blob: cd2b244b65af62eb22bb95e068fea0213d3ebc5f [file] [log] [blame]
//===--- AdjointValue.h - Helper class for differentiation ----*- C++ -*---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// AdjointValue - a symbolic representation for adjoint values enabling
// efficient differentiation by avoiding zero materialization.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SILOPTIMIZER_UTILS_DIFFERENTIATION_ADJOINTVALUE_H
#define SWIFT_SILOPTIMIZER_UTILS_DIFFERENTIATION_ADJOINTVALUE_H
#include "swift/AST/Decl.h"
#include "swift/SIL/SILValue.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Debug.h"
namespace swift {
namespace autodiff {
enum AdjointValueKind {
/// An empty adjoint, i.e. zero. This case exists due to its special
/// mathematical properties: `0 + x = x`. This is a guaranteed optimization
/// when we combine a zero adjoint with another (e.g. differentiating a
/// fanout).
Zero,
/// An aggregate of adjoint values: a struct or tuple.
Aggregate,
/// A concrete SIL value.
Concrete,
};
class AdjointValue;
class AdjointValueBase {
friend class AdjointValue;
/// The kind of this adjoint value.
AdjointValueKind kind;
/// The type of this value as if it were materialized as a SIL value.
SILType type;
/// The underlying value.
union Value {
llvm::ArrayRef<AdjointValue> aggregate;
SILValue concrete;
Value(llvm::ArrayRef<AdjointValue> v) : aggregate(v) {}
Value(SILValue v) : concrete(v) {}
Value() {}
} value;
explicit AdjointValueBase(SILType type,
llvm::ArrayRef<AdjointValue> aggregate)
: kind(AdjointValueKind::Aggregate), type(type), value(aggregate) {}
explicit AdjointValueBase(SILValue v)
: kind(AdjointValueKind::Concrete), type(v->getType()), value(v) {}
explicit AdjointValueBase(SILType type)
: kind(AdjointValueKind::Zero), type(type) {}
};
/// A symbolic adjoint value that is capable of representing zero value 0 and
/// 1, in addition to a materialized SILValue. This is expected to be passed
/// around by value in most cases, as it's two words long.
class AdjointValue final {
private:
/// The kind of this adjoint value.
AdjointValueBase *base;
/*implicit*/ AdjointValue(AdjointValueBase *base = nullptr) : base(base) {}
public:
AdjointValueBase *operator->() const { return base; }
AdjointValueBase &operator*() const { return *base; }
static AdjointValue createConcrete(llvm::BumpPtrAllocator &allocator,
SILValue value) {
return new (allocator.Allocate<AdjointValueBase>()) AdjointValueBase(value);
}
static AdjointValue createZero(llvm::BumpPtrAllocator &allocator,
SILType type) {
return new (allocator.Allocate<AdjointValueBase>()) AdjointValueBase(type);
}
static AdjointValue createAggregate(llvm::BumpPtrAllocator &allocator,
SILType type,
llvm::ArrayRef<AdjointValue> aggregate) {
return new (allocator.Allocate<AdjointValueBase>())
AdjointValueBase(type, aggregate);
}
AdjointValueKind getKind() const { return base->kind; }
SILType getType() const { return base->type; }
CanType getSwiftType() const { return getType().getASTType(); }
NominalTypeDecl *getAnyNominal() const {
return getSwiftType()->getAnyNominal();
}
bool isZero() const { return getKind() == AdjointValueKind::Zero; }
bool isAggregate() const { return getKind() == AdjointValueKind::Aggregate; }
bool isConcrete() const { return getKind() == AdjointValueKind::Concrete; }
unsigned getNumAggregateElements() const {
assert(isAggregate());
return base->value.aggregate.size();
}
AdjointValue getAggregateElement(unsigned i) const {
assert(isAggregate());
return base->value.aggregate[i];
}
llvm::ArrayRef<AdjointValue> getAggregateElements() const {
return base->value.aggregate;
}
SILValue getConcreteValue() const {
assert(isConcrete());
return base->value.concrete;
}
void print(llvm::raw_ostream &s) const {
switch (getKind()) {
case AdjointValueKind::Zero:
s << "Zero[" << getType() << ']';
break;
case AdjointValueKind::Aggregate:
s << "Aggregate[" << getType() << "](";
if (auto *decl =
getType().getASTType()->getStructOrBoundGenericStruct()) {
interleave(
llvm::zip(decl->getStoredProperties(), base->value.aggregate),
[&s](std::tuple<VarDecl *, const AdjointValue &> elt) {
s << std::get<0>(elt)->getName() << ": ";
std::get<1>(elt).print(s);
},
[&s] { s << ", "; });
} else if (getType().is<TupleType>()) {
interleave(
base->value.aggregate,
[&s](const AdjointValue &elt) { elt.print(s); },
[&s] { s << ", "; });
} else {
llvm_unreachable("Invalid aggregate");
}
s << ')';
break;
case AdjointValueKind::Concrete:
s << "Concrete[" << getType() << "](" << base->value.concrete << ')';
break;
}
}
SWIFT_DEBUG_DUMP { print(llvm::dbgs()); };
};
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
const AdjointValue &adjVal) {
adjVal.print(os);
return os;
}
} // end namespace autodiff
} // end namespace swift
#endif // SWIFT_SILOPTIMIZER_UTILS_DIFFERENTIATION_ADJOINTVALUE_H