blob: 2f3e91c2f62136678989f6182900abdbd8cc5639 [file] [log] [blame]
//===--- ConstraintSystem.cpp - Constraint-based Type Checking ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the constraint-based type checker, anchored by the
// \c ConstraintSystem class, which provides type checking and type
// inference for expressions.
//
//===----------------------------------------------------------------------===//
#include "ConstraintSystem.h"
#include "ConstraintGraph.h"
#include "CSDiagnostics.h"
#include "CSFix.h"
#include "TypeCheckType.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ParameterList.h"
#include "swift/Basic/Statistic.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Format.h"
using namespace swift;
using namespace constraints;
#define DEBUG_TYPE "ConstraintSystem"
ExpressionTimer::ExpressionTimer(Expr *E, ConstraintSystem &CS)
: E(E), WarnLimit(CS.TC.getWarnLongExpressionTypeChecking()),
Context(CS.getASTContext()),
StartTime(llvm::TimeRecord::getCurrentTime()),
PrintDebugTiming(CS.TC.getDebugTimeExpressions()), PrintWarning(true) {
if (auto *baseCS = CS.baseCS) {
// If we already have a timer in the base constraint
// system, let's seed its start time to the child.
if (baseCS->Timer) {
StartTime = baseCS->Timer->startedAt();
PrintWarning = false;
PrintDebugTiming = false;
}
}
}
ExpressionTimer::~ExpressionTimer() {
auto elapsed = getElapsedProcessTimeInFractionalSeconds();
unsigned elapsedMS = static_cast<unsigned>(elapsed * 1000);
if (PrintDebugTiming) {
// Round up to the nearest 100th of a millisecond.
llvm::errs() << llvm::format("%0.2f", ceil(elapsed * 100000) / 100)
<< "ms\t";
E->getLoc().print(llvm::errs(), Context.SourceMgr);
llvm::errs() << "\n";
}
if (!PrintWarning)
return;
if (WarnLimit != 0 && elapsedMS >= WarnLimit && E->getLoc().isValid())
Context.Diags.diagnose(E->getLoc(), diag::debug_long_expression,
elapsedMS, WarnLimit)
.highlight(E->getSourceRange());
}
ConstraintSystem::ConstraintSystem(TypeChecker &tc, DeclContext *dc,
ConstraintSystemOptions options,
Expr *expr)
: TC(tc), DC(dc), Options(options),
Arena(tc.Context, Allocator),
CG(*new ConstraintGraph(*this))
{
if (expr)
ExprWeights = expr->getDepthMap();
assert(DC && "context required");
}
ConstraintSystem::~ConstraintSystem() {
delete &CG;
}
void ConstraintSystem::incrementScopeCounter() {
CountScopes++;
// FIXME: (transitional) increment the redundant "always-on" counter.
if (TC.Context.Stats)
TC.Context.Stats->getFrontendCounters().NumConstraintScopes++;
}
void ConstraintSystem::incrementLeafScopes() {
if (TC.Context.Stats)
TC.Context.Stats->getFrontendCounters().NumLeafScopes++;
}
bool ConstraintSystem::hasFreeTypeVariables() {
// Look for any free type variables.
return llvm::any_of(TypeVariables, [](const TypeVariableType *typeVar) {
return !typeVar->getImpl().hasRepresentativeOrFixed();
});
}
void ConstraintSystem::addTypeVariable(TypeVariableType *typeVar) {
TypeVariables.insert(typeVar);
// Notify the constraint graph.
(void)CG[typeVar];
}
void ConstraintSystem::mergeEquivalenceClasses(TypeVariableType *typeVar1,
TypeVariableType *typeVar2,
bool updateWorkList) {
assert(typeVar1 == getRepresentative(typeVar1) &&
"typeVar1 is not the representative");
assert(typeVar2 == getRepresentative(typeVar2) &&
"typeVar2 is not the representative");
assert(typeVar1 != typeVar2 && "cannot merge type with itself");
typeVar1->getImpl().mergeEquivalenceClasses(typeVar2, getSavedBindings());
// Merge nodes in the constraint graph.
CG.mergeNodes(typeVar1, typeVar2);
if (updateWorkList) {
addTypeVariableConstraintsToWorkList(typeVar1);
}
}
/// Determine whether the given type variables occurs in the given type.
bool ConstraintSystem::typeVarOccursInType(TypeVariableType *typeVar,
Type type,
bool *involvesOtherTypeVariables) {
SmallVector<TypeVariableType *, 4> typeVars;
type->getTypeVariables(typeVars);
bool result = false;
for (auto referencedTypeVar : typeVars) {
if (referencedTypeVar == typeVar) {
result = true;
if (!involvesOtherTypeVariables || *involvesOtherTypeVariables)
break;
continue;
}
if (involvesOtherTypeVariables)
*involvesOtherTypeVariables = true;
}
return result;
}
void ConstraintSystem::assignFixedType(TypeVariableType *typeVar, Type type,
bool updateState) {
assert(!type->hasError() &&
"Should not be assigning a type involving ErrorType!");
typeVar->getImpl().assignFixedType(type, getSavedBindings());
if (!updateState)
return;
if (!type->isTypeVariableOrMember()) {
// If this type variable represents a literal, check whether we picked the
// default literal type. First, find the corresponding protocol.
ProtocolDecl *literalProtocol = nullptr;
// If we have the constraint graph, we can check all type variables in
// the equivalence class. This is the More Correct path.
// FIXME: Eliminate the less-correct path.
auto typeVarRep = getRepresentative(typeVar);
for (auto tv : CG[typeVarRep].getEquivalenceClass()) {
auto locator = tv->getImpl().getLocator();
if (!locator || !locator->getPath().empty())
continue;
auto anchor = locator->getAnchor();
if (!anchor)
continue;
literalProtocol = TC.getLiteralProtocol(anchor);
if (literalProtocol)
break;
}
// If the protocol has a default type, check it.
if (literalProtocol) {
if (auto defaultType = TC.getDefaultType(literalProtocol, DC)) {
// Check whether the nominal types match. This makes sure that we
// properly handle Array vs. Array<T>.
if (defaultType->getAnyNominal() != type->getAnyNominal())
increaseScore(SK_NonDefaultLiteral);
}
}
}
// Notify the constraint graph.
CG.bindTypeVariable(typeVar, type);
addTypeVariableConstraintsToWorkList(typeVar);
}
void ConstraintSystem::addTypeVariableConstraintsToWorkList(
TypeVariableType *typeVar) {
// Gather the constraints affected by a change to this type variable.
auto inactiveConstraints = CG.gatherConstraints(
typeVar, ConstraintGraph::GatheringKind::AllMentions,
[](Constraint *constraint) { return !constraint->isActive(); });
// Add any constraints that aren't already active to the worklist.
for (auto *constraint : inactiveConstraints)
activateConstraint(constraint);
}
/// Retrieve a dynamic result signature for the given declaration.
static std::tuple<char, ObjCSelector, CanType>
getDynamicResultSignature(ValueDecl *decl) {
if (auto func = dyn_cast<AbstractFunctionDecl>(decl)) {
// Handle functions.
auto type = func->getMethodInterfaceType();
return std::make_tuple(func->isStatic(), func->getObjCSelector(),
type->getCanonicalType());
}
if (auto asd = dyn_cast<AbstractStorageDecl>(decl)) {
// Handle properties and subscripts, anchored by the getter's selector.
return std::make_tuple(asd->isStatic(), asd->getObjCGetterSelector(),
asd->getInterfaceType()->getCanonicalType());
}
llvm_unreachable("Not a valid @objc member");
}
LookupResult &ConstraintSystem::lookupMember(Type base, DeclName name) {
// Check whether we've already performed this lookup.
auto &result = MemberLookups[{base, name}];
if (result) return *result;
// Lookup the member.
NameLookupOptions lookupOptions = defaultMemberLookupOptions;
if (isa<AbstractFunctionDecl>(DC))
lookupOptions |= NameLookupFlags::KnownPrivate;
result = TC.lookupMember(DC, base, name, lookupOptions);
// If we aren't performing dynamic lookup, we're done.
if (!*result || !base->isAnyObject())
return *result;
// We are performing dynamic lookup. Filter out redundant results early.
llvm::DenseMap<std::tuple<char, ObjCSelector, CanType>, ValueDecl *> known;
bool anyRemovals = false;
for (const auto &entry : *result) {
auto *decl = entry.getValueDecl();
// Remove invalid declarations so the constraint solver doesn't need to
// cope with them.
if (decl->isInvalid()) {
anyRemovals = true;
continue;
}
// If this is the first entry with the signature, record it.
auto &uniqueEntry = known[getDynamicResultSignature(decl)];
if (!uniqueEntry) {
uniqueEntry = decl;
continue;
}
// We have duplication; note that we'll need to remove something,
anyRemovals = true;
// If the entry we recorded was unavailable but this new entry is not,
// replace the recorded entry with this one.
if (uniqueEntry->getAttrs().isUnavailable(TC.Context) &&
!decl->getAttrs().isUnavailable(TC.Context)) {
uniqueEntry = decl;
}
}
// If there's anything to remove, filter it out now.
if (anyRemovals) {
result->filter([&](LookupResultEntry entry, bool isOuter) -> bool {
auto *decl = entry.getValueDecl();
// Remove invalid declarations so the constraint solver doesn't need to
// cope with them.
if (decl->isInvalid())
return false;
return known[getDynamicResultSignature(decl)] == decl;
});
}
return *result;
}
ArrayRef<Type> ConstraintSystem::
getAlternativeLiteralTypes(KnownProtocolKind kind) {
unsigned index;
switch (kind) {
#define PROTOCOL_WITH_NAME(Id, Name) \
case KnownProtocolKind::Id: llvm_unreachable("Not a literal protocol");
#define EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME(Id, Name, __, ___)
#include "swift/AST/KnownProtocols.def"
case KnownProtocolKind::ExpressibleByArrayLiteral: index = 0; break;
case KnownProtocolKind::ExpressibleByDictionaryLiteral:index = 1; break;
case KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral: index = 2;
break;
case KnownProtocolKind::ExpressibleByFloatLiteral: index = 3; break;
case KnownProtocolKind::ExpressibleByIntegerLiteral: index = 4; break;
case KnownProtocolKind::ExpressibleByStringInterpolation: index = 5; break;
case KnownProtocolKind::ExpressibleByStringLiteral: index = 6; break;
case KnownProtocolKind::ExpressibleByNilLiteral: index = 7; break;
case KnownProtocolKind::ExpressibleByBooleanLiteral: index = 8; break;
case KnownProtocolKind::ExpressibleByUnicodeScalarLiteral: index = 9; break;
case KnownProtocolKind::ExpressibleByColorLiteral: index = 10; break;
case KnownProtocolKind::ExpressibleByImageLiteral: index = 11; break;
case KnownProtocolKind::ExpressibleByFileReferenceLiteral: index = 12; break;
}
static_assert(NumAlternativeLiteralTypes == 13, "Wrong # of literal types");
// If we already looked for alternative literal types, return those results.
if (AlternativeLiteralTypes[index])
return *AlternativeLiteralTypes[index];
SmallVector<Type, 4> types;
// Some literal kinds are related.
switch (kind) {
#define PROTOCOL_WITH_NAME(Id, Name) \
case KnownProtocolKind::Id: llvm_unreachable("Not a literal protocol");
#define EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME(Id, Name, __, ___)
#include "swift/AST/KnownProtocols.def"
case KnownProtocolKind::ExpressibleByArrayLiteral:
case KnownProtocolKind::ExpressibleByDictionaryLiteral:
break;
case KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral:
case KnownProtocolKind::ExpressibleByStringInterpolation:
case KnownProtocolKind::ExpressibleByStringLiteral:
case KnownProtocolKind::ExpressibleByUnicodeScalarLiteral:
break;
case KnownProtocolKind::ExpressibleByIntegerLiteral:
// Integer literals can be treated as floating point literals.
if (auto floatProto = TC.Context.getProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral)) {
if (auto defaultType = TC.getDefaultType(floatProto, DC)) {
types.push_back(defaultType);
}
}
break;
case KnownProtocolKind::ExpressibleByFloatLiteral:
break;
case KnownProtocolKind::ExpressibleByNilLiteral:
case KnownProtocolKind::ExpressibleByBooleanLiteral:
break;
case KnownProtocolKind::ExpressibleByColorLiteral:
case KnownProtocolKind::ExpressibleByImageLiteral:
case KnownProtocolKind::ExpressibleByFileReferenceLiteral:
break;
}
AlternativeLiteralTypes[index] = allocateCopy(types);
return *AlternativeLiteralTypes[index];
}
ConstraintLocator *ConstraintSystem::getConstraintLocator(
Expr *anchor, ArrayRef<ConstraintLocator::PathElement> path) {
auto summaryFlags = ConstraintLocator::getSummaryFlagsForPath(path);
return getConstraintLocator(anchor, path, summaryFlags);
}
ConstraintLocator *ConstraintSystem::getConstraintLocator(
Expr *anchor,
ArrayRef<ConstraintLocator::PathElement> path,
unsigned summaryFlags) {
assert(summaryFlags == ConstraintLocator::getSummaryFlagsForPath(path));
// Check whether a locator with this anchor + path already exists.
llvm::FoldingSetNodeID id;
ConstraintLocator::Profile(id, anchor, path);
void *insertPos = nullptr;
auto locator = ConstraintLocators.FindNodeOrInsertPos(id, insertPos);
if (locator)
return locator;
// Allocate a new locator and add it to the set.
locator = ConstraintLocator::create(getAllocator(), anchor, path,
summaryFlags);
ConstraintLocators.InsertNode(locator, insertPos);
return locator;
}
ConstraintLocator *ConstraintSystem::getConstraintLocator(
const ConstraintLocatorBuilder &builder) {
// If the builder has an empty path, just extract its base locator.
if (builder.hasEmptyPath()) {
return builder.getBaseLocator();
}
// We have to build a new locator. Extract the paths from the builder.
SmallVector<LocatorPathElt, 4> path;
Expr *anchor = builder.getLocatorParts(path);
return getConstraintLocator(anchor, path, builder.getSummaryFlags());
}
ConstraintLocator *
ConstraintSystem::getCalleeLocator(ConstraintLocator *locator) {
auto *anchor = locator->getAnchor();
assert(anchor && "Expected an anchor!");
// If we have a locator that starts with a key path component element, we
// may have a callee given by a property or subscript component.
if (auto componentElt =
locator->getFirstElementAs<LocatorPathElt::KeyPathComponent>()) {
auto *kpExpr = cast<KeyPathExpr>(anchor);
auto component = kpExpr->getComponents()[componentElt->getIndex()];
using ComponentKind = KeyPathExpr::Component::Kind;
switch (component.getKind()) {
case ComponentKind::UnresolvedSubscript:
case ComponentKind::Subscript:
// For a subscript the callee is given by 'component -> subscript member'.
return getConstraintLocator(
anchor, {*componentElt, ConstraintLocator::SubscriptMember});
case ComponentKind::UnresolvedProperty:
case ComponentKind::Property:
// For a property, the choice is just given by the component.
return getConstraintLocator(anchor, *componentElt);
case ComponentKind::TupleElement:
llvm_unreachable("Not implemented by CSGen");
break;
case ComponentKind::Invalid:
case ComponentKind::OptionalForce:
case ComponentKind::OptionalChain:
case ComponentKind::OptionalWrap:
case ComponentKind::Identity:
// These components don't have any callee associated, so just continue.
break;
}
}
// Make sure we handle subscripts before looking at apply exprs. We don't
// want to return a subscript member locator for an expression such as x[](y),
// as its callee is not the subscript, but rather the function it returns.
if (isa<SubscriptExpr>(anchor))
return getConstraintLocator(anchor, ConstraintLocator::SubscriptMember);
if (auto *applyExpr = dyn_cast<ApplyExpr>(anchor)) {
auto *fnExpr = applyExpr->getFn();
// For an apply of a metatype, we have a short-form constructor. Unlike
// other locators to callees, these are anchored on the apply expression
// rather than the function expr.
auto fnTy = getFixedTypeRecursive(getType(fnExpr), /*wantRValue*/ true);
if (fnTy->is<AnyMetatypeType>()) {
auto *fnLocator =
getConstraintLocator(applyExpr, ConstraintLocator::ApplyFunction);
return getConstraintLocator(fnLocator,
ConstraintLocator::ConstructorMember);
}
// Otherwise fall through and look for locators anchored on the function
// expr. For CallExprs, this can look through things like parens and
// optional chaining.
if (auto *callExpr = dyn_cast<CallExpr>(anchor)) {
anchor = callExpr->getDirectCallee();
} else {
anchor = fnExpr;
}
}
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
return getConstraintLocator(
anchor, TC.getSelfForInitDelegationInConstructor(DC, UDE)
? ConstraintLocator::ConstructorMember
: ConstraintLocator::Member);
}
if (isa<UnresolvedMemberExpr>(anchor))
return getConstraintLocator(anchor, ConstraintLocator::UnresolvedMember);
if (isa<MemberRefExpr>(anchor))
return getConstraintLocator(anchor, ConstraintLocator::Member);
return getConstraintLocator(anchor);
}
Type ConstraintSystem::openUnboundGenericType(UnboundGenericType *unbound,
ConstraintLocatorBuilder locator,
OpenedTypeMap &replacements) {
auto unboundDecl = unbound->getDecl();
auto parentTy = unbound->getParent();
if (parentTy) {
parentTy = openUnboundGenericType(parentTy, locator);
unbound = UnboundGenericType::get(unboundDecl, parentTy,
getASTContext());
}
// Open up the generic type.
openGeneric(unboundDecl->getDeclContext(), unboundDecl->getGenericSignature(),
locator, replacements);
if (parentTy) {
auto subs = parentTy->getContextSubstitutions(
unboundDecl->getDeclContext());
for (auto pair : subs) {
auto found = replacements.find(
cast<GenericTypeParamType>(pair.first));
assert(found != replacements.end() &&
"Missing generic parameter?");
addConstraint(ConstraintKind::Bind, found->second, pair.second,
locator);
}
}
// Map the generic parameters to their corresponding type variables.
llvm::SmallVector<Type, 2> arguments;
for (auto gp : unboundDecl->getInnermostGenericParamTypes()) {
auto found = replacements.find(
cast<GenericTypeParamType>(gp->getCanonicalType()));
assert(found != replacements.end() &&
"Missing generic parameter?");
arguments.push_back(found->second);
}
// FIXME: For some reason we can end up with unbound->getDecl()
// pointing at a generic TypeAliasDecl here. If we find a way to
// handle generic TypeAliases elsewhere, this can just become a
// call to BoundGenericType::get().
return TypeChecker::applyUnboundGenericArguments(
unbound, unboundDecl,
SourceLoc(), TypeResolution::forContextual(DC), arguments);
}
static void checkNestedTypeConstraints(ConstraintSystem &cs, Type type,
ConstraintLocatorBuilder locator) {
// If this is a type defined inside of constrainted extension, let's add all
// of the generic requirements to the constraint system to make sure that it's
// something we can use.
GenericTypeDecl *decl = nullptr;
Type parentTy;
SubstitutionMap subMap;
if (auto *NAT = dyn_cast<TypeAliasType>(type.getPointer())) {
decl = NAT->getDecl();
parentTy = NAT->getParent();
subMap = NAT->getSubstitutionMap();
} else if (auto *AGT = type->getAs<AnyGenericType>()) {
decl = AGT->getDecl();
parentTy = AGT->getParent();
// the context substitution map is fine here, since we can't be adding more
// info than that, unlike a typealias
}
if (!parentTy)
return;
// If this decl is generic, the constraints are handled when the generic
// parameters are applied, so we don't have to handle them here (which makes
// getting the right substitution maps easier).
if (!decl || decl->isGeneric())
return;
// struct A<T> {
// let foo: [T]
// }
//
// extension A : Codable where T: Codable {
// enum CodingKeys: String, CodingKey {
// case foo = "foo"
// }
// }
//
// Reference to `A.CodingKeys.foo` would point to `A` as an
// unbound generic type. Conditional requirements would be
// added when `A` is "opened". Les delay this check until then.
if (parentTy->hasUnboundGenericType())
return;
auto extension = dyn_cast<ExtensionDecl>(decl->getDeclContext());
if (extension && extension->isConstrainedExtension()) {
auto contextSubMap = parentTy->getContextSubstitutionMap(
extension->getParentModule(), extension->getSelfNominalTypeDecl());
if (!subMap) {
// The substitution map wasn't set above, meaning we should grab the map
// for the extension itself.
subMap = parentTy->getContextSubstitutionMap(extension->getParentModule(),
extension);
}
if (auto signature = decl->getGenericSignature()) {
cs.openGenericRequirements(
extension, signature, /*skipProtocolSelfConstraint*/ true, locator,
[&](Type type) {
// Why do we look in two substitution maps? We have to use the
// context substitution map to find types, because we need to
// avoid thinking about them when handling the constraints, or all
// the requirements in the signature become tautologies (if the
// extension has 'T == Int', subMap will map T -> Int, so the
// requirement becomes Int == Int no matter what the actual types
// are here). However, we need the conformances for the extension
// because the requirements might look like `T: P, T.U: Q`, where
// U is an associated type of protocol P.
return type.subst(QuerySubstitutionMap{contextSubMap},
LookUpConformanceInSubstitutionMap(subMap));
});
}
}
// And now make sure sure the parent is okay, for things like X<T>.Y.Z.
checkNestedTypeConstraints(cs, parentTy, locator);
}
Type ConstraintSystem::openUnboundGenericType(
Type type, ConstraintLocatorBuilder locator) {
assert(!type->getCanonicalType()->hasTypeParameter());
checkNestedTypeConstraints(*this, type, locator);
if (!type->hasUnboundGenericType())
return type;
type = type.transform([&](Type type) -> Type {
if (auto unbound = type->getAs<UnboundGenericType>()) {
OpenedTypeMap replacements;
return openUnboundGenericType(unbound, locator, replacements);
}
return type;
});
if (!type)
return ErrorType::get(getASTContext());
return type;
}
Type ConstraintSystem::openType(Type type, OpenedTypeMap &replacements) {
assert(!type->hasUnboundGenericType());
if (!type->hasTypeParameter())
return type;
return type.transform([&](Type type) -> Type {
assert(!type->is<GenericFunctionType>());
// Replace a generic type parameter with its corresponding type variable.
if (auto genericParam = type->getAs<GenericTypeParamType>()) {
auto known = replacements.find(
cast<GenericTypeParamType>(genericParam->getCanonicalType()));
// FIXME: This should be an assert, however protocol generic signatures
// drop outer generic parameters.
// assert(known != replacements.end());
if (known == replacements.end())
return ErrorType::get(TC.Context);
return known->second;
}
return type;
});
}
FunctionType *ConstraintSystem::openFunctionType(
AnyFunctionType *funcType,
ConstraintLocatorBuilder locator,
OpenedTypeMap &replacements,
DeclContext *outerDC) {
if (auto *genericFn = funcType->getAs<GenericFunctionType>()) {
auto signature = genericFn->getGenericSignature();
openGenericParameters(outerDC, signature, replacements, locator);
openGenericRequirements(
outerDC, signature, /*skipProtocolSelfConstraint=*/false, locator,
[&](Type type) -> Type { return openType(type, replacements); });
funcType = genericFn->substGenericArgs(
[&](Type type) { return openType(type, replacements); });
}
return funcType->castTo<FunctionType>();
}
Optional<Type> ConstraintSystem::isArrayType(Type type) {
if (auto boundStruct = type->getAs<BoundGenericStructType>()) {
if (boundStruct->getDecl() == type->getASTContext().getArrayDecl())
return boundStruct->getGenericArgs()[0];
}
return None;
}
Optional<std::pair<Type, Type>> ConstraintSystem::isDictionaryType(Type type) {
if (auto boundStruct = type->getAs<BoundGenericStructType>()) {
if (boundStruct->getDecl() == type->getASTContext().getDictionaryDecl()) {
auto genericArgs = boundStruct->getGenericArgs();
return std::make_pair(genericArgs[0], genericArgs[1]);
}
}
return None;
}
Optional<Type> ConstraintSystem::isSetType(Type type) {
if (auto boundStruct = type->getAs<BoundGenericStructType>()) {
if (boundStruct->getDecl() == type->getASTContext().getSetDecl())
return boundStruct->getGenericArgs()[0];
}
return None;
}
bool ConstraintSystem::isCollectionType(Type type) {
if (auto *structType = type->getAs<BoundGenericStructType>()) {
auto &ctx = type->getASTContext();
auto *decl = structType->getDecl();
if (decl == ctx.getArrayDecl() || decl == ctx.getDictionaryDecl() ||
decl == ctx.getSetDecl())
return true;
}
return false;
}
bool ConstraintSystem::isAnyHashableType(Type type) {
if (auto st = type->getAs<StructType>()) {
auto &ctx = type->getASTContext();
return st->getDecl() == ctx.getAnyHashableDecl();
}
return false;
}
Type ConstraintSystem::getFixedTypeRecursive(Type type,
TypeMatchOptions &flags,
bool wantRValue) {
if (wantRValue)
type = type->getRValueType();
if (auto depMemType = type->getAs<DependentMemberType>()) {
if (!depMemType->getBase()->isTypeVariableOrMember()) return type;
// FIXME: Perform a more limited simplification?
Type newType = simplifyType(type);
if (newType.getPointer() == type.getPointer()) return type;
// Once we've simplified a dependent member type, we need to generate a
// new constraint.
flags |= TMF_GenerateConstraints;
return getFixedTypeRecursive(newType, flags, wantRValue);
}
if (auto typeVar = type->getAs<TypeVariableType>()) {
if (auto fixed = getFixedType(typeVar))
return getFixedTypeRecursive(fixed, flags, wantRValue);
return getRepresentative(typeVar);
}
return type;
}
/// Does a var or subscript produce an l-value?
///
/// \param baseType - the type of the base on which this object
/// is being accessed; must be null if and only if this is not
/// a type member
static bool doesStorageProduceLValue(AbstractStorageDecl *storage,
Type baseType, DeclContext *useDC,
const DeclRefExpr *base = nullptr) {
// Unsettable storage decls always produce rvalues.
if (!storage->isSettable(useDC, base))
return false;
if (!storage->isSetterAccessibleFrom(useDC))
return false;
// If there is no base, or if the base isn't being used, it is settable.
// This is only possible for vars.
if (auto var = dyn_cast<VarDecl>(storage)) {
if (!baseType || var->isStatic())
return true;
}
// If the base is an lvalue, then a reference produces an lvalue.
if (baseType->is<LValueType>())
return true;
// Stored properties of reference types produce lvalues.
if (baseType->hasReferenceSemantics() && storage->hasStorage())
return true;
// So the base is an rvalue type. The only way an accessor can
// produce an lvalue is if we have a property where both the
// getter and setter are nonmutating.
return !storage->hasStorage() &&
!storage->isGetterMutating() &&
!storage->isSetterMutating();
}
Type ConstraintSystem::getUnopenedTypeOfReference(VarDecl *value, Type baseType,
DeclContext *UseDC,
const DeclRefExpr *base,
bool wantInterfaceType) {
return TC.getUnopenedTypeOfReference(
value, baseType, UseDC,
[&](VarDecl *var) -> Type {
if (auto *param = dyn_cast<ParamDecl>(var))
return getType(param);
if (!var->hasInterfaceType()) {
if (!var->isInvalid()) {
TC.diagnose(var->getLoc(), diag::recursive_decl_reference,
var->getDescriptiveKind(), var->getName());
var->markInvalid();
}
return ErrorType::get(TC.Context);
}
return wantInterfaceType ? var->getInterfaceType() : var->getType();
},
base, wantInterfaceType);
}
Type TypeChecker::getUnopenedTypeOfReference(
VarDecl *value, Type baseType, DeclContext *UseDC,
llvm::function_ref<Type(VarDecl *)> getType, const DeclRefExpr *base,
bool wantInterfaceType) {
Type requestedType =
getType(value)->getWithoutSpecifierType()->getReferenceStorageReferent();
// If we're dealing with contextual types, and we referenced this type from
// a different context, map the type.
if (!wantInterfaceType && requestedType->hasArchetype()) {
auto valueDC = value->getDeclContext();
if (valueDC != UseDC) {
Type mapped = requestedType->mapTypeOutOfContext();
requestedType = UseDC->mapTypeIntoContext(mapped);
}
}
// Qualify storage declarations with an lvalue when appropriate.
// Otherwise, they yield rvalues (and the access must be a load).
if (doesStorageProduceLValue(value, baseType, UseDC, base) &&
!requestedType->hasError()) {
return LValueType::get(requestedType);
}
return requestedType;
}
void ConstraintSystem::recordOpenedTypes(
ConstraintLocatorBuilder locator,
const OpenedTypeMap &replacements) {
if (replacements.empty())
return;
// If the last path element is an archetype or associated type, ignore it.
SmallVector<LocatorPathElt, 2> pathElts;
Expr *anchor = locator.getLocatorParts(pathElts);
if (!pathElts.empty() &&
pathElts.back().getKind() == ConstraintLocator::GenericParameter)
return;
// If the locator is empty, ignore it.
if (!anchor && pathElts.empty())
return;
ConstraintLocator *locatorPtr = getConstraintLocator(locator);
assert(locatorPtr && "No locator for opened types?");
#if false
assert(std::find_if(OpenedTypes.begin(), OpenedTypes.end(),
[&](const std::pair<ConstraintLocator *,
ArrayRef<OpenedType>> &entry) {
return entry.first == locatorPtr;
}) == OpenedTypes.end() &&
"already registered opened types for this locator");
#endif
OpenedType* openedTypes
= Allocator.Allocate<OpenedType>(replacements.size());
std::copy(replacements.begin(), replacements.end(), openedTypes);
OpenedTypes.push_back({ locatorPtr,
llvm::makeArrayRef(openedTypes,
replacements.size()) });
}
/// Determine how many levels of argument labels should be removed from the
/// function type when referencing the given declaration.
static unsigned getNumRemovedArgumentLabels(TypeChecker &TC, ValueDecl *decl,
bool isCurriedInstanceReference,
FunctionRefKind functionRefKind) {
unsigned numParameterLists = decl->getNumCurryLevels();
switch (functionRefKind) {
case FunctionRefKind::Unapplied:
case FunctionRefKind::Compound:
// Always remove argument labels from unapplied references and references
// that use a compound name.
return numParameterLists;
case FunctionRefKind::SingleApply:
// If we have fewer than two parameter lists, leave the labels.
if (numParameterLists < 2)
return 0;
// If this is a curried reference to an instance method, where 'self' is
// being applied, e.g., "ClassName.instanceMethod(self)", remove the
// argument labels from the resulting function type. The 'self' parameter is
// always unlabeled, so this operation is a no-op for the actual application.
return isCurriedInstanceReference ? numParameterLists : 1;
case FunctionRefKind::DoubleApply:
// Never remove argument labels from a double application.
return 0;
}
llvm_unreachable("Unhandled FunctionRefKind in switch.");
}
std::pair<Type, Type>
ConstraintSystem::getTypeOfReference(ValueDecl *value,
FunctionRefKind functionRefKind,
ConstraintLocatorBuilder locator,
DeclContext *useDC) {
if (value->getDeclContext()->isTypeContext() && isa<FuncDecl>(value)) {
// Unqualified lookup can find operator names within nominal types.
auto func = cast<FuncDecl>(value);
assert(func->isOperator() && "Lookup should only find operators");
OpenedTypeMap replacements;
auto openedType =
openFunctionType(func->getInterfaceType()->castTo<AnyFunctionType>(),
locator, replacements, func->getDeclContext());
// If we opened up any type variables, record the replacements.
recordOpenedTypes(locator, replacements);
// If this is a method whose result type is dynamic Self, replace
// DynamicSelf with the actual object type.
if (func->getResultInterfaceType()->hasDynamicSelfType()) {
auto params = openedType->getParams();
assert(params.size() == 1);
Type selfTy = params.front().getPlainType()->getMetatypeInstanceType();
openedType = openedType->replaceCovariantResultType(selfTy, 2)
->castTo<FunctionType>();
}
// The reference implicitly binds 'self'.
return {openedType, openedType->getResult()};
}
// Unqualified reference to a local or global function.
if (auto funcDecl = dyn_cast<AbstractFunctionDecl>(value)) {
OpenedTypeMap replacements;
auto funcType = funcDecl->getInterfaceType()->castTo<AnyFunctionType>();
auto numLabelsToRemove = getNumRemovedArgumentLabels(
TC, funcDecl,
/*isCurriedInstanceReference=*/false, functionRefKind);
auto openedType = openFunctionType(funcType, locator, replacements,
funcDecl->getDeclContext())
->removeArgumentLabels(numLabelsToRemove);
// If we opened up any type variables, record the replacements.
recordOpenedTypes(locator, replacements);
return { openedType, openedType };
}
// Unqualified reference to a type.
if (auto typeDecl = dyn_cast<TypeDecl>(value)) {
// Resolve the reference to this type declaration in our current context.
auto type = TypeChecker::resolveTypeInContext(
typeDecl, nullptr,
TypeResolution::forContextual(useDC),
TypeResolverContext::InExpression,
/*isSpecialized=*/false);
// Open the type.
type = openUnboundGenericType(type, locator);
// Module types are not wrapped in metatypes.
if (type->is<ModuleType>())
return { type, type };
// If it's a value reference, refer to the metatype.
type = MetatypeType::get(type);
return { type, type };
}
// Only remaining case: unqualified reference to a property.
auto *varDecl = cast<VarDecl>(value);
// Determine the type of the value, opening up that type if necessary.
bool wantInterfaceType = !varDecl->getDeclContext()->isLocalContext();
Type valueType =
getUnopenedTypeOfReference(varDecl, Type(), useDC, /*base=*/nullptr,
wantInterfaceType);
assert(!valueType->hasUnboundGenericType() &&
!valueType->hasTypeParameter());
return { valueType, valueType };
}
/// Bind type variables for archetypes that are determined from
/// context.
///
/// For example, if we are opening a generic function type
/// nested inside another function, we must bind the outer
/// generic parameters to context archetypes, because the
/// nested function can "capture" these outer generic parameters.
///
/// Another case where this comes up is if a generic type is
/// nested inside a function. We don't support codegen for this
/// yet, but again we need to bind any outer generic parameters
/// to context archetypes, because they're not free.
///
/// A final case we have to handle, even though it is invalid, is
/// when a type is nested inside another protocol. We bind the
/// protocol type variable for the protocol Self to an unresolved
/// type, since it will conform to anything. This of course makes
/// no sense, but we can't leave the type variable dangling,
/// because then we crash later.
///
/// If we ever do want to allow nominal types to be nested inside
/// protocols, the key is to set their declared type to a
/// NominalType whose parent is the 'Self' generic parameter, and
/// not the ProtocolType. Then, within a conforming type context,
/// we can 'reparent' the NominalType to that concrete type, and
/// resolve references to associated types inside that NominalType
/// relative to this concrete 'Self' type.
///
/// Also, of course IRGen would have to know to store the 'Self'
/// metadata as an extra hidden generic parameter in the metadata
/// of such a type, etc.
static void bindArchetypesFromContext(
ConstraintSystem &cs,
DeclContext *outerDC,
ConstraintLocator *locatorPtr,
const OpenedTypeMap &replacements) {
auto bindPrimaryArchetype = [&](Type paramTy, Type contextTy) {
auto found = replacements.find(cast<GenericTypeParamType>(
paramTy->getCanonicalType()));
// We might not have a type variable for this generic parameter
// because either we're opening up an UnboundGenericType,
// in which case we only want to infer the innermost generic
// parameters, or because this generic parameter was constrained
// away into a concrete type.
if (found != replacements.end()) {
auto typeVar = found->second;
cs.addConstraint(ConstraintKind::Bind, typeVar, contextTy,
locatorPtr);
}
};
// Find the innermost non-type context.
for (const auto *parentDC = outerDC;
!parentDC->isModuleScopeContext();
parentDC = parentDC->getParent()) {
if (parentDC->isTypeContext()) {
if (parentDC != outerDC && parentDC->getSelfProtocolDecl()) {
auto selfTy = parentDC->getSelfInterfaceType();
auto contextTy = cs.TC.Context.TheUnresolvedType;
bindPrimaryArchetype(selfTy, contextTy);
}
continue;
}
// If it's not generic, there's nothing to do.
auto genericSig = parentDC->getGenericSignatureOfContext();
if (!genericSig)
break;
for (auto *paramTy : genericSig->getGenericParams()) {
Type contextTy = cs.DC->mapTypeIntoContext(paramTy);
bindPrimaryArchetype(paramTy, contextTy);
}
break;
}
}
void ConstraintSystem::openGeneric(
DeclContext *outerDC,
GenericSignature sig,
ConstraintLocatorBuilder locator,
OpenedTypeMap &replacements) {
if (!sig)
return;
openGenericParameters(outerDC, sig, replacements, locator);
// Add the requirements as constraints.
openGenericRequirements(
outerDC, sig, /*skipProtocolSelfConstraint=*/false, locator,
[&](Type type) { return openType(type, replacements); });
}
void ConstraintSystem::openGenericParameters(DeclContext *outerDC,
GenericSignature sig,
OpenedTypeMap &replacements,
ConstraintLocatorBuilder locator) {
assert(sig);
// Create the type variables for the generic parameters.
for (auto gp : sig->getGenericParams()) {
auto *paramLocator = getConstraintLocator(
locator.withPathElement(LocatorPathElt::GenericParameter(gp)));
auto typeVar = createTypeVariable(paramLocator, TVO_PrefersSubtypeBinding);
auto result = replacements.insert(std::make_pair(
cast<GenericTypeParamType>(gp->getCanonicalType()), typeVar));
assert(result.second);
(void)result;
}
auto *baseLocator = getConstraintLocator(
locator.withPathElement(LocatorPathElt::OpenedGeneric(sig)));
bindArchetypesFromContext(*this, outerDC, baseLocator, replacements);
}
void ConstraintSystem::openGenericRequirements(
DeclContext *outerDC, GenericSignature signature,
bool skipProtocolSelfConstraint, ConstraintLocatorBuilder locator,
llvm::function_ref<Type(Type)> substFn) {
auto requirements = signature->getRequirements();
for (unsigned pos = 0, n = requirements.size(); pos != n; ++pos) {
const auto &req = requirements[pos];
Optional<Requirement> openedReq;
auto openedFirst = substFn(req.getFirstType());
auto kind = req.getKind();
switch (kind) {
case RequirementKind::Conformance: {
auto proto = req.getSecondType()->castTo<ProtocolType>();
auto protoDecl = proto->getDecl();
// Determine whether this is the protocol 'Self' constraint we should
// skip.
if (skipProtocolSelfConstraint && protoDecl == outerDC &&
protoDecl->getSelfInterfaceType()->isEqual(req.getFirstType()))
continue;
openedReq = Requirement(kind, openedFirst, proto);
break;
}
case RequirementKind::Superclass:
case RequirementKind::SameType:
openedReq = Requirement(kind, openedFirst, substFn(req.getSecondType()));
break;
case RequirementKind::Layout:
openedReq = Requirement(kind, openedFirst, req.getLayoutConstraint());
break;
}
addConstraint(
*openedReq,
locator.withPathElement(LocatorPathElt::OpenedGeneric(signature))
.withPathElement(
LocatorPathElt::TypeParameterRequirement(pos, kind)));
}
}
/// Add the constraint on the type used for the 'Self' type for a member
/// reference.
///
/// \param cs The constraint system.
///
/// \param objectTy The type of the object that we're using to access the
/// member.
///
/// \param selfTy The instance type of the context in which the member is
/// declared.
static void addSelfConstraint(ConstraintSystem &cs, Type objectTy, Type selfTy,
ConstraintLocatorBuilder locator){
assert(!selfTy->is<ProtocolType>());
// Otherwise, use a subtype constraint for classes to cope with inheritance.
if (selfTy->getClassOrBoundGenericClass()) {
cs.addConstraint(ConstraintKind::Subtype, objectTy, selfTy,
cs.getConstraintLocator(locator));
return;
}
// Otherwise, the types must be equivalent.
cs.addConstraint(ConstraintKind::Bind, objectTy, selfTy,
cs.getConstraintLocator(locator));
}
/// Determine whether the given locator is for a witness or requirement.
static bool isRequirementOrWitness(const ConstraintLocatorBuilder &locator) {
if (auto last = locator.last()) {
return last->getKind() == ConstraintLocator::ProtocolRequirement ||
last->getKind() == ConstraintLocator::Witness;
}
return false;
}
std::pair<Type, Type>
ConstraintSystem::getTypeOfMemberReference(
Type baseTy, ValueDecl *value, DeclContext *useDC,
bool isDynamicResult,
FunctionRefKind functionRefKind,
ConstraintLocatorBuilder locator,
const DeclRefExpr *base,
OpenedTypeMap *replacementsPtr) {
// Figure out the instance type used for the base.
Type baseObjTy = getFixedTypeRecursive(baseTy, /*wantRValue=*/true);
// If the base is a module type, just use the type of the decl.
if (baseObjTy->is<ModuleType>()) {
return getTypeOfReference(value, functionRefKind, locator, useDC);
}
// Check to see if the self parameter is applied, in which case we'll want to
// strip it off later.
auto hasAppliedSelf = doesMemberRefApplyCurriedSelf(baseObjTy, value);
baseObjTy = baseObjTy->getMetatypeInstanceType();
// SWIFT_ENABLE_TENSORFLOW
FunctionType::Param baseObjParam(
baseObjTy->getInOutObjectType(), Identifier(),
ParameterTypeFlags().withInOut(baseObjTy->is<InOutType>()));
if (auto *typeDecl = dyn_cast<TypeDecl>(value)) {
assert(!isa<ModuleDecl>(typeDecl) && "Nested module?");
auto memberTy = TC.substMemberTypeWithBase(DC->getParentModule(),
typeDecl, baseObjTy);
// Open the type if it was a reference to a generic type.
memberTy = openUnboundGenericType(memberTy, locator);
// Wrap it in a metatype.
memberTy = MetatypeType::get(memberTy);
auto openedType = FunctionType::get({baseObjParam}, memberTy);
return { openedType, memberTy };
}
// Figure out the declaration context to use when opening this type.
DeclContext *innerDC = value->getInnermostDeclContext();
DeclContext *outerDC = value->getDeclContext();
// Open the type of the generic function or member of a generic type.
Type openedType;
OpenedTypeMap localReplacements;
auto &replacements = replacementsPtr ? *replacementsPtr : localReplacements;
unsigned numRemovedArgumentLabels = getNumRemovedArgumentLabels(
TC, value, /*isCurriedInstanceReference*/ !hasAppliedSelf,
functionRefKind);
AnyFunctionType *funcType;
if (isa<AbstractFunctionDecl>(value) ||
isa<EnumElementDecl>(value)) {
// This is the easy case.
funcType = value->getInterfaceType()->castTo<AnyFunctionType>();
} else {
// For a property, build a type (Self) -> PropType.
// For a subscript, build a type (Self) -> (Indices...) -> ElementType.
//
// If the access is mutating, wrap the storage type in an lvalue type.
Type refType;
if (auto *subscript = dyn_cast<SubscriptDecl>(value)) {
auto elementTy = subscript->getElementInterfaceType();
if (doesStorageProduceLValue(subscript, baseTy, useDC, base))
elementTy = LValueType::get(elementTy);
// See ConstraintSystem::resolveOverload() -- optional and dynamic
// subscripts are a special case, because the optionality is
// applied to the result type and not the type of the reference.
if (!isRequirementOrWitness(locator)) {
if (subscript->getAttrs().hasAttribute<OptionalAttr>() ||
isDynamicResult)
elementTy = OptionalType::get(elementTy->getRValueType());
}
auto indices = subscript->getInterfaceType()
->castTo<AnyFunctionType>()->getParams();
refType = FunctionType::get(indices, elementTy);
} else {
refType = getUnopenedTypeOfReference(cast<VarDecl>(value), baseTy, useDC,
base, /*wantInterfaceType=*/true);
}
auto selfTy = outerDC->getSelfInterfaceType();
// If this is a reference to an instance member that applies self,
// where self is a value type and the base type is an lvalue, wrap it in an
// inout type.
auto selfFlags = ParameterTypeFlags();
if (value->isInstanceMember() && hasAppliedSelf &&
!outerDC->getDeclaredInterfaceType()->hasReferenceSemantics() &&
baseTy->is<LValueType>() &&
!selfTy->hasError())
selfFlags = selfFlags.withInOut(true);
// If the storage is generic, add a generic signature.
FunctionType::Param selfParam(selfTy, Identifier(), selfFlags);
if (auto sig = innerDC->getGenericSignatureOfContext()) {
funcType = GenericFunctionType::get(sig, {selfParam}, refType);
} else {
funcType = FunctionType::get({selfParam}, refType);
}
}
// While opening member function type, let's delay opening requirements
// to allow contextual types to affect the situation.
if (auto *genericFn = funcType->getAs<GenericFunctionType>()) {
openGenericParameters(outerDC, genericFn->getGenericSignature(),
replacements, locator);
openedType = genericFn->substGenericArgs(
[&](Type type) { return openType(type, replacements); });
} else {
openedType = funcType;
}
openedType = openedType->removeArgumentLabels(numRemovedArgumentLabels);
if (!outerDC->getSelfProtocolDecl()) {
// Class methods returning Self as well as constructors get the
// result replaced with the base object type.
if (auto func = dyn_cast<AbstractFunctionDecl>(value)) {
if (func->hasDynamicSelfResult() &&
!baseObjTy->getOptionalObjectType()) {
openedType = openedType->replaceCovariantResultType(baseObjTy, 2);
}
} else if (auto *decl = dyn_cast<SubscriptDecl>(value)) {
if (decl->getElementInterfaceType()->hasDynamicSelfType()) {
openedType = openedType->replaceCovariantResultType(baseObjTy, 2);
}
} else if (auto *decl = dyn_cast<VarDecl>(value)) {
if (decl->getValueInterfaceType()->hasDynamicSelfType()) {
openedType = openedType->replaceCovariantResultType(baseObjTy, 1);
}
}
}
// If we are looking at a member of an existential, open the existential.
Type baseOpenedTy = baseObjTy;
if (baseObjTy->isExistentialType()) {
auto openedArchetype = OpenedArchetypeType::get(baseObjTy);
OpenedExistentialTypes.push_back({ getConstraintLocator(locator),
openedArchetype });
baseOpenedTy = openedArchetype;
}
// Constrain the 'self' object type.
auto openedFnType = openedType->castTo<FunctionType>();
auto openedParams = openedFnType->getParams();
assert(openedParams.size() == 1);
Type selfObjTy = openedParams.front().getPlainType()->getMetatypeInstanceType();
if (outerDC->getSelfProtocolDecl()) {
// For a protocol, substitute the base object directly. We don't need a
// conformance constraint because we wouldn't have found the declaration
// if it didn't conform.
addConstraint(ConstraintKind::Bind, baseOpenedTy, selfObjTy,
getConstraintLocator(locator));
} else if (!isDynamicResult) {
addSelfConstraint(*this, baseOpenedTy, selfObjTy, locator);
}
// Open generic requirements after self constraint has been
// applied and contextual types have been propagated. This
// helps diagnostics because instead of self type conversion
// failing we'll get a generic requirement constraint failure
// if mismatch is related to generic parameters which is much
// easier to diagnose.
if (auto *genericFn = funcType->getAs<GenericFunctionType>()) {
openGenericRequirements(
outerDC, genericFn->getGenericSignature(),
/*skipProtocolSelfConstraint=*/true, locator,
[&](Type type) { return openType(type, replacements); });
}
// Compute the type of the reference.
Type type;
if (hasAppliedSelf) {
// For a static member referenced through a metatype or an instance
// member referenced through an instance, strip off the 'self'.
type = openedFnType->getResult();
} else {
// For an unbound instance method reference, replace the 'Self'
// parameter with the base type.
openedType = openedFnType->replaceSelfParameterType(baseObjTy);
type = openedType;
}
// When accessing protocol members with an existential base, replace
// the 'Self' type parameter with the existential type, since formally
// the access will operate on existentials and not type parameters.
if (!isDynamicResult &&
baseObjTy->isExistentialType() &&
outerDC->getSelfProtocolDecl()) {
auto selfTy = replacements[
cast<GenericTypeParamType>(outerDC->getSelfInterfaceType()
->getCanonicalType())];
type = type.transform([&](Type t) -> Type {
if (t->is<TypeVariableType>())
if (t->isEqual(selfTy))
return baseObjTy;
if (auto *metatypeTy = t->getAs<MetatypeType>())
if (metatypeTy->getInstanceType()->isEqual(selfTy))
return ExistentialMetatypeType::get(baseObjTy);
return t;
});
}
// If we opened up any type variables, record the replacements.
recordOpenedTypes(locator, replacements);
return { openedType, type };
}
Type ConstraintSystem::getEffectiveOverloadType(const OverloadChoice &overload,
bool allowMembers,
DeclContext *useDC) {
switch (overload.getKind()) {
case OverloadChoiceKind::Decl:
// Declaration choices are handled below.
break;
case OverloadChoiceKind::BaseType:
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
case OverloadChoiceKind::DynamicMemberLookup:
case OverloadChoiceKind::KeyPathDynamicMemberLookup:
case OverloadChoiceKind::KeyPathApplication:
case OverloadChoiceKind::TupleIndex:
return Type();
}
auto decl = overload.getDecl();
// Ignore type declarations.
if (isa<TypeDecl>(decl))
return Type();
// Declarations returning unwrapped optionals don't have a single effective
// type.
if (decl->isImplicitlyUnwrappedOptional())
return Type();
// Retrieve the interface type.
auto type = decl->getInterfaceType();
if (!type) {
type = decl->getInterfaceType();
if (!type) {
return Type();
}
}
// If we have a generic function type, drop the generic signature; we don't
// need it for this comparison.
if (auto genericFn = type->getAs<GenericFunctionType>()) {
type = FunctionType::get(genericFn->getParams(),
genericFn->getResult(),
genericFn->getExtInfo());
}
// If this declaration is within a type context, we might not be able
// to handle it.
if (decl->getDeclContext()->isTypeContext()) {
if (!allowMembers)
return Type();
if (auto subscript = dyn_cast<SubscriptDecl>(decl)) {
auto elementTy = subscript->getElementInterfaceType();
if (doesStorageProduceLValue(subscript, overload.getBaseType(), useDC))
elementTy = LValueType::get(elementTy);
else if (elementTy->hasDynamicSelfType()) {
Type selfType = overload.getBaseType()->getRValueType()
->getMetatypeInstanceType()->lookThroughAllOptionalTypes();
elementTy = elementTy->replaceCovariantResultType(selfType, 0);
}
// See ConstraintSystem::resolveOverload() -- optional and dynamic
// subscripts are a special case, because the optionality is
// applied to the result type and not the type of the reference.
if (subscript->getAttrs().hasAttribute<OptionalAttr>())
elementTy = OptionalType::get(elementTy->getRValueType());
auto indices = subscript->getInterfaceType()
->castTo<AnyFunctionType>()->getParams();
type = FunctionType::get(indices, elementTy);
} else if (auto var = dyn_cast<VarDecl>(decl)) {
type = var->getValueInterfaceType();
if (doesStorageProduceLValue(var, overload.getBaseType(), useDC))
type = LValueType::get(type);
} else if (isa<AbstractFunctionDecl>(decl) || isa<EnumElementDecl>(decl)) {
if (decl->isInstanceMember() &&
(!overload.getBaseType() ||
!overload.getBaseType()->getAnyNominal()))
return Type();
// Cope with 'Self' returns.
if (!decl->getDeclContext()->getSelfProtocolDecl()) {
if (isa<AbstractFunctionDecl>(decl) &&
cast<AbstractFunctionDecl>(decl)->hasDynamicSelfResult()) {
if (!overload.getBaseType())
return Type();
if (!overload.getBaseType()->getOptionalObjectType()) {
Type selfType = overload.getBaseType()
->getRValueType()
->getMetatypeInstanceType();
// `Int??(0)` if we look through all optional types for `Self`
// we'll end up with incorrect type `Int?` for result because
// the actual result type is `Int??`.
if (isa<ConstructorDecl>(decl) && selfType->getOptionalObjectType())
return Type();
type = type->replaceCovariantResultType(
selfType->lookThroughAllOptionalTypes(), 2);
}
}
}
type = type->castTo<FunctionType>()->getResult();
}
}
// Handle "@objc optional" for non-subscripts; subscripts are handled above.
if (decl->getAttrs().hasAttribute<OptionalAttr>() &&
!isa<SubscriptDecl>(decl))
type = OptionalType::get(type->getRValueType());
return type;
}
void ConstraintSystem::addOverloadSet(Type boundType,
ArrayRef<OverloadChoice> choices,
DeclContext *useDC,
ConstraintLocator *locator,
Optional<unsigned> favoredIndex) {
// If there is a single choice, add the bind overload directly.
if (choices.size() == 1) {
addBindOverloadConstraint(boundType, choices.front(), locator, useDC);
return;
}
SmallVector<Constraint *, 4> candidates;
generateConstraints(candidates, boundType, choices, useDC, locator,
favoredIndex);
// For an overload set (disjunction) from newly generated candidates.
addOverloadSet(candidates, locator);
}
void ConstraintSystem::addOverloadSet(ArrayRef<Constraint *> choices,
ConstraintLocator *locator) {
assert(!choices.empty() && "Empty overload set");
// If there is a single choice, attempt it right away.
if (choices.size() == 1) {
simplifyConstraint(*choices.front());
return;
}
addDisjunctionConstraint(choices, locator, ForgetChoice);
}
/// If we're resolving an overload set with a decl that has special type
/// checking semantics, set up the special-case type system and return true;
/// otherwise return false.
static bool
resolveOverloadForDeclWithSpecialTypeCheckingSemantics(ConstraintSystem &CS,
ConstraintLocator *locator,
Type boundType,
OverloadChoice choice,
Type &refType,
Type &openedFullType) {
assert(choice.getKind() == OverloadChoiceKind::Decl);
switch (CS.TC.getDeclTypeCheckingSemantics(choice.getDecl())) {
case DeclTypeCheckingSemantics::Normal:
return false;
case DeclTypeCheckingSemantics::TypeOf: {
// Proceed with a "DynamicType" operation. This produces an existential
// metatype from existentials, or a concrete metatype from non-
// existentials (as seen from the current abstraction level), which can't
// be expressed in the type system currently.
auto input = CS.createTypeVariable(
CS.getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
TVO_CanBindToNoEscape);
auto output = CS.createTypeVariable(
CS.getConstraintLocator(locator, ConstraintLocator::FunctionResult),
TVO_CanBindToNoEscape);
FunctionType::Param inputArg(input,
CS.getASTContext().getIdentifier("of"));
CS.addConstraint(ConstraintKind::DynamicTypeOf, output, input,
CS.getConstraintLocator(locator, ConstraintLocator::RValueAdjustment));
refType = FunctionType::get({inputArg}, output);
openedFullType = refType;
return true;
}
case DeclTypeCheckingSemantics::WithoutActuallyEscaping: {
// Proceed with a "WithoutActuallyEscaping" operation. The body closure
// receives a copy of the argument closure that is temporarily made
// @escaping.
auto noescapeClosure = CS.createTypeVariable(
CS.getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
TVO_CanBindToNoEscape);
auto escapeClosure = CS.createTypeVariable(
CS.getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::EscapableFunctionOf,
escapeClosure, noescapeClosure,
CS.getConstraintLocator(locator, ConstraintLocator::RValueAdjustment));
auto result = CS.createTypeVariable(
CS.getConstraintLocator(locator, ConstraintLocator::FunctionResult),
TVO_CanBindToNoEscape);
FunctionType::Param arg(escapeClosure);
auto bodyClosure = FunctionType::get(arg, result,
FunctionType::ExtInfo(FunctionType::Representation::Swift,
/*noescape*/ true,
// SWIFT_ENABLE_TENSORFLOW
/*throws*/ true,
DifferentiabilityKind::NonDifferentiable));
FunctionType::Param args[] = {
FunctionType::Param(noescapeClosure),
FunctionType::Param(bodyClosure, CS.getASTContext().getIdentifier("do")),
};
refType = FunctionType::get(args, result,
FunctionType::ExtInfo(FunctionType::Representation::Swift,
/*noescape*/ false,
// SWIFT_ENABLE_TENSORFLOW
/*throws*/ true,
DifferentiabilityKind::NonDifferentiable));
openedFullType = refType;
return true;
}
case DeclTypeCheckingSemantics::OpenExistential: {
// The body closure receives a freshly-opened archetype constrained by the
// existential type as its input.
auto openedTy = CS.createTypeVariable(
CS.getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
TVO_CanBindToNoEscape);
auto existentialTy = CS.createTypeVariable(
CS.getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::OpenedExistentialOf,
openedTy, existentialTy,
CS.getConstraintLocator(locator, ConstraintLocator::RValueAdjustment));
auto result = CS.createTypeVariable(
CS.getConstraintLocator(locator, ConstraintLocator::FunctionResult),
TVO_CanBindToNoEscape);
FunctionType::Param bodyArgs[] = {FunctionType::Param(openedTy)};
auto bodyClosure = FunctionType::get(bodyArgs, result,
FunctionType::ExtInfo(FunctionType::Representation::Swift,
/*noescape*/ true,
// SWIFT_ENABLE_TENSORFLOW
/*throws*/ true,
DifferentiabilityKind::NonDifferentiable));
FunctionType::Param args[] = {
FunctionType::Param(existentialTy),
FunctionType::Param(bodyClosure, CS.getASTContext().getIdentifier("do")),
};
refType = FunctionType::get(args, result,
FunctionType::ExtInfo(FunctionType::Representation::Swift,
/*noescape*/ false,
// SWIFT_ENABLE_TENSORFLOW
/*throws*/ true,
DifferentiabilityKind::NonDifferentiable));
openedFullType = refType;
return true;
}
}
llvm_unreachable("Unhandled DeclTypeCheckingSemantics in switch.");
}
/// \returns true if given declaration is an instance method marked as
/// `mutating`, false otherwise.
bool isMutatingMethod(const ValueDecl *decl) {
if (!(decl->isInstanceMember() && isa<FuncDecl>(decl)))
return false;
return cast<FuncDecl>(decl)->isMutating();
}
static bool shouldCheckForPartialApplication(ConstraintSystem &cs,
const ValueDecl *decl,
ConstraintLocator *locator) {
auto *anchor = locator->getAnchor();
if (!(anchor && isa<UnresolvedDotExpr>(anchor)))
return false;
// FIXME(diagnostics): This check should be removed together with
// expression based diagnostics.
if (cs.TC.isExprBeingDiagnosed(anchor))
return false;
// If this is a reference to instance method marked as 'mutating'
// it should be checked for invalid partial application.
if (isMutatingMethod(decl))
return true;
// Another unsupported partial application is related
// to constructor delegation via `self.init` or `super.init`.
if (!isa<ConstructorDecl>(decl))
return false;
auto *UDE = cast<UnresolvedDotExpr>(anchor);
// This is `super.init`
if (UDE->getBase()->isSuperExpr())
return true;
// Or this might be `self.init`.
if (auto *DRE = dyn_cast<DeclRefExpr>(UDE->getBase())) {
if (auto *baseDecl = DRE->getDecl())
return baseDecl->getBaseName() == cs.getASTContext().Id_self;
}
return false;
}
/// Try to identify and fix failures related to partial function application
/// e.g. partial application of `init` or 'mutating' instance methods.
static std::pair<bool, unsigned>
isInvalidPartialApplication(ConstraintSystem &cs, const ValueDecl *member,
ConstraintLocator *locator) {
if (!shouldCheckForPartialApplication(cs, member, locator))
return {false, 0};
auto anchor = cast<UnresolvedDotExpr>(locator->getAnchor());
// If this choice is a partial application of `init` or
// `mutating` instance method we should report that it's not allowed.
auto baseTy =
cs.simplifyType(cs.getType(anchor->getBase()))->getWithoutSpecifierType();
// Partial applications are not allowed only for constructor
// delegation, reference on the metatype is considered acceptable.
if (baseTy->is<MetatypeType>() && isa<ConstructorDecl>(member))
return {false, 0};
// If base is a metatype it would be ignored (unless this is an initializer
// call), but if it is some other type it means that we have a single
// application level already.
unsigned level = baseTy->is<MetatypeType>() ? 0 : 1;
if (auto *call = dyn_cast_or_null<CallExpr>(cs.getParentExpr(anchor))) {
level += dyn_cast_or_null<CallExpr>(cs.getParentExpr(call)) ? 2 : 1;
}
return {true, level};
}
void ConstraintSystem::resolveOverload(ConstraintLocator *locator,
Type boundType,
OverloadChoice choice,
DeclContext *useDC) {
// Add a conformance constraint to make sure that given type conforms
// to Hashable protocol, which is important for key path subscript
// components.
auto verifyThatArgumentIsHashable = [&](unsigned index, Type argType,
ConstraintLocator *locator) {
if (auto *hashable = TC.getProtocol(choice.getDecl()->getLoc(),
KnownProtocolKind::Hashable)) {
addConstraint(ConstraintKind::ConformsTo, argType,
hashable->getDeclaredType(),
getConstraintLocator(
locator, LocatorPathElt::TupleElement(index)));
}
};
// Determine the type to which we'll bind the overload set's type.
Type refType;
Type openedFullType;
bool isDynamicResult = choice.getKind() == OverloadChoiceKind::DeclViaDynamic;
bool bindConstraintCreated = false;
switch (auto kind = choice.getKind()) {
case OverloadChoiceKind::Decl:
// If we refer to a top-level decl with special type-checking semantics,
// handle it now.
if (resolveOverloadForDeclWithSpecialTypeCheckingSemantics(
*this, locator, boundType, choice, refType, openedFullType))
break;
LLVM_FALLTHROUGH;
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
case OverloadChoiceKind::DynamicMemberLookup:
case OverloadChoiceKind::KeyPathDynamicMemberLookup: {
// Retrieve the type of a reference to the specific declaration choice.
if (auto baseTy = choice.getBaseType()) {
assert(!baseTy->hasTypeParameter());
auto getDotBase = [](const Expr *E) -> const DeclRefExpr * {
if (E == nullptr) return nullptr;
switch (E->getKind()) {
case ExprKind::MemberRef: {
auto Base = cast<MemberRefExpr>(E)->getBase();
return dyn_cast<const DeclRefExpr>(Base);
}
case ExprKind::UnresolvedDot: {
auto Base = cast<UnresolvedDotExpr>(E)->getBase();
return dyn_cast<const DeclRefExpr>(Base);
}
default:
return nullptr;
}
};
auto anchor = locator ? locator->getAnchor() : nullptr;
auto base = getDotBase(anchor);
std::tie(openedFullType, refType)
= getTypeOfMemberReference(baseTy, choice.getDecl(), useDC,
isDynamicResult,
choice.getFunctionRefKind(),
locator, base, nullptr);
} else {
std::tie(openedFullType, refType)
= getTypeOfReference(choice.getDecl(),
choice.getFunctionRefKind(), locator, useDC);
}
// For a non-subscript declaration found via dynamic lookup, strip
// off the lvalue-ness (FIXME: as a temporary hack. We eventually
// want this to work) and make a reference to that declaration be
// an implicitly unwrapped optional.
//
// Subscript declarations are handled within
// getTypeOfMemberReference(); their result types are unchecked
// optional.
if (isDynamicResult) {
if (isa<SubscriptDecl>(choice.getDecl())) {
// We always expect function type for subscripts.
auto fnTy = refType->castTo<AnyFunctionType>();
if (choice.isImplicitlyUnwrappedValueOrReturnValue()) {
auto resultTy = fnTy->getResult();
// We expect the element type to be a double-optional.
auto optTy = resultTy->getOptionalObjectType();
assert(optTy->getOptionalObjectType());
// For our original type T -> U?? we will generate:
// A disjunction V = { U?, U }
// and a disjunction boundType = { T -> V?, T -> V }
Type ty = createTypeVariable(locator, TVO_CanBindToNoEscape);
buildDisjunctionForImplicitlyUnwrappedOptional(ty, optTy, locator);
// Create a new function type with an optional of this type
// variable as the result type.
if (auto *genFnTy = fnTy->getAs<GenericFunctionType>()) {
fnTy = GenericFunctionType::get(
genFnTy->getGenericSignature(), genFnTy->getParams(),
OptionalType::get(ty), genFnTy->getExtInfo());
} else {
fnTy = FunctionType::get(fnTy->getParams(), OptionalType::get(ty),
fnTy->getExtInfo());
}
}
buildDisjunctionForDynamicLookupResult(boundType, fnTy, locator);
} else {
Type ty = refType;
// If this is something we need to implicitly unwrap, set up a
// new type variable and disjunction that will allow us to make
// the choice of whether to do so.
if (choice.isImplicitlyUnwrappedValueOrReturnValue()) {
// Duplicate the structure of boundType, with fresh type
// variables. We'll create a binding disjunction using this,
// selecting between options for refType, which is either
// Optional or a function type returning Optional.
assert(boundType->hasTypeVariable());
ty = boundType.transform([this](Type elTy) -> Type {
if (auto *tv = dyn_cast<TypeVariableType>(elTy.getPointer())) {
return createTypeVariable(tv->getImpl().getLocator(),
tv->getImpl().getRawOptions());
}
return elTy;
});
buildDisjunctionForImplicitlyUnwrappedOptional(
ty, refType->getRValueType(), locator);
}
// Build the disjunction to attempt binding both T? and T (or
// function returning T? and function returning T).
buildDisjunctionForDynamicLookupResult(
boundType, OptionalType::get(ty->getRValueType()), locator);
// We store an Optional of the originally resolved type in the
// overload set.
refType = OptionalType::get(refType->getRValueType());
}
bindConstraintCreated = true;
} else if (!isRequirementOrWitness(locator) &&
choice.getDecl()->getAttrs().hasAttribute<OptionalAttr>() &&
!isa<SubscriptDecl>(choice.getDecl())) {
// For a non-subscript declaration that is an optional
// requirement in a protocol, strip off the lvalue-ness (FIXME:
// one cannot assign to such declarations for now) and make a
// reference to that declaration be optional.
//
// Subscript declarations are handled within
// getTypeOfMemberReference(); their result types are optional.
// Deal with values declared as implicitly unwrapped, or
// functions with return types that are implicitly unwrapped.
if (choice.isImplicitlyUnwrappedValueOrReturnValue()) {
// Build the disjunction to attempt binding both T? and T (or
// function returning T? and function returning T).
Type ty = createTypeVariable(locator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
buildDisjunctionForImplicitlyUnwrappedOptional(ty, refType, locator);
addConstraint(ConstraintKind::Bind, boundType,
OptionalType::get(ty->getRValueType()), locator);
bindConstraintCreated = true;
}
refType = OptionalType::get(refType->getRValueType());
}
// If the declaration is unavailable, note that in the score.
if (choice.getDecl()->getAttrs().isUnavailable(getASTContext())) {
increaseScore(SK_Unavailable);
}
if (kind == OverloadChoiceKind::DynamicMemberLookup) {
// DynamicMemberLookup results are always a (dynamicMember:T1)->T2
// subscript.
auto refFnType = refType->castTo<FunctionType>();
// If this is a dynamic member lookup, then the decl we have is for the
// subscript(dynamicMember:) member, but the type we need to return is the
// result of the subscript. Dig through it.
refType = refFnType->getResult();
// Before we drop the argument type on the floor, we need to constrain it
// to having a literal conformance to ExpressibleByStringLiteral. This
// makes the index default to String if otherwise unconstrained.
assert(refFnType->getParams().size() == 1 &&
"subscript always has one arg");
auto argType = refFnType->getParams()[0].getPlainType();
auto &TC = getTypeChecker();
auto stringLiteral =
TC.getProtocol(choice.getDecl()->getLoc(),
KnownProtocolKind::ExpressibleByStringLiteral);
if (!stringLiteral)
break;
addConstraint(ConstraintKind::LiteralConformsTo, argType,
stringLiteral->getDeclaredType(), locator);
// If this is used inside of the keypath expression, we need to make
// sure that argument is Hashable.
if (isa<KeyPathExpr>(locator->getAnchor()))
verifyThatArgumentIsHashable(0, argType, locator);
}
if (kind == OverloadChoiceKind::KeyPathDynamicMemberLookup) {
auto *fnType = refType->castTo<FunctionType>();
assert(fnType->getParams().size() == 1 &&
"subscript always has one argument");
// Parameter type is KeyPath<T, U> where `T` is a root type
// and U is a leaf type (aka member type).
auto keyPathTy =
fnType->getParams()[0].getPlainType()->castTo<BoundGenericType>();
refType = fnType->getResult();
auto *keyPathDecl = keyPathTy->getAnyNominal();
assert(isKnownKeyPathDecl(getASTContext(), keyPathDecl) &&
"parameter is supposed to be a keypath");
auto *keyPathLoc = getConstraintLocator(
locator, LocatorPathElt::KeyPathDynamicMember(keyPathDecl));
auto rootTy = keyPathTy->getGenericArgs()[0];
auto leafTy = keyPathTy->getGenericArgs()[1];
// Member would either point to mutable or immutable property, we
// don't which at the moment, so let's allow its type to be l-value.
auto memberTy = createTypeVariable(keyPathLoc,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
// Attempt to lookup a member with a give name in the root type and
// assign result to the leaf type of the keypath.
bool isSubscriptRef = locator->isSubscriptMemberRef();
DeclName memberName =
isSubscriptRef ? DeclBaseName::createSubscript() : choice.getName();
addValueMemberConstraint(LValueType::get(rootTy), memberName, memberTy,
useDC,
isSubscriptRef ? FunctionRefKind::DoubleApply
: FunctionRefKind::Unapplied,
/*outerAlternatives=*/{}, keyPathLoc);
// In case of subscript things are more compicated comparing to "dot"
// syntax, because we have to get "applicable function" constraint
// associated with index expression and re-bind it to match "member type"
// looked up by dynamically.
if (isSubscriptRef) {
// Make sure that regular subscript declarations (if any) are
// preferred over key path dynamic member lookup.
increaseScore(SK_KeyPathSubscript);
auto dynamicResultTy = boundType->castTo<TypeVariableType>();
auto constraints = CG.gatherConstraints(
dynamicResultTy,
ConstraintGraph::GatheringKind::EquivalenceClass,
[](Constraint *constraint) {
return constraint->getKind() ==
ConstraintKind::ApplicableFunction;
});
assert(constraints.size() == 1);
auto *applicableFn = constraints.front();
retireConstraint(applicableFn);
// Original subscript expression e.g. `<base>[0]` generated following
// constraint `($T_A0, [$T_A1], ...) -> $T_R applicable fn $T_S` where
// `$T_S` is supposed to be bound to each subscript choice e.g.
// `(Int) -> Int`.
//
// Here is what we need to do to make this work as-if expression was
// `<base>[dynamicMember: \.[0]]`:
// - Right-hand side function type would have to get a new result type
// since it would have to point to result type of `\.[0]`, arguments
// though should stay the same.
// - Left-hand side `$T_S` is going to point to a new "member type"
// we are looking up based on the root type of the key path.
// - Original result type `$T_R` is going to represent result of
// the `[dynamicMember: \.[0]]` invocation.
// Result of the `WritableKeyPath` is going to be l-value type,
// let's adjust l-valueness of the result type to accommodate that.
//
// This is required because we are binding result of the subscript
// to its "member type" which becomes dynamic result type. We could
// form additional `applicable fn` constraint here and bind it to a
// function type, but it would create inconsistency with how properties
// are handled, which means more special handling in CSApply.
if (keyPathDecl == getASTContext().getWritableKeyPathDecl() ||
keyPathDecl == getASTContext().getReferenceWritableKeyPathDecl())
dynamicResultTy->getImpl().setCanBindToLValue(getSavedBindings(),
/*enabled=*/true);
auto fnType = applicableFn->getFirstType()->castTo<FunctionType>();
auto subscriptResultTy = createTypeVariable(
getConstraintLocator(locator->getAnchor(),
ConstraintLocator::FunctionResult),
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
auto adjustedFnTy =
FunctionType::get(fnType->getParams(), subscriptResultTy);
addConstraint(ConstraintKind::ApplicableFunction, adjustedFnTy,
memberTy, applicableFn->getLocator());
addConstraint(ConstraintKind::Bind, dynamicResultTy,
fnType->getResult(), keyPathLoc);
addConstraint(ConstraintKind::Equal, subscriptResultTy, leafTy,
keyPathLoc);
} else {
// Since member type is going to be bound to "leaf" generic parameter
// of the keypath, it has to be an r-value always, so let's add a new
// constraint to represent that conversion instead of loading member
// type into "leaf" directly.
addConstraint(ConstraintKind::Equal, memberTy, leafTy, keyPathLoc);
}
if (isa<KeyPathExpr>(locator->getAnchor()))
verifyThatArgumentIsHashable(0, keyPathTy, locator);
}
break;
}
case OverloadChoiceKind::BaseType:
refType = choice.getBaseType();
break;
case OverloadChoiceKind::TupleIndex:
if (auto lvalueTy = choice.getBaseType()->getAs<LValueType>()) {
// When the base of a tuple lvalue, the member is always an lvalue.
auto tuple = lvalueTy->getObjectType()->castTo<TupleType>();
refType = tuple->getElementType(choice.getTupleIndex())->getRValueType();
refType = LValueType::get(refType);
} else {
// When the base is a tuple rvalue, the member is always an rvalue.
auto tuple = choice.getBaseType()->castTo<TupleType>();
refType = tuple->getElementType(choice.getTupleIndex())->getRValueType();
}
break;
case OverloadChoiceKind::KeyPathApplication: {
// Key path application looks like a subscript(keyPath: KeyPath<Base, T>).
// The element type is T or @lvalue T based on the key path subtype and
// the mutability of the base.
auto keyPathIndexTy = createTypeVariable(
getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
TVO_CanBindToInOut);
auto elementTy = createTypeVariable(
getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
TVO_CanBindToLValue | TVO_CanBindToNoEscape);
auto elementObjTy = createTypeVariable(
getConstraintLocator(locator, ConstraintLocator::FunctionArgument),
TVO_CanBindToNoEscape);
addConstraint(ConstraintKind::Equal, elementTy, elementObjTy, locator);
// The element result is an lvalue or rvalue based on the key path class.
addKeyPathApplicationConstraint(
keyPathIndexTy, choice.getBaseType(), elementTy, locator);
FunctionType::Param indices[] = {
FunctionType::Param(keyPathIndexTy, getASTContext().Id_keyPath),
};
auto subscriptTy = FunctionType::get(indices, elementTy);
FunctionType::Param baseParam(choice.getBaseType());
auto fullTy = FunctionType::get({baseParam}, subscriptTy);
openedFullType = fullTy;
refType = subscriptTy;
// Increase the score so that actual subscripts get preference.
increaseScore(SK_KeyPathSubscript);
break;
}
}
assert(!refType->hasTypeParameter() && "Cannot have a dependent type here");
if (auto *decl = choice.getDeclOrNull()) {
// If we're binding to an init member, the 'throws' need to line up between
// the bound and reference types.
if (auto CD = dyn_cast<ConstructorDecl>(decl)) {
auto boundFunctionType = boundType->getAs<AnyFunctionType>();
if (boundFunctionType &&
CD->hasThrows() != boundFunctionType->throws()) {
boundType = boundFunctionType->withExtInfo(
boundFunctionType->getExtInfo().withThrows());
}
}
if (auto *SD = dyn_cast<SubscriptDecl>(decl)) {
if (locator->isResultOfKeyPathDynamicMemberLookup() ||
locator->isKeyPathSubscriptComponent()) {
// Subscript type has a format of (Self[.Type) -> (Arg...) -> Result
auto declTy = openedFullType->castTo<FunctionType>();
auto subscriptTy = declTy->getResult()->castTo<FunctionType>();
// If we have subscript, each of the arguments has to conform to
// Hashable, because it would be used as a component inside key path.
for (auto index : indices(subscriptTy->getParams())) {
const auto &param = subscriptTy->getParams()[index];
verifyThatArgumentIsHashable(index, param.getPlainType(), locator);
}
}
}
// Check whether applying this overload would result in invalid
// partial function application e.g. partial application of
// mutating method or initializer.
// This check is supposed to be performed without
// `shouldAttemptFixes` because name lookup can't
// detect that particular partial application is
// invalid, so it has to return all of the candidates.
bool isInvalidPartialApply;
unsigned level;
std::tie(isInvalidPartialApply, level) =
isInvalidPartialApplication(*this, decl, locator);
if (isInvalidPartialApply) {
// No application at all e.g. `Foo.bar`.
if (level == 0) {
// Swift 4 and earlier failed to diagnose a reference to a mutating
// method without any applications at all, which would get
// miscompiled into a function with undefined behavior. Warn for
// source compatibility.
bool isWarning = !getASTContext().isSwiftVersionAtLeast(5);
(void)recordFix(
AllowInvalidPartialApplication::create(isWarning, *this, locator));
} else if (level == 1) {
// `Self` parameter is applied, e.g. `foo.bar` or `Foo.bar(&foo)`
(void)recordFix(AllowInvalidPartialApplication::create(
/*isWarning=*/false, *this, locator));
}
// Otherwise both `Self` and arguments are applied,
// e.g. `foo.bar()` or `Foo.bar(&foo)()`, and there is nothing to do.
}
}
// Note that we have resolved this overload.
resolvedOverloadSets
= new (*this) ResolvedOverloadSetListItem{resolvedOverloadSets,
boundType,
choice,
locator,
openedFullType,
refType};
// In some cases we already created the appropriate bind constraints.
if (!bindConstraintCreated) {
if (choice.isImplicitlyUnwrappedValueOrReturnValue()) {
// Build the disjunction to attempt binding both T? and T (or
// function returning T? and function returning T).
buildDisjunctionForImplicitlyUnwrappedOptional(boundType, refType,
locator);
} else {
// Add the type binding constraint.
addConstraint(ConstraintKind::Bind, boundType, refType, locator);
}
}
if (TC.getLangOpts().DebugConstraintSolver) {
auto &log = getASTContext().TypeCheckerDebug->getStream();
log.indent(solverState ? solverState->depth * 2 : 2)
<< "(overload set choice binding "
<< boundType->getString() << " := "
<< refType->getString() << ")\n";
}
// If this overload is disfavored, note that.
if (choice.isDecl() &&
choice.getDecl()->getAttrs().hasAttribute<DisfavoredOverloadAttr>()) {
increaseScore(SK_DisfavoredOverload);
}
}
template <typename Fn>
Type simplifyTypeImpl(ConstraintSystem &cs, Type type, Fn getFixedTypeFn) {
return type.transform([&](Type type) -> Type {
if (auto tvt = dyn_cast<TypeVariableType>(type.getPointer()))
return getFixedTypeFn(tvt);
// If this is a dependent member type for which we end up simplifying
// the base to a non-type-variable, perform lookup.
if (auto depMemTy = dyn_cast<DependentMemberType>(type.getPointer())) {
// Simplify the base.
Type newBase = simplifyTypeImpl(cs, depMemTy->getBase(), getFixedTypeFn);
// If nothing changed, we're done.
if (newBase.getPointer() == depMemTy->getBase().getPointer())
return type;
// Dependent member types should only be created for associated types.
auto assocType = depMemTy->getAssocType();
assert(depMemTy->getAssocType() && "Expected associated type!");
// FIXME: It's kind of weird in general that we have to look
// through lvalue, inout and IUO types here
Type lookupBaseType = newBase->getWithoutSpecifierType();
if (auto selfType = lookupBaseType->getAs<DynamicSelfType>())
lookupBaseType = selfType->getSelfType();
if (lookupBaseType->mayHaveMembers()) {
auto *proto = assocType->getProtocol();
auto conformance = cs.DC->getParentModule()->lookupConformance(
lookupBaseType, proto);
if (!conformance)
return DependentMemberType::get(lookupBaseType, assocType);
auto subs = SubstitutionMap::getProtocolSubstitutions(
proto, lookupBaseType, *conformance);
auto result = assocType->getDeclaredInterfaceType().subst(subs);
if (!result->hasError())
return result;
}
return DependentMemberType::get(lookupBaseType, assocType);
}
return type;
});
}
Type ConstraintSystem::simplifyType(Type type) {
if (!type->hasTypeVariable())
return type;
// Map type variables down to the fixed types of their representatives.
return simplifyTypeImpl(
*this, type,
[&](TypeVariableType *tvt) -> Type {
if (auto fixed = getFixedType(tvt))
return simplifyType(fixed);
return getRepresentative(tvt);
});
}
Type Solution::simplifyType(Type type) const {
if (!type->hasTypeVariable())
return type;
// Map type variables to fixed types from bindings.
return simplifyTypeImpl(
getConstraintSystem(), type,
[&](TypeVariableType *tvt) -> Type {
auto known = typeBindings.find(tvt);
assert(known != typeBindings.end());
return known->second;
});
}
size_t Solution::getTotalMemory() const {
return sizeof(*this) + typeBindings.getMemorySize() +
overloadChoices.getMemorySize() +
ConstraintRestrictions.getMemorySize() +
llvm::capacity_in_bytes(Fixes) + DisjunctionChoices.getMemorySize() +
OpenedTypes.getMemorySize() + OpenedExistentialTypes.getMemorySize() +
(DefaultedConstraints.size() * sizeof(void *)) +
Conformances.size() * sizeof(std::pair<ConstraintLocator *, ProtocolConformanceRef>);
}
DeclName OverloadChoice::getName() const {
switch (getKind()) {
case OverloadChoiceKind::Decl:
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
return getDecl()->getFullName();
case OverloadChoiceKind::KeyPathApplication:
// TODO: This should probably produce subscript(keyPath:), but we
// don't currently pre-filter subscript overload sets by argument
// keywords, so "subscript" is still the name that keypath subscripts
// are looked up by.
return DeclBaseName::createSubscript();
case OverloadChoiceKind::DynamicMemberLookup:
case OverloadChoiceKind::KeyPathDynamicMemberLookup:
return DeclName(DynamicMember.getPointer());
case OverloadChoiceKind::BaseType:
case OverloadChoiceKind::TupleIndex:
llvm_unreachable("no name!");
}
llvm_unreachable("Unhandled OverloadChoiceKind in switch.");
}
bool OverloadChoice::isImplicitlyUnwrappedValueOrReturnValue() const {
if (!isDecl())
return false;
auto *decl = getDecl();
if (!decl->isImplicitlyUnwrappedOptional())
return false;
auto itfType = decl->getInterfaceType();
if (!itfType->getAs<AnyFunctionType>())
return true;
switch (getFunctionRefKind()) {
case FunctionRefKind::Unapplied:
case FunctionRefKind::Compound:
return false;
case FunctionRefKind::SingleApply:
case FunctionRefKind::DoubleApply:
return true;
}
llvm_unreachable("unhandled kind");
}
bool ConstraintSystem::salvage(SmallVectorImpl<Solution> &viable, Expr *expr) {
if (TC.getLangOpts().DebugConstraintSolver) {
auto &log = TC.Context.TypeCheckerDebug->getStream();
log << "---Attempting to salvage and emit diagnostics---\n";
}
// SWIFT_ENABLE_TENSORFLOW
if (DC->getParentModule()->getNameStr().startswith("__lldb_expr") &&
viable.size() > 1) {
// TODO(https://bugs.swift.org/browse/SR-9814):
// If in LLDB repl mode, patch up the solution if we have ambiguity.
//
// This is a *temporary* short-term hack that simply returns the last
// solution. It seems to work for now and returns the lastly added
// definition during the repl session. However, this is extremely brittle and
// is not expected to work correctly all the time.
viable[0] = std::move(viable.back());
viable.erase(viable.begin() + 1, viable.end());
return false;
}
// Attempt to solve again, capturing all states that come from our attempts to
// select overloads or bind type variables.
//
// FIXME: can this be removed? We need to arrange for recordFixes to be
// eliminated.
viable.clear();
{
// Set up solver state.
SolverState state(*this, FreeTypeVariableBinding::Disallow);
state.recordFixes = true;
// Solve the system.
solve(viable);
// Check whether we have a best solution; this can happen if we found
// a series of fixes that worked.
if (auto best = findBestSolution(viable, /*minimize=*/true)) {
if (*best != 0)
viable[0] = std::move(viable[*best]);
viable.erase(viable.begin() + 1, viable.end());
return false;
}
// Before removing any "fixed" solutions, let's check
// if ambiguity is caused by fixes and diagnose if possible.
if (diagnoseAmbiguityWithFixes(expr, viable))
return true;
// FIXME: If we were able to actually fix things along the way,
// we may have to hunt for the best solution. For now, we don't care.
// Remove solutions that require fixes; the fixes in those systems should
// be diagnosed rather than any ambiguity.
auto hasFixes = [](const Solution &sol) { return !sol.Fixes.empty(); };
auto newEnd = std::remove_if(viable.begin(), viable.end(), hasFixes);
viable.erase(newEnd, viable.end());
// If there are multiple solutions, try to diagnose an ambiguity.
if (viable.size() > 1) {
if (getASTContext().LangOpts.DebugConstraintSolver) {
auto &log = getASTContext().TypeCheckerDebug->getStream();
log << "---Ambiguity error: " << viable.size()
<< " solutions found---\n";
int i = 0;
for (auto &solution : viable) {
log << "---Ambiguous solution #" << i++ << "---\n";
solution.dump(log);
log << "\n";
}
}
if (diagnoseAmbiguity(expr, viable)) {
return true;
}
}
// Fall through to produce diagnostics.
}
if (getExpressionTooComplex(viable)) {
TC.diagnose(expr->getLoc(), diag::expression_too_complex)
.highlight(expr->getSourceRange());
return true;
}
// If all else fails, diagnose the failure by looking through the system's
// constraints.
diagnoseFailureForExpr(expr);
return true;
}
static void diagnoseOperatorAmbiguity(ConstraintSystem &cs,
Identifier operatorName,
ArrayRef<Solution> solutions,
ConstraintLocator *locator) {
auto &TC = cs.getTypeChecker();
auto *anchor = locator->getAnchor();
auto *applyExpr = dyn_cast_or_null<ApplyExpr>(cs.getParentExpr(anchor));
if (!applyExpr)
return;
const auto &solution = solutions.front();
if (auto *binaryOp = dyn_cast<BinaryExpr>(applyExpr)) {
auto *lhs = binaryOp->getArg()->getElement(0);
auto *rhs = binaryOp->getArg()->getElement(1);
auto lhsType = solution.simplifyType(cs.getType(lhs))->getRValueType();
auto rhsType = solution.simplifyType(cs.getType(rhs))->getRValueType();
if (lhsType->isEqual(rhsType)) {
TC.diagnose(anchor->getLoc(), diag::cannot_apply_binop_to_same_args,
operatorName.str(), lhsType)
.highlight(lhs->getSourceRange())
.highlight(rhs->getSourceRange());
} else {
TC.diagnose(anchor->getLoc(), diag::cannot_apply_binop_to_args,
operatorName.str(), lhsType, rhsType)
.highlight(lhs->getSourceRange())
.highlight(rhs->getSourceRange());
}
} else {
auto argType = solution.simplifyType(cs.getType(applyExpr->getArg()));
TC.diagnose(anchor->getLoc(), diag::cannot_apply_unop_to_arg,
operatorName.str(), argType->getRValueType());
}
std::set<std::string> parameters;
for (const auto &solution : solutions) {
auto overload = solution.getOverloadChoice(locator);
auto overloadType = overload.openedType;
// Let's suggest only concrete overloads here.
// Notes are going to take care of the rest,
// since printing types like `(Self, Self)` is not
// really useful.
if (overloadType->hasTypeVariable())
continue;
if (auto *fnType = overloadType->getAs<FunctionType>())
parameters.insert(
FunctionType::getParamListAsString(fnType->getParams()));
}
TC.diagnose(anchor->getLoc(), diag::suggest_partial_overloads,
/*isResult=*/false, operatorName.str(),
llvm::join(parameters, ", "));
}
bool ConstraintSystem::diagnoseAmbiguityWithFixes(
Expr *expr, ArrayRef<Solution> solutions) {
if (solutions.empty())
return false;
// Problems related to fixes forming ambiguous solution set
// could only be diagnosed (at the moment), if all of the fixes
// have the same callee locator, which means they fix different
// overloads of the same declaration.
ConstraintLocator *commonCalleeLocator = nullptr;
SmallPtrSet<ValueDecl *, 4> distinctChoices;
SmallVector<std::pair<const Solution *, const ConstraintFix *>, 4>
viableSolutions;
bool diagnosable = llvm::all_of(solutions, [&](const Solution &solution) {
ArrayRef<ConstraintFix *> fixes = solution.Fixes;
// Currently only support a single fix in a solution,
// but ultimately should be able to deal with multiple.
if (fixes.size() != 1)
return false;
const auto *fix = fixes.front();
auto *calleeLocator = getCalleeLocator(fix->getLocator());
if (commonCalleeLocator && commonCalleeLocator != calleeLocator)
return false;
commonCalleeLocator = calleeLocator;
auto overload = solution.getOverloadChoiceIfAvailable(calleeLocator);
if (!overload)
return false;
auto *decl = overload->choice.getDeclOrNull();
if (!decl)
return false;
// If this declaration is distinct, let's record this solution
// as viable, otherwise we'd produce the same diagnostic multiple
// times, which means that actual problem is elsewhere.
if (distinctChoices.insert(decl).second)
viableSolutions.push_back({&solution, fix});
return true;
});
if (!diagnosable || viableSolutions.size() < 2)
return false;
auto *decl = *distinctChoices.begin();
assert(solverState);
bool diagnosed = true;
{
DiagnosticTransaction transaction(TC.Diags);
const auto *fix = viableSolutions.front().second;
auto *commonAnchor = commonCalleeLocator->getAnchor();
if (fix->getKind() == FixKind::UseSubscriptOperator) {
auto *UDE = cast<UnresolvedDotExpr>(commonAnchor);
TC.diagnose(commonAnchor->getLoc(),
diag::could_not_find_subscript_member_did_you_mean,
getType(UDE->getBase()));
} else {
auto name = decl->getFullName();
// Three choices here:
// 1. If this is a special name avoid printing it because
// printing kind is sufficient;
// 2. If all of the labels match, print a full name;
// 3. If labels in different choices are different, it means
// that we can only print a base name.
if (name.isSpecial()) {
TC.diagnose(commonAnchor->getLoc(),
diag::no_overloads_match_exactly_in_call_special,
decl->getDescriptiveKind());
} else if (name.isOperator()) {
auto operatorId = name.getBaseIdentifier();
diagnoseOperatorAmbiguity(*this, operatorId, solutions,
commonCalleeLocator);
} else if (llvm::all_of(distinctChoices,
[&name](const ValueDecl *choice) {
return choice->getFullName() == name;
})) {
TC.diagnose(commonAnchor->getLoc(),
diag::no_overloads_match_exactly_in_call,
decl->getDescriptiveKind(), name);
} else {
TC.diagnose(commonAnchor->getLoc(),
diag::no_overloads_match_exactly_in_call_no_labels,
decl->getDescriptiveKind(), name.getBaseName());
}
}
for (const auto &viable : viableSolutions) {
// Create scope so each applied solution is rolled back.
ConstraintSystem::SolverScope scope(*this);
applySolution(*viable.first);
// All of the solutions supposed to produce a "candidate" note.
diagnosed &= viable.second->diagnose(expr, /*asNote*/ true);
}
// If not all of the fixes produced a note, we can't diagnose this.
if (!diagnosed)
transaction.abort();
}
return diagnosed;
}
/// Determine the number of distinct overload choices in the
/// provided set.
static unsigned countDistinctOverloads(ArrayRef<OverloadChoice> choices) {
llvm::SmallPtrSet<void *, 4> uniqueChoices;
unsigned result = 0;
for (auto choice : choices) {
if (uniqueChoices.insert(choice.getOpaqueChoiceSimple()).second)
++result;
}
return result;
}
/// Determine the name of the overload in a set of overload choices.
static DeclName getOverloadChoiceName(ArrayRef<OverloadChoice> choices) {
DeclName name;
for (auto choice : choices) {
if (!choice.isDecl())
continue;
DeclName nextName = choice.getDecl()->getFullName();
if (!name) {
name = nextName;
continue;
}
if (name != nextName) {
// Assume all choices have the same base name and only differ in
// argument labels. This may not be a great assumption, but we don't
// really have a way to recover for diagnostics otherwise.
return name.getBaseName();
}
}
return name;
}
bool ConstraintSystem::diagnoseAmbiguity(Expr *expr,
ArrayRef<Solution> solutions) {
// Produce a diff of the solutions.
SolutionDiff diff(solutions);
// Find the locators which have the largest numbers of distinct overloads.
Optional<unsigned> bestOverload;
// Overloads are scored by lexicographical comparison of (# of distinct
// overloads, depth, *reverse* of the index). N.B. - cannot be used for the
// reversing: the score version of index == 0 should be > than that of 1, but
// -0 == 0 < UINT_MAX == -1, whereas ~0 == UINT_MAX > UINT_MAX - 1 == ~1.
auto score = [](unsigned distinctOverloads, unsigned depth, unsigned index) {
return std::make_tuple(distinctOverloads, depth, ~index);
};
auto bestScore = score(0, 0, std::numeric_limits<unsigned>::max());
// Get a map of expressions to their depths and post-order traversal indices.
// Heuristically, all other things being equal, we should complain about the
// ambiguous expression that (1) has the most overloads, (2) is deepest, or
// (3) comes earliest in the expression.
auto depthMap = expr->getDepthMap();
auto indexMap = expr->getPreorderIndexMap();
for (unsigned i = 0, n = diff.overloads.size(); i != n; ++i) {
auto &overload = diff.overloads[i];
// If we can't resolve the locator to an anchor expression with no path,
// we can't diagnose this well.
auto *anchor = simplifyLocatorToAnchor(overload.locator);
if (!anchor)
continue;
auto it = indexMap.find(anchor);
if (it == indexMap.end())
continue;
unsigned index = it->second;
auto e = depthMap.find(anchor);
if (e == depthMap.end())
continue;
unsigned depth = e->second.first;
// If we don't have a name to hang on to, it'll be hard to diagnose this
// overload.
if (!getOverloadChoiceName(overload.choices))
continue;
unsigned distinctOverloads = countDistinctOverloads(overload.choices);
// We need at least two overloads to make this interesting.
if (distinctOverloads < 2)
continue;
// If we have more distinct overload choices for this locator than for
// prior locators, just keep this locator.
auto thisScore = score(distinctOverloads, depth, index);
if (thisScore > bestScore) {
bestScore = thisScore;
bestOverload = i;
continue;
}
// We have better results. Ignore this one.
}
// FIXME: Should be able to pick the best locator, e.g., based on some
// depth-first numbering of expressions.
if (bestOverload) {
auto &overload = diff.overloads[*bestOverload];
auto name = getOverloadChoiceName(overload.choices);
auto anchor = simplifyLocatorToAnchor(overload.locator);
// Emit the ambiguity diagnostic.
auto &tc = getTypeChecker();
tc.diagnose(anchor->getLoc(),
name.isOperator() ? diag::ambiguous_operator_ref
: diag::ambiguous_decl_ref,
name);
TrailingClosureAmbiguityFailure failure(expr, *this, anchor,
overload.choices);
if (failure.diagnoseAsNote())
return true;
// Emit candidates. Use a SmallPtrSet to make sure only emit a particular
// candidate once. FIXME: Why is one candidate getting into the overload
// set multiple times? (See also tryDiagnoseTrailingClosureAmbiguity.)
SmallPtrSet<Decl *, 8> EmittedDecls;
for (auto choice : overload.choices) {
switch (choice.getKind()) {
case OverloadChoiceKind::Decl:
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
// FIXME: show deduced types, etc, etc.
if (EmittedDecls.insert(choice.getDecl()).second)
tc.diagnose(choice.getDecl(), diag::found_candidate);
break;
case OverloadChoiceKind::KeyPathApplication:
case OverloadChoiceKind::DynamicMemberLookup:
case OverloadChoiceKind::KeyPathDynamicMemberLookup:
// Skip key path applications and dynamic member lookups, since we don't
// want them to noise up unrelated subscript diagnostics.
break;
case OverloadChoiceKind::BaseType:
case OverloadChoiceKind::TupleIndex:
// FIXME: Actually diagnose something here.
break;
}
}
return true;
}
// FIXME: If we inferred different types for literals (for example),
// could diagnose ambiguity that way as well.
return false;
}
ConstraintLocator *
constraints::simplifyLocator(ConstraintSystem &cs, ConstraintLocator *locator,
SourceRange &range) {
auto path = locator->getPath();
auto anchor = locator->getAnchor();
simplifyLocator(anchor, path, range);
// If we didn't simplify anything, just return the input.
if (anchor == locator->getAnchor() &&
path.size() == locator->getPath().size()) {
return locator;
}
// If the old locator didn't have any summary flags, neither will the
// simplified version, as it must contain a subset of the path elements.
if (locator->getSummaryFlags() == 0)
return cs.getConstraintLocator(anchor, path, /*summaryFlags*/ 0);
return cs.getConstraintLocator(anchor, path);
}
void constraints::simplifyLocator(Expr *&anchor,
ArrayRef<LocatorPathElt> &path,
SourceRange &range) {
range = SourceRange();
while (!path.empty()) {
switch (path[0].getKind()) {
case ConstraintLocator::ApplyArgument: {
// Extract application argument.
if (auto applyExpr = dyn_cast<ApplyExpr>(anchor)) {
anchor = applyExpr->getArg();
path = path.slice(1);
continue;
}
if (auto subscriptExpr = dyn_cast<SubscriptExpr>(anchor)) {
anchor = subscriptExpr->getIndex();
path = path.slice(1);
continue;
}
if (auto objectLiteralExpr = dyn_cast<ObjectLiteralExpr>(anchor)) {
anchor = objectLiteralExpr->getArg();
path = path.slice(1);
continue;
}
if (auto *UME = dyn_cast<UnresolvedMemberExpr>(anchor)) {
anchor = UME->getArgument();
path = path.slice(1);
continue;
}
break;
}
case ConstraintLocator::ApplyFunction:
// Extract application function.
if (auto applyExpr = dyn_cast<ApplyExpr>(anchor)) {
anchor = applyExpr->getFn();
path = path.slice(1);
continue;
}
// The subscript itself is the function.
if (auto subscriptExpr = dyn_cast<SubscriptExpr>(anchor)) {
anchor = subscriptExpr;
path = path.slice(1);
continue;
}
// The unresolved member itself is the function.
if (auto unresolvedMember = dyn_cast<UnresolvedMemberExpr>(anchor)) {
if (unresolvedMember->getArgument()) {
anchor = unresolvedMember;
path = path.slice(1);
continue;
}
}
break;
case ConstraintLocator::AutoclosureResult:
case ConstraintLocator::LValueConversion:
case ConstraintLocator::RValueAdjustment:
case ConstraintLocator::UnresolvedMember:
// Arguments in autoclosure positions, lvalue and rvalue adjustments, and
// scalar-to-tuple conversions, and unresolved members are
// implicit.
path = path.slice(1);
continue;
case ConstraintLocator::NamedTupleElement:
case ConstraintLocator::TupleElement: {
// Extract tuple element.
auto elt = path[0].castTo<LocatorPathElt::AnyTupleElement>();
unsigned index = elt.getIndex();
if (auto tupleExpr = dyn_cast<TupleExpr>(anchor)) {
if (index < tupleExpr->getNumElements()) {
anchor = tupleExpr->getElement(index);
path = path.slice(1);
continue;
}
}
if (auto *CE = dyn_cast<CollectionExpr>(anchor)) {
if (index < CE->getNumElements()) {
anchor = CE->getElement(index);
path = path.slice(1);
continue;
}
}
break;
}
case ConstraintLocator::ApplyArgToParam: {
auto elt = path[0].castTo<LocatorPathElt::ApplyArgToParam>();
// Extract tuple element.
if (auto tupleExpr = dyn_cast<TupleExpr>(anchor)) {
unsigned index = elt.getArgIdx();
if (index < tupleExpr->getNumElements()) {
anchor = tupleExpr->getElement(index);
path = path.slice(1);
continue;
}
}
// Extract subexpression in parentheses.
if (auto parenExpr = dyn_cast<ParenExpr>(anchor)) {
// This simplication request could be for a synthesized argument.
if (elt.getArgIdx() == 0) {
anchor = parenExpr->getSubExpr();
path = path.slice(1);
continue;
}
}
break;
}
case ConstraintLocator::ConstructorMember:
if (auto typeExpr = dyn_cast<TypeExpr>(anchor)) {
// This is really an implicit 'init' MemberRef, so point at the base,
// i.e. the TypeExpr.
range = SourceRange();
anchor = typeExpr;
path = path.slice(1);
continue;
}
LLVM_FALLTHROUGH;
case ConstraintLocator::Member:
case ConstraintLocator::MemberRefBase:
if (auto UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
range = UDE->getNameLoc().getSourceRange();
anchor = UDE->getBase();
path = path.slice(1);
continue;
}
break;
case ConstraintLocator::SubscriptMember:
if (isa<SubscriptExpr>(anchor)) {
path = path.slice(1);
continue;
}
break;
case ConstraintLocator::ClosureResult:
if (auto CE = dyn_cast<ClosureExpr>(anchor)) {
if (CE->hasSingleExpressionBody()) {
anchor = CE->getSingleExpressionBody();
path = path.slice(1);
continue;
}
}
break;
case ConstraintLocator::ContextualType:
// This was just for identifying purposes, strip it off.
path = path.slice(1);
continue;
case ConstraintLocator::KeyPathComponent: {
auto elt = path[0].castTo<LocatorPathElt::KeyPathComponent>();
// If the next element is an ApplyArgument, we can simplify by looking
// into the index expression.
if (path.size() < 2 ||
path[1].getKind() != ConstraintLocator::ApplyArgument)
break;
if (auto *kpe = dyn_cast<KeyPathExpr>(anchor)) {
auto component = kpe->getComponents()[elt.getIndex()];
auto indexExpr = component.getIndexExpr();
assert(indexExpr && "Trying to apply a component without an index?");
anchor = indexExpr;
path = path.slice(2);
continue;
}
break;
}
default:
// FIXME: Lots of other cases to handle.
break;
}
// If we get here, we couldn't simplify the path further.
break;
}
}
Expr *constraints::simplifyLocatorToAnchor(ConstraintLocator *locator) {
if (!locator)
return nullptr;
auto *anchor = locator->getAnchor();
if (!anchor)
return nullptr;
SourceRange range;
auto path = locator->getPath();
simplifyLocator(anchor, path, range);
// We only want the new anchor if all the path elements have been simplified
// away.
return path.empty() ? anchor : nullptr;
}
Expr *constraints::getArgumentExpr(Expr *expr, unsigned index) {
Expr *argExpr = nullptr;
if (auto *AE = dyn_cast<ApplyExpr>(expr))
argExpr = AE->getArg();
else if (auto *UME = dyn_cast<UnresolvedMemberExpr>(expr))
argExpr = UME->getArgument();
else if (auto *SE = dyn_cast<SubscriptExpr>(expr))
argExpr = SE->getIndex();
else
return nullptr;
if (auto *PE = dyn_cast<ParenExpr>(argExpr)) {
assert(index == 0);
return PE->getSubExpr();
}
assert(isa<TupleExpr>(argExpr));
return cast<TupleExpr>(argExpr)->getElement(index);
}
bool constraints::isAutoClosureArgument(Expr *argExpr) {
if (!argExpr)
return false;
if (auto *DRE = dyn_cast<DeclRefExpr>(argExpr)) {
if (auto *param = dyn_cast<ParamDecl>(DRE->getDecl()))
return param->isAutoClosure();
}
return false;
}
bool constraints::hasAppliedSelf(ConstraintSystem &cs,
const OverloadChoice &choice) {
auto *decl = choice.getDeclOrNull();
if (!decl)
return false;
auto baseType = choice.getBaseType();
if (baseType)
baseType = cs.getFixedTypeRecursive(baseType, /*wantRValue=*/true);
// In most cases where we reference a declaration with a curried self
// parameter, it gets dropped from the type of the reference.
return decl->hasCurriedSelf() &&
doesMemberRefApplyCurriedSelf(baseType, decl);
}
bool constraints::conformsToKnownProtocol(ConstraintSystem &cs, Type type,
KnownProtocolKind protocol) {
if (auto *proto = cs.TC.getProtocol(SourceLoc(), protocol))
return bool(TypeChecker::conformsToProtocol(
type, proto, cs.DC, ConformanceCheckFlags::InExpression));
return false;
}
/// Check whether given type conforms to `RawPepresentable` protocol
/// and return the witness type.
Type constraints::isRawRepresentable(ConstraintSystem &cs, Type type) {
auto &TC = cs.TC;
auto *DC = cs.DC;
auto rawReprType =
TC.getProtocol(SourceLoc(), KnownProtocolKind::RawRepresentable);
if (!rawReprType)
return Type();
auto conformance = TypeChecker::conformsToProtocol(
type, rawReprType, DC, ConformanceCheckFlags::InExpression);
if (!conformance)
return Type();
return conformance->getTypeWitnessByName(type, TC.Context.Id_RawValue);
}
Type constraints::isRawRepresentable(
ConstraintSystem &cs, Type type,
KnownProtocolKind rawRepresentableProtocol) {
Type rawTy = isRawRepresentable(cs, type);
if (!rawTy || !conformsToKnownProtocol(cs, rawTy, rawRepresentableProtocol))
return Type();
return rawTy;
}
void ConstraintSystem::generateConstraints(
SmallVectorImpl<Constraint *> &constraints, Type type,
ArrayRef<OverloadChoice> choices, DeclContext *useDC,
ConstraintLocator *locator, Optional<unsigned> favoredIndex,
bool requiresFix,
llvm::function_ref<ConstraintFix *(unsigned, const OverloadChoice &)>
getFix) {
auto recordChoice = [&](SmallVectorImpl<Constraint *> &choices,
unsigned index, const OverloadChoice &overload,
bool isFavored = false) {
auto *fix = getFix(index, overload);
// If fix is required but it couldn't be determined, this
// choice has be filtered out.
if (requiresFix && !fix)
return;
auto *choice = fix ? Constraint::createFixedChoice(*this, type, overload,
useDC, fix, locator)
: Constraint::createBindOverload(*this, type, overload,
useDC, locator);
if (isFavored)
choice->setFavored();
choices.push_back(choice);
};
if (favoredIndex) {
const auto &choice = choices[*favoredIndex];
assert((!choice.isDecl() ||
!choice.getDecl()->getAttrs().isUnavailable(getASTContext())) &&
"Cannot make unavailable decl favored!");
recordChoice(constraints, *favoredIndex, choice, /*isFavored=*/true);
}
for (auto index : indices(choices)) {
if (favoredIndex && (*favoredIndex == index))
continue;
recordChoice(constraints, index, choices[index]);
}
}
ConstraintLocator *
ConstraintSystem::getArgumentInfoLocator(ConstraintLocator *locator) {
auto *anchor = locator->getAnchor();
if (!anchor)
return nullptr;
if (auto *apply = dyn_cast<ApplyExpr>(anchor)) {
auto *fnExpr = getArgumentLabelTargetExpr(apply->getFn());
return getConstraintLocator(fnExpr);
}
return getCalleeLocator(locator);
}
Optional<ConstraintSystem::ArgumentInfo>
ConstraintSystem::getArgumentInfo(ConstraintLocator *locator) {
if (!locator)
return None;
if (auto *infoLocator = getArgumentInfoLocator(locator)) {
auto known = ArgumentInfos.find(infoLocator);
if (known != ArgumentInfos.end())
return known->second;
}
return None;
}
bool constraints::isKnownKeyPathType(Type type) {
if (auto *BGT = type->getAs<BoundGenericType>())
return isKnownKeyPathDecl(type->getASTContext(), BGT->getDecl());
return false;
}
bool constraints::isKnownKeyPathDecl(ASTContext &ctx, ValueDecl *decl) {
return decl == ctx.getKeyPathDecl() || decl == ctx.getWritableKeyPathDecl() ||
decl == ctx.getReferenceWritableKeyPathDecl() ||
decl == ctx.getPartialKeyPathDecl() || decl == ctx.getAnyKeyPathDecl();
}
static bool isOperator(Expr *expr, StringRef expectedName) {
auto name = getOperatorName(expr);
return name ? name->is(expectedName) : false;
}
Optional<Identifier> constraints::getOperatorName(Expr *expr) {
ValueDecl *choice = nullptr;
if (auto *ODRE = dyn_cast_or_null<OverloadedDeclRefExpr>(expr)) {
choice = ODRE->getDecls().front();
} else if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(expr)) {
choice = DRE->getDecl();
} else {
return None;
}
if (auto *FD = dyn_cast_or_null<AbstractFunctionDecl>(choice))
return FD->getBaseName().getIdentifier();
return None;
}
bool constraints::isPatternMatchingOperator(Expr *expr) {
return isOperator(expr, "~=");
}
bool constraints::isArgumentOfPatternMatchingOperator(
ConstraintLocator *locator) {
auto *binaryOp = dyn_cast_or_null<BinaryExpr>(locator->getAnchor());
if (!(binaryOp && binaryOp->isImplicit()))
return false;
return isPatternMatchingOperator(binaryOp->getFn());
}
bool constraints::isArgumentOfReferenceEqualityOperator(
ConstraintLocator *locator) {
if (!locator->findLast<LocatorPathElt::ApplyArgToParam>())
return false;
if (auto *binaryOp = dyn_cast_or_null<BinaryExpr>(locator->getAnchor())) {
auto *fnExpr = binaryOp->getFn();
return isOperator(fnExpr, "===") || isOperator(fnExpr, "!==");
}
return false;
}