrow scope. On the
// other hand, if we are folding an owned value, we can insert the constant
// value at the point where the owned value is defined.
SILInstruction *insertionPoint = definingInst;
if (constantSILValue.getOwnershipKind() == OwnershipKind::Guaranteed) {
Optional<BorrowedValue> borrowIntroducer =
getUniqueBorrowScopeIntroducingValue(constantSILValue);
if (!borrowIntroducer) {
// This case happens only if constantSILValue is derived from a
// guaranteed basic block parameter. This is unlikley because the values
// that have to be folded should just be a struct-extract of an owned
// instance of OSLogMessage.
continue;
}
insertionPoint = borrowIntroducer->value->getDefiningInstruction();
assert(insertionPoint && "borrow scope begnning is a parameter");
}
SILBuilderWithScope builder(insertionPoint);
SILLocation loc = insertionPoint->getLoc();
CanType instType = constantSILValue->getType().getASTType();
SILValue foldedSILVal = emitCodeForSymbolicValue(
constantSymbolicVal, instType, builder, loc, foldState.stringInfo);
// Replace constantSILValue with foldedSILVal and adjust the lifetime and
// ownership of the values appropriately.
replaceAllUsesAndFixLifetimes(foldedSILVal, constantSILValue, fun);
possiblyDeadInsts.push_back(definingInst);
}
}
/// Check whether OSLogMessage and OSLogInterpolation instances and all their
/// stored properties are constants. If not, it indicates errors that are due to
/// incorrect implementation of OSLogMessage either in the os module or in the
/// extensions created by users. Detect and emit diagnostics for such errors.
/// The diagnostics here are for os log library authors.
static bool checkOSLogMessageIsConstant(SingleValueInstruction *osLogMessage,
FoldState &foldState) {
ConstExprStepEvaluator &constantEvaluator = foldState.constantEvaluator;
SILLocation loc = osLogMessage->getLoc();
SourceLoc sourceLoc = loc.getSourceLoc();
SILFunction *fn = osLogMessage->getFunction();
SILModule &module = fn->getModule();
ASTContext &astContext = fn->getASTContext();
Optional<SymbolicValue> osLogMessageValueOpt =
constantEvaluator.lookupConstValue(osLogMessage);
if (!osLogMessageValueOpt ||
osLogMessageValueOpt->getKind() != SymbolicValue::Aggregate) {
diagnose(astContext, sourceLoc, diag::oslog_non_constant_message);
return true;
}
// The first (and only) property of OSLogMessage is the OSLogInterpolation
// instance.
SymbolicValue osLogInterpolationValue =
osLogMessageValueOpt->getAggregateMembers()[0];
if (!osLogInterpolationValue.isConstant()) {
diagnose(astContext, sourceLoc, diag::oslog_non_constant_interpolation);
return true;
}
// Check if every proprety of the OSLogInterpolation instance has a constant
// value.
SILType osLogMessageType = osLogMessage->getType();
StructDecl *structDecl = osLogMessageType.getStructOrBoundGenericStruct();
assert(structDecl);
auto typeExpansionContext =
TypeExpansionContext(*osLogMessage->getFunction());
VarDecl *interpolationPropDecl = structDecl->getStoredProperties().front();
SILType osLogInterpolationType = osLogMessageType.getFieldType(
interpolationPropDecl, module, typeExpansionContext);
StructDecl *interpolationStruct =
osLogInterpolationType.getStructOrBoundGenericStruct();
assert(interpolationStruct);
auto propertyDecls = interpolationStruct->getStoredProperties();
ArrayRef<SymbolicValue> propertyValues =
osLogInterpolationValue.getAggregateMembers();
auto propValueI = propertyValues.begin();
bool errorDetected = false;
// Also, track if there is a string-valued property.
bool hasStringValuedProperty = false;
for (auto *propDecl : propertyDecls) {
SymbolicValue propertyValue = *(propValueI++);
if (!propertyValue.isConstant()) {
diagnose(astContext, sourceLoc, diag::oslog_property_not_constant,
propDecl->getNameStr());
errorDetected = true;
break;
}
hasStringValuedProperty = propertyValue.getKind() == SymbolicValue::String;
}
// If we have a string-valued property but don't have the stringInfo
// initialized here, it means the initializer OSLogInterpolation is explicitly
// called, which should be diagnosed.
if (hasStringValuedProperty && !foldState.stringInfo.isInitialized()) {
diagnose(astContext, sourceLoc, diag::oslog_message_explicitly_created);
errorDetected = true;
}
return errorDetected;
}
using CallbackTy = llvm::function_ref<void(SILInstruction *)>;
/// Return true iff the given address-valued instruction has only stores into
/// it. This function tests for the conditions under which a call, that was
/// constant evaluated, that writes into the address-valued instruction can be
/// considered as a point store and exploits it to remove such uses.
/// TODO: eventually some of this logic can be moved to
/// PredictableDeadAllocElimination pass, but the assumption about constant
/// evaluable functions taking inout parameters is not easily generalizable to
/// arbitrary non-constant contexts where the function could be used. The logic
/// here is relying on the fact that the constant_evaluable function has been
/// evaluated and therefore doesn't have any side-effects.
static bool hasOnlyStoreUses(SingleValueInstruction *addressInst) {
for (Operand *use : addressInst->getUses()) {
SILInstruction *user = use->getUser();
switch (user->getKind()) {
default:
return false;
case SILInstructionKind::BeginAccessInst: {
if (!hasOnlyStoreUses(cast<BeginAccessInst>(user)))
return false;
continue;
}
case SILInstructionKind::StoreInst: {
// For now, ignore assigns as we need to destroy_addr its dest if it
// is deleted.
if (cast<StoreInst>(user)->getOwnershipQualifier() ==
StoreOwnershipQualifier::Assign)
return false;
continue;
}
case SILInstructionKind::EndAccessInst:
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::InjectEnumAddrInst:
case SILInstructionKind::DeallocStackInst:
continue;
case SILInstructionKind::ApplyInst: {
ApplyInst *apply = cast<ApplyInst>(user);
SILFunction *callee = apply->getCalleeFunction();
if (!callee || !isConstantEvaluable(callee) || !apply->use_empty())
return false;
// Note that since we are looking at an alloc_stack used to produce the
// OSLogMessage instance, this constant_evaluable call should have been
// evaluated successfully by the evaluator. Otherwise, we would have
// reported an error earlier. Therefore, all values manipulated by such
// a call are symbolic constants and the call would not have any global
// side effects. The following logic relies on this property.
// If there are other indirect writable results for the call other than
// the alloc_stack we are checking, it may not be dead. Therefore, bail
// out.
FullApplySite applySite(apply);
unsigned numWritableArguments =
getNumInOutArguments(applySite) + applySite.getNumIndirectSILResults();
if (numWritableArguments > 1)
return false;
SILArgumentConvention convention = applySite.getArgumentConvention(*use);
if (convention == SILArgumentConvention::Indirect_In_Guaranteed ||
convention == SILArgumentConvention::Indirect_In_Constant ||
convention == SILArgumentConvention::Indirect_In_Guaranteed) {
if (numWritableArguments > 0)
return false;
}
// Here, either there are no writable parameters or the alloc_stack
// is the only writable parameter.
continue;
}
}
}
return true;
}
/// Delete the given alloc_stack instruction by deleting the users of the
/// instruction. In case the user is a begin_apply, recursively delete the users
/// of begin_apply. This will also fix the lifetimes of the deleted instructions
/// whenever possible.
static void forceDeleteAllocStack(SingleValueInstruction *inst,
InstructionDeleter &deleter,
CallbackTy callback) {
SmallVector<SILInstruction *, 8> users;
for (Operand *use : inst->getUses())
users.push_back(use->getUser());
for (SILInstruction *user : users) {
if (isIncidentalUse(user))
continue;
if (isa<DestroyAddrInst>(user)) {
deleter.forceDelete(user, callback);
continue;
}
if (isa<BeginAccessInst>(user)) {
forceDeleteAllocStack(cast<BeginAccessInst>(user), deleter, callback);
continue;
}
deleter.forceDeleteAndFixLifetimes(user, callback);
}
deleter.forceDelete(inst, callback);
}
/// Delete \c inst , if it is dead, along with its dead users and invoke the
/// callback whever an instruction is deleted.
static void deleteInstructionWithUsersAndFixLifetimes(
SILInstruction *inst, InstructionDeleter &deleter, CallbackTy callback) {
// If this is an alloc_stack, it can be eliminated as long as it is only
// stored into or destroyed.
if (AllocStackInst *allocStack = dyn_cast<AllocStackInst>(inst)) {
if (hasOnlyStoreUses(allocStack))
forceDeleteAllocStack(allocStack, deleter, callback);
return;
}
deleter.recursivelyDeleteUsersIfDead(inst, callback);
}
/// Try to dead-code eliminate the OSLogMessage instance \c oslogMessage passed
/// to the os log call and clean up its dependencies. If the instance cannot be
/// eliminated, emit diagnostics.
/// \returns true if elimination is successful and false if it is not successful
/// and diagnostics is emitted.
static bool tryEliminateOSLogMessage(SingleValueInstruction *oslogMessage) {
InstructionDeleter deleter;
// List of instructions that are possibly dead.
SmallVector<SILInstruction *, 4> worklist = {oslogMessage};
// Set of all deleted instructions.
SmallPtrSet<SILInstruction *, 4> deletedInstructions;
unsigned startIndex = 0;
while (startIndex < worklist.size()) {
SILInstruction *inst = worklist[startIndex++];
if (deletedInstructions.count(inst))
continue;
deleteInstructionWithUsersAndFixLifetimes(
inst, deleter, [&](SILInstruction *deadInst) {
// Add operands of all deleted instructions to the worklist so that
// they can be recursively deleted if possible.
for (Operand &operand : deadInst->getAllOperands()) {
if (SILInstruction *definingInstruction =
operand.get()->getDefiningInstruction()) {
if (!deletedInstructions.count(definingInstruction))
worklist.push_back(definingInstruction);
}
}
(void)deletedInstructions.insert(deadInst);
});
}
deleter.cleanUpDeadInstructions();
// If the OSLogMessage instance is not deleted, either we couldn't see the
// body of the log call or there is a bug in the library implementation.
// Assuming that the library implementation is correct, it means that either
// OSLogMessage is used in a context where it is not supposed to be used, or
// we somehow saw a conditional branch with a non-constant argument before
// completing evaluation (this can happen with the os_log(_:log:type)
// overload, when log or type is an optional unwrapping). Report an error
// that covers both contexts. (Note that it is very hard to distinguish these
// error cases in the current state.)
if (!deletedInstructions.count(oslogMessage)) {
SILFunction *fun = oslogMessage->getFunction();
diagnose(fun->getASTContext(), oslogMessage->getLoc().getSourceLoc(),
diag::oslog_message_alive_after_opts);
return false;
}
return true;
}
/// Constant evaluate instructions starting from \p start and fold the uses
/// of the SIL value \p oslogMessage.
/// \returns true if folding is successful and false if it is not successful and
/// diagnostics is emitted.
static bool constantFold(SILInstruction *start,
SingleValueInstruction *oslogMessage,
unsigned assertConfig) {
SILFunction *fun = start->getFunction();
assert(fun->hasOwnership() && "function not in ownership SIL");
// Initialize fold state.
SmallVector<SILInstruction *, 2> endUsersOfOSLogMessage;
getEndPointsOfDataDependentChain(oslogMessage, fun, endUsersOfOSLogMessage);
assert(!endUsersOfOSLogMessage.empty());
FoldState state(fun, assertConfig, start, endUsersOfOSLogMessage);
auto errorInfo = collectConstants(state);
if (errorInfo) // Evaluation failed with diagnostics.
return false;
// At this point, the `OSLogMessage` instance should be mapped to a constant
// value in the interpreter state. If this is not the case, it means the
// overlay implementation of OSLogMessage (or its extensions by users) are
// incorrect. Detect and diagnose this scenario.
bool errorDetected = checkOSLogMessageIsConstant(oslogMessage, state);
if (errorDetected)
return false;
substituteConstants(state);
return tryEliminateOSLogMessage(oslogMessage);
}
/// Given a call to the initializer of OSLogMessage, which conforms to
/// 'ExpressibleByStringInterpolation', find the first instruction, if any, that
/// marks the begining of the string interpolation that is used to create an
/// OSLogMessage instance. This function traverses the backward data-dependence
/// chain of the given OSLogMessage initializer: \p oslogInit. As a special case
/// it avoids chasing the data-dependencies from the captured values of
/// partial-apply instructions, as a partial apply instruction is considered as
/// a constant regardless of the constantness of its captures.
static SILInstruction *beginOfInterpolation(ApplyInst *oslogInit) {
auto oslogInitCallSite = FullApplySite(oslogInit);
SILFunction *callee = oslogInitCallSite.getCalleeFunction();
assert (callee->hasSemanticsAttrThatStartsWith("oslog.message.init"));
// The initializer must return the OSLogMessage instance directly.
assert(oslogInitCallSite.getNumArguments() >= 1 &&
oslogInitCallSite.getNumIndirectSILResults() == 0);
// List of backward dependencies that needs to be analyzed.
SmallVector<SILInstruction *, 4> worklist = { oslogInit };
SmallPtrSet<SILInstruction *, 4> seenInstructions = { oslogInit };
// List of instructions that could potentially mark the beginning of the
// interpolation.
SmallPtrSet<SILInstruction *, 4> candidateStartInstructions;
unsigned i = 0;
while (i < worklist.size()) {
SILInstruction *inst = worklist[i++];
if (isa<PartialApplyInst>(inst)) {
// Partial applies are used to capture the dynamic arguments passed to
// the string interpolation. Their arguments are not required to be
// known at compile time and they need not be constant evaluated.
// Therefore, follow only the dependency chain along function ref operand.
SILInstruction *definingInstruction =
inst->getOperand(0)->getDefiningInstruction();
assert(definingInstruction && "no function-ref operand in partial-apply");
if (seenInstructions.insert(definingInstruction).second) {
worklist.push_back(definingInstruction);
candidateStartInstructions.insert(definingInstruction);
}
continue;
}
for (Operand &operand : inst->getAllOperands()) {
if (SILInstruction *definingInstruction =
operand.get()->getDefiningInstruction()) {
if (seenInstructions.count(definingInstruction))
continue;
worklist.push_back(definingInstruction);
seenInstructions.insert(definingInstruction);
candidateStartInstructions.insert(definingInstruction);
}
// If there is no definining instruction for this operand, it could be a
// basic block or function parameter. Such operands are not considered
// in the backward slice. Dependencies through them are safe to ignore
// in this context.
}
// If the instruction: `inst` has an operand, its definition should precede
// `inst` in the control-flow order. Therefore, remove `inst` from the
// candidate start instructions.
if (inst->getNumOperands() > 0) {
candidateStartInstructions.erase(inst);
}
if (!isa<AllocStackInst>(inst)) {
continue;
}
// If we have an alloc_stack instruction, include stores into it into the
// backward dependency list. However, whether alloc_stack precedes the
// definitions of values stored into the location in the control-flow order
// can only be determined by traversing the instrutions in the control-flow
// order.
AllocStackInst *allocStackInst = cast<AllocStackInst>(inst);
for (StoreInst *storeInst : allocStackInst->getUsersOfType<StoreInst>()) {
worklist.push_back(storeInst);
candidateStartInstructions.insert(storeInst);
}
// Skip other uses of alloc_stack including function calls on the
// alloc_stack and data dependenceis through them. This is done because
// all functions using the alloc_stack are expected to be constant evaluated
// and therefore should only be passed constants or auto closures. These
// constants must be constructed immediately before the call and would only
// appear in the SIL after the alloc_stack instruction. This invariant is
// relied upon here so as to restrict the backward dependency search, which
// in turn keeps the code that is constant evaluated small.
// Note that if the client code violates this assumption, it will be
// diagnosed by this pass (in function detectAndDiagnoseErrors) as it will
// result in non-constant values for OSLogMessage instance.
}
// Find the first basic block in the control-flow order. Typically, if
// formatting and privacy options are literals, all candidate instructions
// must be in the same basic block. But, this code doesn't rely on that
// assumption.
SmallPtrSet<SILBasicBlock *, 4> candidateBBs;
for (auto *candidate: candidateStartInstructions) {
SILBasicBlock *candidateBB = candidate->getParent();
candidateBBs.insert(candidateBB);
}
SILBasicBlock *firstBB = nullptr;
if (candidateBBs.size() == 1) {
firstBB = *candidateBBs.begin();
} else {
SILBasicBlock *entryBB = oslogInit->getFunction()->getEntryBlock();
for (SILBasicBlock *bb : llvm::breadth_first<SILBasicBlock *>(entryBB)) {
if (candidateBBs.count(bb)) {
firstBB = bb;
break;
}
}
if (!firstBB) {
// This case will be reached only if the log call appears in unreachable
// code and, for some reason, its data depedencies extend beyond a basic
// block. This case should generally not happen unless the library
// implementation of the os log APIs change. It is better to warn in this
// case, rather than skipping the call silently.
diagnose(callee->getASTContext(), oslogInit->getLoc().getSourceLoc(),
diag::oslog_call_in_unreachable_code);
return nullptr;
}
}
// Iterate over the instructions in the firstBB and find the instruction that
// starts the interpolation.
SILInstruction *startInst = nullptr;
for (SILInstruction &inst : *firstBB) {
if (candidateStartInstructions.count(&inst)) {
startInst = &inst;
break;
}
}
assert(startInst && "could not find beginning of interpolation");
return startInst;
}
/// Replace every _globalStringTablePointer builtin in the transitive users of
/// oslogMessage with an empty string literal. This would suppress the errors
/// emitted by a later pass on _globalStringTablePointerBuiltins. This utility
/// shoud be called only when this pass emits diagnostics.
static void
suppressGlobalStringTablePointerError(SingleValueInstruction *oslogMessage) {
SmallVector<SILInstruction *, 8> users;
getTransitiveUsers(oslogMessage, users);
// Collect all globalStringTablePointer instructions.
SmallVector<BuiltinInst *, 4> globalStringTablePointerInsts;
for (SILInstruction *user : users) {
BuiltinInst *bi = dyn_cast<BuiltinInst>(user);
if (bi &&
bi->getBuiltinInfo().ID == BuiltinValueKind::GlobalStringTablePointer)
globalStringTablePointerInsts.push_back(bi);
}
// Replace the globalStringTablePointer builtins by a string_literal
// instruction for an empty string and clean up dead code.
InstructionDeleter deleter;
for (BuiltinInst *bi : globalStringTablePointerInsts) {
SILBuilderWithScope builder(bi);
StringLiteralInst *stringLiteral = builder.createStringLiteral(
bi->getLoc(), StringRef(""), StringLiteralInst::Encoding::UTF8);
bi->replaceAllUsesWith(stringLiteral);
// The bulitin instruction is likely dead. But since we are iterating over
// many instructions, do the cleanup at the end.
deleter.trackIfDead(bi);
}
deleter.cleanUpDeadInstructions();
}
/// If the SILInstruction is an initialization of OSLogMessage, return the
/// initialization call as an ApplyInst. Otherwise, return nullptr.
static ApplyInst *getAsOSLogMessageInit(SILInstruction *inst) {
auto *applyInst = dyn_cast<ApplyInst>(inst);
if (!applyInst) {
return nullptr;
}
SILFunction *callee = applyInst->getCalleeFunction();
if (!callee ||
!callee->hasSemanticsAttrThatStartsWith("oslog.message.init")) {
return nullptr;
}
// Default argument generators created for a function also inherit
// the semantics attribute of the function. Therefore, check that there are
// at least two operands for this apply instruction.
if (applyInst->getNumOperands() > 1) {
return applyInst;
}
return nullptr;
}
/// Return true iff the SIL function \c fun is a method of the \c OSLogMessage
/// type.
bool isMethodOfOSLogMessage(SILFunction &fun) {
DeclContext *declContext = fun.getDeclContext();
if (!declContext)
return false;
Decl *decl = declContext->getAsDecl();
if (!decl)
return false;
ConstructorDecl *ctor = dyn_cast<ConstructorDecl>(decl);
if (!ctor)
return false;
DeclContext *parentContext = ctor->getParent();
if (!parentContext)
return false;
NominalTypeDecl *typeDecl = parentContext->getSelfNominalTypeDecl();
if (!typeDecl)
return false;
return typeDecl->getName() == fun.getASTContext().Id_OSLogMessage;
}
class OSLogOptimization : public SILFunctionTransform {
~OSLogOptimization() override {}
/// The entry point to the transformation.
void run() override {
auto &fun = *getFunction();
unsigned assertConfig = getOptions().AssertConfig;
// Don't rerun optimization on deserialized functions or stdlib functions.
if (fun.wasDeserializedCanonical()) {
return;
}
// Skip methods of OSLogMessage type. This avoid unnecessary work and also
// avoids falsely diagnosing the auto-generated (transparent) witness method
// of OSLogMessage, which ends up invoking the OSLogMessage initializer:
// "oslog.message.init_interpolation" without an interpolated string
// literal that is expected by this pass.
if (isMethodOfOSLogMessage(fun)) {
return;
}
// Collect all 'OSLogMessage.init' in the function. 'OSLogMessage' is a
// custom string interpolation type used by the new OS log APIs.
SmallVector<ApplyInst *, 4> oslogMessageInits;
for (auto &bb : fun) {
for (auto &inst : bb) {
auto init = getAsOSLogMessageInit(&inst);
if (!init)
continue;
oslogMessageInits.push_back(init);
}
}
bool madeChange = false;
// Constant fold the uses of properties of OSLogMessage instance. Note that
// the function body will change due to constant folding, after each
// iteration.
for (auto *oslogInit : oslogMessageInits) {
SILInstruction *interpolationStart = beginOfInterpolation(oslogInit);
if (!interpolationStart) {
// The log call is in unreachable code here.
continue;
}
bool foldingSucceeded =
constantFold(interpolationStart, oslogInit, assertConfig);
// If folding did not succeeded, it implies that an error was diagnosed.
// However, this will also trigger a diagnostics later on since
// _globalStringTablePointerBuiltin would not be passed a string literal.
// Suppress this error by synthesizing a dummy string literal for the
// builtin.
if (!foldingSucceeded)
suppressGlobalStringTablePointerError(oslogInit);
madeChange = true;
}
if (madeChange) {
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
};
} // end anonymous namespace
SILTransform *swift::createOSLogOptimization() {
return new OSLogOptimization();
}