blob: aca3e91d6f3215f98b9646f621e941c7934b25c4 [file] [log] [blame]
//===--- SILGen.cpp - Implements Lowering of ASTs -> SIL ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "silgen"
#include "ManagedValue.h"
#include "RValue.h"
#include "SILGenFunction.h"
#include "SILGenFunctionBuilder.h"
#include "Scope.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Evaluator.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/ResilienceExpansion.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Statistic.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILProfiler.h"
#include "swift/AST/SILGenRequests.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "swift/Serialization/SerializedSILLoader.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace Lowering;
//===----------------------------------------------------------------------===//
// SILGenModule Class implementation
//===----------------------------------------------------------------------===//
SILGenModule::SILGenModule(SILModule &M, ModuleDecl *SM)
: M(M), Types(M.Types), SwiftModule(SM), TopLevelSGF(nullptr),
FileIDsByFilePath(SM->computeFileIDMap(/*shouldDiagnose=*/true)) {
const SILOptions &Opts = M.getOptions();
if (!Opts.UseProfile.empty()) {
auto ReaderOrErr = llvm::IndexedInstrProfReader::create(Opts.UseProfile);
if (auto E = ReaderOrErr.takeError()) {
diagnose(SourceLoc(), diag::profile_read_error, Opts.UseProfile,
llvm::toString(std::move(E)));
} else {
M.setPGOReader(std::move(ReaderOrErr.get()));
}
}
}
SILGenModule::~SILGenModule() {
assert(!TopLevelSGF && "active source file lowering!?");
M.verify();
}
static SILDeclRef
getBridgingFn(Optional<SILDeclRef> &cacheSlot,
SILGenModule &SGM,
Identifier moduleName,
StringRef functionName,
std::initializer_list<Type> inputTypes,
Type outputType) {
if (!cacheSlot) {
ASTContext &ctx = SGM.M.getASTContext();
ModuleDecl *mod = ctx.getLoadedModule(moduleName);
if (!mod) {
SGM.diagnose(SourceLoc(), diag::bridging_module_missing,
moduleName.str(), functionName);
llvm::report_fatal_error("unable to set up the ObjC bridge!");
}
SmallVector<ValueDecl *, 2> decls;
mod->lookupValue(ctx.getIdentifier(functionName),
NLKind::QualifiedLookup, decls);
if (decls.empty()) {
SGM.diagnose(SourceLoc(), diag::bridging_function_missing,
moduleName.str(), functionName);
llvm::report_fatal_error("unable to set up the ObjC bridge!");
}
if (decls.size() != 1) {
SGM.diagnose(SourceLoc(), diag::bridging_function_overloaded,
moduleName.str(), functionName);
llvm::report_fatal_error("unable to set up the ObjC bridge!");
}
auto *fd = dyn_cast<FuncDecl>(decls.front());
if (!fd) {
SGM.diagnose(SourceLoc(), diag::bridging_function_not_function,
moduleName.str(), functionName);
llvm::report_fatal_error("unable to set up the ObjC bridge!");
}
// Check that the function takes the expected arguments and returns the
// expected result type.
SILDeclRef c(fd);
auto funcTy =
SGM.Types.getConstantFunctionType(TypeExpansionContext::minimal(), c);
SILFunctionConventions fnConv(funcTy, SGM.M);
auto toSILType = [&SGM](Type ty) {
return SGM.Types.getLoweredType(ty, TypeExpansionContext::minimal());
};
if (fnConv.hasIndirectSILResults() ||
funcTy->getNumParameters() != inputTypes.size() ||
!std::equal(
fnConv.getParameterSILTypes(TypeExpansionContext::minimal())
.begin(),
fnConv.getParameterSILTypes(TypeExpansionContext::minimal()).end(),
makeTransformIterator(inputTypes.begin(), toSILType))) {
SGM.diagnose(fd->getLoc(), diag::bridging_function_not_correct_type,
moduleName.str(), functionName);
llvm::report_fatal_error("unable to set up the ObjC bridge!");
}
if (fnConv.getSingleSILResultType(TypeExpansionContext::minimal()) !=
toSILType(outputType)) {
SGM.diagnose(fd->getLoc(), diag::bridging_function_not_correct_type,
moduleName.str(), functionName);
llvm::report_fatal_error("unable to set up the ObjC bridge!");
}
cacheSlot = c;
}
LLVM_DEBUG(llvm::dbgs() << "bridging function "
<< moduleName << '.' << functionName
<< " mapped to ";
cacheSlot->print(llvm::dbgs()));
return *cacheSlot;
}
#define REQUIRED(X) Types.get##X##Type()
#define OPTIONAL(X) OptionalType::get(Types.get##X##Type())
#define GET_BRIDGING_FN(Module, FromKind, FromTy, ToKind, ToTy) \
SILDeclRef SILGenModule::get##FromTy##To##ToTy##Fn() { \
return getBridgingFn(FromTy##To##ToTy##Fn, *this, \
getASTContext().Id_##Module, \
"_convert" #FromTy "To" #ToTy, \
{ FromKind(FromTy) }, \
ToKind(ToTy)); \
}
GET_BRIDGING_FN(Darwin, REQUIRED, Bool, REQUIRED, DarwinBoolean)
GET_BRIDGING_FN(Darwin, REQUIRED, DarwinBoolean, REQUIRED, Bool)
GET_BRIDGING_FN(ObjectiveC, REQUIRED, Bool, REQUIRED, ObjCBool)
GET_BRIDGING_FN(ObjectiveC, REQUIRED, ObjCBool, REQUIRED, Bool)
GET_BRIDGING_FN(Foundation, OPTIONAL, NSError, REQUIRED, Error)
GET_BRIDGING_FN(Foundation, REQUIRED, Error, REQUIRED, NSError)
GET_BRIDGING_FN(WinSDK, REQUIRED, Bool, REQUIRED, WindowsBool)
GET_BRIDGING_FN(WinSDK, REQUIRED, WindowsBool, REQUIRED, Bool)
#undef GET_BRIDGING_FN
#undef REQUIRED
#undef OPTIONAL
static FuncDecl *diagnoseMissingIntrinsic(SILGenModule &sgm,
SILLocation loc,
const char *name) {
sgm.diagnose(loc, diag::bridging_function_missing,
sgm.getASTContext().StdlibModuleName.str(), name);
return nullptr;
}
#define FUNC_DECL(NAME, ID) \
FuncDecl *SILGenModule::get##NAME(SILLocation loc) { \
if (auto fn = getASTContext().get##NAME()) \
return fn; \
return diagnoseMissingIntrinsic(*this, loc, ID); \
}
#include "swift/AST/KnownDecls.def"
ProtocolDecl *SILGenModule::getObjectiveCBridgeable(SILLocation loc) {
if (ObjectiveCBridgeable)
return *ObjectiveCBridgeable;
// Find the _ObjectiveCBridgeable protocol.
auto &ctx = getASTContext();
auto proto = ctx.getProtocol(KnownProtocolKind::ObjectiveCBridgeable);
if (!proto)
diagnose(loc, diag::bridging_objcbridgeable_missing);
ObjectiveCBridgeable = proto;
return proto;
}
FuncDecl *SILGenModule::getBridgeToObjectiveCRequirement(SILLocation loc) {
if (BridgeToObjectiveCRequirement)
return *BridgeToObjectiveCRequirement;
// Find the _ObjectiveCBridgeable protocol.
auto proto = getObjectiveCBridgeable(loc);
if (!proto) {
BridgeToObjectiveCRequirement = nullptr;
return nullptr;
}
// Look for _bridgeToObjectiveC().
auto &ctx = getASTContext();
DeclName name(ctx, ctx.Id_bridgeToObjectiveC, llvm::ArrayRef<Identifier>());
auto *found = dyn_cast_or_null<FuncDecl>(
proto->getSingleRequirement(name));
if (!found)
diagnose(loc, diag::bridging_objcbridgeable_broken, name);
BridgeToObjectiveCRequirement = found;
return found;
}
FuncDecl *SILGenModule::getUnconditionallyBridgeFromObjectiveCRequirement(
SILLocation loc) {
if (UnconditionallyBridgeFromObjectiveCRequirement)
return *UnconditionallyBridgeFromObjectiveCRequirement;
// Find the _ObjectiveCBridgeable protocol.
auto proto = getObjectiveCBridgeable(loc);
if (!proto) {
UnconditionallyBridgeFromObjectiveCRequirement = nullptr;
return nullptr;
}
// Look for _bridgeToObjectiveC().
auto &ctx = getASTContext();
DeclName name(ctx, ctx.getIdentifier("_unconditionallyBridgeFromObjectiveC"),
llvm::makeArrayRef(Identifier()));
auto *found = dyn_cast_or_null<FuncDecl>(
proto->getSingleRequirement(name));
if (!found)
diagnose(loc, diag::bridging_objcbridgeable_broken, name);
UnconditionallyBridgeFromObjectiveCRequirement = found;
return found;
}
AssociatedTypeDecl *
SILGenModule::getBridgedObjectiveCTypeRequirement(SILLocation loc) {
if (BridgedObjectiveCType)
return *BridgedObjectiveCType;
// Find the _ObjectiveCBridgeable protocol.
auto proto = getObjectiveCBridgeable(loc);
if (!proto) {
BridgeToObjectiveCRequirement = nullptr;
return nullptr;
}
// Look for _bridgeToObjectiveC().
auto &ctx = getASTContext();
auto *found = proto->getAssociatedType(ctx.Id_ObjectiveCType);
if (!found)
diagnose(loc, diag::bridging_objcbridgeable_broken, ctx.Id_ObjectiveCType);
BridgedObjectiveCType = found;
return found;
}
ProtocolConformance *
SILGenModule::getConformanceToObjectiveCBridgeable(SILLocation loc, Type type) {
auto proto = getObjectiveCBridgeable(loc);
if (!proto) return nullptr;
// Find the conformance to _ObjectiveCBridgeable.
auto result = SwiftModule->lookupConformance(type, proto);
if (result.isInvalid())
return nullptr;
return result.getConcrete();
}
ProtocolDecl *SILGenModule::getBridgedStoredNSError(SILLocation loc) {
if (BridgedStoredNSError)
return *BridgedStoredNSError;
// Find the _BridgedStoredNSError protocol.
auto &ctx = getASTContext();
auto proto = ctx.getProtocol(KnownProtocolKind::BridgedStoredNSError);
BridgedStoredNSError = proto;
return proto;
}
VarDecl *SILGenModule::getNSErrorRequirement(SILLocation loc) {
if (NSErrorRequirement)
return *NSErrorRequirement;
// Find the _BridgedStoredNSError protocol.
auto proto = getBridgedStoredNSError(loc);
if (!proto) {
NSErrorRequirement = nullptr;
return nullptr;
}
// Look for _nsError.
auto &ctx = getASTContext();
auto *found = dyn_cast_or_null<VarDecl>(
proto->getSingleRequirement(ctx.Id_nsError));
NSErrorRequirement = found;
return found;
}
ProtocolConformanceRef
SILGenModule::getConformanceToBridgedStoredNSError(SILLocation loc, Type type) {
auto proto = getBridgedStoredNSError(loc);
if (!proto)
return ProtocolConformanceRef::forInvalid();
// Find the conformance to _BridgedStoredNSError.
return SwiftModule->lookupConformance(type, proto);
}
static FuncDecl *lookupConcurrencyIntrinsic(ASTContext &C,
Optional<FuncDecl*> &cache,
StringRef name) {
if (cache)
return *cache;
auto *module = C.getLoadedModule(C.Id_Concurrency);
if (!module) {
cache = nullptr;
return nullptr;
}
SmallVector<ValueDecl *, 1> decls;
module->lookupQualified(module,
DeclNameRef(C.getIdentifier(name)),
NL_QualifiedDefault | NL_IncludeUsableFromInline,
decls);
if (decls.size() != 1) {
cache = nullptr;
return nullptr;
}
auto func = dyn_cast<FuncDecl>(decls[0]);
cache = func;
return func;
}
FuncDecl *
SILGenModule::getRunChildTask() {
return lookupConcurrencyIntrinsic(getASTContext(),
RunChildTask,
"_runChildTask");
}
FuncDecl *
SILGenModule::getTaskFutureGet() {
return lookupConcurrencyIntrinsic(getASTContext(),
TaskFutureGet,
"_taskFutureGet");
}
FuncDecl *
SILGenModule::getTaskFutureGetThrowing() {
return lookupConcurrencyIntrinsic(getASTContext(),
TaskFutureGetThrowing,
"_taskFutureGetThrowing");
}
FuncDecl *
SILGenModule::getResumeUnsafeContinuation() {
return lookupConcurrencyIntrinsic(getASTContext(),
ResumeUnsafeContinuation,
"_resumeUnsafeContinuation");
}
FuncDecl *
SILGenModule::getResumeUnsafeThrowingContinuation() {
return lookupConcurrencyIntrinsic(getASTContext(),
ResumeUnsafeThrowingContinuation,
"_resumeUnsafeThrowingContinuation");
}
FuncDecl *
SILGenModule::getResumeUnsafeThrowingContinuationWithError() {
return lookupConcurrencyIntrinsic(getASTContext(),
ResumeUnsafeThrowingContinuationWithError,
"_resumeUnsafeThrowingContinuationWithError");
}
FuncDecl *
SILGenModule::getRunTaskForBridgedAsyncMethod() {
return lookupConcurrencyIntrinsic(getASTContext(),
RunTaskForBridgedAsyncMethod,
"_runTaskForBridgedAsyncMethod");
}
FuncDecl *
SILGenModule::getRunAsyncHandler() {
return lookupConcurrencyIntrinsic(getASTContext(), RunAsyncHandler,
"_runAsyncHandler");
}
ProtocolConformance *SILGenModule::getNSErrorConformanceToError() {
if (NSErrorConformanceToError)
return *NSErrorConformanceToError;
auto &ctx = getASTContext();
auto nsErrorTy = ctx.getNSErrorType();
if (!nsErrorTy) {
NSErrorConformanceToError = nullptr;
return nullptr;
}
auto error = ctx.getErrorDecl();
if (!error) {
NSErrorConformanceToError = nullptr;
return nullptr;
}
auto conformance =
SwiftModule->lookupConformance(nsErrorTy, cast<ProtocolDecl>(error));
if (conformance.isConcrete())
NSErrorConformanceToError = conformance.getConcrete();
else
NSErrorConformanceToError = nullptr;
return *NSErrorConformanceToError;
}
SILFunction *
SILGenModule::getKeyPathProjectionCoroutine(bool isReadAccess,
KeyPathTypeKind typeKind) {
bool isBaseInout;
bool isResultInout;
StringRef functionName;
NominalTypeDecl *keyPathDecl;
if (isReadAccess) {
assert(typeKind == KPTK_KeyPath ||
typeKind == KPTK_WritableKeyPath ||
typeKind == KPTK_ReferenceWritableKeyPath);
functionName = "swift_readAtKeyPath";
isBaseInout = false;
isResultInout = false;
keyPathDecl = getASTContext().getKeyPathDecl();
} else if (typeKind == KPTK_WritableKeyPath) {
functionName = "swift_modifyAtWritableKeyPath";
isBaseInout = true;
isResultInout = true;
keyPathDecl = getASTContext().getWritableKeyPathDecl();
} else if (typeKind == KPTK_ReferenceWritableKeyPath) {
functionName = "swift_modifyAtReferenceWritableKeyPath";
isBaseInout = false;
isResultInout = true;
keyPathDecl = getASTContext().getReferenceWritableKeyPathDecl();
} else {
llvm_unreachable("bad combination");
}
auto fn = M.lookUpFunction(functionName);
if (fn) return fn;
auto rootType = CanGenericTypeParamType::get(0, 0, getASTContext());
auto valueType = CanGenericTypeParamType::get(0, 1, getASTContext());
// Build the generic signature <A, B>.
auto sig = GenericSignature::get({rootType, valueType}, {});
auto keyPathTy = BoundGenericType::get(keyPathDecl, Type(),
{ rootType, valueType })
->getCanonicalType();
// (@in_guaranteed/@inout Root, @guaranteed KeyPath<Root, Value>)
SILParameterInfo params[] = {
{ rootType,
isBaseInout ? ParameterConvention::Indirect_Inout
: ParameterConvention::Indirect_In_Guaranteed },
{ keyPathTy, ParameterConvention::Direct_Guaranteed },
};
// -> @yields @in_guaranteed/@inout Value
SILYieldInfo yields[] = {
{ valueType,
isResultInout ? ParameterConvention::Indirect_Inout
: ParameterConvention::Indirect_In_Guaranteed },
};
auto extInfo = SILFunctionType::ExtInfo::getThin();
auto functionTy = SILFunctionType::get(sig, extInfo,
SILCoroutineKind::YieldOnce,
ParameterConvention::Direct_Unowned,
params,
yields,
/*results*/ {},
/*error result*/ {},
SubstitutionMap(),
SubstitutionMap(),
getASTContext());
auto env = sig->getGenericEnvironment();
SILGenFunctionBuilder builder(*this);
fn = builder.createFunction(SILLinkage::PublicExternal,
functionName,
functionTy,
env,
/*location*/ None,
IsNotBare,
IsNotTransparent,
IsNotSerialized,
IsNotDynamic);
return fn;
}
SILFunction *SILGenModule::emitTopLevelFunction(SILLocation Loc) {
ASTContext &C = getASTContext();
// Use standard library types if we have them; otherwise, fall back to
// builtins.
CanType Int32Ty;
if (auto Int32Decl = C.getInt32Decl()) {
Int32Ty = Int32Decl->getDeclaredInterfaceType()->getCanonicalType();
} else {
Int32Ty = CanType(BuiltinIntegerType::get(32, C));
}
CanType PtrPtrInt8Ty = C.TheRawPointerType;
if (auto PointerDecl = C.getUnsafeMutablePointerDecl()) {
if (auto Int8Decl = C.getInt8Decl()) {
Type Int8Ty = Int8Decl->getDeclaredInterfaceType();
Type PointerInt8Ty = BoundGenericType::get(PointerDecl,
nullptr,
Int8Ty);
Type OptPointerInt8Ty = OptionalType::get(PointerInt8Ty);
PtrPtrInt8Ty = BoundGenericType::get(PointerDecl,
nullptr,
OptPointerInt8Ty)
->getCanonicalType();
}
}
SILParameterInfo params[] = {
SILParameterInfo(Int32Ty, ParameterConvention::Direct_Unowned),
SILParameterInfo(PtrPtrInt8Ty, ParameterConvention::Direct_Unowned),
};
SILResultInfo results[] = {SILResultInfo(Int32Ty, ResultConvention::Unowned)};
auto rep = SILFunctionType::Representation::CFunctionPointer;
auto *clangTy = C.getCanonicalClangFunctionType(params, results[0], rep);
auto extInfo = SILFunctionType::ExtInfoBuilder()
.withRepresentation(rep)
.withClangFunctionType(clangTy)
.build();
CanSILFunctionType topLevelType = SILFunctionType::get(nullptr, extInfo,
SILCoroutineKind::None,
ParameterConvention::Direct_Unowned,
params, /*yields*/ {},
SILResultInfo(Int32Ty,
ResultConvention::Unowned),
None,
SubstitutionMap(), SubstitutionMap(),
C);
SILGenFunctionBuilder builder(*this);
return builder.createFunction(
SILLinkage::Public, SWIFT_ENTRY_POINT_FUNCTION, topLevelType, nullptr,
Loc, IsBare, IsNotTransparent, IsNotSerialized, IsNotDynamic,
ProfileCounter(), IsNotThunk, SubclassScope::NotApplicable);
}
SILFunction *SILGenModule::getEmittedFunction(SILDeclRef constant,
ForDefinition_t forDefinition) {
auto found = emittedFunctions.find(constant);
if (found != emittedFunctions.end()) {
SILFunction *F = found->second;
if (forDefinition) {
// In all the cases where getConstantLinkage returns something
// different for ForDefinition, it returns an available-externally
// linkage.
if (isAvailableExternally(F->getLinkage())) {
F->setLinkage(constant.getLinkage(ForDefinition));
}
}
return F;
}
return nullptr;
}
static SILFunction *getFunctionToInsertAfter(SILGenModule &SGM,
SILDeclRef insertAfter) {
// If the decl ref was emitted, emit after its function.
while (insertAfter) {
auto found = SGM.emittedFunctions.find(insertAfter);
if (found != SGM.emittedFunctions.end()) {
return found->second;
}
// Otherwise, try to insert after the function we would be transitively
// be inserted after.
auto foundDelayed = SGM.delayedFunctions.find(insertAfter);
if (foundDelayed != SGM.delayedFunctions.end()) {
insertAfter = foundDelayed->second;
} else {
break;
}
}
// If the decl ref is nil, just insert at the beginning.
return nullptr;
}
static bool haveProfiledAssociatedFunction(SILDeclRef constant) {
return constant.isDefaultArgGenerator() || constant.isForeign;
}
/// Set up the function for profiling instrumentation.
static void setUpForProfiling(SILDeclRef constant, SILFunction *F,
ForDefinition_t forDefinition) {
if (!forDefinition || F->getProfiler())
return;
ASTNode profiledNode;
if (!haveProfiledAssociatedFunction(constant)) {
if (constant.hasDecl()) {
if (auto *fd = constant.getFuncDecl()) {
if (fd->hasBody()) {
F->createProfiler(fd, constant, forDefinition);
profiledNode = fd->getBody(/*canSynthesize=*/false);
}
}
} else if (auto *ace = constant.getAbstractClosureExpr()) {
F->createProfiler(ace, constant, forDefinition);
profiledNode = ace;
}
// Set the function entry count for PGO.
if (SILProfiler *SP = F->getProfiler())
F->setEntryCount(SP->getExecutionCount(profiledNode));
}
}
static bool isEmittedOnDemand(SILModule &M, SILDeclRef constant) {
if (!constant.hasDecl())
return false;
if (constant.isForeign)
return false;
auto *d = constant.getDecl();
auto *dc = d->getDeclContext();
switch (constant.kind) {
case SILDeclRef::Kind::Func: {
auto *fd = cast<FuncDecl>(d);
if (!fd->hasBody())
return false;
if (isa<ClangModuleUnit>(dc->getModuleScopeContext()))
return true;
if (fd->hasForcedStaticDispatch())
return true;
break;
}
case SILDeclRef::Kind::Allocator: {
auto *cd = cast<ConstructorDecl>(d);
// For factories, we don't need to emit a special thunk; the normal
// foreign-to-native thunk is sufficient.
if (isa<ClangModuleUnit>(dc->getModuleScopeContext()) &&
!cd->isFactoryInit() &&
(dc->getSelfClassDecl() ||
cd->hasBody()))
return true;
break;
}
case SILDeclRef::Kind::EnumElement:
return true;
default:
break;
}
return false;
}
SILFunction *SILGenModule::getFunction(SILDeclRef constant,
ForDefinition_t forDefinition) {
// If we already emitted the function, return it (potentially preparing it
// for definition).
if (auto emitted = getEmittedFunction(constant, forDefinition)) {
setUpForProfiling(constant, emitted, forDefinition);
return emitted;
}
// Note: Do not provide any SILLocation. You can set it afterwards.
SILGenFunctionBuilder builder(*this);
auto &IGM = *this;
auto *F = builder.getOrCreateFunction(
constant.hasDecl() ? constant.getDecl() : (Decl *)nullptr, constant,
forDefinition,
[&IGM](SILLocation loc, SILDeclRef constant) -> SILFunction * {
return IGM.getFunction(constant, NotForDefinition);
});
setUpForProfiling(constant, F, forDefinition);
assert(F && "SILFunction should have been defined");
emittedFunctions[constant] = F;
if (!delayedFunctions.count(constant)) {
if (isEmittedOnDemand(M, constant)) {
forcedFunctions.push_back(constant);
return F;
}
}
// If we delayed emitting this function previously, we need it now.
auto foundDelayed = delayedFunctions.find(constant);
if (foundDelayed != delayedFunctions.end()) {
// Move the function to its proper place within the module.
M.functions.remove(F);
SILFunction *insertAfter = getFunctionToInsertAfter(*this,
foundDelayed->second);
if (!insertAfter) {
M.functions.push_front(F);
} else {
M.functions.insertAfter(insertAfter->getIterator(), F);
}
forcedFunctions.push_back(constant);
delayedFunctions.erase(foundDelayed);
} else {
// We would have registered a delayed function as "last emitted" when we
// enqueued. If the function wasn't delayed, then we're emitting it now.
lastEmittedFunction = constant;
}
return F;
}
bool SILGenModule::hasFunction(SILDeclRef constant) {
return emittedFunctions.count(constant);
}
void SILGenModule::visitFuncDecl(FuncDecl *fd) { emitFunction(fd); }
void SILGenModule::emitFunctionDefinition(SILDeclRef constant, SILFunction *f) {
if (constant.isForeignToNativeThunk()) {
f->setThunk(IsThunk);
if (constant.asForeign().isClangGenerated())
f->setSerialized(IsSerializable);
auto loc = constant.getAsRegularLocation();
loc.markAutoGenerated();
auto *dc = loc.getAsDeclContext();
assert(dc);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X("silgen emitForeignToNativeThunk", f);
SILGenFunction(*this, *f, dc).emitForeignToNativeThunk(constant);
postEmitFunction(constant, f);
return;
}
if (constant.isNativeToForeignThunk()) {
auto loc = constant.getAsRegularLocation();
loc.markAutoGenerated();
auto *dc = loc.getAsDeclContext();
assert(dc);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X("silgen emitNativeToForeignThunk", f);
f->setBare(IsBare);
f->setThunk(IsThunk);
// If the native function is async, then the foreign entry point is not,
// so it needs to spawn a detached task in which to run the native
// implementation, so the actual thunk logic needs to go into a closure
// implementation function.
if (constant.hasAsync()) {
f = SILGenFunction(*this, *f, dc).emitNativeAsyncToForeignThunk(constant);
}
SILGenFunction(*this, *f, dc).emitNativeToForeignThunk(constant);
postEmitFunction(constant, f);
return;
}
switch (constant.kind) {
case SILDeclRef::Kind::Func: {
if (auto *ce = constant.getAbstractClosureExpr()) {
preEmitFunction(constant, f, ce);
PrettyStackTraceSILFunction X("silgen closureexpr", f);
SILGenFunction(*this, *f, ce).emitClosure(ce);
postEmitFunction(constant, f);
break;
}
auto *fd = cast<FuncDecl>(constant.getDecl());
preEmitFunction(constant, f, fd);
PrettyStackTraceSILFunction X("silgen emitFunction", f);
SILGenFunction(*this, *f, fd).emitFunction(fd);
postEmitFunction(constant, f);
break;
}
case SILDeclRef::Kind::Allocator: {
auto *decl = cast<ConstructorDecl>(constant.getDecl());
if (decl->getDeclContext()->getSelfClassDecl() &&
(decl->isDesignatedInit() ||
decl->isObjC())) {
preEmitFunction(constant, f, decl);
PrettyStackTraceSILFunction X("silgen emitConstructor", f);
SILGenFunction(*this, *f, decl).emitClassConstructorAllocator(decl);
postEmitFunction(constant, f);
} else {
preEmitFunction(constant, f, decl);
PrettyStackTraceSILFunction X("silgen emitConstructor", f);
f->createProfiler(decl, constant, ForDefinition);
SILGenFunction(*this, *f, decl).emitValueConstructor(decl);
postEmitFunction(constant, f);
}
break;
}
case SILDeclRef::Kind::Initializer: {
auto *decl = cast<ConstructorDecl>(constant.getDecl());
assert(decl->getDeclContext()->getSelfClassDecl());
preEmitFunction(constant, f, decl);
PrettyStackTraceSILFunction X("silgen constructor initializer", f);
f->createProfiler(decl, constant, ForDefinition);
SILGenFunction(*this, *f, decl).emitClassConstructorInitializer(decl);
postEmitFunction(constant, f);
break;
}
case SILDeclRef::Kind::DefaultArgGenerator: {
auto *decl = constant.getDecl();
auto *param = getParameterAt(decl, constant.defaultArgIndex);
auto *initDC = param->getDefaultArgumentInitContext();
switch (param->getDefaultArgumentKind()) {
case DefaultArgumentKind::Normal: {
auto arg = param->getTypeCheckedDefaultExpr();
auto loc = RegularLocation::getAutoGeneratedLocation(arg);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X("silgen emitDefaultArgGenerator ", f);
SILGenFunction SGF(*this, *f, initDC);
SGF.emitGeneratorFunction(constant, arg);
postEmitFunction(constant, f);
break;
}
case DefaultArgumentKind::StoredProperty: {
auto arg = param->getStoredProperty();
auto loc = RegularLocation::getAutoGeneratedLocation(arg);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X("silgen emitDefaultArgGenerator ", f);
SILGenFunction SGF(*this, *f, initDC);
SGF.emitGeneratorFunction(constant, arg);
postEmitFunction(constant, f);
break;
}
default:
llvm_unreachable("Bad default argument kind");
}
break;
}
case SILDeclRef::Kind::StoredPropertyInitializer: {
auto *var = cast<VarDecl>(constant.getDecl());
auto *pbd = var->getParentPatternBinding();
unsigned idx = pbd->getPatternEntryIndexForVarDecl(var);
auto *init = pbd->getInit(idx);
auto *initDC = pbd->getInitContext(idx);
auto captureInfo = pbd->getCaptureInfo(idx);
assert(!pbd->isInitializerSubsumed(idx));
// If this is the backing storage for a property with an attached wrapper
// that was initialized with `=`, use that expression as the initializer.
if (auto originalProperty = var->getOriginalWrappedProperty()) {
if (originalProperty
->isPropertyMemberwiseInitializedWithWrappedType()) {
auto wrapperInfo =
originalProperty->getPropertyWrapperBackingPropertyInfo();
assert(wrapperInfo.wrappedValuePlaceholder->getOriginalWrappedValue());
init = wrapperInfo.wrappedValuePlaceholder->getOriginalWrappedValue();
}
}
auto loc = RegularLocation::getAutoGeneratedLocation(init);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X("silgen emitStoredPropertyInitialization", f);
f->createProfiler(init, constant, ForDefinition);
SILGenFunction SGF(*this, *f, initDC);
// If this is a stored property initializer inside a type at global scope,
// it may close over a global variable. If we're emitting top-level code,
// then emit a "mark_function_escape" that lists the captured global
// variables so that definite initialization can reason about this
// escape point.
if (!var->getDeclContext()->isLocalContext() && TopLevelSGF &&
TopLevelSGF->B.hasValidInsertionPoint()) {
emitMarkFunctionEscapeForTopLevelCodeGlobals(var, captureInfo);
}
SGF.emitGeneratorFunction(constant, init, /*EmitProfilerIncrement=*/true);
postEmitFunction(constant, f);
break;
}
case SILDeclRef::Kind::PropertyWrapperBackingInitializer: {
auto *var = cast<VarDecl>(constant.getDecl());
auto loc = RegularLocation::getAutoGeneratedLocation(var);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X(
"silgen emitPropertyWrapperBackingInitializer", f);
auto wrapperInfo = var->getPropertyWrapperBackingPropertyInfo();
assert(wrapperInfo.initializeFromOriginal);
f->createProfiler(wrapperInfo.initializeFromOriginal, constant,
ForDefinition);
auto varDC = var->getInnermostDeclContext();
SILGenFunction SGF(*this, *f, varDC);
SGF.emitGeneratorFunction(constant, wrapperInfo.initializeFromOriginal);
postEmitFunction(constant, f);
break;
}
case SILDeclRef::Kind::GlobalAccessor: {
auto *global = cast<VarDecl>(constant.getDecl());
auto found = delayedGlobals.find(global);
assert(found != delayedGlobals.end());
auto *onceToken = found->second.first;
auto *onceFunc = found->second.second;
auto loc = RegularLocation::getAutoGeneratedLocation(global);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X("silgen emitGlobalAccessor", f);
SILGenFunction(*this, *f, global->getDeclContext())
.emitGlobalAccessor(global, onceToken, onceFunc);
postEmitFunction(constant, f);
break;
}
case SILDeclRef::Kind::EnumElement: {
auto *decl = cast<EnumElementDecl>(constant.getDecl());
auto loc = RegularLocation::getAutoGeneratedLocation(decl);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X("silgen enum constructor", f);
SILGenFunction(*this, *f, decl->getDeclContext()).emitEnumConstructor(decl);
postEmitFunction(constant, f);
break;
}
case SILDeclRef::Kind::Destroyer: {
auto *dd = cast<DestructorDecl>(constant.getDecl());
preEmitFunction(constant, f, dd);
PrettyStackTraceSILFunction X("silgen emitDestroyingDestructor", f);
SILGenFunction(*this, *f, dd).emitDestroyingDestructor(dd);
postEmitFunction(constant, f);
return;
}
case SILDeclRef::Kind::Deallocator: {
auto *dd = cast<DestructorDecl>(constant.getDecl());
auto *cd = cast<ClassDecl>(dd->getDeclContext());
if (usesObjCAllocator(cd)) {
preEmitFunction(constant, f, dd);
PrettyStackTraceSILFunction X("silgen emitDestructor -dealloc", f);
f->createProfiler(dd, constant, ForDefinition);
SILGenFunction(*this, *f, dd).emitObjCDestructor(constant);
postEmitFunction(constant, f);
return;
}
auto loc = RegularLocation::getAutoGeneratedLocation(dd);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X("silgen emitDeallocatingDestructor", f);
f->createProfiler(dd, constant, ForDefinition);
SILGenFunction(*this, *f, dd).emitDeallocatingDestructor(dd);
postEmitFunction(constant, f);
return;
}
case SILDeclRef::Kind::IVarInitializer: {
auto *cd = cast<ClassDecl>(constant.getDecl());
auto loc = RegularLocation::getAutoGeneratedLocation(cd);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X("silgen emitDestructor ivar initializer", f);
SILGenFunction(*this, *f, cd).emitIVarInitializer(constant);
postEmitFunction(constant, f);
return;
}
case SILDeclRef::Kind::IVarDestroyer: {
auto *cd = cast<ClassDecl>(constant.getDecl());
auto loc = RegularLocation::getAutoGeneratedLocation(cd);
preEmitFunction(constant, f, loc);
PrettyStackTraceSILFunction X("silgen emitDestructor ivar destroyer", f);
SILGenFunction(*this, *f, cd).emitIVarDestroyer(constant);
postEmitFunction(constant, f);
return;
}
}
}
/// Emit a function now, if it's externally usable or has been referenced in
/// the current TU, or remember how to emit it later if not.
static void emitOrDelayFunction(SILGenModule &SGM,
SILDeclRef constant,
bool forceEmission = false) {
assert(!constant.isThunk());
assert(!constant.isClangImported());
auto emitAfter = SGM.lastEmittedFunction;
SILFunction *f = nullptr;
// Implicit decls may be delayed if they can't be used externally.
auto linkage = constant.getLinkage(ForDefinition);
bool mayDelay = !forceEmission &&
(constant.isImplicit() &&
!isPossiblyUsedExternally(linkage, SGM.M.isWholeModule()));
// Avoid emitting a delayable definition if it hasn't already been referenced.
if (mayDelay)
f = SGM.getEmittedFunction(constant, ForDefinition);
else
f = SGM.getFunction(constant, ForDefinition);
// If we don't want to emit now, remember how for later.
if (!f) {
SGM.delayedFunctions.insert({constant, emitAfter});
// Even though we didn't emit the function now, update the
// lastEmittedFunction so that we preserve the original ordering that
// the symbols would have been emitted in.
SGM.lastEmittedFunction = constant;
return;
}
SGM.emitFunctionDefinition(constant, f);
}
void SILGenModule::preEmitFunction(SILDeclRef constant, SILFunction *F,
SILLocation Loc) {
assert(F->empty() && "already emitted function?!");
if (F->getLoweredFunctionType()->isPolymorphic())
F->setGenericEnvironment(Types.getConstantGenericEnvironment(constant));
// Create a debug scope for the function using astNode as source location.
F->setDebugScope(new (M) SILDebugScope(Loc, F));
LLVM_DEBUG(llvm::dbgs() << "lowering ";
F->printName(llvm::dbgs());
llvm::dbgs() << " : ";
F->getLoweredType().print(llvm::dbgs());
llvm::dbgs() << '\n';
if (auto *decl = Loc.getAsASTNode<ValueDecl>()) {
decl->dump(llvm::dbgs());
llvm::dbgs() << '\n';
} else if (auto *expr = Loc.getAsASTNode<Expr>()) {
expr->dump(llvm::dbgs());
llvm::dbgs() << "\n";
});
}
void SILGenModule::postEmitFunction(SILDeclRef constant,
SILFunction *F) {
emitLazyConformancesForFunction(F);
assert(!F->isExternalDeclaration() && "did not emit any function body?!");
LLVM_DEBUG(llvm::dbgs() << "lowered sil:\n";
F->print(llvm::dbgs()));
F->verify();
emitDifferentiabilityWitnessesForFunction(constant, F);
}
void SILGenModule::emitDifferentiabilityWitnessesForFunction(
SILDeclRef constant, SILFunction *F) {
// Visit `@derivative` attributes and generate SIL differentiability
// witnesses.
// Skip if the SILDeclRef is a:
// - Default argument generator function.
// - Thunk.
if (!constant.hasDecl() || !constant.getAbstractFunctionDecl())
return;
if (constant.kind == SILDeclRef::Kind::DefaultArgGenerator ||
constant.isThunk())
return;
auto *AFD = constant.getAbstractFunctionDecl();
auto emitWitnesses = [&](DeclAttributes &Attrs) {
for (auto *diffAttr : Attrs.getAttributes<DifferentiableAttr>()) {
auto *resultIndices = IndexSubset::get(getASTContext(), 1, {0});
assert((!F->getLoweredFunctionType()->getSubstGenericSignature() ||
diffAttr->getDerivativeGenericSignature()) &&
"Type-checking should resolve derivative generic signatures for "
"all original SIL functions with generic signatures");
auto witnessGenSig =
autodiff::getDifferentiabilityWitnessGenericSignature(
AFD->getGenericSignature(),
diffAttr->getDerivativeGenericSignature());
AutoDiffConfig config(diffAttr->getParameterIndices(), resultIndices,
witnessGenSig);
emitDifferentiabilityWitness(AFD, F, config, /*jvp*/ nullptr,
/*vjp*/ nullptr, diffAttr);
}
for (auto *derivAttr : Attrs.getAttributes<DerivativeAttr>()) {
SILFunction *jvp = nullptr;
SILFunction *vjp = nullptr;
switch (derivAttr->getDerivativeKind()) {
case AutoDiffDerivativeFunctionKind::JVP:
jvp = F;
break;
case AutoDiffDerivativeFunctionKind::VJP:
vjp = F;
break;
}
auto *origAFD = derivAttr->getOriginalFunction(getASTContext());
auto origDeclRef =
SILDeclRef(origAFD).asForeign(requiresForeignEntryPoint(origAFD));
auto *origFn = getFunction(origDeclRef, NotForDefinition);
auto witnessGenSig =
autodiff::getDifferentiabilityWitnessGenericSignature(
origAFD->getGenericSignature(), AFD->getGenericSignature());
auto *resultIndices = IndexSubset::get(getASTContext(), 1, {0});
AutoDiffConfig config(derivAttr->getParameterIndices(), resultIndices,
witnessGenSig);
emitDifferentiabilityWitness(origAFD, origFn, config, jvp, vjp,
derivAttr);
}
};
if (auto *accessor = dyn_cast<AccessorDecl>(AFD))
if (accessor->isGetter())
emitWitnesses(accessor->getStorage()->getAttrs());
emitWitnesses(AFD->getAttrs());
}
void SILGenModule::emitDifferentiabilityWitness(
AbstractFunctionDecl *originalAFD, SILFunction *originalFunction,
const AutoDiffConfig &config, SILFunction *jvp, SILFunction *vjp,
const DeclAttribute *attr) {
assert(isa<DifferentiableAttr>(attr) || isa<DerivativeAttr>(attr));
auto *origFnType = originalAFD->getInterfaceType()->castTo<AnyFunctionType>();
auto origSilFnType = originalFunction->getLoweredFunctionType();
auto *silParamIndices =
autodiff::getLoweredParameterIndices(config.parameterIndices, origFnType);
// NOTE(TF-893): Extending capacity is necessary when `origSilFnType` has
// parameters corresponding to captured variables. These parameters do not
// appear in the type of `origFnType`.
// TODO: If posssible, change `autodiff::getLoweredParameterIndices` to
// take `CaptureInfo` into account.
if (origSilFnType->getNumParameters() > silParamIndices->getCapacity())
silParamIndices = silParamIndices->extendingCapacity(
getASTContext(), origSilFnType->getNumParameters());
// Get or create new SIL differentiability witness.
// Witness already exists when there are two `@derivative` attributes
// (registering JVP and VJP functions) for the same derivative function
// configuration.
// Witness JVP and VJP are set below.
AutoDiffConfig silConfig(silParamIndices, config.resultIndices,
config.derivativeGenericSignature);
SILDifferentiabilityWitnessKey key{originalFunction->getName(), silConfig};
auto *diffWitness = M.lookUpDifferentiabilityWitness(key);
if (!diffWitness) {
// Differentiability witnesses have the same linkage as the original
// function, stripping external.
auto linkage = stripExternalFromLinkage(originalFunction->getLinkage());
diffWitness = SILDifferentiabilityWitness::createDefinition(
M, linkage, originalFunction, silConfig.parameterIndices,
silConfig.resultIndices, config.derivativeGenericSignature,
/*jvp*/ nullptr, /*vjp*/ nullptr,
/*isSerialized*/ hasPublicVisibility(originalFunction->getLinkage()),
attr);
}
// Set derivative function in differentiability witness.
auto setDerivativeInDifferentiabilityWitness =
[&](AutoDiffDerivativeFunctionKind kind, SILFunction *derivative) {
auto derivativeThunk = getOrCreateCustomDerivativeThunk(
derivative, originalFunction, silConfig, kind);
// Check for existing same derivative.
// TODO(TF-835): Remove condition below and simplify assertion to
// `!diffWitness->getDerivative(kind)` after `@derivative` attribute
// type-checking no longer generates implicit `@differentiable`
// attributes.
auto *existingDerivative = diffWitness->getDerivative(kind);
if (existingDerivative && existingDerivative == derivativeThunk)
return;
assert(!existingDerivative &&
"SIL differentiability witness already has a different existing "
"derivative");
diffWitness->setDerivative(kind, derivativeThunk);
};
if (jvp)
setDerivativeInDifferentiabilityWitness(AutoDiffDerivativeFunctionKind::JVP,
jvp);
if (vjp)
setDerivativeInDifferentiabilityWitness(AutoDiffDerivativeFunctionKind::VJP,
vjp);
}
void SILGenModule::
emitMarkFunctionEscapeForTopLevelCodeGlobals(SILLocation loc,
CaptureInfo captureInfo) {
assert(TopLevelSGF && TopLevelSGF->B.hasValidInsertionPoint()
&& "no valid code generator for top-level function?!");
SmallVector<SILValue, 4> Captures;
for (auto capture : captureInfo.getCaptures()) {
// Decls captured by value don't escape.
auto It = TopLevelSGF->VarLocs.find(capture.getDecl());
if (It == TopLevelSGF->VarLocs.end() ||
!It->getSecond().value->getType().isAddress())
continue;
Captures.push_back(It->second.value);
}
if (!Captures.empty())
TopLevelSGF->B.createMarkFunctionEscape(loc, Captures);
}
void SILGenModule::emitAbstractFuncDecl(AbstractFunctionDecl *AFD) {
// Emit any default argument generators.
emitDefaultArgGenerators(AFD, AFD->getParameters());
// If this is a function at global scope, it may close over a global variable.
// If we're emitting top-level code, then emit a "mark_function_escape" that
// lists the captured global variables so that definite initialization can
// reason about this escape point.
if (!AFD->getDeclContext()->isLocalContext() &&
TopLevelSGF && TopLevelSGF->B.hasValidInsertionPoint()) {
emitMarkFunctionEscapeForTopLevelCodeGlobals(AFD, AFD->getCaptureInfo());
}
// If the declaration is exported as a C function, emit its native-to-foreign
// thunk too, if it wasn't already forced.
if (AFD->getAttrs().hasAttribute<CDeclAttr>()) {
auto thunk = SILDeclRef(AFD).asForeign();
if (!hasFunction(thunk))
emitNativeToForeignThunk(thunk);
}
}
void SILGenModule::emitFunction(FuncDecl *fd) {
SILDeclRef::Loc decl = fd;
emitAbstractFuncDecl(fd);
if (fd->hasBody()) {
SILDeclRef constant(decl);
bool ForCoverageMapping = doesASTRequireProfiling(M, fd);
emitOrDelayFunction(*this, constant,
/*forceEmission=*/ForCoverageMapping);
}
}
void SILGenModule::addGlobalVariable(VarDecl *global) {
// We create SILGlobalVariable here.
getSILGlobalVariable(global, ForDefinition);
}
void SILGenModule::emitConstructor(ConstructorDecl *decl) {
// FIXME: Handle 'self' like any other argument here.
// Emit any default argument getter functions.
emitAbstractFuncDecl(decl);
// We never emit constructors in protocols.
if (isa<ProtocolDecl>(decl->getDeclContext()))
return;
SILDeclRef constant(decl);
DeclContext *declCtx = decl->getDeclContext();
bool ForCoverageMapping = doesASTRequireProfiling(M, decl);
if (declCtx->getSelfClassDecl()) {
// Designated initializers for classes, as well as @objc convenience
// initializers, have have separate entry points for allocation and
// initialization.
if (decl->isDesignatedInit() || decl->isObjC()) {
emitOrDelayFunction(*this, constant);
if (decl->hasBody()) {
SILDeclRef initConstant(decl, SILDeclRef::Kind::Initializer);
emitOrDelayFunction(*this, initConstant,
/*forceEmission=*/ForCoverageMapping);
}
return;
}
}
// Struct and enum constructors do everything in a single function, as do
// non-@objc convenience initializers for classes.
if (decl->hasBody()) {
emitOrDelayFunction(*this, constant);
}
}
SILFunction *SILGenModule::emitClosure(AbstractClosureExpr *ce) {
SILDeclRef constant(ce);
SILFunction *f = getFunction(constant, ForDefinition);
// Generate the closure function, if we haven't already.
//
// We may visit the same closure expr multiple times in some cases,
// for instance, when closures appear as in-line initializers of stored
// properties. In these cases the closure will be emitted into every
// initializer of the containing type.
if (!f->isExternalDeclaration())
return f;
emitFunctionDefinition(constant, f);
return f;
}
/// Determine whether the given class requires a separate instance
/// variable initialization method.
static bool requiresIVarInitialization(SILGenModule &SGM, ClassDecl *cd) {
if (!cd->requiresStoredPropertyInits())
return false;
for (Decl *member : cd->getMembers()) {
auto pbd = dyn_cast<PatternBindingDecl>(member);
if (!pbd) continue;
for (auto i : range(pbd->getNumPatternEntries()))
if (pbd->getExecutableInit(i))
return true;
}
return false;
}
bool SILGenModule::hasNonTrivialIVars(ClassDecl *cd) {
for (Decl *member : cd->getMembers()) {
auto *vd = dyn_cast<VarDecl>(member);
if (!vd || !vd->hasStorage()) continue;
auto &ti = Types.getTypeLowering(
vd->getType(), TypeExpansionContext::maximalResilienceExpansionOnly());
if (!ti.isTrivial())
return true;
}
return false;
}
bool SILGenModule::requiresIVarDestroyer(ClassDecl *cd) {
// Only needed if we have non-trivial ivars, we're not a root class, and
// the superclass is not @objc.
return (hasNonTrivialIVars(cd) &&
cd->getSuperclassDecl() &&
!cd->getSuperclassDecl()->hasClangNode());
}
/// TODO: This needs a better name.
void SILGenModule::emitObjCAllocatorDestructor(ClassDecl *cd,
DestructorDecl *dd) {
// Emit the native deallocating destructor for -dealloc.
// Destructors are a necessary part of class metadata, so can't be delayed.
if (dd->hasBody()) {
SILDeclRef dealloc(dd, SILDeclRef::Kind::Deallocator);
emitFunctionDefinition(dealloc, getFunction(dealloc, ForDefinition));
}
// Emit the Objective-C -dealloc entry point if it has
// something to do beyond messaging the superclass's -dealloc.
if (dd->hasBody() && !dd->getBody()->empty())
emitObjCDestructorThunk(dd);
// Emit the ivar initializer, if needed.
if (requiresIVarInitialization(*this, cd)) {
auto ivarInitializer = SILDeclRef(cd, SILDeclRef::Kind::IVarInitializer)
.asForeign();
emitFunctionDefinition(ivarInitializer,
getFunction(ivarInitializer, ForDefinition));
}
// Emit the ivar destroyer, if needed.
if (hasNonTrivialIVars(cd)) {
auto ivarDestroyer = SILDeclRef(cd, SILDeclRef::Kind::IVarDestroyer)
.asForeign();
emitFunctionDefinition(ivarDestroyer,
getFunction(ivarDestroyer, ForDefinition));
}
}
void SILGenModule::emitDestructor(ClassDecl *cd, DestructorDecl *dd) {
emitAbstractFuncDecl(dd);
// Emit the ivar destroyer, if needed.
if (requiresIVarDestroyer(cd)) {
SILDeclRef ivarDestroyer(cd, SILDeclRef::Kind::IVarDestroyer);
emitFunctionDefinition(ivarDestroyer,
getFunction(ivarDestroyer, ForDefinition));
}
// If the class would use the Objective-C allocator, only emit -dealloc.
if (usesObjCAllocator(cd)) {
emitObjCAllocatorDestructor(cd, dd);
return;
}
// Emit the destroying destructor.
// Destructors are a necessary part of class metadata, so can't be delayed.
if (dd->hasBody()) {
SILDeclRef destroyer(dd, SILDeclRef::Kind::Destroyer);
emitFunctionDefinition(destroyer, getFunction(destroyer, ForDefinition));
}
// Emit the deallocating destructor.
{
SILDeclRef deallocator(dd, SILDeclRef::Kind::Deallocator);
emitFunctionDefinition(deallocator,
getFunction(deallocator, ForDefinition));
}
}
void SILGenModule::emitDefaultArgGenerator(SILDeclRef constant,
ParamDecl *param) {
switch (param->getDefaultArgumentKind()) {
case DefaultArgumentKind::None:
llvm_unreachable("No default argument here?");
case DefaultArgumentKind::Normal:
case DefaultArgumentKind::StoredProperty:
emitOrDelayFunction(*this, constant);
break;
case DefaultArgumentKind::Inherited:
#define MAGIC_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case DefaultArgumentKind::NAME:
#include "swift/AST/MagicIdentifierKinds.def"
case DefaultArgumentKind::NilLiteral:
case DefaultArgumentKind::EmptyArray:
case DefaultArgumentKind::EmptyDictionary:
break;
}
}
void SILGenModule::
emitStoredPropertyInitialization(PatternBindingDecl *pbd, unsigned i) {
auto *var = pbd->getAnchoringVarDecl(i);
SILDeclRef constant(var, SILDeclRef::Kind::StoredPropertyInitializer);
emitOrDelayFunction(*this, constant);
}
void SILGenModule::
emitPropertyWrapperBackingInitializer(VarDecl *var) {
SILDeclRef constant(var, SILDeclRef::Kind::PropertyWrapperBackingInitializer);
emitOrDelayFunction(*this, constant);
}
SILFunction *SILGenModule::emitLazyGlobalInitializer(StringRef funcName,
PatternBindingDecl *binding,
unsigned pbdEntry) {
ASTContext &C = M.getASTContext();
auto *onceBuiltin =
cast<FuncDecl>(getBuiltinValueDecl(C, C.getIdentifier("once")));
auto blockParam = onceBuiltin->getParameters()->get(1);
auto *type = blockParam->getType()->castTo<FunctionType>();
Type initType = FunctionType::get({}, TupleType::getEmpty(C),
type->getExtInfo());
auto initSILType = cast<SILFunctionType>(
Types.getLoweredRValueType(TypeExpansionContext::minimal(), initType));
SILGenFunctionBuilder builder(*this);
auto *f = builder.createFunction(
SILLinkage::Private, funcName, initSILType, nullptr, SILLocation(binding),
IsNotBare, IsNotTransparent, IsNotSerialized, IsNotDynamic);
f->setSpecialPurpose(SILFunction::Purpose::GlobalInitOnceFunction);
f->setDebugScope(new (M) SILDebugScope(RegularLocation(binding), f));
auto dc = binding->getDeclContext();
SILGenFunction(*this, *f, dc).emitLazyGlobalInitializer(binding, pbdEntry);
emitLazyConformancesForFunction(f);
f->verify();
return f;
}
void SILGenModule::emitGlobalAccessor(VarDecl *global,
SILGlobalVariable *onceToken,
SILFunction *onceFunc) {
SILDeclRef accessor(global, SILDeclRef::Kind::GlobalAccessor);
delayedGlobals[global] = std::make_pair(onceToken, onceFunc);
emitOrDelayFunction(*this, accessor);
}
void SILGenModule::emitDefaultArgGenerators(SILDeclRef::Loc decl,
ParameterList *paramList) {
unsigned index = 0;
for (auto param : *paramList) {
if (param->isDefaultArgument())
emitDefaultArgGenerator(SILDeclRef::getDefaultArgGenerator(decl, index),
param);
++index;
}
}
void SILGenModule::emitObjCMethodThunk(FuncDecl *method) {
auto thunk = SILDeclRef(method).asForeign();
// Don't emit the thunk if it already exists.
if (hasFunction(thunk))
return;
// ObjC entry points are always externally usable, so can't be delay-emitted.
emitNativeToForeignThunk(thunk);
}
void SILGenModule::emitObjCPropertyMethodThunks(AbstractStorageDecl *prop) {
auto *getter = prop->getOpaqueAccessor(AccessorKind::Get);
// If we don't actually need an entry point for the getter, do nothing.
if (!getter || !requiresObjCMethodEntryPoint(getter))
return;
auto getterRef = SILDeclRef(getter, SILDeclRef::Kind::Func).asForeign();
// Don't emit the thunks if they already exist.
if (hasFunction(getterRef))
return;
// ObjC entry points are always externally usable, so emitting can't be
// delayed.
emitNativeToForeignThunk(getterRef);
if (!prop->isSettable(prop->getDeclContext()))
return;
// FIXME: Add proper location.
auto *setter = prop->getOpaqueAccessor(AccessorKind::Set);
auto setterRef = SILDeclRef(setter, SILDeclRef::Kind::Func).asForeign();
emitNativeToForeignThunk(setterRef);
}
void SILGenModule::emitObjCConstructorThunk(ConstructorDecl *constructor) {
auto thunk = SILDeclRef(constructor, SILDeclRef::Kind::Initializer)
.asForeign();
// Don't emit the thunk if it already exists.
if (hasFunction(thunk))
return;
// ObjC entry points are always externally usable, so emitting can't be
// delayed.
emitNativeToForeignThunk(thunk);
}
void SILGenModule::emitObjCDestructorThunk(DestructorDecl *destructor) {
auto thunk = SILDeclRef(destructor, SILDeclRef::Kind::Deallocator)
.asForeign();
// Don't emit the thunk if it already exists.
if (hasFunction(thunk))
return;
emitNativeToForeignThunk(thunk);
}
void SILGenModule::visitPatternBindingDecl(PatternBindingDecl *pd) {
assert(!TopLevelSGF && "script mode PBDs should be in TopLevelCodeDecls");
for (auto i : range(pd->getNumPatternEntries()))
if (pd->getExecutableInit(i))
emitGlobalInitialization(pd, i);
}
void SILGenModule::visitVarDecl(VarDecl *vd) {
if (vd->hasStorage())
addGlobalVariable(vd);
vd->visitEmittedAccessors([&](AccessorDecl *accessor) {
emitFunction(accessor);
});
tryEmitPropertyDescriptor(vd);
}
void SILGenModule::visitSubscriptDecl(SubscriptDecl *sd) {
llvm_unreachable("top-level subscript?");
}
bool
SILGenModule::canStorageUseStoredKeyPathComponent(AbstractStorageDecl *decl,
ResilienceExpansion expansion) {
// If the declaration is resilient, we have to treat the component as
// computed.
if (decl->isResilient(M.getSwiftModule(), expansion))
return false;
auto strategy = decl->getAccessStrategy(AccessSemantics::Ordinary,
decl->supportsMutation()
? AccessKind::ReadWrite
: AccessKind::Read,
M.getSwiftModule(),
expansion);
switch (strategy.getKind()) {
case AccessStrategy::Storage: {
// Keypaths rely on accessors to handle the special behavior of weak or
// unowned properties.
if (decl->getInterfaceType()->is<ReferenceStorageType>())
return false;
// If the field offset depends on the generic instantiation, we have to
// load it from metadata when instantiating the keypath component.
//
// However the metadata offset itself will not be fixed if the superclass
// is resilient. Fall back to treating the property as computed in this
// case.
//
// See the call to getClassFieldOffsetOffset() inside
// emitKeyPathComponent().
if (auto *parentClass = dyn_cast<ClassDecl>(decl->getDeclContext())) {
if (parentClass->isGeneric()) {
auto ancestry = parentClass->checkAncestry();
if (ancestry.contains(AncestryFlags::ResilientOther))
return false;
}
}
// If the stored value would need to be reabstracted in fully opaque
// context, then we have to treat the component as computed.
auto componentObjTy = decl->getValueInterfaceType();
if (auto genericEnv =
decl->getInnermostDeclContext()->getGenericEnvironmentOfContext())
componentObjTy = genericEnv->mapTypeIntoContext(componentObjTy);
auto storageTy = M.Types.getSubstitutedStorageType(
TypeExpansionContext::minimal(), decl, componentObjTy);
auto opaqueTy = M.Types.getLoweredRValueType(
TypeExpansionContext::noOpaqueTypeArchetypesSubstitution(expansion),
AbstractionPattern::getOpaque(), componentObjTy);
return storageTy.getASTType() == opaqueTy;
}
case AccessStrategy::DirectToAccessor:
case AccessStrategy::DispatchToAccessor:
case AccessStrategy::MaterializeToTemporary:
return false;
}
llvm_unreachable("unhandled strategy");
}
static bool canStorageUseTrivialDescriptor(SILGenModule &SGM,
AbstractStorageDecl *decl) {
// A property can use a trivial property descriptor if the key path component
// that an external module would form given publicly-exported information
// about the property is never equivalent to the canonical component for the
// key path.
// This means that the property isn't stored (without promising to be always
// stored) and doesn't have a setter with less-than-public visibility.
auto expansion = ResilienceExpansion::Maximal;
if (!SGM.M.getSwiftModule()->isResilient()) {
if (SGM.canStorageUseStoredKeyPathComponent(decl, expansion)) {
// External modules can't directly access storage, unless this is a
// property in a fixed-layout type.
return !decl->isFormallyResilient();
}
// If the type is computed and doesn't have a setter that's hidden from
// the public, then external components can form the canonical key path
// without our help.
auto *setter = decl->getOpaqueAccessor(AccessorKind::Set);
if (!setter)
return true;
if (setter->getFormalAccessScope(nullptr, true).isPublic())
return true;
return false;
}
// A resilient module needs to handle binaries compiled against its older
// versions. This means we have to be a bit more conservative, since in
// earlier versions, a settable property may have withheld the setter,
// or a fixed-layout type may not have been.
// Without availability information, only get-only computed properties
// can resiliently use trivial descriptors.
return (!SGM.canStorageUseStoredKeyPathComponent(decl, expansion) &&
!decl->supportsMutation());
}
void SILGenModule::tryEmitPropertyDescriptor(AbstractStorageDecl *decl) {
// TODO: Key path code emission doesn't handle opaque values properly yet.
if (!SILModuleConventions(M).useLoweredAddresses())
return;
if (!decl->exportsPropertyDescriptor())
return;
PrettyStackTraceDecl stackTrace("emitting property descriptor for", decl);
Type baseTy;
if (decl->getDeclContext()->isTypeContext()) {
// TODO: Static properties should eventually be referenceable as
// keypaths from T.Type -> Element, viz `baseTy = MetatypeType::get(baseTy)`
assert(!decl->isStatic());
baseTy = decl->getDeclContext()->getSelfInterfaceType()
->getCanonicalType(decl->getInnermostDeclContext()
->getGenericSignatureOfContext());
} else {
// TODO: Global variables should eventually be referenceable as
// key paths from (), viz. baseTy = TupleType::getEmpty(getASTContext());
llvm_unreachable("should not export a property descriptor yet");
}
auto genericEnv = decl->getInnermostDeclContext()
->getGenericEnvironmentOfContext();
unsigned baseOperand = 0;
bool needsGenericContext = true;
if (canStorageUseTrivialDescriptor(*this, decl)) {
(void)SILProperty::create(M, /*serialized*/ false, decl, None);
return;
}
SubstitutionMap subs;
if (genericEnv)
subs = genericEnv->getForwardingSubstitutionMap();
auto component = emitKeyPathComponentForDecl(SILLocation(decl),
genericEnv,
ResilienceExpansion::Maximal,
baseOperand, needsGenericContext,
subs, decl, {},
baseTy->getCanonicalType(),
M.getSwiftModule(),
/*property descriptor*/ true);
(void)SILProperty::create(M, /*serialized*/ false, decl, component);
}
void SILGenModule::visitIfConfigDecl(IfConfigDecl *ICD) {
// Nothing to do for these kinds of decls - anything active has been added
// to the enclosing declaration.
}
void SILGenModule::visitPoundDiagnosticDecl(PoundDiagnosticDecl *PDD) {
// Nothing to do for #error/#warning; they've already been emitted.
}
void SILGenModule::visitTopLevelCodeDecl(TopLevelCodeDecl *td) {
assert(TopLevelSGF && "top-level code in a non-main source file!");
if (!TopLevelSGF->B.hasValidInsertionPoint())
return;
// A single SILFunction may be used to lower multiple top-level decls. When
// this happens, fresh profile counters must be assigned to the new decl.
TopLevelSGF->F.discardProfiler();
TopLevelSGF->F.createProfiler(td, SILDeclRef(), ForDefinition);
TopLevelSGF->emitProfilerIncrement(td->getBody());
DebugScope DS(*TopLevelSGF, CleanupLocation(td));
for (auto &ESD : td->getBody()->getElements()) {
if (!TopLevelSGF->B.hasValidInsertionPoint()) {
if (auto *S = ESD.dyn_cast<Stmt*>()) {
if (S->isImplicit())
continue;
} else if (auto *E = ESD.dyn_cast<Expr*>()) {
if (E->isImplicit())
continue;
}
diagnose(ESD.getStartLoc(), diag::unreachable_code);
// There's no point in trying to emit anything else.
return;
}
if (auto *S = ESD.dyn_cast<Stmt*>()) {
TopLevelSGF->emitStmt(S);
} else if (auto *E = ESD.dyn_cast<Expr*>()) {
TopLevelSGF->emitIgnoredExpr(E);
} else {
TopLevelSGF->visit(ESD.get<Decl*>());
}
}
}
namespace {
/// An RAII class to scope source file codegen.
class SourceFileScope {
SILGenModule &sgm;
SourceFile *sf;
Optional<Scope> scope;
public:
SourceFileScope(SILGenModule &sgm, SourceFile *sf) : sgm(sgm), sf(sf) {
// If this is the script-mode file for the module, create a toplevel.
if (sf->isScriptMode()) {
assert(!sgm.TopLevelSGF && "already emitted toplevel?!");
assert(!sgm.M.lookUpFunction(SWIFT_ENTRY_POINT_FUNCTION)
&& "already emitted toplevel?!");
RegularLocation TopLevelLoc = RegularLocation::getModuleLocation();
SILFunction *toplevel = sgm.emitTopLevelFunction(TopLevelLoc);
// Assign a debug scope pointing into the void to the top level function.
toplevel->setDebugScope(new (sgm.M) SILDebugScope(TopLevelLoc, toplevel));
sgm.TopLevelSGF = new SILGenFunction(sgm, *toplevel, sf);
sgm.TopLevelSGF->MagicFunctionName = sgm.SwiftModule->getName();
auto moduleCleanupLoc = CleanupLocation::getModuleCleanupLocation();
sgm.TopLevelSGF->prepareEpilog(false, true, moduleCleanupLoc);
// Create the argc and argv arguments.
auto prologueLoc = RegularLocation::getModuleLocation();
prologueLoc.markAsPrologue();
auto entry = sgm.TopLevelSGF->B.getInsertionBB();
auto context = sgm.TopLevelSGF->getTypeExpansionContext();
auto paramTypeIter = sgm.TopLevelSGF->F.getConventions()
.getParameterSILTypes(context)
.begin();
entry->createFunctionArgument(*paramTypeIter);
entry->createFunctionArgument(*std::next(paramTypeIter));
scope.emplace(sgm.TopLevelSGF->Cleanups, moduleCleanupLoc);
}
}
~SourceFileScope() {
if (sgm.TopLevelSGF) {
scope.reset();
// Unregister the top-level function emitter.
auto &SGF = *sgm.TopLevelSGF;
sgm.TopLevelSGF = nullptr;
// Write out the epilog.
auto moduleLoc = RegularLocation::getModuleLocation();
moduleLoc.markAutoGenerated();
auto returnInfo = SGF.emitEpilogBB(moduleLoc);
auto returnLoc = returnInfo.second;
returnLoc.markAutoGenerated();
SILType returnType = SGF.F.getConventions().getSingleSILResultType(
SGF.getTypeExpansionContext());
auto emitTopLevelReturnValue = [&](unsigned value) -> SILValue {
// Create an integer literal for the value.
auto litType = SILType::getBuiltinIntegerType(32, sgm.getASTContext());
SILValue retValue =
SGF.B.createIntegerLiteral(moduleLoc, litType, value);
// Wrap that in a struct if necessary.
if (litType != returnType) {
retValue = SGF.B.createStruct(moduleLoc, returnType, retValue);
}
return retValue;
};
// Fallthrough should signal a normal exit by returning 0.
SILValue returnValue;
if (SGF.B.hasValidInsertionPoint())
returnValue = emitTopLevelReturnValue(0);
// Handle the implicit rethrow block.
auto rethrowBB = SGF.ThrowDest.getBlock();
SGF.ThrowDest = JumpDest::invalid();
// If the rethrow block wasn't actually used, just remove it.
if (rethrowBB->pred_empty()) {
SGF.eraseBasicBlock(rethrowBB);
// Otherwise, we need to produce a unified return block.
} else {
auto returnBB = SGF.createBasicBlock();
if (SGF.B.hasValidInsertionPoint())
SGF.B.createBranch(returnLoc, returnBB, returnValue);
returnValue =
returnBB->createPhiArgument(returnType, OwnershipKind::Owned);
SGF.B.emitBlock(returnBB);
// Emit the rethrow block.
SILGenSavedInsertionPoint savedIP(SGF, rethrowBB,
FunctionSection::Postmatter);
// Log the error.
SILValue error = rethrowBB->getArgument(0);
SGF.B.createBuiltin(moduleLoc,
sgm.getASTContext().getIdentifier("errorInMain"),
sgm.Types.getEmptyTupleType(), {}, {error});
// Then end the lifetime of the error.
//
// We do this to appease the ownership verifier. We do not care about
// actually destroying the value since we are going to immediately exit,
// so this saves us a slight bit of code-size since end_lifetime is
// stripped out after ownership is removed.
SGF.B.createEndLifetime(moduleLoc, error);
// Signal an abnormal exit by returning 1.
SGF.Cleanups.emitCleanupsForReturn(CleanupLocation::get(moduleLoc),
IsForUnwind);
SGF.B.createBranch(returnLoc, returnBB, emitTopLevelReturnValue(1));
}
// Return.
if (SGF.B.hasValidInsertionPoint())
SGF.B.createReturn(returnLoc, returnValue);
// Okay, we're done emitting the top-level function; destroy the
// emitter and verify the result.
SILFunction *toplevel = &SGF.getFunction();
delete &SGF;
LLVM_DEBUG(llvm::dbgs() << "lowered toplevel sil:\n";
toplevel->print(llvm::dbgs()));
toplevel->verify();
sgm.emitLazyConformancesForFunction(toplevel);
}
// If the source file contains an artificial main, emit the implicit
// toplevel code.
if (auto mainDecl = sf->getMainDecl()) {
assert(!sgm.M.lookUpFunction(SWIFT_ENTRY_POINT_FUNCTION)
&& "already emitted toplevel before main class?!");
RegularLocation TopLevelLoc = RegularLocation::getModuleLocation();
SILFunction *toplevel = sgm.emitTopLevelFunction(TopLevelLoc);
// Assign a debug scope pointing into the void to the top level function.
toplevel->setDebugScope(new (sgm.M) SILDebugScope(TopLevelLoc, toplevel));
// Create the argc and argv arguments.
SILGenFunction SGF(sgm, *toplevel, sf);
auto entry = SGF.B.getInsertionBB();
auto paramTypeIter =
SGF.F.getConventions()
.getParameterSILTypes(SGF.getTypeExpansionContext())
.begin();
entry->createFunctionArgument(*paramTypeIter);
entry->createFunctionArgument(*std::next(paramTypeIter));
SGF.emitArtificialTopLevel(mainDecl);
}
}
};
// An RAII object that constructs a \c SILGenModule instance.
// On destruction, delayed definitions are automatically emitted.
class SILGenModuleRAII {
SILGenModule SGM;
public:
void emitSourceFile(SourceFile *sf) {
// Type-check the file if we haven't already.
performTypeChecking(*sf);
SourceFileScope scope(SGM, sf);
for (Decl *D : sf->getTopLevelDecls()) {
FrontendStatsTracer StatsTracer(SGM.getASTContext().Stats,
"SILgen-decl", D);
SGM.visit(D);
}
for (Decl *D : sf->getHoistedDecls()) {
FrontendStatsTracer StatsTracer(SGM.getASTContext().Stats,
"SILgen-decl", D);
SGM.visit(D);
}
for (TypeDecl *TD : sf->LocalTypeDecls) {
FrontendStatsTracer StatsTracer(SGM.getASTContext().Stats,
"SILgen-tydecl", TD);
// FIXME: Delayed parsing would prevent these types from being added to
// the module in the first place.
if (TD->getDeclContext()->getInnermostSkippedFunctionContext())
continue;
SGM.visit(TD);
}
}
void emitSILFunctionDefinition(SILDeclRef ref) {
SGM.emitFunctionDefinition(ref, SGM.getFunction(ref, ForDefinition));
}
explicit SILGenModuleRAII(SILModule &M) : SGM{M, M.getSwiftModule()} {}
~SILGenModuleRAII() {
// Emit any delayed definitions that were forced.
// Emitting these may in turn force more definitions, so we have to take
// care to keep pumping the queues.
while (!SGM.forcedFunctions.empty()
|| !SGM.pendingConformances.empty()) {
while (!SGM.forcedFunctions.empty()) {
auto &front = SGM.forcedFunctions.front();
SGM.emitFunctionDefinition(
front, SGM.getEmittedFunction(front, ForDefinition));
SGM.forcedFunctions.pop_front();
}
while (!SGM.pendingConformances.empty()) {
SGM.getWitnessTable(SGM.pendingConformances.front());
SGM.pendingConformances.pop_front();
}
}
}
};
} // end anonymous namespace
std::unique_ptr<SILModule>
ASTLoweringRequest::evaluate(Evaluator &evaluator,
ASTLoweringDescriptor desc) const {
// If we have a .sil file to parse, defer to the parsing request.
if (desc.getSourceFileToParse()) {
return llvm::cantFail(evaluator(ParseSILModuleRequest{desc}));
}
auto silMod = SILModule::createEmptyModule(desc.context, desc.conv,
desc.opts);
// If all function bodies are being skipped there's no reason to do any
// SIL generation.
if (desc.opts.SkipFunctionBodies == FunctionBodySkipping::All)
return silMod;
// Skip emitting SIL if there's been any compilation errors
if (silMod->getASTContext().hadError() &&
silMod->getASTContext().LangOpts.AllowModuleWithCompilerErrors)
return silMod;
SILGenModuleRAII scope(*silMod);
// Emit a specific set of SILDeclRefs if needed.
if (auto refs = desc.refsToEmit) {
for (auto ref : *refs)
scope.emitSILFunctionDefinition(ref);
}
// Emit any whole-files needed.
for (auto file : desc.getFilesToEmit()) {
if (auto *nextSF = dyn_cast<SourceFile>(file))
scope.emitSourceFile(nextSF);
}
// Also make sure to process any intermediate files that may contain SIL.
bool shouldDeserialize =
llvm::any_of(desc.getFilesToEmit(), [](const FileUnit *File) -> bool {
return isa<SerializedASTFile>(File);
});
if (shouldDeserialize) {
auto *primary = desc.context.dyn_cast<FileUnit *>();
silMod->getSILLoader()->getAllForModule(silMod->getSwiftModule()->getName(),
primary);
}
return silMod;
}
std::unique_ptr<SILModule>
swift::performASTLowering(ModuleDecl *mod, Lowering::TypeConverter &tc,
const SILOptions &options) {
auto desc = ASTLoweringDescriptor::forWholeModule(mod, tc, options);
return llvm::cantFail(
mod->getASTContext().evaluator(ASTLoweringRequest{desc}));
}
std::unique_ptr<SILModule>
swift::performASTLowering(FileUnit &sf, Lowering::TypeConverter &tc,
const SILOptions &options) {
auto desc = ASTLoweringDescriptor::forFile(sf, tc, options);
return llvm::cantFail(sf.getASTContext().evaluator(ASTLoweringRequest{desc}));
}
static void transferSpecializeAttributeTargets(SILGenModule &SGM, SILModule &M,
Decl *d) {
auto *vd = cast<AbstractFunctionDecl>(d);
for (auto *A : vd->getAttrs().getAttributes<SpecializeAttr>()) {
auto *SA = cast<SpecializeAttr>(A);
// Filter _spi.
auto spiGroups = SA->getSPIGroups();
auto hasSPIGroup = !spiGroups.empty();
if (hasSPIGroup) {
if (vd->getModuleContext() != M.getSwiftModule() &&
!M.getSwiftModule()->isImportedAsSPI(SA, vd)) {
continue;
}
}
if (auto *targetFunctionDecl = SA->getTargetFunctionDecl(vd)) {
auto target = SILDeclRef(targetFunctionDecl);
auto targetSILFunction = SGM.getFunction(target, NotForDefinition);
auto kind = SA->getSpecializationKind() ==
SpecializeAttr::SpecializationKind::Full
? SILSpecializeAttr::SpecializationKind::Full
: SILSpecializeAttr::SpecializationKind::Partial;
Identifier spiGroupIdent;
if (hasSPIGroup) {
spiGroupIdent = spiGroups[0];
}
targetSILFunction->addSpecializeAttr(SILSpecializeAttr::create(
M, SA->getSpecializedSignature(), SA->isExported(), kind, nullptr,
spiGroupIdent, vd->getModuleContext()));
}
}
}
void SILGenModule::visitImportDecl(ImportDecl *import) {
// Importing `@_specializet(targetFunction: otherFunc)` only supported in
// experimental pre-specialization mode.
if (!getASTContext().LangOpts.EnableExperimentalPrespecialization)
return;
// TODO: this horrible full AST deserializing walk should be replaced by a
// 'single place' to lookup those declarations in the module
// E.g
// prespecializations {
// extension Array {
// @_specialize(exported: true, targetFunction: other(_:), T == Int)
// func prespecialzie_other() {}
// }
// }
auto *module = import->getModule();
if (module->isNonSwiftModule())
return;
SmallVector<Decl*, 16> prespecializations;
module->getExportedPrespecializations(prespecializations);
for (auto *p : prespecializations) {
if (auto *vd = dyn_cast<AbstractFunctionDecl>(p)) {
transferSpecializeAttributeTargets(*this, M, vd);
}
}
}