blob: 08acfdabd464cc4a1598942f6668d5b84f85d6a5 [file] [log] [blame]
//===-- ParseableInterfaceModuleLoader.cpp - Loads .swiftinterface files --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "textual-module-interface"
#include "swift/Frontend/ParseableInterfaceModuleLoader.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/FileSystem.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Lazy.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/ParseableInterfaceSupport.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/Serialization/ModuleFormat.h"
#include "swift/Serialization/SerializationOptions.h"
#include "swift/Serialization/Validation.h"
#include "clang/Basic/Module.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Frontend/CompilerInstance.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/xxhash.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/YAMLTraits.h"
using namespace swift;
using FileDependency = SerializationOptions::FileDependency;
/// Extract the specified-or-defaulted -module-cache-path that winds up in
/// the clang importer, for reuse as the .swiftmodule cache path when
/// building a ParseableInterfaceModuleLoader.
std::string
swift::getModuleCachePathFromClang(const clang::CompilerInstance &Clang) {
if (!Clang.hasPreprocessor())
return "";
std::string SpecificModuleCachePath = Clang.getPreprocessor()
.getHeaderSearchInfo()
.getModuleCachePath();
// The returned-from-clang module cache path includes a suffix directory
// that is specific to the clang version and invocation; we want the
// directory above that.
return llvm::sys::path::parent_path(SpecificModuleCachePath);
}
#pragma mark - Forwarding Modules
namespace {
/// Describes a "forwarding module", that is, a .swiftmodule that's actually
/// a YAML file inside, pointing to a the original .swiftmodule but describing
/// a different dependency resolution strategy.
struct ForwardingModule {
/// The path to the original .swiftmodule in the prebuilt cache.
std::string underlyingModulePath;
/// Describes a set of file-based dependencies with their size and
/// modification time stored. This is slightly different from
/// \c SerializationOptions::FileDependency, because this type needs to be
/// serializable to and from YAML.
struct Dependency {
std::string path;
uint64_t size;
uint64_t lastModificationTime;
};
std::vector<Dependency> dependencies;
unsigned version = 1;
ForwardingModule() = default;
ForwardingModule(StringRef underlyingModulePath)
: underlyingModulePath(underlyingModulePath) {}
/// Loads the contents of the forwarding module whose contents lie in
/// the provided buffer, and returns a new \c ForwardingModule, or an error
/// if the YAML could not be parsed.
static llvm::ErrorOr<ForwardingModule> load(const llvm::MemoryBuffer &buf);
/// Adds a given dependency to the dependencies list.
void addDependency(StringRef path, uint64_t size, uint64_t modTime) {
dependencies.push_back({path.str(), size, modTime});
}
};
} // end anonymous namespace
#pragma mark - YAML Serialization
namespace llvm {
namespace yaml {
template <>
struct MappingTraits<ForwardingModule::Dependency> {
static void mapping(IO &io, ForwardingModule::Dependency &dep) {
io.mapRequired("mtime", dep.lastModificationTime);
io.mapRequired("path", dep.path);
io.mapRequired("size", dep.size);
}
};
template <>
struct SequenceElementTraits<ForwardingModule::Dependency> {
static const bool flow = false;
};
template <>
struct MappingTraits<ForwardingModule> {
static void mapping(IO &io, ForwardingModule &module) {
io.mapRequired("path", module.underlyingModulePath);
io.mapRequired("dependencies", module.dependencies);
io.mapRequired("version", module.version);
}
};
}
} // end namespace llvm
llvm::ErrorOr<ForwardingModule>
ForwardingModule::load(const llvm::MemoryBuffer &buf) {
llvm::yaml::Input yamlIn(buf.getBuffer());
ForwardingModule fwd;
yamlIn >> fwd;
if (yamlIn.error())
return yamlIn.error();
// We only currently support Version 1 of the forwarding module format.
if (fwd.version != 1)
return std::make_error_code(std::errc::not_supported);
return std::move(fwd);
}
#pragma mark - Module Discovery
namespace {
/// The result of a search for a module either alongside an interface, in the
/// module cache, or in the prebuilt module cache.
class DiscoveredModule {
/// The kind of module we've found.
enum class Kind {
/// A module that's either alongside the swiftinterface or in the
/// module cache.
Normal,
/// A module that resides in the prebuilt cache, and has hash-based
/// dependencies.
Prebuilt,
/// A 'forwarded' module. This is a module in the prebuilt cache, but whose
/// dependencies live in a forwarding module.
/// \sa ForwardingModule.
Forwarded
};
/// The kind of module that's been discovered.
const Kind kind;
DiscoveredModule(StringRef path, Kind kind,
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer)
: kind(kind), moduleBuffer(std::move(moduleBuffer)), path(path) {}
public:
/// The contents of the .swiftmodule, if we've read it while validating
/// dependencies.
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer;
/// The path to the discovered serialized .swiftmodule on disk.
const std::string path;
/// Creates a \c Normal discovered module.
static DiscoveredModule normal(StringRef path,
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer) {
return { path, Kind::Normal, std::move(moduleBuffer) };
}
/// Creates a \c Prebuilt discovered module.
static DiscoveredModule prebuilt(
StringRef path, std::unique_ptr<llvm::MemoryBuffer> moduleBuffer) {
return { path, Kind::Prebuilt, std::move(moduleBuffer) };
}
/// Creates a \c Forwarded discovered module, whose dependencies have been
/// externally validated by a \c ForwardingModule.
static DiscoveredModule forwarded(
StringRef path, std::unique_ptr<llvm::MemoryBuffer> moduleBuffer) {
return { path, Kind::Forwarded, std::move(moduleBuffer) };
}
bool isNormal() const { return kind == Kind::Normal; }
bool isPrebuilt() const { return kind == Kind::Prebuilt; }
bool isForwarded() const { return kind == Kind::Forwarded; }
};
} // end anonymous namespace
#pragma mark - Common utilities
namespace path = llvm::sys::path;
static bool serializedASTLooksValid(const llvm::MemoryBuffer &buf) {
auto VI = serialization::validateSerializedAST(buf.getBuffer());
return VI.status == serialization::Status::Valid;
}
static std::unique_ptr<llvm::MemoryBuffer> getBufferOfDependency(
llvm::vfs::FileSystem &fs, StringRef depPath, StringRef interfacePath,
DiagnosticEngine &diags, SourceLoc diagnosticLoc) {
auto depBuf = fs.getBufferForFile(depPath, /*FileSize=*/-1,
/*RequiresNullTerminator=*/false);
if (!depBuf) {
diags.diagnose(diagnosticLoc,
diag::missing_dependency_of_parseable_module_interface,
depPath, interfacePath, depBuf.getError().message());
return nullptr;
}
return std::move(depBuf.get());
}
static Optional<llvm::vfs::Status> getStatusOfDependency(
llvm::vfs::FileSystem &fs, StringRef depPath, StringRef interfacePath,
DiagnosticEngine &diags, SourceLoc diagnosticLoc) {
auto status = fs.status(depPath);
if (!status) {
diags.diagnose(diagnosticLoc,
diag::missing_dependency_of_parseable_module_interface,
depPath, interfacePath, status.getError().message());
return None;
}
return status.get();
}
#pragma mark - Module Building
/// Builds a parseable module interface into a .swiftmodule at the provided
/// output path.
/// \note Needs to be in the swift namespace so CompilerInvocation can see it.
class swift::ParseableInterfaceBuilder {
ASTContext &ctx;
llvm::vfs::FileSystem &fs;
DiagnosticEngine &diags;
const StringRef interfacePath;
const StringRef moduleName;
const StringRef moduleCachePath;
const StringRef prebuiltCachePath;
const bool serializeDependencyHashes;
const bool trackSystemDependencies;
const SourceLoc diagnosticLoc;
DependencyTracker *const dependencyTracker;
CompilerInvocation subInvocation;
void configureSubInvocationInputsAndOutputs(StringRef OutPath) {
auto &SubFEOpts = subInvocation.getFrontendOptions();
SubFEOpts.RequestedAction = FrontendOptions::ActionType::EmitModuleOnly;
SubFEOpts.InputsAndOutputs.addPrimaryInputFile(interfacePath);
SupplementaryOutputPaths SOPs;
SOPs.ModuleOutputPath = OutPath.str();
// Pick a primary output path that will cause problems to use.
StringRef MainOut = "/<unused>";
SubFEOpts.InputsAndOutputs
.setMainAndSupplementaryOutputs({MainOut}, {SOPs});
}
void configureSubInvocation() {
auto &SearchPathOpts = ctx.SearchPathOpts;
auto &LangOpts = ctx.LangOpts;
// Start with a SubInvocation that copies various state from our
// invoking ASTContext.
subInvocation.setImportSearchPaths(SearchPathOpts.ImportSearchPaths);
subInvocation.setFrameworkSearchPaths(SearchPathOpts.FrameworkSearchPaths);
subInvocation.setSDKPath(SearchPathOpts.SDKPath);
subInvocation.setInputKind(InputFileKind::SwiftModuleInterface);
subInvocation.setRuntimeResourcePath(SearchPathOpts.RuntimeResourcePath);
subInvocation.setTargetTriple(LangOpts.Target);
subInvocation.setModuleName(moduleName);
subInvocation.setClangModuleCachePath(moduleCachePath);
subInvocation.getFrontendOptions().PrebuiltModuleCachePath =
prebuiltCachePath;
subInvocation.getFrontendOptions().TrackSystemDeps = trackSystemDependencies;
// Respect the detailed-record preprocessor setting of the parent context.
// This, and the "raw" clang module format it implicitly enables, are
// required by sourcekitd.
if (auto *ClangLoader = ctx.getClangModuleLoader()) {
auto &Opts = ClangLoader->getClangInstance().getPreprocessorOpts();
if (Opts.DetailedRecord) {
subInvocation.getClangImporterOptions().DetailedPreprocessingRecord = true;
}
}
// Inhibit warnings from the SubInvocation since we are assuming the user
// is not in a position to fix them.
subInvocation.getDiagnosticOptions().SuppressWarnings = true;
// Inherit this setting down so that it can affect error diagnostics (mostly
// by making them non-fatal).
subInvocation.getLangOptions().DebuggerSupport = LangOpts.DebuggerSupport;
// Disable this; deinitializers always get printed with `@objc` even in
// modules that don't import Foundation.
subInvocation.getLangOptions().EnableObjCAttrRequiresFoundation = false;
// Tell the subinvocation to serialize dependency hashes if asked to do so.
auto &frontendOpts = subInvocation.getFrontendOptions();
frontendOpts.SerializeParseableModuleInterfaceDependencyHashes =
serializeDependencyHashes;
}
bool extractSwiftInterfaceVersionAndArgs(
swift::version::Version &Vers, llvm::StringSaver &SubArgSaver,
SmallVectorImpl<const char *> &SubArgs) {
auto FileOrError = swift::vfs::getFileOrSTDIN(fs, interfacePath);
if (!FileOrError) {
diags.diagnose(diagnosticLoc, diag::error_open_input_file,
interfacePath, FileOrError.getError().message());
return true;
}
auto SB = FileOrError.get()->getBuffer();
auto VersRe = getSwiftInterfaceFormatVersionRegex();
auto FlagRe = getSwiftInterfaceModuleFlagsRegex();
SmallVector<StringRef, 1> VersMatches, FlagMatches;
if (!VersRe.match(SB, &VersMatches)) {
diags.diagnose(diagnosticLoc,
diag::error_extracting_version_from_parseable_interface);
return true;
}
if (!FlagRe.match(SB, &FlagMatches)) {
diags.diagnose(diagnosticLoc,
diag::error_extracting_flags_from_parseable_interface);
return true;
}
assert(VersMatches.size() == 2);
assert(FlagMatches.size() == 2);
Vers = swift::version::Version(VersMatches[1], SourceLoc(), &diags);
llvm::cl::TokenizeGNUCommandLine(FlagMatches[1], SubArgSaver, SubArgs);
return false;
}
/// Populate the provided \p Deps with \c FileDependency entries for all
/// dependencies \p SubInstance's DependencyTracker recorded while compiling
/// the module, excepting .swiftmodules in \p moduleCachePath or
/// \p prebuiltCachePath. Those have _their_ dependencies added instead, both
/// to avoid having to do recursive scanning when rechecking this dependency
/// in future and to make the module caches relocatable.
bool collectDepsForSerialization(CompilerInstance &SubInstance,
SmallVectorImpl<FileDependency> &Deps,
bool IsHashBased) {
StringRef SDKPath = SubInstance.getASTContext().SearchPathOpts.SDKPath;
StringRef ResourcePath =
SubInstance.getASTContext().SearchPathOpts.RuntimeResourcePath;
auto DTDeps = SubInstance.getDependencyTracker()->getDependencies();
SmallVector<StringRef, 16> InitialDepNames(DTDeps.begin(), DTDeps.end());
InitialDepNames.push_back(interfacePath);
llvm::StringSet<> AllDepNames;
for (auto const &DepName : InitialDepNames) {
assert(moduleCachePath.empty() || !DepName.startswith(moduleCachePath));
assert(prebuiltCachePath.empty() || !DepName.startswith(prebuiltCachePath));
/// Lazily load the dependency buffer if we need it. If we're not
/// dealing with a hash-based dependencies, and if the dependency is
/// not a .swiftmodule, we can avoid opening the buffer.
std::unique_ptr<llvm::MemoryBuffer> DepBuf = nullptr;
auto getDepBuf = [&]() -> llvm::MemoryBuffer * {
if (DepBuf) return DepBuf.get();
if (auto Buf = getBufferOfDependency(fs, DepName, interfacePath,
diags, diagnosticLoc)) {
DepBuf = std::move(Buf);
return DepBuf.get();
}
return nullptr;
};
// Adjust the paths of dependences in the SDK to be relative to it
bool IsSDKRelative = false;
StringRef DepNameToStore = DepName;
if (SDKPath.size() > 1 && DepName.startswith(SDKPath)) {
assert(DepName.size() > SDKPath.size() &&
"should never depend on a directory");
if (llvm::sys::path::is_separator(DepName[SDKPath.size()])) {
// Is the DepName something like ${SDKPath}/foo.h"?
DepNameToStore = DepName.substr(SDKPath.size() + 1);
IsSDKRelative = true;
} else if (llvm::sys::path::is_separator(SDKPath.back())) {
// Is the DepName something like "${SDKPath}foo.h", where SDKPath
// itself contains a trailing slash?
DepNameToStore = DepName.substr(SDKPath.size());
IsSDKRelative = true;
} else {
// We have something next to an SDK, like "Foo.sdk.h", that's somehow
// become a dependency.
}
}
if (AllDepNames.insert(DepName).second && dependencyTracker) {
dependencyTracker->addDependency(DepName, /*isSystem*/IsSDKRelative);
}
// Don't serialize compiler-relative deps so the cache is relocatable.
if (DepName.startswith(ResourcePath))
continue;
auto Status = getStatusOfDependency(fs, DepName, interfacePath,
diags, diagnosticLoc);
if (!Status)
return true;
if (IsHashBased) {
auto buf = getDepBuf();
if (!buf) return true;
uint64_t hash = xxHash64(buf->getBuffer());
Deps.push_back(
FileDependency::hashBased(DepNameToStore, IsSDKRelative,
Status->getSize(), hash));
} else {
uint64_t mtime =
Status->getLastModificationTime().time_since_epoch().count();
Deps.push_back(
FileDependency::modTimeBased(DepNameToStore, IsSDKRelative,
Status->getSize(), mtime));
}
}
return false;
}
public:
ParseableInterfaceBuilder(ASTContext &ctx,
StringRef interfacePath,
StringRef moduleName,
StringRef moduleCachePath,
StringRef prebuiltCachePath,
bool serializeDependencyHashes = false,
bool trackSystemDependencies = false,
SourceLoc diagnosticLoc = SourceLoc(),
DependencyTracker *tracker = nullptr)
: ctx(ctx), fs(*ctx.SourceMgr.getFileSystem()), diags(ctx.Diags),
interfacePath(interfacePath), moduleName(moduleName),
moduleCachePath(moduleCachePath), prebuiltCachePath(prebuiltCachePath),
serializeDependencyHashes(serializeDependencyHashes),
trackSystemDependencies(trackSystemDependencies),
diagnosticLoc(diagnosticLoc), dependencyTracker(tracker) {
configureSubInvocation();
}
const CompilerInvocation &getSubInvocation() const {
return subInvocation;
}
bool buildSwiftModule(StringRef OutPath, bool ShouldSerializeDeps,
std::unique_ptr<llvm::MemoryBuffer> *ModuleBuffer) {
bool SubError = false;
bool RunSuccess = llvm::CrashRecoveryContext().RunSafelyOnThread([&] {
// Note that we don't assume cachePath is the same as the Clang
// module cache path at this point.
if (!moduleCachePath.empty())
(void)llvm::sys::fs::create_directory(moduleCachePath);
configureSubInvocationInputsAndOutputs(OutPath);
FrontendOptions &FEOpts = subInvocation.getFrontendOptions();
const auto &InputInfo = FEOpts.InputsAndOutputs.firstInput();
StringRef InPath = InputInfo.file();
const auto &OutputInfo =
InputInfo.getPrimarySpecificPaths().SupplementaryOutputs;
StringRef OutPath = OutputInfo.ModuleOutputPath;
llvm::BumpPtrAllocator SubArgsAlloc;
llvm::StringSaver SubArgSaver(SubArgsAlloc);
SmallVector<const char *, 16> SubArgs;
swift::version::Version Vers;
if (extractSwiftInterfaceVersionAndArgs(Vers, SubArgSaver, SubArgs)) {
SubError = true;
return;
}
// For now: we support anything with the same "major version" and assume
// minor versions might be interesting for debugging, or special-casing a
// compatible field variant.
if (Vers.asMajorVersion() != InterfaceFormatVersion.asMajorVersion()) {
diags.diagnose(diagnosticLoc,
diag::unsupported_version_of_parseable_interface,
interfacePath, Vers);
SubError = true;
return;
}
SmallString<32> ExpectedModuleName = subInvocation.getModuleName();
if (subInvocation.parseArgs(SubArgs, diags)) {
SubError = true;
return;
}
if (subInvocation.getModuleName() != ExpectedModuleName) {
auto DiagKind = diag::serialization_name_mismatch;
if (subInvocation.getLangOptions().DebuggerSupport)
DiagKind = diag::serialization_name_mismatch_repl;
diags.diagnose(diagnosticLoc, DiagKind, subInvocation.getModuleName(),
ExpectedModuleName);
SubError = true;
return;
}
// Optimize emitted modules. This has to happen after we parse arguments,
// because parseSILOpts would override the current optimization mode.
subInvocation.getSILOptions().OptMode = OptimizationMode::ForSpeed;
// Build the .swiftmodule; this is a _very_ abridged version of the logic
// in performCompile in libFrontendTool, specialized, to just the one
// module-serialization task we're trying to do here.
LLVM_DEBUG(llvm::dbgs() << "Setting up instance to compile "
<< InPath << " to " << OutPath << "\n");
CompilerInstance SubInstance;
SubInstance.getSourceMgr().setFileSystem(&fs);
ForwardingDiagnosticConsumer FDC(diags);
SubInstance.addDiagnosticConsumer(&FDC);
SubInstance.createDependencyTracker(FEOpts.TrackSystemDeps);
if (SubInstance.setup(subInvocation)) {
SubError = true;
return;
}
LLVM_DEBUG(llvm::dbgs() << "Performing sema\n");
SubInstance.performSema();
if (SubInstance.getASTContext().hadError()) {
LLVM_DEBUG(llvm::dbgs() << "encountered errors\n");
SubError = true;
return;
}
SILOptions &SILOpts = subInvocation.getSILOptions();
auto Mod = SubInstance.getMainModule();
auto SILMod = performSILGeneration(Mod, SILOpts);
if (!SILMod) {
LLVM_DEBUG(llvm::dbgs() << "SILGen did not produce a module\n");
SubError = true;
return;
}
// Setup the callbacks for serialization, which can occur during the
// optimization pipeline.
SerializationOptions SerializationOpts;
std::string OutPathStr = OutPath;
SerializationOpts.OutputPath = OutPathStr.c_str();
SerializationOpts.ModuleLinkName = FEOpts.ModuleLinkName;
SmallVector<FileDependency, 16> Deps;
if (collectDepsForSerialization(SubInstance, Deps,
FEOpts.SerializeParseableModuleInterfaceDependencyHashes)) {
SubError = true;
return;
}
if (ShouldSerializeDeps)
SerializationOpts.Dependencies = Deps;
SILMod->setSerializeSILAction([&]() {
// We don't want to serialize module docs in the cache -- they
// will be serialized beside the interface file.
serializeToBuffers(Mod, SerializationOpts, ModuleBuffer,
/*ModuleDocBuffer*/nullptr, SILMod.get());
});
LLVM_DEBUG(llvm::dbgs() << "Running SIL processing passes\n");
if (SubInstance.performSILProcessing(SILMod.get())) {
LLVM_DEBUG(llvm::dbgs() << "encountered errors\n");
SubError = true;
return;
}
SubError = SubInstance.getDiags().hadAnyError();
});
return !RunSuccess || SubError;
}
};
#pragma mark - Module Loading
namespace {
/// Handles the details of loading parseable interfaces as modules, and will
/// do the necessary lookup to determine if we should be loading from the
/// normal cache, the prebuilt cache, a module adjacent to the interface, or
/// a module that we'll build from a parseable interface.
class ParseableInterfaceModuleLoaderImpl {
using AccessPathElem = std::pair<Identifier, SourceLoc>;
friend class swift::ParseableInterfaceModuleLoader;
ASTContext &ctx;
llvm::vfs::FileSystem &fs;
DiagnosticEngine &diags;
const StringRef modulePath;
const std::string interfacePath;
const StringRef moduleName;
const StringRef prebuiltCacheDir;
const StringRef cacheDir;
const SourceLoc diagnosticLoc;
DependencyTracker *const dependencyTracker;
const ModuleLoadingMode loadMode;
ParseableInterfaceModuleLoaderImpl(
ASTContext &ctx, StringRef modulePath, StringRef interfacePath,
StringRef moduleName, StringRef cacheDir, StringRef prebuiltCacheDir,
SourceLoc diagLoc, DependencyTracker *dependencyTracker = nullptr,
ModuleLoadingMode loadMode = ModuleLoadingMode::PreferSerialized)
: ctx(ctx), fs(*ctx.SourceMgr.getFileSystem()), diags(ctx.Diags),
modulePath(modulePath), interfacePath(interfacePath),
moduleName(moduleName), prebuiltCacheDir(prebuiltCacheDir),
cacheDir(cacheDir), diagnosticLoc(diagLoc),
dependencyTracker(dependencyTracker), loadMode(loadMode) {}
/// Construct a cache key for the .swiftmodule being generated. There is a
/// balance to be struck here between things that go in the cache key and
/// things that go in the "up to date" check of the cache entry. We want to
/// avoid fighting over a single cache entry too much when (say) running
/// different compiler versions on the same machine or different inputs
/// that happen to have the same short module name, so we will disambiguate
/// those in the key. But we want to invalidate and rebuild a cache entry
/// -- rather than making a new one and potentially filling up the cache
/// with dead entries -- when other factors change, such as the contents of
/// the .swiftinterface input or its dependencies.
std::string getCacheHash(const CompilerInvocation &SubInvocation) {
// Start with the compiler version (which will be either tag names or revs).
// Explicitly don't pass in the "effective" language version -- this would
// mean modules built in different -swift-version modes would rebuild their
// dependencies.
llvm::hash_code H = hash_value(swift::version::getSwiftFullVersion());
// Simplest representation of input "identity" (not content) is just a
// pathname, and probably all we can get from the VFS in this regard
// anyways.
H = hash_combine(H, interfacePath);
// Include the target CPU architecture. In practice, .swiftinterface files
// will be in architecture-specific subdirectories and would have
// architecture-specific pieces #if'd out. However, it doesn't hurt to
// include it, and it guards against mistakenly reusing cached modules
// across architectures.
H = hash_combine(H, SubInvocation.getLangOptions().Target.getArchName());
// The SDK path is going to affect how this module is imported, so include
// it.
H = hash_combine(H, SubInvocation.getSDKPath());
// Whether or not we're tracking system dependencies affects the
// invalidation behavior of this cache item.
H = hash_combine(H, SubInvocation.getFrontendOptions().TrackSystemDeps);
return llvm::APInt(64, H).toString(36, /*Signed=*/false);
}
/// Calculate an output filename in \p SubInvocation's cache path that
/// includes a hash of relevant key data.
void computeCachedOutputPath(const CompilerInvocation &SubInvocation,
llvm::SmallString<256> &OutPath) {
OutPath = SubInvocation.getClangModuleCachePath();
llvm::sys::path::append(OutPath, SubInvocation.getModuleName());
OutPath.append("-");
OutPath.append(getCacheHash(SubInvocation));
OutPath.append(".");
auto OutExt = file_types::getExtension(file_types::TY_SwiftModuleFile);
OutPath.append(OutExt);
}
/// Constructs the full path of the dependency \p dep by prepending the SDK
/// path if necessary.
StringRef getFullDependencyPath(const FileDependency &dep,
SmallVectorImpl<char> &scratch) const {
if (!dep.isSDKRelative())
return dep.getPath();
StringRef SDKPath = ctx.SearchPathOpts.SDKPath;
scratch.assign(SDKPath.begin(), SDKPath.end());
llvm::sys::path::append(scratch, dep.getPath());
return StringRef(scratch.data(), scratch.size());
}
// Checks that a dependency read from the cached module is up to date compared
// to the interface file it represents.
bool dependencyIsUpToDate(const FileDependency &dep, StringRef fullPath) {
auto status = getStatusOfDependency(fs, fullPath, interfacePath,
diags, diagnosticLoc);
if (!status) return false;
// If the sizes differ, then we know the file has changed.
if (status->getSize() != dep.getSize()) return false;
// Otherwise, if this dependency is verified by modification time, check
// it vs. the modification time of the file.
if (dep.isModificationTimeBased()) {
uint64_t mtime =
status->getLastModificationTime().time_since_epoch().count();
return mtime == dep.getModificationTime();
}
// Slow path: if the dependency is verified by content hash, check it vs.
// the hash of the file.
auto buf = getBufferOfDependency(fs, fullPath, interfacePath,
diags, diagnosticLoc);
if (!buf) return false;
return xxHash64(buf->getBuffer()) == dep.getContentHash();
}
// Check if all the provided file dependencies are up-to-date compared to
// what's currently on disk.
bool dependenciesAreUpToDate(ArrayRef<FileDependency> deps) {
SmallString<128> SDKRelativeBuffer;
for (auto &in : deps) {
StringRef fullPath = getFullDependencyPath(in, SDKRelativeBuffer);
if (!dependencyIsUpToDate(in, fullPath)) {
LLVM_DEBUG(llvm::dbgs() << "Dep " << fullPath
<< " is directly out of date\n");
return false;
}
LLVM_DEBUG(llvm::dbgs() << "Dep " << fullPath << " is up to date\n");
}
return true;
}
// Check that the output .swiftmodule file is at least as new as all the
// dependencies it read when it was built last time.
bool serializedASTBufferIsUpToDate(
const llvm::MemoryBuffer &buf, SmallVectorImpl<FileDependency> &allDeps) {
LLVM_DEBUG(llvm::dbgs() << "Validating deps of " << modulePath << "\n");
auto validationInfo = serialization::validateSerializedAST(
buf.getBuffer(), /*ExtendedValidationInfo=*/nullptr, &allDeps);
if (validationInfo.status != serialization::Status::Valid)
return false;
return dependenciesAreUpToDate(allDeps);
}
// Check that the output .swiftmodule file is at least as new as all the
// dependencies it read when it was built last time.
bool swiftModuleIsUpToDate(
StringRef modulePath, SmallVectorImpl<FileDependency> &AllDeps,
std::unique_ptr<llvm::MemoryBuffer> &moduleBuffer) {
auto OutBuf = fs.getBufferForFile(modulePath);
if (!OutBuf)
return false;
moduleBuffer = std::move(*OutBuf);
return serializedASTBufferIsUpToDate(*moduleBuffer, AllDeps);
}
// Check that a "forwarding" .swiftmodule file is at least as new as all the
// dependencies it read when it was built last time. Requires that the
// forwarding module has been loaded from disk.
bool forwardingModuleIsUpToDate(
const ForwardingModule &fwd, SmallVectorImpl<FileDependency> &deps,
std::unique_ptr<llvm::MemoryBuffer> &moduleBuffer) {
// First, make sure the underlying module path exists and is valid.
auto modBuf = fs.getBufferForFile(fwd.underlyingModulePath);
if (!modBuf || !serializedASTLooksValid(*modBuf.get()))
return false;
// Next, check the dependencies in the forwarding file.
for (auto &dep : fwd.dependencies) {
// Forwarding modules expand SDKRelative paths when generated, so are
// guaranteed to be absolute.
deps.push_back(
FileDependency::modTimeBased(
dep.path, /*isSDKRelative=*/false, dep.size,
dep.lastModificationTime));
}
if (!dependenciesAreUpToDate(deps))
return false;
moduleBuffer = std::move(*modBuf);
return true;
}
Optional<StringRef>
computePrebuiltModulePath(llvm::SmallString<256> &scratch) {
namespace path = llvm::sys::path;
StringRef sdkPath = ctx.SearchPathOpts.SDKPath;
// Check if the interface file comes from the SDK
if (sdkPath.empty() || !hasPrefix(path::begin(interfacePath),
path::end(interfacePath),
path::begin(sdkPath),
path::end(sdkPath)))
return None;
// Assemble the expected path: $PREBUILT_CACHE/Foo.swiftmodule or
// $PREBUILT_CACHE/Foo.swiftmodule/arch.swiftmodule. Note that there's no
// cache key here.
scratch.append(prebuiltCacheDir);
// FIXME: Would it be possible to only have architecture-specific names
// here? Then we could skip this check.
StringRef inParentDirName =
path::filename(path::parent_path(interfacePath));
if (path::extension(inParentDirName) == ".swiftmodule") {
assert(path::stem(inParentDirName) == moduleName);
path::append(scratch, inParentDirName);
}
path::append(scratch, path::filename(modulePath));
return scratch.str();
}
/// Finds the most appropriate .swiftmodule, whose dependencies are up to
/// date, that we can load for the provided .swiftinterface file.
llvm::ErrorOr<DiscoveredModule> discoverUpToDateModuleForInterface(
StringRef modulePath, StringRef cachedOutputPath,
SmallVectorImpl<FileDependency> &deps) {
auto notFoundError =
std::make_error_code(std::errc::no_such_file_or_directory);
// Keep track of whether we should attempt to load a .swiftmodule adjacent
// to the .swiftinterface.
bool shouldLoadAdjacentModule = true;
switch (loadMode) {
case ModuleLoadingMode::OnlyParseable:
// Always skip both the caches and adjacent modules, and always build the
// parseable interface.
return notFoundError;
case ModuleLoadingMode::PreferParseable:
// If we're in the load mode that prefers .swiftinterfaces, specifically
// skip the module adjacent to the interface, but use the caches if
// they're present.
shouldLoadAdjacentModule = false;
break;
case ModuleLoadingMode::PreferSerialized:
// The rest of the function should be covered by this.
break;
case ModuleLoadingMode::OnlySerialized:
llvm_unreachable("parseable module loader should not have been created");
}
// First, check the cached module path. Whatever's in this cache represents
// the most up-to-date knowledge we have about the module.
if (auto cachedBufOrError = fs.getBufferForFile(cachedOutputPath)) {
auto buf = std::move(*cachedBufOrError);
// Check to see if the module is a serialized AST. If it's not, then we're
// probably dealing with a Forwarding Module, which is a YAML file.
bool isForwardingModule =
!serialization::isSerializedAST(buf->getBuffer());
// If it's a forwarding module, load the YAML file from disk and check
// if it's up-to-date.
if (isForwardingModule) {
if (auto forwardingModule = ForwardingModule::load(*buf)) {
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer;
if (forwardingModuleIsUpToDate(*forwardingModule, deps, moduleBuffer))
return DiscoveredModule::forwarded(
forwardingModule->underlyingModulePath, std::move(moduleBuffer));
}
// Otherwise, check if the AST buffer itself is up to date.
} else if (serializedASTBufferIsUpToDate(*buf, deps)) {
return DiscoveredModule::normal(cachedOutputPath, std::move(buf));
}
}
// If we weren't able to open the file for any reason, including it not
// existing, keep going.
// If we have a prebuilt cache path, check that too if the interface comes
// from the SDK.
if (!prebuiltCacheDir.empty()) {
llvm::SmallString<256> scratch;
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer;
auto path = computePrebuiltModulePath(scratch);
if (path && swiftModuleIsUpToDate(*path, deps, moduleBuffer))
return DiscoveredModule::prebuilt(*path, std::move(moduleBuffer));
}
// Finally, if there's a module adjacent to the .swiftinterface that we can
// _likely_ load (it validates OK and is up to date), bail early with
// errc::not_supported, so the next (serialized) loader in the chain will
// load it. Alternately, if there's a .swiftmodule present but we can't even
// read it (for whatever reason), we should let the other module loader
// diagnose it.
if (!shouldLoadAdjacentModule)
return notFoundError;
auto adjacentModuleBuffer = fs.getBufferForFile(modulePath);
if (adjacentModuleBuffer) {
if (serializedASTBufferIsUpToDate(*adjacentModuleBuffer.get(), deps))
return std::make_error_code(std::errc::not_supported);
} else if (adjacentModuleBuffer.getError() != notFoundError) {
return std::make_error_code(std::errc::not_supported);
}
// Couldn't find an up-to-date .swiftmodule, will need to build module from
// interface.
return notFoundError;
}
/// Writes the "forwarding module" that will forward to a module in the
/// prebuilt cache.
/// Since forwarding modules track dependencies separately from the module
/// they point to, we'll need to grab the up-to-date file status while doing
/// this.
bool writeForwardingModule(const DiscoveredModule &mod,
StringRef outputPath,
ArrayRef<FileDependency> deps) {
assert(mod.isPrebuilt() &&
"cannot write forwarding file for non-prebuilt module");
ForwardingModule fwd(mod.path);
// FIXME: We need to avoid re-statting all these dependencies, otherwise
// we may record out-of-date information.
auto addDependency = [&](StringRef path) {
auto status = fs.status(path);
uint64_t mtime =
status->getLastModificationTime().time_since_epoch().count();
fwd.addDependency(path, status->getSize(), mtime);
};
// Add the prebuilt module as a dependency of the forwarding module.
addDependency(fwd.underlyingModulePath);
// Add all the dependencies from the prebuilt module.
SmallString<128> SDKRelativeBuffer;
for (auto dep : deps) {
addDependency(getFullDependencyPath(dep, SDKRelativeBuffer));
}
return withOutputFile(diags, outputPath,
[&](llvm::raw_pwrite_stream &out) {
llvm::yaml::Output yamlWriter(out);
yamlWriter << fwd;
return false;
});
}
/// Looks up the best module to load for a given interface, and returns a
/// buffer of the module's contents. Also reports the module's dependencies
/// to the parent \c dependencyTracker if it came from the cache, or was built
/// from the given interface. See the main comment in
/// \c ParseableInterfaceModuleLoader.h for an explanation of the module
/// loading strategy.
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>>
findOrBuildLoadableModule() {
// Track system dependencies if the parent tracker is set to do so.
// FIXME: This means -track-system-dependencies isn't honored when the
// top-level invocation isn't tracking dependencies
bool trackSystemDependencies = false;
if (dependencyTracker) {
auto ClangDependencyTracker = dependencyTracker->getClangCollector();
trackSystemDependencies = ClangDependencyTracker->needSystemDependencies();
}
// Set up a builder if we need to build the module. It'll also set up
// the subinvocation we'll need to use to compute the cache paths.
ParseableInterfaceBuilder builder(
ctx, interfacePath, moduleName, cacheDir, prebuiltCacheDir,
/*serializeDependencyHashes*/false, trackSystemDependencies,
diagnosticLoc, dependencyTracker);
auto &subInvocation = builder.getSubInvocation();
// Compute the output path if we're loading or emitting a cached module.
llvm::SmallString<256> cachedOutputPath;
computeCachedOutputPath(subInvocation, cachedOutputPath);
// Try to find the right module for this interface, either alongside it,
// in the cache, or in the prebuilt cache.
SmallVector<FileDependency, 16> allDeps;
auto moduleOrErr =
discoverUpToDateModuleForInterface(modulePath, cachedOutputPath, allDeps);
// If we errored with anything other than 'no such file or directory',
// fail this load and let the other module loader diagnose it.
if (!moduleOrErr &&
moduleOrErr.getError() != std::errc::no_such_file_or_directory)
return moduleOrErr.getError();
// We discovered a module! Return that module's buffer so we can load it.
if (moduleOrErr) {
auto module = std::move(moduleOrErr.get());
// If it's prebuilt, use this time to generate a forwarding module.
if (module.isPrebuilt())
if (writeForwardingModule(module, cachedOutputPath, allDeps))
return std::make_error_code(std::errc::not_supported);
// Report the module's dependencies to the dependencyTracker
if (dependencyTracker) {
SmallString<128> SDKRelativeBuffer;
for (auto &dep: allDeps) {
StringRef fullPath = getFullDependencyPath(dep, SDKRelativeBuffer);
dependencyTracker->addDependency(fullPath, dep.isSDKRelative());
}
}
return std::move(module.moduleBuffer);
}
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer;
// We didn't discover a module corresponding to this interface. Build one.
if (builder.buildSwiftModule(cachedOutputPath, /*shouldSerializeDeps*/true,
&moduleBuffer))
return std::make_error_code(std::errc::invalid_argument);
assert(moduleBuffer &&
"failed to write module buffer but returned success?");
return std::move(moduleBuffer);
}
};
} // end anonymous namespace
bool ParseableInterfaceModuleLoader::isCached(StringRef DepPath) {
if (!CacheDir.empty() && DepPath.startswith(CacheDir))
return true;
return !PrebuiltCacheDir.empty() && DepPath.startswith(PrebuiltCacheDir);
}
/// Load a .swiftmodule associated with a .swiftinterface either from a
/// cache or by converting it in a subordinate \c CompilerInstance, caching
/// the results.
std::error_code ParseableInterfaceModuleLoader::findModuleFilesInDirectory(
AccessPathElem ModuleID, StringRef DirPath, StringRef ModuleFilename,
StringRef ModuleDocFilename,
std::unique_ptr<llvm::MemoryBuffer> *ModuleBuffer,
std::unique_ptr<llvm::MemoryBuffer> *ModuleDocBuffer) {
// If running in OnlySerialized mode, ParseableInterfaceModuleLoader
// should not have been constructed at all.
assert(LoadMode != ModuleLoadingMode::OnlySerialized);
auto &fs = *Ctx.SourceMgr.getFileSystem();
llvm::SmallString<256> ModPath, InPath;
// First check to see if the .swiftinterface exists at all. Bail if not.
ModPath = DirPath;
path::append(ModPath, ModuleFilename);
auto Ext = file_types::getExtension(file_types::TY_SwiftParseableInterfaceFile);
InPath = ModPath;
path::replace_extension(InPath, Ext);
if (!fs.exists(InPath))
return std::make_error_code(std::errc::no_such_file_or_directory);
// Create an instance of the Impl to do the heavy lifting.
ParseableInterfaceModuleLoaderImpl Impl(
Ctx, ModPath, InPath, ModuleID.first.str(),
CacheDir, PrebuiltCacheDir, ModuleID.second, dependencyTracker,
LoadMode);
// Ask the impl to find us a module that we can load or give us an error
// telling us that we couldn't load it.
auto ModuleBufferOrErr = Impl.findOrBuildLoadableModule();
if (!ModuleBufferOrErr)
return ModuleBufferOrErr.getError();
if (ModuleBuffer) {
*ModuleBuffer = std::move(*ModuleBufferOrErr);
}
// Delegate back to the serialized module loader to load the module doc.
llvm::SmallString<256> DocPath{DirPath};
path::append(DocPath, ModuleDocFilename);
auto DocLoadErr =
SerializedModuleLoaderBase::openModuleDocFile(ModuleID, DocPath,
ModuleDocBuffer);
if (DocLoadErr)
return DocLoadErr;
return std::error_code();
}
bool ParseableInterfaceModuleLoader::buildSwiftModuleFromSwiftInterface(
ASTContext &Ctx, StringRef CacheDir, StringRef PrebuiltCacheDir,
StringRef ModuleName, StringRef InPath, StringRef OutPath,
bool SerializeDependencyHashes, bool TrackSystemDependencies) {
ParseableInterfaceBuilder builder(Ctx, InPath, ModuleName,
CacheDir, PrebuiltCacheDir,
SerializeDependencyHashes,
TrackSystemDependencies);
// FIXME: We really only want to serialize 'important' dependencies here, if
// we want to ship the built swiftmodules to another machine.
return builder.buildSwiftModule(OutPath, /*shouldSerializeDeps*/true,
/*ModuleBuffer*/nullptr);
}