blob: 37e6f7fea34856b28ad6d40999437c13a7485039 [file] [log] [blame]
//===--- CSGen.cpp - Constraint Generator ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements constraint generation for the type checker.
//
//===----------------------------------------------------------------------===//
#include "ConstraintGraph.h"
#include "ConstraintSystem.h"
#include "TypeCheckType.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Sema/IDETypeChecking.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include <utility>
using namespace swift;
using namespace swift::constraints;
/// Find the declaration directly referenced by this expression.
static std::pair<ValueDecl *, FunctionRefKind>
findReferencedDecl(Expr *expr, DeclNameLoc &loc) {
do {
expr = expr->getSemanticsProvidingExpr();
if (auto ice = dyn_cast<ImplicitConversionExpr>(expr)) {
expr = ice->getSubExpr();
continue;
}
if (auto dre = dyn_cast<DeclRefExpr>(expr)) {
loc = dre->getNameLoc();
return { dre->getDecl(), dre->getFunctionRefKind() };
}
return { nullptr, FunctionRefKind::Unapplied };
} while (true);
}
static bool isArithmeticOperatorDecl(ValueDecl *vd) {
return vd &&
(vd->getBaseName() == "+" ||
vd->getBaseName() == "-" ||
vd->getBaseName() == "*" ||
vd->getBaseName() == "/" ||
vd->getBaseName() == "%");
}
static bool mergeRepresentativeEquivalenceClasses(ConstraintSystem &CS,
TypeVariableType* tyvar1,
TypeVariableType* tyvar2) {
if (tyvar1 && tyvar2) {
auto rep1 = CS.getRepresentative(tyvar1);
auto rep2 = CS.getRepresentative(tyvar2);
if (rep1 != rep2) {
auto fixedType2 = CS.getFixedType(rep2);
// If the there exists fixed type associated with the second
// type variable, and we simply merge two types together it would
// mean that portion of the constraint graph previously associated
// with that (second) variable is going to be disconnected from its
// new equivalence class, which is going to lead to incorrect solutions,
// so we need to make sure to re-bind fixed to the new representative.
if (fixedType2) {
CS.addConstraint(ConstraintKind::Bind, fixedType2, rep1,
rep1->getImpl().getLocator());
}
CS.mergeEquivalenceClasses(rep1, rep2, /*updateWorkList*/ false);
return true;
}
}
return false;
}
namespace {
/// Internal struct for tracking information about types within a series
/// of "linked" expressions. (Such as a chain of binary operator invocations.)
struct LinkedTypeInfo {
unsigned haveIntLiteral : 1;
unsigned haveFloatLiteral : 1;
unsigned haveStringLiteral : 1;
llvm::SmallSet<TypeBase*, 16> collectedTypes;
llvm::SmallVector<TypeVariableType *, 16> intLiteralTyvars;
llvm::SmallVector<TypeVariableType *, 16> floatLiteralTyvars;
llvm::SmallVector<TypeVariableType *, 16> stringLiteralTyvars;
llvm::SmallVector<BinaryExpr *, 4> binaryExprs;
// TODO: manage as a set of lists, to speed up addition of binding
// constraints.
llvm::SmallVector<DeclRefExpr *, 16> anonClosureParams;
LinkedTypeInfo() {
haveIntLiteral = false;
haveFloatLiteral = false;
haveStringLiteral = false;
}
bool hasLiteral() {
return haveIntLiteral || haveFloatLiteral || haveStringLiteral;
}
};
/// Walks an expression sub-tree, and collects information about expressions
/// whose types are mutually dependent upon one another.
class LinkedExprCollector : public ASTWalker {
llvm::SmallVectorImpl<Expr*> &LinkedExprs;
ConstraintSystem &CS;
public:
LinkedExprCollector(llvm::SmallVectorImpl<Expr *> &linkedExprs,
ConstraintSystem &cs)
: LinkedExprs(linkedExprs), CS(cs) {}
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
if (CS.shouldReusePrecheckedType() &&
!CS.getType(expr)->hasTypeVariable()) {
return { false, expr };
}
// Store top-level binary exprs for further analysis.
if (isa<BinaryExpr>(expr) ||
// Literal exprs are contextually typed, so store them off as well.
isa<LiteralExpr>(expr) ||
// We'd like to take a look at implicit closure params, so store
// them.
isa<ClosureExpr>(expr) ||
// We'd like to look at the elements of arrays and dictionaries.
isa<ArrayExpr>(expr) ||
isa<DictionaryExpr>(expr) ||
// assignment expression can involve anonymous closure parameters
// as source and destination, so it's beneficial for diagnostics if
// we look at the assignment.
isa<AssignExpr>(expr)) {
LinkedExprs.push_back(expr);
return {false, expr};
}
return { true, expr };
}
Expr *walkToExprPost(Expr *expr) override {
return expr;
}
/// Ignore statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
return { false, stmt };
}
/// Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
/// Ignore patterns.
std::pair<bool, Pattern*> walkToPatternPre(Pattern *pat) override {
return { false, pat };
}
/// Ignore types.
bool walkToTypeLocPre(TypeLoc &TL) override { return false; }
};
/// Given a collection of "linked" expressions, analyzes them for
/// commonalities regarding their types. This will help us compute a
/// "best common type" from the expression types.
class LinkedExprAnalyzer : public ASTWalker {
LinkedTypeInfo &LTI;
ConstraintSystem &CS;
public:
LinkedExprAnalyzer(LinkedTypeInfo &lti, ConstraintSystem &cs) :
LTI(lti), CS(cs) {}
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
if (CS.shouldReusePrecheckedType() &&
!CS.getType(expr)->hasTypeVariable()) {
return { false, expr };
}
if (isa<IntegerLiteralExpr>(expr)) {
LTI.haveIntLiteral = true;
auto tyvar = CS.getType(expr)->getAs<TypeVariableType>();
if (tyvar) {
LTI.intLiteralTyvars.push_back(tyvar);
}
return { false, expr };
}
if (isa<FloatLiteralExpr>(expr)) {
LTI.haveFloatLiteral = true;
auto tyvar = CS.getType(expr)->getAs<TypeVariableType>();
if (tyvar) {
LTI.floatLiteralTyvars.push_back(tyvar);
}
return { false, expr };
}
if (isa<StringLiteralExpr>(expr)) {
LTI.haveStringLiteral = true;
auto tyvar = CS.getType(expr)->getAs<TypeVariableType>();
if (tyvar) {
LTI.stringLiteralTyvars.push_back(tyvar);
}
return { false, expr };
}
if (isa<CollectionExpr>(expr)) {
return { true, expr };
}
if (auto UDE = dyn_cast<UnresolvedDotExpr>(expr)) {
if (CS.hasType(UDE))
LTI.collectedTypes.insert(CS.getType(UDE).getPointer());
// Don't recurse into the base expression.
return { false, expr };
}
if (isa<ClosureExpr>(expr)) {
return { true, expr };
}
if (auto FVE = dyn_cast<ForceValueExpr>(expr)) {
LTI.collectedTypes.insert(CS.getType(FVE).getPointer());
return { false, expr };
}
if (auto DRE = dyn_cast<DeclRefExpr>(expr)) {
if (auto varDecl = dyn_cast<VarDecl>(DRE->getDecl())) {
if (isa<ParamDecl>(varDecl) &&
cast<ParamDecl>(varDecl)->isAnonClosureParam()) {
LTI.anonClosureParams.push_back(DRE);
} else if (CS.hasType(DRE)) {
LTI.collectedTypes.insert(CS.getType(DRE).getPointer());
}
return { false, expr };
}
}
// In the case of a function application, we would have already captured
// the return type during constraint generation, so there's no use in
// looking any further.
if (isa<ApplyExpr>(expr) &&
!(isa<BinaryExpr>(expr) || isa<PrefixUnaryExpr>(expr) ||
isa<PostfixUnaryExpr>(expr))) {
return { false, expr };
}
if (isa<BinaryExpr>(expr)) {
LTI.binaryExprs.push_back(dyn_cast<BinaryExpr>(expr));
}
if (auto favoredType = CS.getFavoredType(expr)) {
LTI.collectedTypes.insert(favoredType);
return { false, expr };
}
// Optimize branches of a conditional expression separately.
if (auto IE = dyn_cast<IfExpr>(expr)) {
CS.optimizeConstraints(IE->getCondExpr());
CS.optimizeConstraints(IE->getThenExpr());
CS.optimizeConstraints(IE->getElseExpr());
return { false, expr };
}
// For exprs of a structural type that are not modeling argument lists,
// avoid merging the type variables. (We need to allow for cases like
// (Int, Int32).)
if (isa<TupleExpr>(expr) && !isa<ApplyExpr>(Parent.getAsExpr())) {
return { false, expr };
}
// Coercion exprs have a rigid type, so there's no use in gathering info
// about them.
if (auto *coercion = dyn_cast<CoerceExpr>(expr)) {
// Let's not collect information about types initialized by
// coercions just like we don't for regular initializer calls,
// because that might lead to overly eager type variable merging.
if (!coercion->isLiteralInit())
LTI.collectedTypes.insert(CS.getType(expr).getPointer());
return { false, expr };
}
// Don't walk into subscript expressions - to do so would risk factoring
// the index expression into edge contraction. (We don't want to do this
// if the index expression is a literal type that differs from the return
// type of the subscript operation.)
if (isa<SubscriptExpr>(expr) || isa<DynamicLookupExpr>(expr)) {
return { false, expr };
}
// Don't walk into unresolved member expressions - we avoid merging type
// variables inside UnresolvedMemberExpr and those outside, since they
// should be allowed to behave independently in CS.
if (isa<UnresolvedMemberExpr>(expr)) {
return {false, expr };
}
return { true, expr };
}
/// Ignore statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
return { false, stmt };
}
/// Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
/// Ignore patterns.
std::pair<bool, Pattern*> walkToPatternPre(Pattern *pat) override {
return { false, pat };
}
/// Ignore types.
bool walkToTypeLocPre(TypeLoc &TL) override { return false; }
};
/// For a given expression, given information that is global to the
/// expression, attempt to derive a favored type for it.
bool computeFavoredTypeForExpr(Expr *expr, ConstraintSystem &CS) {
LinkedTypeInfo lti;
expr->walk(LinkedExprAnalyzer(lti, CS));
// Link anonymous closure params of the same index.
// TODO: As stated above, we should bucket these whilst collecting the
// exprs to avoid quadratic behavior.
for (auto acp1 : lti.anonClosureParams) {
for (auto acp2 : lti.anonClosureParams) {
if (acp1 == acp2)
continue;
if (acp1->getDecl()->getBaseName() == acp2->getDecl()->getBaseName()) {
auto tyvar1 = CS.getType(acp1)->getAs<TypeVariableType>();
auto tyvar2 = CS.getType(acp2)->getAs<TypeVariableType>();
mergeRepresentativeEquivalenceClasses(CS, tyvar1, tyvar2);
}
}
}
auto mergeTypeVariables = [&](ArrayRef<TypeVariableType *> typeVars) {
if (typeVars.size() < 2)
return;
auto rep1 = CS.getRepresentative(typeVars.front());
for (unsigned i = 1, n = typeVars.size(); i != n; ++i) {
auto rep2 = CS.getRepresentative(typeVars[i]);
if (rep1 != rep2)
CS.mergeEquivalenceClasses(rep1, rep2, /*updateWorkList*/ false);
}
};
mergeTypeVariables(lti.intLiteralTyvars);
mergeTypeVariables(lti.floatLiteralTyvars);
mergeTypeVariables(lti.stringLiteralTyvars);
if (lti.collectedTypes.size() == 1) {
// TODO: Compute the BCT.
// It's only useful to favor the type instead of
// binding it directly to arguments/result types,
// which means in case it has been miscalculated
// solver can still make progress.
auto favoredTy = (*lti.collectedTypes.begin())->getWithoutSpecifierType();
CS.setFavoredType(expr, favoredTy.getPointer());
// If we have a chain of identical binop expressions with homogeneous
// argument types, we can directly simplify the associated constraint
// graph.
auto simplifyBinOpExprTyVars = [&]() {
// Don't attempt to do linking if there are
// literals intermingled with other inferred types.
if (lti.hasLiteral())
return;
for (auto binExp1 : lti.binaryExprs) {
for (auto binExp2 : lti.binaryExprs) {
if (binExp1 == binExp2)
continue;
auto fnTy1 = CS.getType(binExp1)->getAs<TypeVariableType>();
auto fnTy2 = CS.getType(binExp2)->getAs<TypeVariableType>();
if (!(fnTy1 && fnTy2))
return;
auto ODR1 = dyn_cast<OverloadedDeclRefExpr>(binExp1->getFn());
auto ODR2 = dyn_cast<OverloadedDeclRefExpr>(binExp2->getFn());
if (!(ODR1 && ODR2))
return;
// TODO: We currently limit this optimization to known arithmetic
// operators, but we should be able to broaden this out to
// logical operators as well.
if (!isArithmeticOperatorDecl(ODR1->getDecls()[0]))
return;
if (ODR1->getDecls()[0]->getBaseName() !=
ODR2->getDecls()[0]->getBaseName())
return;
// All things equal, we can merge the tyvars for the function
// types.
auto rep1 = CS.getRepresentative(fnTy1);
auto rep2 = CS.getRepresentative(fnTy2);
if (rep1 != rep2) {
CS.mergeEquivalenceClasses(rep1, rep2,
/*updateWorkList*/ false);
}
auto odTy1 = CS.getType(ODR1)->getAs<TypeVariableType>();
auto odTy2 = CS.getType(ODR2)->getAs<TypeVariableType>();
if (odTy1 && odTy2) {
auto odRep1 = CS.getRepresentative(odTy1);
auto odRep2 = CS.getRepresentative(odTy2);
// Since we'll be choosing the same overload, we can merge
// the overload tyvar as well.
if (odRep1 != odRep2)
CS.mergeEquivalenceClasses(odRep1, odRep2,
/*updateWorkList*/ false);
}
}
}
};
simplifyBinOpExprTyVars();
return true;
}
if (lti.haveFloatLiteral) {
if (auto floatProto =
CS.TC.Context.getProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral)) {
if (auto defaultType = CS.TC.getDefaultType(floatProto, CS.DC)) {
if (!CS.getFavoredType(expr)) {
CS.setFavoredType(expr, defaultType.getPointer());
}
return true;
}
}
}
if (lti.haveIntLiteral) {
if (auto intProto =
CS.TC.Context.getProtocol(
KnownProtocolKind::ExpressibleByIntegerLiteral)) {
if (auto defaultType = CS.TC.getDefaultType(intProto, CS.DC)) {
if (!CS.getFavoredType(expr)) {
CS.setFavoredType(expr, defaultType.getPointer());
}
return true;
}
}
}
if (lti.haveStringLiteral) {
if (auto stringProto =
CS.TC.Context.getProtocol(
KnownProtocolKind::ExpressibleByStringLiteral)) {
if (auto defaultType = CS.TC.getDefaultType(stringProto, CS.DC)) {
if (!CS.getFavoredType(expr)) {
CS.setFavoredType(expr, defaultType.getPointer());
}
return true;
}
}
}
return false;
}
/// Determine whether the given parameter type and argument should be
/// "favored" because they match exactly.
bool isFavoredParamAndArg(ConstraintSystem &CS,
Type paramTy,
Type argTy,
Type otherArgTy = Type()) {
// Determine the argument type.
argTy = argTy->getWithoutSpecifierType();
// Do the types match exactly?
if (paramTy->isEqual(argTy))
return true;
llvm::SmallSetVector<ProtocolDecl *, 2> literalProtos;
if (auto argTypeVar = argTy->getAs<TypeVariableType>()) {
auto constraints = CS.getConstraintGraph().gatherConstraints(
argTypeVar,
ConstraintGraph::GatheringKind::EquivalenceClass,
[](Constraint *constraint) {
return constraint->getKind() == ConstraintKind::LiteralConformsTo;
});
for (auto constraint : constraints) {
literalProtos.insert(constraint->getProtocol());
}
}
// Dig out the second argument type.
if (otherArgTy)
otherArgTy = otherArgTy->getWithoutSpecifierType();
auto &tc = CS.getTypeChecker();
for (auto literalProto : literalProtos) {
// If there is another, concrete argument, check whether it's type
// conforms to the literal protocol and test against it directly.
// This helps to avoid 'widening' the favored type to the default type for
// the literal.
if (otherArgTy && otherArgTy->getAnyNominal()) {
if (otherArgTy->isEqual(paramTy) &&
TypeChecker::conformsToProtocol(otherArgTy, literalProto, CS.DC,
ConformanceCheckFlags::InExpression))
return true;
} else if (Type defaultType = tc.getDefaultType(literalProto, CS.DC)) {
// If there is a default type for the literal protocol, check whether
// it is the same as the parameter type.
// Check whether there is a default type to compare against.
if (paramTy->isEqual(defaultType))
return true;
}
}
return false;
}
/// Favor certain overloads in a call based on some basic analysis
/// of the overload set and call arguments.
///
/// \param expr The application.
/// \param isFavored Determine whether the given overload is favored, passing
/// it the "effective" overload type when it's being called.
/// \param mustConsider If provided, a function to detect the presence of
/// overloads which inhibit any overload from being favored.
void favorCallOverloads(ApplyExpr *expr,
ConstraintSystem &CS,
llvm::function_ref<bool(ValueDecl *, Type)> isFavored,
std::function<bool(ValueDecl *)>
mustConsider = nullptr) {
// Find the type variable associated with the function, if any.
auto tyvarType = CS.getType(expr->getFn())->getAs<TypeVariableType>();
if (!tyvarType || CS.getFixedType(tyvarType))
return;
// This type variable is only currently associated with the function
// being applied, and the only constraint attached to it should
// be the disjunction constraint for the overload group.
auto disjunction = CS.getUnboundBindOverloadDisjunction(tyvarType);
if (!disjunction)
return;
// Find the favored constraints and mark them.
SmallVector<Constraint *, 4> newlyFavoredConstraints;
unsigned numFavoredConstraints = 0;
Constraint *firstFavored = nullptr;
for (auto constraint : disjunction->getNestedConstraints()) {
auto *decl = constraint->getOverloadChoice().getDeclOrNull();
if (!decl)
continue;
if (mustConsider && mustConsider(decl)) {
// Roll back any constraints we favored.
for (auto favored : newlyFavoredConstraints)
favored->setFavored(false);
return;
}
Type overloadType =
CS.getEffectiveOverloadType(constraint->getOverloadChoice(),
/*allowMembers=*/true, CS.DC);
if (!overloadType)
continue;
if (!decl->getAttrs().isUnavailable(CS.getASTContext()) &&
!decl->getAttrs().hasAttribute<DisfavoredOverloadAttr>() &&
isFavored(decl, overloadType)) {
// If we might need to roll back the favored constraints, keep
// track of those we are favoring.
if (mustConsider && !constraint->isFavored())
newlyFavoredConstraints.push_back(constraint);
constraint->setFavored();
++numFavoredConstraints;
if (!firstFavored)
firstFavored = constraint;
}
}
// If there was one favored constraint, set the favored type based on its
// result type.
if (numFavoredConstraints == 1) {
auto overloadChoice = firstFavored->getOverloadChoice();
auto overloadType =
CS.getEffectiveOverloadType(overloadChoice, /*allowMembers=*/true,
CS.DC);
auto resultType = overloadType->castTo<AnyFunctionType>()->getResult();
if (!resultType->hasTypeParameter())
CS.setFavoredType(expr, resultType.getPointer());
}
}
size_t getOperandCount(Type t) {
size_t nOperands = 0;
if (auto parenTy = dyn_cast<ParenType>(t.getPointer())) {
if (parenTy->getDesugaredType())
nOperands = 1;
} else if (auto tupleTy = t->getAs<TupleType>()) {
nOperands = tupleTy->getElementTypes().size();
}
return nOperands;
}
/// Return a pair, containing the total parameter count of a function, coupled
/// with the number of non-default parameters.
std::pair<size_t, size_t> getParamCount(ValueDecl *VD) {
auto fTy = VD->getInterfaceType()->castTo<AnyFunctionType>();
size_t nOperands = fTy->getParams().size();
size_t nNoDefault = 0;
if (auto AFD = dyn_cast<AbstractFunctionDecl>(VD)) {
assert(!AFD->hasImplicitSelfDecl());
for (auto param : *AFD->getParameters()) {
if (!param->isDefaultArgument())
nNoDefault++;
}
} else {
nNoDefault = nOperands;
}
return { nOperands, nNoDefault };
}
/// Favor unary operator constraints where we have exact matches
/// for the operand and contextual type.
void favorMatchingUnaryOperators(ApplyExpr *expr,
ConstraintSystem &CS) {
// Determine whether the given declaration is favored.
auto isFavoredDecl = [&](ValueDecl *value, Type type) -> bool {
auto fnTy = type->getAs<AnyFunctionType>();
if (!fnTy)
return false;
Type paramTy = FunctionType::composeInput(CS.getASTContext(),
fnTy->getParams(), false);
auto resultTy = fnTy->getResult();
auto contextualTy = CS.getContextualType(expr);
return isFavoredParamAndArg(
CS, paramTy,
CS.getType(expr->getArg())->getWithoutParens()) &&
(!contextualTy || contextualTy->isEqual(resultTy));
};
favorCallOverloads(expr, CS, isFavoredDecl);
}
void favorMatchingOverloadExprs(ApplyExpr *expr,
ConstraintSystem &CS) {
// Find the argument type.
size_t nArgs = getOperandCount(CS.getType(expr->getArg()));
auto fnExpr = expr->getFn();
// Check to ensure that we have an OverloadedDeclRef, and that we're not
// favoring multiple overload constraints. (Otherwise, in this case
// favoring is useless.
if (auto ODR = dyn_cast<OverloadedDeclRefExpr>(fnExpr)) {
bool haveMultipleApplicableOverloads = false;
for (auto VD : ODR->getDecls()) {
if (VD->getInterfaceType()->is<AnyFunctionType>()) {
auto nParams = getParamCount(VD);
if (nArgs == nParams.first) {
if (haveMultipleApplicableOverloads) {
return;
} else {
haveMultipleApplicableOverloads = true;
}
}
}
}
// Determine whether the given declaration is favored.
auto isFavoredDecl = [&](ValueDecl *value, Type type) -> bool {
if (!type->is<AnyFunctionType>())
return false;
auto paramCount = getParamCount(value);
return nArgs == paramCount.first ||
nArgs == paramCount.second;
};
favorCallOverloads(expr, CS, isFavoredDecl);
}
if (auto favoredTy = CS.getFavoredType(expr->getArg())) {
// Determine whether the given declaration is favored.
auto isFavoredDecl = [&](ValueDecl *value, Type type) -> bool {
auto fnTy = type->getAs<AnyFunctionType>();
if (!fnTy)
return false;
auto paramTy =
AnyFunctionType::composeInput(CS.getASTContext(), fnTy->getParams(),
/*canonicalVararg*/ false);
return favoredTy->isEqual(paramTy);
};
// This is a hack to ensure we always consider the protocol requirement
// itself when calling something that has a default implementation in an
// extension. Otherwise, the extension method might be favored if we're
// inside an extension context, since any archetypes in the parameter
// list could match exactly.
auto mustConsider = [&](ValueDecl *value) -> bool {
return isa<ProtocolDecl>(value->getDeclContext());
};
favorCallOverloads(expr, CS,
isFavoredDecl,
mustConsider);
}
}
/// Favor binary operator constraints where we have exact matches
/// for the operands and contextual type.
void favorMatchingBinaryOperators(ApplyExpr *expr,
ConstraintSystem &CS) {
// If we're generating constraints for a binary operator application,
// there are two special situations to consider:
// 1. If the type checker has any newly created functions with the
// operator's name. If it does, the overloads were created after the
// associated overloaded id expression was created, and we'll need to
// add a new disjunction constraint for the new set of overloads.
// 2. If any component argument expressions (nested or otherwise) are
// literals, we can favor operator overloads whose argument types are
// identical to the literal type, or whose return types are identical
// to any contextual type associated with the application expression.
// Find the argument types.
auto argTy = CS.getType(expr->getArg());
auto argTupleTy = argTy->castTo<TupleType>();
auto argTupleExpr = dyn_cast<TupleExpr>(expr->getArg());
Type firstArgTy = argTupleTy->getElement(0).getType()->getWithoutParens();
Type secondArgTy = argTupleTy->getElement(1).getType()->getWithoutParens();
auto isOptionalWithMatchingObjectType = [](Type optional,
Type object) -> bool {
if (auto objTy = optional->getRValueType()->getOptionalObjectType())
return objTy->getRValueType()->isEqual(object->getRValueType());
return false;
};
auto isPotentialForcingOpportunity = [&](Type first, Type second) -> bool {
return isOptionalWithMatchingObjectType(first, second) ||
isOptionalWithMatchingObjectType(second, first);
};
// Determine whether the given declaration is favored.
auto isFavoredDecl = [&](ValueDecl *value, Type type) -> bool {
auto fnTy = type->getAs<AnyFunctionType>();
if (!fnTy)
return false;
Expr *firstArg = argTupleExpr->getElement(0);
auto firstFavoredTy = CS.getFavoredType(firstArg);
Expr *secondArg = argTupleExpr->getElement(1);
auto secondFavoredTy = CS.getFavoredType(secondArg);
auto favoredExprTy = CS.getFavoredType(expr);
if (isArithmeticOperatorDecl(value)) {
// If the parent has been favored on the way down, propagate that
// information to its children.
// TODO: This is only valid for arithmetic expressions.
if (!firstFavoredTy) {
CS.setFavoredType(argTupleExpr->getElement(0), favoredExprTy);
firstFavoredTy = favoredExprTy;
}
if (!secondFavoredTy) {
CS.setFavoredType(argTupleExpr->getElement(1), favoredExprTy);
secondFavoredTy = favoredExprTy;
}
}
auto params = fnTy->getParams();
if (params.size() != 2)
return false;
auto firstParamTy = params[0].getOldType();
auto secondParamTy = params[1].getOldType();
auto resultTy = fnTy->getResult();
auto contextualTy = CS.getContextualType(expr);
return (isFavoredParamAndArg(CS, firstParamTy, firstArgTy, secondArgTy) ||
isFavoredParamAndArg(CS, secondParamTy, secondArgTy,
firstArgTy)) &&
firstParamTy->isEqual(secondParamTy) &&
!isPotentialForcingOpportunity(firstArgTy, secondArgTy) &&
(!contextualTy || contextualTy->isEqual(resultTy));
};
favorCallOverloads(expr, CS, isFavoredDecl);
}
class ConstraintOptimizer : public ASTWalker {
ConstraintSystem &CS;
public:
ConstraintOptimizer(ConstraintSystem &cs) :
CS(cs) {}
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
if (CS.shouldReusePrecheckedType() &&
!CS.getType(expr)->hasTypeVariable()) {
return { false, expr };
}
if (auto applyExpr = dyn_cast<ApplyExpr>(expr)) {
if (isa<PrefixUnaryExpr>(applyExpr) ||
isa<PostfixUnaryExpr>(applyExpr)) {
favorMatchingUnaryOperators(applyExpr, CS);
} else if (isa<BinaryExpr>(applyExpr)) {
favorMatchingBinaryOperators(applyExpr, CS);
} else {
favorMatchingOverloadExprs(applyExpr, CS);
}
}
// If the paren expr has a favored type, and the subExpr doesn't,
// propagate downwards. Otherwise, propagate upwards.
if (auto parenExpr = dyn_cast<ParenExpr>(expr)) {
if (!CS.getFavoredType(parenExpr->getSubExpr())) {
CS.setFavoredType(parenExpr->getSubExpr(),
CS.getFavoredType(parenExpr));
} else if (!CS.getFavoredType(parenExpr)) {
CS.setFavoredType(parenExpr,
CS.getFavoredType(parenExpr->getSubExpr()));
}
}
return { true, expr };
}
Expr *walkToExprPost(Expr *expr) override {
return expr;
}
/// Ignore statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
return { false, stmt };
}
/// Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
};
} // end anonymous namespace
namespace {
class ConstraintGenerator : public ExprVisitor<ConstraintGenerator, Type> {
ConstraintSystem &CS;
DeclContext *CurDC;
SmallVector<DeclContext*, 4> DCStack;
static const unsigned numEditorPlaceholderVariables = 2;
/// A buffer of type variables used for editor placeholders. We only
/// use a small number of these (rotating through), to prevent expressions
/// with a large number of editor placeholders from flooding the constraint
/// system with type variables.
TypeVariableType *editorPlaceholderVariables[numEditorPlaceholderVariables]
= { nullptr, nullptr };
unsigned currentEditorPlaceholderVariable = 0;
/// Add constraints for a reference to a named member of the given
/// base type, and return the type of such a reference.
Type addMemberRefConstraints(Expr *expr, Expr *base, DeclName name,
FunctionRefKind functionRefKind,
ArrayRef<ValueDecl *> outerAlternatives) {
// The base must have a member of the given name, such that accessing
// that member through the base returns a value convertible to the type
// of this expression.
auto baseTy = CS.getType(base);
auto tv = CS.createTypeVariable(
CS.getConstraintLocator(expr, ConstraintLocator::Member),
TVO_CanBindToLValue | TVO_CanBindToNoEscape);
SmallVector<OverloadChoice, 4> outerChoices;
for (auto decl : outerAlternatives) {
outerChoices.push_back(OverloadChoice(Type(), decl, functionRefKind));
}
CS.addValueMemberConstraint(
baseTy, name, tv, CurDC, functionRefKind, outerChoices,
CS.getConstraintLocator(expr, ConstraintLocator::Member));
return tv;
}
/// Add constraints for a reference to a specific member of the given
/// base type, and return the type of such a reference.
Type addMemberRefConstraints(Expr *expr, Expr *base, ValueDecl *decl,
FunctionRefKind functionRefKind) {
// If we're referring to an invalid declaration, fail.
if (!decl)
return nullptr;
// FIXME(InterfaceTypeRequest): isInvalid() should be based on the interface type.
(void)decl->getInterfaceType();
if (decl->isInvalid())
return nullptr;
auto memberLocator =
CS.getConstraintLocator(expr, ConstraintLocator::Member);
auto tv = CS.createTypeVariable(memberLocator,
TVO_CanBindToLValue | TVO_CanBindToNoEscape);
OverloadChoice choice =
OverloadChoice(CS.getType(base), decl, functionRefKind);
auto locator = CS.getConstraintLocator(expr, ConstraintLocator::Member);
CS.addBindOverloadConstraint(tv, choice, locator, CurDC);
return tv;
}
/// Add constraints for a subscript operation.
Type addSubscriptConstraints(
Expr *anchor, Type baseTy, Expr *index,
ValueDecl *declOrNull, ArrayRef<Identifier> argLabels,
bool hasTrailingClosure, ConstraintLocator *locator = nullptr,
SmallVectorImpl<TypeVariableType *> *addedTypeVars = nullptr) {
// Locators used in this expression.
if (locator == nullptr)
locator = CS.getConstraintLocator(anchor);
auto fnLocator =
CS.getConstraintLocator(locator,
ConstraintLocator::ApplyFunction);
auto memberLocator =
CS.getConstraintLocator(locator,
ConstraintLocator::SubscriptMember);
auto resultLocator =
CS.getConstraintLocator(locator,
ConstraintLocator::FunctionResult);
associateArgumentLabels(memberLocator, {argLabels, hasTrailingClosure});
Type outputTy;
// For an integer subscript expression on an array slice type, instead of
// introducing a new type variable we can easily obtain the element type.
if (isa<SubscriptExpr>(anchor)) {
auto isLValueBase = false;
auto baseObjTy = baseTy;
if (baseObjTy->is<LValueType>()) {
isLValueBase = true;
baseObjTy = baseObjTy->getWithoutSpecifierType();
}
if (CS.isArrayType(baseObjTy.getPointer())) {
if (auto arraySliceTy =
dyn_cast<ArraySliceType>(baseObjTy.getPointer())) {
baseObjTy = arraySliceTy->getDesugaredType();
}
auto indexExpr = index;
if (auto parenExpr = dyn_cast<ParenExpr>(indexExpr)) {
indexExpr = parenExpr->getSubExpr();
}
if (isa<IntegerLiteralExpr>(indexExpr)) {
outputTy = baseObjTy->getAs<BoundGenericType>()->getGenericArgs()[0];
if (isLValueBase)
outputTy = LValueType::get(outputTy);
}
} else if (auto dictTy = CS.isDictionaryType(baseObjTy)) {
auto keyTy = dictTy->first;
auto valueTy = dictTy->second;
if (isFavoredParamAndArg(CS, keyTy, CS.getType(index))) {
outputTy = OptionalType::get(valueTy);
if (isLValueBase)
outputTy = LValueType::get(outputTy);
}
}
}
if (outputTy.isNull()) {
outputTy = CS.createTypeVariable(resultLocator,
TVO_CanBindToLValue | TVO_CanBindToNoEscape);
if (addedTypeVars)
addedTypeVars->push_back(outputTy->castTo<TypeVariableType>());
}
// FIXME: This can only happen when diagnostics successfully type-checked
// sub-expression of the subscript and mutated AST, but under normal
// circumstances subscript should never have InOutExpr as a direct child
// until type checking is complete and expression is re-written.
// Proper fix for such situation requires preventing diagnostics from
// re-writing AST after successful type checking of the sub-expressions.
if (auto inoutTy = baseTy->getAs<InOutType>()) {
baseTy = LValueType::get(inoutTy->getObjectType());
}
// Add the member constraint for a subscript declaration.
// FIXME: weak name!
auto memberTy = CS.createTypeVariable(
memberLocator, TVO_CanBindToLValue | TVO_CanBindToNoEscape);
if (addedTypeVars)
addedTypeVars->push_back(memberTy);
// FIXME: synthesizeMaterializeForSet() wants to statically dispatch to
// a known subscript here. This might be cleaner if we split off a new
// UnresolvedSubscriptExpr from SubscriptExpr.
if (auto decl = declOrNull) {
OverloadChoice choice =
OverloadChoice(baseTy, decl, FunctionRefKind::DoubleApply);
CS.addBindOverloadConstraint(memberTy, choice, memberLocator,
CurDC);
} else {
CS.addValueMemberConstraint(baseTy, DeclBaseName::createSubscript(),
memberTy, CurDC, FunctionRefKind::DoubleApply,
/*outerAlternatives=*/{},
memberLocator);
}
// FIXME: Redesign the AST so that an ApplyExpr directly stores a list of
// arguments together with their inout-ness, instead of a single
// ParenExpr or TupleExpr.
SmallVector<AnyFunctionType::Param, 8> params;
AnyFunctionType::decomposeInput(CS.getType(index), params);
// Add the constraint that the index expression's type be convertible
// to the input type of the subscript operator.
CS.addConstraint(ConstraintKind::ApplicableFunction,
FunctionType::get(params, outputTy),
memberTy,
fnLocator);
Type fixedOutputType =
CS.getFixedTypeRecursive(outputTy, /*wantRValue=*/false);
if (!fixedOutputType->isTypeVariableOrMember()) {
CS.setFavoredType(anchor, fixedOutputType.getPointer());
outputTy = fixedOutputType;
}
return outputTy;
}
public:
ConstraintGenerator(ConstraintSystem &CS, DeclContext *DC)
: CS(CS), CurDC(DC ? DC : CS.DC) { }
virtual ~ConstraintGenerator() {
// We really ought to have this assertion:
// assert(DCStack.empty() && CurDC == CS.DC);
// Unfortunately, ASTWalker is really bad at letting us establish
// invariants like this because walkToExprPost isn't called if
// something early-aborts the walk.
}
ConstraintSystem &getConstraintSystem() const { return CS; }
void enterClosure(ClosureExpr *closure) {
DCStack.push_back(CurDC);
CurDC = closure;
}
void exitClosure(ClosureExpr *closure) {
assert(CurDC == closure);
CurDC = DCStack.pop_back_val();
}
virtual Type visitErrorExpr(ErrorExpr *E) {
// FIXME: Can we do anything with error expressions at this point?
return nullptr;
}
virtual Type visitCodeCompletionExpr(CodeCompletionExpr *E) {
CS.Options |= ConstraintSystemFlags::SuppressDiagnostics;
return CS.createTypeVariable(CS.getConstraintLocator(E),
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
}
Type visitLiteralExpr(LiteralExpr *expr) {
// If the expression has already been assigned a type; just use that type.
if (expr->getType())
return expr->getType();
auto protocol = CS.getTypeChecker().getLiteralProtocol(expr);
if (!protocol)
return nullptr;
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding |
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::LiteralConformsTo, tv,
protocol->getDeclaredType(),
CS.getConstraintLocator(expr));
return tv;
}
Type
visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *expr) {
// Dig out the ExpressibleByStringInterpolation protocol.
auto &tc = CS.getTypeChecker();
auto interpolationProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::ExpressibleByStringInterpolation);
if (!interpolationProto) {
tc.diagnose(expr->getStartLoc(), diag::interpolation_missing_proto);
return nullptr;
}
// The type of the expression must conform to the
// ExpressibleByStringInterpolation protocol.
auto locator = CS.getConstraintLocator(expr);
auto tv = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding |
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::LiteralConformsTo, tv,
interpolationProto->getDeclaredType(),
locator);
if (auto appendingExpr = expr->getAppendingExpr()) {
auto associatedTypeDecl = interpolationProto->getAssociatedType(
tc.Context.Id_StringInterpolation);
if (associatedTypeDecl == nullptr) {
tc.diagnose(expr->getStartLoc(), diag::interpolation_broken_proto);
return nullptr;
}
auto interpolationTV = DependentMemberType::get(tv, associatedTypeDecl);
auto appendingExprType = CS.getType(appendingExpr);
auto appendingLocator = CS.getConstraintLocator(appendingExpr);
// Must be Conversion; if it's Equal, then in semi-rare cases, the
// interpolation temporary variable cannot be @lvalue.
CS.addConstraint(ConstraintKind::Conversion, appendingExprType,
interpolationTV, appendingLocator);
}
return tv;
}
Type visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *expr) {
switch (expr->getKind()) {
case MagicIdentifierLiteralExpr::Column:
case MagicIdentifierLiteralExpr::File:
case MagicIdentifierLiteralExpr::Function:
case MagicIdentifierLiteralExpr::Line:
return visitLiteralExpr(expr);
case MagicIdentifierLiteralExpr::DSOHandle: {
// #dsohandle has type UnsafeMutableRawPointer.
auto &tc = CS.getTypeChecker();
if (tc.requirePointerArgumentIntrinsics(expr->getLoc()))
return nullptr;
auto unsafeRawPointer =
CS.getASTContext().getUnsafeRawPointerDecl();
return unsafeRawPointer->getDeclaredType();
}
}
llvm_unreachable("Unhandled MagicIdentifierLiteralExpr in switch.");
}
Type visitObjectLiteralExpr(ObjectLiteralExpr *expr) {
auto *exprLoc = CS.getConstraintLocator(expr);
associateArgumentLabels(
exprLoc, {expr->getArgumentLabels(), expr->hasTrailingClosure()});
// If the expression has already been assigned a type; just use that type.
if (expr->getType())
return expr->getType();
auto &tc = CS.getTypeChecker();
auto protocol = tc.getLiteralProtocol(expr);
if (!protocol) {
tc.diagnose(expr->getLoc(), diag::use_unknown_object_literal_protocol,
expr->getLiteralKindPlainName());
return nullptr;
}
auto tv = CS.createTypeVariable(exprLoc,
TVO_PrefersSubtypeBinding |
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::LiteralConformsTo, tv,
protocol->getDeclaredType(),
exprLoc);
// The arguments are required to be argument-convertible to the
// idealized parameter type of the initializer, which generally
// simplifies the first label (e.g. "colorLiteralRed:") by stripping
// all the redundant stuff about literals (leaving e.g. "red:").
// Constraint application will quietly rewrite the type of 'args' to
// use the right labels before forming the call to the initializer.
DeclName constrName = tc.getObjectLiteralConstructorName(expr);
assert(constrName);
auto *constr = dyn_cast_or_null<ConstructorDecl>(
protocol->getSingleRequirement(constrName));
if (!constr) {
tc.diagnose(protocol, diag::object_literal_broken_proto);
return nullptr;
}
auto constrParamType = tc.getObjectLiteralParameterType(expr, constr);
// Extract the arguments.
SmallVector<AnyFunctionType::Param, 8> args;
AnyFunctionType::decomposeInput(CS.getType(expr->getArg()), args);
// Extract the parameters.
SmallVector<AnyFunctionType::Param, 8> params;
AnyFunctionType::decomposeInput(constrParamType, params);
::matchCallArguments(
CS, args, params, ConstraintKind::ArgumentConversion,
CS.getConstraintLocator(expr, ConstraintLocator::ApplyArgument));
Type result = tv;
if (constr->isFailable())
result = OptionalType::get(result);
return result;
}
Type visitQuoteLiteralExpr(QuoteLiteralExpr *expr) {
auto &tc = CS.getTypeChecker();
auto subExprType = CS.getType(expr->getSubExpr());
return tc.getTypeOfQuoteExpr(subExprType, expr->getLoc());
}
Type visitUnquoteExpr(UnquoteExpr *expr) {
auto &tc = CS.getTypeChecker();
auto subExprType = CS.getType(expr->getSubExpr());
return tc.getTypeOfUnquoteExpr(subExprType, expr->getLoc());
}
Type visitDeclQuoteExpr(DeclQuoteExpr *expr) {
auto &tc = CS.getTypeChecker();
return tc.getTypeOfQuoteDecl(expr->getLoc());
}
Type visitDeclRefExpr(DeclRefExpr *E) {
// If this is a ParamDecl for a closure argument that has an Unresolved
// type, then this is a situation where CSDiags is trying to perform
// error recovery within a ClosureExpr. Just create a new type variable
// for the decl that isn't bound to anything. This will ensure that it
// is considered ambiguous.
if (auto *VD = dyn_cast<VarDecl>(E->getDecl())) {
if (VD->hasInterfaceType() &&
VD->getInterfaceType()->is<UnresolvedType>()) {
return CS.createTypeVariable(CS.getConstraintLocator(E),
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
}
}
// If we're referring to an invalid declaration, don't type-check.
//
// FIXME: If the decl is in error, we get no information from this.
// We may, alternatively, want to use a type variable in that case,
// and possibly infer the type of the variable that way.
auto oldInterfaceTy = E->getDecl()->getInterfaceType();
if (E->getDecl()->isInvalid()) {
CS.setType(E, oldInterfaceTy);
return nullptr;
}
auto locator = CS.getConstraintLocator(E);
// If this is a 'var' or 'let' declaration with already
// resolved type, let's favor it.
if (auto *VD = dyn_cast<VarDecl>(E->getDecl())) {
Type type;
if (VD->hasInterfaceType()) {
type = VD->getInterfaceType();
if (type->hasTypeParameter())
type = VD->getDeclContext()->mapTypeIntoContext(type);
CS.setFavoredType(E, type.getPointer());
}
// This can only happen when failure diangostics is trying
// to type-check expressions inside of a single-statement
// closure which refer to anonymous parameters, in this case
// let's either use type as written or allocate a fresh type
// variable, just like we do for closure type.
if (auto *PD = dyn_cast<ParamDecl>(VD)) {
if (!CS.hasType(PD)) {
if (type && type->hasUnboundGenericType())
type = CS.openUnboundGenericType(type, locator);
CS.setType(
PD, type ? type
: CS.createTypeVariable(locator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape));
}
}
}
// Create an overload choice referencing this declaration and immediately
// resolve it. This records the overload for use later.
auto tv = CS.createTypeVariable(locator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
OverloadChoice choice =
OverloadChoice(Type(), E->getDecl(), E->getFunctionRefKind());
CS.resolveOverload(locator, tv, choice, CurDC);
return tv;
}
Type visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *E) {
return E->getType();
}
Type visitSuperRefExpr(SuperRefExpr *E) {
if (E->getType())
return E->getType();
// Resolve the super type of 'self'.
return getSuperType(E->getSelf(), E->getLoc(),
diag::super_not_in_class_method,
diag::super_with_no_base_class);
}
Type resolveTypeReferenceInExpression(TypeRepr *repr) {
TypeLoc loc(repr);
return resolveTypeReferenceInExpression(loc);
}
Type resolveTypeReferenceInExpression(TypeLoc &loc) {
TypeResolutionOptions options(TypeResolverContext::InExpression);
options |= TypeResolutionFlags::AllowUnboundGenerics;
bool hadError = TypeChecker::validateType(
CS.TC.Context, loc, TypeResolution::forContextual(CS.DC), options);
return hadError ? Type() : loc.getType();
}
Type visitTypeExpr(TypeExpr *E) {
Type type;
// If this is an implicit TypeExpr, don't validate its contents.
auto &typeLoc = E->getTypeLoc();
if (typeLoc.wasValidated()) {
type = typeLoc.getType();
} else if (typeLoc.hasLocation()) {
type = resolveTypeReferenceInExpression(typeLoc);
} else if (E->isImplicit() && CS.hasType(&typeLoc)) {
type = CS.getType(typeLoc);
}
if (!type || type->hasError()) return Type();
auto locator = CS.getConstraintLocator(E);
type = CS.openUnboundGenericType(type, locator);
CS.setType(E->getTypeLoc(), type);
return MetatypeType::get(type);
}
Type visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitOverloadedDeclRefExpr(OverloadedDeclRefExpr *expr) {
// For a reference to an overloaded declaration, we create a type variable
// that will be equal to different types depending on which overload
// is selected.
auto locator = CS.getConstraintLocator(expr);
auto tv = CS.createTypeVariable(locator,
TVO_CanBindToLValue | TVO_CanBindToNoEscape);
ArrayRef<ValueDecl*> decls = expr->getDecls();
SmallVector<OverloadChoice, 4> choices;
for (unsigned i = 0, n = decls.size(); i != n; ++i) {
// If the result is invalid, skip it.
// FIXME: Note this as invalid, in case we don't find a solution,
// so we don't let errors cascade further.
// FIXME(InterfaceTypeRequest): isInvalid() should be based on the interface type.
(void)decls[i]->getInterfaceType();
if (decls[i]->isInvalid())
continue;
OverloadChoice choice =
OverloadChoice(Type(), decls[i], expr->getFunctionRefKind());
choices.push_back(choice);
}
// If there are no valid overloads, give up.
if (choices.empty())
return nullptr;
// Record this overload set.
CS.addOverloadSet(tv, choices, CurDC, locator);
return tv;
}
Type visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *expr) {
// This is an error case, where we're trying to use type inference
// to help us determine which declaration the user meant to refer to.
// FIXME: Do we need to note that we're doing some kind of recovery?
return CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
}
Type visitMemberRefExpr(MemberRefExpr *expr) {
return addMemberRefConstraints(expr, expr->getBase(),
expr->getMember().getDecl(),
/*FIXME:*/FunctionRefKind::DoubleApply);
}
Type visitDynamicMemberRefExpr(DynamicMemberRefExpr *expr) {
llvm_unreachable("Already typechecked");
}
virtual Type visitUnresolvedMemberExpr(UnresolvedMemberExpr *expr) {
auto baseLocator = CS.getConstraintLocator(
expr,
ConstraintLocator::MemberRefBase);
FunctionRefKind functionRefKind =
expr->getArgument() ? FunctionRefKind::DoubleApply
: FunctionRefKind::Compound;
auto memberLocator
= CS.getConstraintLocator(expr, ConstraintLocator::UnresolvedMember);
auto baseTy = CS.createTypeVariable(baseLocator, TVO_CanBindToNoEscape);
auto memberTy = CS.createTypeVariable(memberLocator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
// An unresolved member expression '.member' is modeled as a value member
// constraint
//
// T0.Type[.member] == T1
//
// for fresh type variables T0 and T1, which pulls out a static
// member, i.e., an enum case or a static variable.
auto baseMetaTy = MetatypeType::get(baseTy);
CS.addUnresolvedValueMemberConstraint(baseMetaTy, expr->getName(),
memberTy, CurDC, functionRefKind,
memberLocator);
// If there is an argument, apply it.
if (auto arg = expr->getArgument()) {
// The result type of the function must be convertible to the base type.
// TODO: we definitely want this to include ImplicitlyUnwrappedOptional;
// does it need to include everything else in the world?
auto outputTy = CS.createTypeVariable(
CS.getConstraintLocator(expr, ConstraintLocator::FunctionResult),
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::Conversion, outputTy, baseTy,
CS.getConstraintLocator(expr, ConstraintLocator::RValueAdjustment));
// The function/enum case must be callable with the given argument.
// FIXME: Redesign the AST so that an UnresolvedMemberExpr directly
// stores a list of arguments together with their inout-ness, instead of
// a single ParenExpr or TupleExpr argument.
SmallVector<AnyFunctionType::Param, 8> params;
AnyFunctionType::decomposeInput(CS.getType(arg), params);
CS.addConstraint(ConstraintKind::ApplicableFunction,
FunctionType::get(params, outputTy),
memberTy,
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction));
associateArgumentLabels(
CS.getConstraintLocator(expr),
{expr->getArgumentLabels(), expr->hasTrailingClosure()});
return baseTy;
}
// Otherwise, the member needs to be convertible to the base type.
CS.addConstraint(ConstraintKind::Conversion, memberTy, baseTy,
CS.getConstraintLocator(expr, ConstraintLocator::RValueAdjustment));
// The member type also needs to be convertible to the context type, which
// preserves lvalue-ness.
auto resultTy = CS.createTypeVariable(memberLocator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::Conversion, memberTy, resultTy,
memberLocator);
CS.addConstraint(ConstraintKind::Equal, resultTy, baseTy,
memberLocator);
return resultTy;
}
Type visitUnresolvedDotExpr(UnresolvedDotExpr *expr) {
// If this is Builtin.type_join*, just return any type and move
// on since we're going to discard this, and creating any type
// variables for the reference will cause problems.
auto typeOperation = getTypeOperation(expr, CS.getASTContext());
if (typeOperation != TypeOperation::None)
return CS.getASTContext().TheAnyType;
// If this is `Builtin.trigger_fallback_diagnostic()`, fail
// without producing any diagnostics, in order to test fallback error.
if (isTriggerFallbackDiagnosticBuiltin(expr, CS.getASTContext()))
return Type();
// Open a member constraint for constructor delegations on the
// subexpr type.
if (CS.TC.getSelfForInitDelegationInConstructor(CS.DC, expr)) {
auto baseTy = CS.getType(expr->getBase())
->getWithoutSpecifierType();
// 'self' or 'super' will reference an instance, but the constructor
// is semantically a member of the metatype. This:
// self.init()
// super.init()
// is really more like:
// self = Self.init()
// self.super = Super.init()
baseTy = MetatypeType::get(baseTy, CS.getASTContext());
auto methodTy = CS.createTypeVariable(
CS.getConstraintLocator(expr,
ConstraintLocator::ApplyFunction),
TVO_CanBindToNoEscape);
// FIXME: Once TVO_PrefersSubtypeBinding is replaced with something
// better, we won't need the second type variable at all.
{
auto argTy = CS.createTypeVariable(
CS.getConstraintLocator(expr,
ConstraintLocator::ApplyArgument),
(TVO_CanBindToLValue |
TVO_CanBindToInOut |
TVO_CanBindToNoEscape |
TVO_PrefersSubtypeBinding));
CS.addConstraint(
ConstraintKind::FunctionInput, methodTy, argTy,
CS.getConstraintLocator(expr));
}
CS.addValueMemberConstraint(
baseTy, expr->getName(), methodTy, CurDC,
expr->getFunctionRefKind(),
/*outerAlternatives=*/{},
CS.getConstraintLocator(expr,
ConstraintLocator::ConstructorMember));
// The result of the expression is the partial application of the
// constructor to the subexpression.
return methodTy;
}
return addMemberRefConstraints(expr, expr->getBase(), expr->getName(),
expr->getFunctionRefKind(),
expr->getOuterAlternatives());
}
Type visitUnresolvedSpecializeExpr(UnresolvedSpecializeExpr *expr) {
auto baseTy = CS.getType(expr->getSubExpr());
// We currently only support explicit specialization of generic types.
// FIXME: We could support explicit function specialization.
auto &tc = CS.getTypeChecker();
if (baseTy->is<AnyFunctionType>()) {
tc.diagnose(expr->getSubExpr()->getLoc(),
diag::cannot_explicitly_specialize_generic_function);
tc.diagnose(expr->getLAngleLoc(),
diag::while_parsing_as_left_angle_bracket);
return Type();
}
if (AnyMetatypeType *meta = baseTy->getAs<AnyMetatypeType>()) {
if (BoundGenericType *bgt
= meta->getInstanceType()->getAs<BoundGenericType>()) {
ArrayRef<Type> typeVars = bgt->getGenericArgs();
MutableArrayRef<TypeLoc> specializations = expr->getUnresolvedParams();
// If we have too many generic arguments, complain.
if (specializations.size() > typeVars.size()) {
tc.diagnose(expr->getSubExpr()->getLoc(),
diag::type_parameter_count_mismatch,
bgt->getDecl()->getName(),
typeVars.size(), specializations.size(),
false)
.highlight(SourceRange(expr->getLAngleLoc(),
expr->getRAngleLoc()));
tc.diagnose(bgt->getDecl(), diag::kind_declname_declared_here,
DescriptiveDeclKind::GenericType, bgt->getDecl()->getName());
return Type();
}
// Bind the specified generic arguments to the type variables in the
// open type.
auto locator = CS.getConstraintLocator(expr);
for (size_t i = 0, size = specializations.size(); i < size; ++i) {
TypeResolutionOptions options(TypeResolverContext::InExpression);
options |= TypeResolutionFlags::AllowUnboundGenerics;
if (TypeChecker::validateType(tc.Context,
specializations[i],
TypeResolution::forContextual(CS.DC),
options))
return Type();
CS.addConstraint(ConstraintKind::Bind,
typeVars[i], specializations[i].getType(),
locator);
}
return baseTy;
} else {
tc.diagnose(expr->getSubExpr()->getLoc(), diag::not_a_generic_type,
meta->getInstanceType());
tc.diagnose(expr->getLAngleLoc(),
diag::while_parsing_as_left_angle_bracket);
return Type();
}
}
// FIXME: If the base type is a type variable, constrain it to a metatype
// of a bound generic type.
tc.diagnose(expr->getSubExpr()->getLoc(),
diag::not_a_generic_definition);
tc.diagnose(expr->getLAngleLoc(),
diag::while_parsing_as_left_angle_bracket);
return Type();
}
Type visitSequenceExpr(SequenceExpr *expr) {
// If a SequenceExpr survived until CSGen, then there was an upstream
// error that was already reported.
return Type();
}
Type visitArrowExpr(ArrowExpr *expr) {
// If an ArrowExpr survived until CSGen, then there was an upstream
// error that was already reported.
return Type();
}
Type visitIdentityExpr(IdentityExpr *expr) {
return CS.getType(expr->getSubExpr());
}
Type visitAnyTryExpr(AnyTryExpr *expr) {
return CS.getType(expr->getSubExpr());
}
Type visitOptionalTryExpr(OptionalTryExpr *expr) {
auto valueTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding |
TVO_CanBindToNoEscape);
Type optTy = getOptionalType(expr->getSubExpr()->getLoc(), valueTy);
if (!optTy)
return Type();
// Prior to Swift 5, 'try?' always adds an additional layer of optionality,
// even if the sub-expression was already optional.
if (CS.getTypeChecker().getLangOpts().isSwiftVersionAtLeast(5)) {
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(expr->getSubExpr()), optTy,
CS.getConstraintLocator(expr));
}
else {
CS.addConstraint(ConstraintKind::OptionalObject,
optTy, CS.getType(expr->getSubExpr()),
CS.getConstraintLocator(expr));
}
return optTy;
}
virtual Type visitParenExpr(ParenExpr *expr) {
if (auto favoredTy = CS.getFavoredType(expr->getSubExpr())) {
CS.setFavoredType(expr, favoredTy);
}
auto &ctx = CS.getASTContext();
auto parenType = CS.getType(expr->getSubExpr())->getInOutObjectType();
auto parenFlags = ParameterTypeFlags().withInOut(expr->isSemanticallyInOutExpr());
return ParenType::get(ctx, parenType, parenFlags);
}
Type visitTupleExpr(TupleExpr *expr) {
// The type of a tuple expression is simply a tuple of the types of
// its subexpressions.
SmallVector<TupleTypeElt, 4> elements;
elements.reserve(expr->getNumElements());
for (unsigned i = 0, n = expr->getNumElements(); i != n; ++i) {
auto *elt = expr->getElement(i);
auto ty = CS.getType(elt);
auto flags = ParameterTypeFlags()
.withInOut(elt->isSemanticallyInOutExpr())
.withVariadic(isa<VarargExpansionExpr>(elt));
elements.push_back(TupleTypeElt(ty->getInOutObjectType(),
expr->getElementName(i), flags));
}
return TupleType::get(elements, CS.getASTContext());
}
Type visitSubscriptExpr(SubscriptExpr *expr) {
ValueDecl *decl = nullptr;
if (expr->hasDecl()) {
decl = expr->getDecl().getDecl();
if (decl->isInvalid())
return Type();
}
return addSubscriptConstraints(expr, CS.getType(expr->getBase()),
expr->getIndex(),
decl, expr->getArgumentLabels(),
expr->hasTrailingClosure());
}
Type visitArrayExpr(ArrayExpr *expr) {
// An array expression can be of a type T that conforms to the
// ExpressibleByArrayLiteral protocol.
auto &tc = CS.getTypeChecker();
ProtocolDecl *arrayProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::ExpressibleByArrayLiteral);
if (!arrayProto) {
return Type();
}
// Assume that ExpressibleByArrayLiteral contains a single associated type.
auto *elementAssocTy = arrayProto->getAssociatedTypeMembers()[0];
if (!elementAssocTy)
return Type();
auto locator = CS.getConstraintLocator(expr);
auto contextualType = CS.getContextualType(expr);
Type contextualArrayType = nullptr;
Type contextualArrayElementType = nullptr;
// If a contextual type exists for this expression, apply it directly.
Optional<Type> arrayElementType;
if (contextualType &&
(arrayElementType = ConstraintSystem::isArrayType(contextualType))) {
// Is the array type a contextual type
contextualArrayType = contextualType;
contextualArrayElementType = *arrayElementType;
CS.addConstraint(ConstraintKind::LiteralConformsTo, contextualType,
arrayProto->getDeclaredType(),
locator);
unsigned index = 0;
for (auto element : expr->getElements()) {
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(element),
contextualArrayElementType,
CS.getConstraintLocator(
expr, LocatorPathElt::TupleElement(index++)));
}
return contextualArrayType;
}
auto arrayTy = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding |
TVO_CanBindToNoEscape);
// The array must be an array literal type.
CS.addConstraint(ConstraintKind::LiteralConformsTo, arrayTy,
arrayProto->getDeclaredType(),
locator);
// Its subexpression should be convertible to a tuple (T.Element...).
Type arrayElementTy = DependentMemberType::get(arrayTy, elementAssocTy);
// Introduce conversions from each element to the element type of the
// array.
ConstraintLocatorBuilder builder(locator);
unsigned index = 0;
for (auto element : expr->getElements()) {
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(element),
arrayElementTy,
CS.getConstraintLocator(
expr, LocatorPathElt::TupleElement(index++)));
}
// The array element type defaults to 'Any'.
CS.addConstraint(ConstraintKind::Defaultable, arrayElementTy,
tc.Context.TheAnyType, locator);
return arrayTy;
}
static bool isMergeableValueKind(Expr *expr) {
return isa<StringLiteralExpr>(expr) || isa<IntegerLiteralExpr>(expr) ||
isa<FloatLiteralExpr>(expr);
}
Type visitDictionaryExpr(DictionaryExpr *expr) {
ASTContext &C = CS.getASTContext();
// A dictionary expression can be of a type T that conforms to the
// ExpressibleByDictionaryLiteral protocol.
// FIXME: This isn't actually used for anything at the moment.
auto &tc = CS.getTypeChecker();
ProtocolDecl *dictionaryProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::ExpressibleByDictionaryLiteral);
if (!dictionaryProto) {
return Type();
}
// FIXME: Protect against broken standard library.
auto keyAssocTy = dictionaryProto->getAssociatedType(C.Id_Key);
auto valueAssocTy = dictionaryProto->getAssociatedType(C.Id_Value);
auto locator = CS.getConstraintLocator(expr);
auto contextualType = CS.getContextualType(expr);
Type contextualDictionaryType = nullptr;
Type contextualDictionaryKeyType = nullptr;
Type contextualDictionaryValueType = nullptr;
// If a contextual type exists for this expression, apply it directly.
Optional<std::pair<Type, Type>> dictionaryKeyValue;
if (contextualType &&
(dictionaryKeyValue = ConstraintSystem::isDictionaryType(contextualType))) {
// Is the contextual type a dictionary type?
contextualDictionaryType = contextualType;
std::tie(contextualDictionaryKeyType,
contextualDictionaryValueType) = *dictionaryKeyValue;
// Form an explicit tuple type from the contextual type's key and value types.
TupleTypeElt tupleElts[2] = { TupleTypeElt(contextualDictionaryKeyType),
TupleTypeElt(contextualDictionaryValueType) };
Type contextualDictionaryElementType = TupleType::get(tupleElts, C);
CS.addConstraint(ConstraintKind::LiteralConformsTo, contextualType,
dictionaryProto->getDeclaredType(),
locator);
unsigned index = 0;
for (auto element : expr->getElements()) {
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(element),
contextualDictionaryElementType,
CS.getConstraintLocator(
expr, LocatorPathElt::TupleElement(index++)));
}
return contextualDictionaryType;
}
auto dictionaryTy = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding |
TVO_CanBindToNoEscape);
// The dictionary must be a dictionary literal type.
CS.addConstraint(ConstraintKind::LiteralConformsTo, dictionaryTy,
dictionaryProto->getDeclaredType(),
locator);
// Its subexpression should be convertible to a tuple ((T.Key,T.Value)...).
ConstraintLocatorBuilder locatorBuilder(locator);
auto dictionaryKeyTy = DependentMemberType::get(dictionaryTy,
keyAssocTy);
auto dictionaryValueTy = DependentMemberType::get(dictionaryTy,
valueAssocTy);
TupleTypeElt tupleElts[2] = { TupleTypeElt(dictionaryKeyTy),
TupleTypeElt(dictionaryValueTy) };
Type elementTy = TupleType::get(tupleElts, C);
// Keep track of which elements have been "merged". This way, we won't create
// needless conversion constraints for elements whose equivalence classes have
// been merged.
llvm::DenseSet<Expr *> mergedElements;
// If no contextual type is present, Merge equivalence classes of key
// and value types as necessary.
if (!CS.getContextualType(expr)) {
for (auto element1 : expr->getElements()) {
for (auto element2 : expr->getElements()) {
if (element1 == element2)
continue;
auto tty1 = CS.getType(element1)->getAs<TupleType>();
auto tty2 = CS.getType(element2)->getAs<TupleType>();
if (tty1 && tty2) {
auto mergedKey = false;
auto mergedValue = false;
auto keyTyvar1 = tty1->getElementTypes()[0]->
getAs<TypeVariableType>();
auto keyTyvar2 = tty2->getElementTypes()[0]->
getAs<TypeVariableType>();
auto keyExpr1 = cast<TupleExpr>(element1)->getElements()[0];
auto keyExpr2 = cast<TupleExpr>(element2)->getElements()[0];
if (keyExpr1->getKind() == keyExpr2->getKind() &&
isMergeableValueKind(keyExpr1)) {
mergedKey = mergeRepresentativeEquivalenceClasses(CS,
keyTyvar1, keyTyvar2);
}
auto valueTyvar1 = tty1->getElementTypes()[1]->
getAs<TypeVariableType>();
auto valueTyvar2 = tty2->getElementTypes()[1]->
getAs<TypeVariableType>();
auto elemExpr1 = cast<TupleExpr>(element1)->getElements()[1];
auto elemExpr2 = cast<TupleExpr>(element2)->getElements()[1];
if (elemExpr1->getKind() == elemExpr2->getKind() &&
isMergeableValueKind(elemExpr1)) {
mergedValue = mergeRepresentativeEquivalenceClasses(CS,
valueTyvar1, valueTyvar2);
}
if (mergedKey && mergedValue)
mergedElements.insert(element2);
}
}
}
}
// Introduce conversions from each element to the element type of the
// dictionary. (If the equivalence class of an element has already been
// merged with a previous one, skip it.)
unsigned index = 0;
for (auto element : expr->getElements()) {
if (!mergedElements.count(element))
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(element),
elementTy,
CS.getConstraintLocator(
expr, LocatorPathElt::TupleElement(index++)));
}
// The dictionary key type defaults to 'AnyHashable'.
if (dictionaryKeyTy->isTypeVariableOrMember() &&
tc.Context.getAnyHashableDecl()) {
auto anyHashable = tc.Context.getAnyHashableDecl();
CS.addConstraint(ConstraintKind::Defaultable, dictionaryKeyTy,
anyHashable->getDeclaredInterfaceType(), locator);
}
// The dictionary value type defaults to 'Any'.
if (dictionaryValueTy->isTypeVariableOrMember()) {
CS.addConstraint(ConstraintKind::Defaultable, dictionaryValueTy,
tc.Context.TheAnyType, locator);
}
return dictionaryTy;
}
Type visitDynamicSubscriptExpr(DynamicSubscriptExpr *expr) {
return addSubscriptConstraints(expr, CS.getType(expr->getBase()),
expr->getIndex(), /*decl*/ nullptr,
expr->getArgumentLabels(),
expr->hasTrailingClosure());
}
Type visitTupleElementExpr(TupleElementExpr *expr) {
ASTContext &context = CS.getASTContext();
Identifier name
= context.getIdentifier(llvm::utostr(expr->getFieldNumber()));
return addMemberRefConstraints(expr, expr->getBase(), name,
FunctionRefKind::Unapplied,
/*outerAlternatives=*/{});
}
/// Give each parameter in a ClosureExpr a fresh type variable if parameter
/// types were not specified, and return the eventual function type.
void getClosureParams(ClosureExpr *closureExpr,
SmallVectorImpl<AnyFunctionType::Param> &params) {
auto *paramList = closureExpr->getParameters();
unsigned i = 0;
for (auto *param : *paramList) {
auto *locator = CS.getConstraintLocator(
closureExpr, LocatorPathElt::TupleElement(i++));
Type paramType, internalType;
// If a type was explicitly specified, use its opened type.
if (auto type = param->getTypeLoc().getType()) {
paramType = closureExpr->mapTypeIntoContext(type);
// FIXME: Need a better locator for a pattern as a base.
paramType = CS.openUnboundGenericType(paramType, locator);
internalType = paramType;
} else {
// Otherwise, create fresh type variables.
paramType = CS.createTypeVariable(locator,
TVO_CanBindToInOut |
TVO_CanBindToNoEscape);
internalType = CS.createTypeVariable(locator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::BindParam, paramType, internalType,
locator);
}
CS.setType(param, internalType);
params.push_back(param->toFunctionParam(paramType));
}
}
/// Produces a type for the given pattern, filling in any missing
/// type information with fresh type variables.
///
/// \param pattern The pattern.
Type getTypeForPattern(Pattern *pattern, ConstraintLocatorBuilder locator) {
switch (pattern->getKind()) {
case PatternKind::Paren:
// Parentheses don't affect the type.
return getTypeForPattern(cast<ParenPattern>(pattern)->getSubPattern(),
locator);
case PatternKind::Var:
// Var doesn't affect the type.
return getTypeForPattern(cast<VarPattern>(pattern)->getSubPattern(),
locator);
case PatternKind::Any: {
// If we have a type from an initializer expression, and that
// expression does not produce an InOut type, use it. This
// will avoid exponential typecheck behavior in the case of
// tuples, nested arrays, and dictionary literals.
//
// Otherwise, create a new type variable.
if (auto boundExpr = locator.trySimplifyToExpr()) {
if (!boundExpr->isSemanticallyInOutExpr())
return CS.getType(boundExpr)->getRValueType();
}
return CS.createTypeVariable(CS.getConstraintLocator(locator),
TVO_CanBindToNoEscape);
}
case PatternKind::Named: {
auto var = cast<NamedPattern>(pattern)->getDecl();
// If we have a type from an initializer expression, and that
// expression does not produce an InOut type, use it. This
// will avoid exponential typecheck behavior in the case of
// tuples, nested arrays, and dictionary literals.
//
// FIXME: This should be handled in the solver, not here.
//
// Otherwise, create a new type variable.
auto ty = Type();
if (!var->hasNonPatternBindingInit() &&
!var->hasAttachedPropertyWrapper()) {
if (auto boundExpr = locator.trySimplifyToExpr()) {
if (!boundExpr->isSemanticallyInOutExpr())
ty = CS.getType(boundExpr)->getRValueType();
}
}
auto ROK = ReferenceOwnership::Strong;
if (auto *OA = var->getAttrs().getAttribute<ReferenceOwnershipAttr>())
ROK = OA->get();
switch (optionalityOf(ROK)) {
case ReferenceOwnershipOptionality::Required:
if (ty && ty->getOptionalObjectType())
return ty; // Already Optional<T>.
// Create a fresh type variable to handle overloaded expressions.
if (!ty || ty->is<TypeVariableType>())
ty = CS.createTypeVariable(CS.getConstraintLocator(locator),
TVO_CanBindToNoEscape);
return CS.getTypeChecker().getOptionalType(var->getLoc(), ty);
case ReferenceOwnershipOptionality::Allowed:
case ReferenceOwnershipOptionality::Disallowed:
break;
}
if (ty)
return ty;
return CS.createTypeVariable(CS.getConstraintLocator(locator),
TVO_CanBindToNoEscape);
}
case PatternKind::Typed: {
auto typedPattern = cast<TypedPattern>(pattern);
// FIXME: Need a better locator for a pattern as a base.
Type openedType = CS.openUnboundGenericType(typedPattern->getType(),
locator);
// For a typed pattern, simply return the opened type of the pattern.
// FIXME: Error recovery if the type is an error type?
return openedType;
}
case PatternKind::Tuple: {
auto tuplePat = cast<TuplePattern>(pattern);
SmallVector<TupleTypeElt, 4> tupleTypeElts;
tupleTypeElts.reserve(tuplePat->getNumElements());
for (unsigned i = 0, e = tuplePat->getNumElements(); i != e; ++i) {
auto &tupleElt = tuplePat->getElement(i);
Type eltTy = getTypeForPattern(tupleElt.getPattern(),
locator.withPathElement(
LocatorPathElt::TupleElement(i)));
tupleTypeElts.push_back(TupleTypeElt(eltTy, tupleElt.getLabel()));
}
return TupleType::get(tupleTypeElts, CS.getASTContext());
}
// Refutable patterns occur when checking the PatternBindingDecls in an
// if/let or while/let condition. They always require an initial value,
// so they always allow unspecified types.
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) case PatternKind::Id:
#include "swift/AST/PatternNodes.def"
// TODO: we could try harder here, e.g. for enum elements to provide the
// enum type.
return CS.createTypeVariable(CS.getConstraintLocator(locator),
TVO_CanBindToNoEscape);
}
llvm_unreachable("Unhandled pattern kind");
}
Type visitCaptureListExpr(CaptureListExpr *expr) {
// The type of the capture list is just the type of its closure.
return CS.getType(expr->getClosureBody());
}
/// Walk a closure body to determine if it's possible for
/// it to return with a non-void result.
static bool closureHasNoResult(ClosureExpr *expr) {
// A walker that looks for 'return' statements that aren't
// nested within closures or nested declarations.
class FindReturns : public ASTWalker {
bool FoundResultReturn = false;
bool FoundNoResultReturn = false;
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
return { false, expr };
}
bool walkToDeclPre(Decl *decl) override {
return false;
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
// Record return statements.
if (auto ret = dyn_cast<ReturnStmt>(stmt)) {
// If it has a result, remember that we saw one, but keep
// traversing in case there's a no-result return somewhere.
if (ret->hasResult()) {
FoundResultReturn = true;
// Otherwise, stop traversing.
} else {
FoundNoResultReturn = true;
return { false, nullptr };
}
}
return { true, stmt };
}
public:
bool hasNoResult() const {
return FoundNoResultReturn || !FoundResultReturn;
}
};
// Don't apply this to single-expression-body closures.
if (expr->hasSingleExpressionBody())
return false;
auto body = expr->getBody();
if (!body) return false;
FindReturns finder;
body->walk(finder);
return finder.hasNoResult();
}
/// Walk a closure AST to determine if it can throw.
bool closureCanThrow(ClosureExpr *expr) {
// A walker that looks for 'try' or 'throw' expressions
// that aren't nested within closures, nested declarations,
// or exhaustive catches.
class FindInnerThrows : public ASTWalker {
ConstraintSystem &CS;
bool FoundThrow = false;
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
// If we've found a 'try', record it and terminate the traversal.
if (isa<TryExpr>(expr)) {
FoundThrow = true;
return { false, nullptr };
}
// Don't walk into a 'try!' or 'try?'.
if (isa<ForceTryExpr>(expr) || isa<OptionalTryExpr>(expr)) {
return { false, expr };
}
// Do not recurse into other closures.
if (isa<ClosureExpr>(expr))
return { false, expr };
return { true, expr };
}
bool walkToDeclPre(Decl *decl) override {
// Do not walk into function or type declarations.
if (!isa<PatternBindingDecl>(decl))
return false;
return true;
}
bool isSyntacticallyExhaustive(DoCatchStmt *stmt) {
for (auto catchClause : stmt->getCatches()) {
if (isSyntacticallyExhaustive(catchClause))
return true;
}
return false;
}
bool isSyntacticallyExhaustive(CatchStmt *clause) {
// If it's obviously non-exhaustive, great.
if (clause->getGuardExpr())
return false;
// If we can show that it's exhaustive without full
// type-checking, great.
if (clause->isSyntacticallyExhaustive())
return true;
// Okay, resolve the pattern.
Pattern *pattern = clause->getErrorPattern();
pattern = CS.TC.resolvePattern(pattern, CS.DC,
/*isStmtCondition*/false);
if (!pattern) return false;
// Save that aside while we explore the type.
clause->setErrorPattern(pattern);
// Require the pattern to have a particular shape: a number
// of is-patterns applied to an irrefutable pattern.
pattern = pattern->getSemanticsProvidingPattern();
while (auto isp = dyn_cast<IsPattern>(pattern)) {
if (TypeChecker::validateType(CS.TC.Context,
isp->getCastTypeLoc(),
TypeResolution::forContextual(CS.DC),
TypeResolverContext::InExpression)) {
return false;
}
if (!isp->hasSubPattern()) {
pattern = nullptr;
break;
} else {
pattern = isp->getSubPattern()->getSemanticsProvidingPattern();
}
}
if (pattern && pattern->isRefutablePattern()) {
return false;
}
// Okay, now it should be safe to coerce the pattern.
// Pull the top-level pattern back out.
pattern = clause->getErrorPattern();
Type exnType = CS.TC.getExceptionType(CS.DC, clause->getCatchLoc());
if (!exnType)
return false;
if (CS.TC.coercePatternToType(pattern,
TypeResolution::forContextual(CS.DC),
exnType,
TypeResolverContext::InExpression)) {
return false;
}
clause->setErrorPattern(pattern);
return clause->isSyntacticallyExhaustive();
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
// If we've found a 'throw', record it and terminate the traversal.
if (isa<ThrowStmt>(stmt)) {
FoundThrow = true;
return { false, nullptr };
}
// Handle do/catch differently.
if (auto doCatch = dyn_cast<DoCatchStmt>(stmt)) {
// Only walk into the 'do' clause of a do/catch statement
// if the catch isn't syntactically exhaustive.
if (!isSyntacticallyExhaustive(doCatch)) {
if (!doCatch->getBody()->walk(*this))
return { false, nullptr };
}
// Walk into all the catch clauses.
for (auto catchClause : doCatch->getCatches()) {
if (!catchClause->walk(*this))
return { false, nullptr };
}
// We've already walked all the children we care about.
return { false, stmt };
}
return { true, stmt };
}
public:
FindInnerThrows(ConstraintSystem &cs) : CS(cs) {}
bool foundThrow() { return FoundThrow; }
};
if (expr->getThrowsLoc().isValid())
return true;
auto body = expr->getBody();
if (!body)
return false;
auto tryFinder = FindInnerThrows(CS);
body->walk(tryFinder);
return tryFinder.foundThrow();
}
Type visitClosureExpr(ClosureExpr *expr) {
// If a contextual function type exists, we can use that to obtain the
// expected return type, rather than allocating a fresh type variable.
auto contextualType = CS.getContextualType(expr);
Type crt;
if (contextualType) {
if (auto cft = contextualType->getAs<AnyFunctionType>()) {
crt = cft->getResult();
}
}
// Closure expressions always have function type. In cases where a
// parameter or return type is omitted, a fresh type variable is used to
// stand in for that parameter or return type, allowing it to be inferred
// from context.
Type resultTy;
if (expr->hasExplicitResultType() &&
expr->getExplicitResultTypeLoc().getType()) {
resultTy = expr->getExplicitResultTypeLoc().getType();
CS.setFavoredType(expr, resultTy.getPointer());
} else {
auto locator =
CS.getConstraintLocator(expr, ConstraintLocator::ClosureResult);
if (expr->hasEmptyBody()) {
resultTy = CS.createTypeVariable(locator, 0);
// Closures with empty bodies should be inferred to return
// ().
CS.addConstraint(ConstraintKind::Bind, resultTy,
TupleType::getEmpty(CS.getASTContext()), locator);
} else if (crt) {
// Otherwise, use the contextual type if present.
resultTy = crt;
} else {
// If no return type was specified, create a fresh type
// variable for it.
resultTy = CS.createTypeVariable(locator, 0);
if (closureHasNoResult(expr)) {
// Allow it to default to () if there are no return statements.
CS.addConstraint(ConstraintKind::Defaultable, resultTy,
TupleType::getEmpty(CS.getASTContext()), locator);
}
}
}
// Give each parameter in a ClosureExpr a fresh type variable if parameter
// types were not specified, and return the eventual function type.
SmallVector<AnyFunctionType::Param, 4> paramTy;
getClosureParams(expr, paramTy);
auto extInfo = FunctionType::ExtInfo();
if (closureCanThrow(expr))
extInfo = extInfo.withThrows();
return FunctionType::get(paramTy, resultTy, extInfo);
}
Type visitAutoClosureExpr(AutoClosureExpr *expr) {
// AutoClosureExpr is introduced by CSApply.
llvm_unreachable("Already type-checked");
}
Type visitInOutExpr(InOutExpr *expr) {
// The address-of operator produces an explicit inout T from an lvalue T.
// We model this with the constraint
//
// S < lvalue T
//
// where T is a fresh type variable.
auto lvalue = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_CanBindToNoEscape);
auto bound = LValueType::get(lvalue);
auto result = InOutType::get(lvalue);
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(expr->getSubExpr()), bound,
CS.getConstraintLocator(expr));
return result;
}
Type visitVarargExpansionExpr(VarargExpansionExpr *expr) {
// Create a fresh type variable.
auto element = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_CanBindToNoEscape);
// Try to build the appropriate type for a variadic argument list of
// the fresh element type. If that failed, just bail out.
auto array = CS.TC.getArraySliceType(expr->getLoc(), element);
if (!array) return element;
// Require the operand to be convertible to the array type.
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(expr->getSubExpr()), array,
CS.getConstraintLocator(expr));
return array;
}
Type visitDynamicTypeExpr(DynamicTypeExpr *expr) {
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::DynamicTypeOf, tv,
CS.getType(expr->getBase()),
CS.getConstraintLocator(expr, ConstraintLocator::RValueAdjustment));
return tv;
}
Type visitOpaqueValueExpr(OpaqueValueExpr *expr) {
assert(expr->isPlaceholder() && "Already type checked");
return expr->getType();
}
Type visitDefaultArgumentExpr(DefaultArgumentExpr *expr) {
return expr->getType();
}
Type visitCallerDefaultArgumentExpr(CallerDefaultArgumentExpr *expr) {
return expr->getType();
}
Type visitApplyExpr(ApplyExpr *expr) {
auto fnExpr = expr->getFn();
SmallVector<Identifier, 4> scratch;
associateArgumentLabels(
CS.getConstraintLocator(expr),
{expr->getArgumentLabels(scratch), expr->hasTrailingClosure()},
/*labelsArePermanent=*/isa<CallExpr>(expr));
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(fnExpr)) {
auto typeOperation = getTypeOperation(UDE, CS.getASTContext());
if (typeOperation != TypeOperation::None)
return resultOfTypeOperation(typeOperation, expr->getArg());
}
// The result type is a fresh type variable.
Type resultType = CS.createTypeVariable(
CS.getConstraintLocator(expr, ConstraintLocator::FunctionResult),
TVO_CanBindToNoEscape);
// A direct call to a ClosureExpr makes it noescape.
FunctionType::ExtInfo extInfo;
if (isa<ClosureExpr>(fnExpr->getSemanticsProvidingExpr()))
extInfo = extInfo.withNoEscape();
// FIXME: Redesign the AST so that an ApplyExpr directly stores a list of
// arguments together with their inout-ness, instead of a single
// ParenExpr or TupleExpr.
SmallVector<AnyFunctionType::Param, 8> params;
AnyFunctionType::decomposeInput(CS.getType(expr->getArg()), params);
CS.addConstraint(ConstraintKind::ApplicableFunction,
FunctionType::get(params, resultType, extInfo),
CS.getType(expr->getFn()),
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction));
// If we ended up resolving the result type variable to a concrete type,
// set it as the favored type for this expression.
Type fixedType =
CS.getFixedTypeRecursive(resultType, /*wantRvalue=*/true);
if (!fixedType->isTypeVariableOrMember()) {
CS.setFavoredType(expr, fixedType.getPointer());
resultType = fixedType;
}
return resultType;
}
Type getSuperType(VarDecl *selfDecl,
SourceLoc diagLoc,
Diag<> diag_not_in_class,
Diag<> diag_no_base_class) {
DeclContext *typeContext = selfDecl->getDeclContext()->getParent();
assert(typeContext && "constructor without parent context?!");
auto &tc = CS.getTypeChecker();
ClassDecl *classDecl = typeContext->getSelfClassDecl();
if (!classDecl) {
tc.diagnose(diagLoc, diag_not_in_class);
return Type();
}
if (!classDecl->hasSuperclass()) {
tc.diagnose(diagLoc, diag_no_base_class);
return Type();
}
// If the 'self' parameter is not configured, something went
// wrong elsewhere and should have been diagnosed already.
if (!selfDecl->hasInterfaceType())
return ErrorType::get(tc.Context);
auto selfTy = CS.DC->mapTypeIntoContext(
typeContext->getDeclaredInterfaceType());
auto superclassTy = selfTy->getSuperclass();
if (selfDecl->getInterfaceType()->is<MetatypeType>())
superclassTy = MetatypeType::get(superclassTy);
return superclassTy;
}
Type visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *expr) {
// The result is void.
return TupleType::getEmpty(CS.getASTContext());
}
Type visitIfExpr(IfExpr *expr) {
// The conditional expression must conform to LogicValue.
auto boolDecl = CS.getASTContext().getBoolDecl();
if (!boolDecl)
return Type();
// Condition must convert to Bool.
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(expr->getCondExpr()),
boolDecl->getDeclaredType(),
CS.getConstraintLocator(expr->getCondExpr()));
// The branches must be convertible to a common type.
auto resultTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding |
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(expr->getThenExpr()), resultTy,
CS.getConstraintLocator(expr->getThenExpr()));
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(expr->getElseExpr()), resultTy,
CS.getConstraintLocator(expr->getElseExpr()));
return resultTy;
}
virtual Type visitImplicitConversionExpr(ImplicitConversionExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type
createTypeVariableAndDisjunctionForIUOCoercion(Type toType,
ConstraintLocator *locator) {
auto typeVar = CS.createTypeVariable(locator, TVO_CanBindToNoEscape);
CS.buildDisjunctionForImplicitlyUnwrappedOptional(typeVar, toType,
locator);
return typeVar;
}
Type visitForcedCheckedCastExpr(ForcedCheckedCastExpr *expr) {
auto &tc = CS.getTypeChecker();
auto fromExpr = expr->getSubExpr();
if (!fromExpr) // Either wasn't constructed correctly or wasn't folded.
return nullptr;
// Validate the resulting type.
TypeResolutionOptions options(TypeResolverContext::ExplicitCastExpr);
options |= TypeResolutionFlags::AllowUnboundGenerics;
if (TypeChecker::validateType(tc.Context,
expr->getCastTypeLoc(),
TypeResolution::forContextual(CS.DC),
options))
return nullptr;
// Open the type we're casting to.
auto toType = CS.openUnboundGenericType(expr->getCastTypeLoc().getType(),
CS.getConstraintLocator(expr));
CS.setType(expr->getCastTypeLoc(), toType);
auto fromType = CS.getType(fromExpr);
auto locator = CS.getConstraintLocator(expr);
// The source type can be checked-cast to the destination type.
CS.addConstraint(ConstraintKind::CheckedCast, fromType, toType, locator);
// If the result type was declared IUO, add a disjunction for
// bindings for the result of the coercion.
auto *TR = expr->getCastTypeLoc().getTypeRepr();
if (TR && TR->getKind() == TypeReprKind::ImplicitlyUnwrappedOptional)
return createTypeVariableAndDisjunctionForIUOCoercion(toType, locator);
return toType;
}
Type visitCoerceExpr(CoerceExpr *expr) {
auto &tc = CS.getTypeChecker();
// Validate the resulting type.
TypeResolutionOptions options(TypeResolverContext::ExplicitCastExpr);
options |= TypeResolutionFlags::AllowUnboundGenerics;
if (TypeChecker::validateType(tc.Context,
expr->getCastTypeLoc(),
TypeResolution::forContextual(CS.DC),
options))
return nullptr;
// Open the type we're casting to.
auto toType = CS.openUnboundGenericType(expr->getCastTypeLoc().getType(),
CS.getConstraintLocator(expr));
CS.setType(expr->getCastTypeLoc(), toType);
auto fromType = CS.getType(expr->getSubExpr());
auto locator = CS.getConstraintLocator(expr);
// Add a conversion constraint for the direct conversion between
// types.
CS.addExplicitConversionConstraint(fromType, toType,
/*allowFixes=*/true, locator);
// If the result type was declared IUO, add a disjunction for
// bindings for the result of the coercion.
auto *TR = expr->getCastTypeLoc().getTypeRepr();
if (TR && TR->getKind() == TypeReprKind::ImplicitlyUnwrappedOptional)
return createTypeVariableAndDisjunctionForIUOCoercion(toType, locator);
return toType;
}
Type visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *expr) {
auto &tc = CS.getTypeChecker();
auto fromExpr = expr->getSubExpr();
if (!fromExpr) // Either wasn't constructed correctly or wasn't folded.
return nullptr;
// Validate the resulting type.
TypeResolutionOptions options(TypeResolverContext::ExplicitCastExpr);
options |= TypeResolutionFlags::AllowUnboundGenerics;
if (TypeChecker::validateType(tc.Context,
expr->getCastTypeLoc(),
TypeResolution::forContextual(CS.DC),
options))
return nullptr;
// Open the type we're casting to.
auto toType = CS.openUnboundGenericType(expr->getCastTypeLoc().getType(),
CS.getConstraintLocator(expr));
CS.setType(expr->getCastTypeLoc(), toType);
auto fromType = CS.getType(fromExpr);
auto locator = CS.getConstraintLocator(expr);
CS.addConstraint(ConstraintKind::CheckedCast, fromType, toType, locator);
// If the result type was declared IUO, add a disjunction for
// bindings for the result of the coercion.
auto *TR = expr->getCastTypeLoc().getTypeRepr();
if (TR && TR->getKind() == TypeReprKind::ImplicitlyUnwrappedOptional)
return createTypeVariableAndDisjunctionForIUOCoercion(
OptionalType::get(toType), locator);
return OptionalType::get(toType);
}
Type visitIsExpr(IsExpr *expr) {
// Validate the type.
auto &tc = CS.getTypeChecker();
TypeResolutionOptions options(TypeResolverContext::ExplicitCastExpr);
options |= TypeResolutionFlags::AllowUnboundGenerics;
if (TypeChecker::validateType(tc.Context,
expr->getCastTypeLoc(),
TypeResolution::forContextual(CS.DC),
options))
return nullptr;
// Open up the type we're checking.
// FIXME: Locator for the cast type?
auto toType = CS.openUnboundGenericType(expr->getCastTypeLoc().getType(),
CS.getConstraintLocator(expr));
CS.setType(expr->getCastTypeLoc(), toType);
// Add a checked cast constraint.
auto fromType = CS.getType(expr->getSubExpr());
CS.addConstraint(ConstraintKind::CheckedCast, fromType, toType,
CS.getConstraintLocator(expr));
// The result is Bool.
auto boolDecl = tc.Context.getBoolDecl();
if (!boolDecl) {
tc.diagnose(SourceLoc(), diag::broken_bool);
return Type();
}
return boolDecl->getDeclaredType();
}
Type visitDiscardAssignmentExpr(DiscardAssignmentExpr *expr) {
auto locator = CS.getConstraintLocator(expr);
auto typeVar = CS.createTypeVariable(locator, TVO_CanBindToNoEscape);
return LValueType::get(typeVar);
}
static Type genAssignDestType(Expr *expr, ConstraintSystem &CS) {
if (auto *TE = dyn_cast<TupleExpr>(expr)) {
SmallVector<TupleTypeElt, 4> destTupleTypes;
for (unsigned i = 0; i != TE->getNumElements(); ++i) {
Type subType = genAssignDestType(TE->getElement(i), CS);
destTupleTypes.push_back(TupleTypeElt(subType, TE->getElementName(i)));
}
return TupleType::get(destTupleTypes, CS.getASTContext());
} else {
auto *locator = CS.getConstraintLocator(expr);
auto isOrCanBeLValueType = [](Type type) {
if (auto *typeVar = type->getAs<TypeVariableType>()) {
return typeVar->getImpl().canBindToLValue();
}
return type->is<LValueType>();
};
auto exprType = CS.getType(expr);
if (!isOrCanBeLValueType(exprType)) {
// Pretend that destination is an l-value type.
exprType = LValueType::get(exprType);
(void)CS.recordFix(TreatRValueAsLValue::create(CS, locator));
}
auto *destTy = CS.createTypeVariable(locator, TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::Bind, LValueType::get(destTy),
exprType, locator);
return destTy;
}
}
Type visitAssignExpr(AssignExpr *expr) {
// Handle invalid code.
if (!expr->getDest() || !expr->getSrc())
return Type();
Type destTy = genAssignDestType(expr->getDest(), CS);
CS.addConstraint(ConstraintKind::Conversion, CS.getType(expr->getSrc()), destTy,
CS.getConstraintLocator(expr));
return TupleType::getEmpty(CS.getASTContext());
}
Type visitUnresolvedPatternExpr(UnresolvedPatternExpr *expr) {
// If there are UnresolvedPatterns floating around after name binding,
// they are pattern productions in invalid positions. However, we will
// diagnose that condition elsewhere; to avoid unnecessary noise errors,
// just plop an open type variable here.
auto locator = CS.getConstraintLocator(expr);
auto typeVar = CS.createTypeVariable(locator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
return typeVar;
}
/// Get the type T?
///
/// This is not the ideal source location, but it's only used for
/// diagnosing ill-formed standard libraries, so it really isn't
/// worth QoI efforts.
Type getOptionalType(SourceLoc optLoc, Type valueTy) {
auto optTy = CS.getTypeChecker().getOptionalType(optLoc, valueTy);
if (!optTy || CS.getTypeChecker().requireOptionalIntrinsics(optLoc))
return Type();
return optTy;
}
Type visitBindOptionalExpr(BindOptionalExpr *expr) {
// The operand must be coercible to T?, and we will have type T.
auto locator = CS.getConstraintLocator(expr);
auto objectTy = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding |
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
// The result is the object type of the optional subexpression.
CS.addConstraint(ConstraintKind::OptionalObject,
CS.getType(expr->getSubExpr()), objectTy,
locator);
return objectTy;
}
Type visitOptionalEvaluationExpr(OptionalEvaluationExpr *expr) {
// The operand must be coercible to T? for some type T. We'd
// like this to be the smallest possible nesting level of
// optional types, e.g. T? over T??; otherwise we don't really
// have a preference.
auto valueTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding |
TVO_CanBindToNoEscape);
Type optTy = getOptionalType(expr->getSubExpr()->getLoc(), valueTy);
if (!optTy)
return Type();
CS.addConstraint(ConstraintKind::Conversion,
CS.getType(expr->getSubExpr()), optTy,
CS.getConstraintLocator(expr));
return optTy;
}
Type visitForceValueExpr(ForceValueExpr *expr) {
// Force-unwrap an optional of type T? to produce a T.
auto locator = CS.getConstraintLocator(expr);
auto objectTy = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding |
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
// The result is the object type of the optional subexpression.
CS.addConstraint(ConstraintKind::OptionalObject,
CS.getType(expr->getSubExpr()), objectTy,
locator);
return objectTy;
}
Type visitOpenExistentialExpr(OpenExistentialExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitMakeTemporarilyEscapableExpr(MakeTemporarilyEscapableExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitKeyPathApplicationExpr(KeyPathApplicationExpr *expr) {
// This should only appear in already-type-checked solutions, but we may
// need to re-check for failure diagnosis.
auto locator = CS.getConstraintLocator(expr);
auto projectedTy = CS.createTypeVariable(locator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
CS.addKeyPathApplicationConstraint(CS.getType(expr->getKeyPath()),
CS.getType(expr->getBase()),
projectedTy,
locator);
return projectedTy;
}
Type visitEnumIsCaseExpr(EnumIsCaseExpr *expr) {
return CS.getASTContext().getBoolDecl()->getDeclaredType();
}
Type visitLazyInitializerExpr(LazyInitializerExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitEditorPlaceholderExpr(EditorPlaceholderExpr *E) {
if (E->getTypeLoc().isNull()) {
auto locator = CS.getConstraintLocator(E);
// A placeholder may have any type, but default to Void type if
// otherwise unconstrained.
auto &placeholderTy
= editorPlaceholderVariables[currentEditorPlaceholderVariable];
if (!placeholderTy) {
placeholderTy = CS.createTypeVariable(locator, TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::Defaultable,
placeholderTy,
TupleType::getEmpty(CS.getASTContext()),
locator);
}
// Move to the next placeholder variable.
currentEditorPlaceholderVariable
= (currentEditorPlaceholderVariable + 1) %
numEditorPlaceholderVariables;
return placeholderTy;
}
// NOTE: The type loc may be there but have failed to validate, in which
// case we return the null type.
return E->getType();
}
Type visitObjCSelectorExpr(ObjCSelectorExpr *E) {
// #selector only makes sense when we have the Objective-C
// runtime.
auto &tc = CS.getTypeChecker();
if (!tc.Context.LangOpts.EnableObjCInterop) {
tc.diagnose(E->getLoc(), diag::expr_selector_no_objc_runtime);
return nullptr;
}
// Make sure we can reference ObjectiveC.Selector.
// FIXME: Fix-It to add the import?
auto type = CS.getTypeChecker().getObjCSelectorType(CS.DC);
if (!type) {
tc.diagnose(E->getLoc(), diag::expr_selector_module_missing);
return nullptr;
}
return type;
}
Type visitKeyPathExpr(KeyPathExpr *E) {
if (E->isObjC())
return CS.getType(E->getObjCStringLiteralExpr());
auto kpDecl = CS.getASTContext().getKeyPathDecl();
if (!kpDecl) {
CS.TC.diagnose(E->getLoc(), diag::expr_keypath_no_keypath_type);
return ErrorType::get(CS.getASTContext());
}
// For native key paths, traverse the key path components to set up
// appropriate type relationships at each level.
auto rootLocator =
CS.getConstraintLocator(E, ConstraintLocator::KeyPathRoot);
auto locator = CS.getConstraintLocator(E);
Type root = CS.createTypeVariable(rootLocator, TVO_CanBindToNoEscape);
// If a root type was explicitly given, then resolve it now.
if (auto rootRepr = E->getRootType()) {
auto rootObjectTy = resolveTypeReferenceInExpression(rootRepr);
if (!rootObjectTy || rootObjectTy->hasError())
return Type();
rootObjectTy = CS.openUnboundGenericType(rootObjectTy, locator);
// Allow \Derived.property to be inferred as \Base.property to
// simulate a sort of covariant conversion from
// KeyPath<Derived, T> to KeyPath<Base, T>.
CS.addConstraint(ConstraintKind::Subtype, rootObjectTy, root, locator);
}
bool didOptionalChain = false;
// We start optimistically from an lvalue base.
Type base = LValueType::get(root);
SmallVector<TypeVariableType *, 2> componentTypeVars;
for (unsigned i : indices(E->getComponents())) {
auto &component = E->getComponents()[i];
auto memberLocator = CS.getConstraintLocator(
locator, LocatorPathElt::KeyPathComponent(i));
auto resultLocator = CS.getConstraintLocator(
memberLocator, ConstraintLocator::KeyPathComponentResult);
switch (auto kind = component.getKind()) {
case KeyPathExpr::Component::Kind::Invalid:
break;
case KeyPathExpr::Component::Kind::UnresolvedProperty:
// This should only appear in resolved ASTs, but we may need to
// re-type-check the constraints during failure diagnosis.
case KeyPathExpr::Component::Kind::Property: {
auto memberTy = CS.createTypeVariable(resultLocator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
componentTypeVars.push_back(memberTy);
auto lookupName = kind == KeyPathExpr::Component::Kind::UnresolvedProperty
? component.getUnresolvedDeclName()
: component.getDeclRef().getDecl()->getFullName();
auto refKind = lookupName.isSimpleName()
? FunctionRefKind::Unapplied
: FunctionRefKind::Compound;
CS.addValueMemberConstraint(base, lookupName,
memberTy,
CurDC,
refKind,
/*outerAlternatives=*/{},
memberLocator);
base = memberTy;
break;
}
case KeyPathExpr::Component::Kind::UnresolvedSubscript:
// Subscript should only appear in resolved ASTs, but we may need to
// re-type-check the constraints during failure diagnosis.
case KeyPathExpr::Component::Kind::Subscript: {
base = addSubscriptConstraints(E, base, component.getIndexExpr(),
/*decl*/ nullptr,
component.getSubscriptLabels(),
/*hasTrailingClosure*/ false,
memberLocator,
&componentTypeVars);
break;
}
case KeyPathExpr::Component::Kind::TupleElement: {
// Note: If implemented, the logic in `getCalleeLocator` will need
// updating to return the correct callee locator for this.
llvm_unreachable("not implemented");
break;
}
case KeyPathExpr::Component::Kind::OptionalChain: {
didOptionalChain = true;
// We can't assign an optional back through an optional chain
// today. Force the base to an rvalue.
auto rvalueTy = CS.createTypeVariable(resultLocator,
TVO_CanBindToNoEscape);
componentTypeVars.push_back(rvalueTy);
CS.addConstraint(ConstraintKind::Equal, base, rvalueTy,
resultLocator);
base = rvalueTy;
LLVM_FALLTHROUGH;
}
case KeyPathExpr::Component::Kind::OptionalForce: {
auto optionalObjTy = CS.createTypeVariable(resultLocator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
componentTypeVars.push_back(optionalObjTy);
CS.addConstraint(ConstraintKind::OptionalObject, base, optionalObjTy,
resultLocator);
base = optionalObjTy;
break;
}
case KeyPathExpr::Component::Kind::OptionalWrap: {
// This should only appear in resolved ASTs, but we may need to
// re-type-check the constraints during failure diagnosis.
base = OptionalType::get(base);
break;
}
case KeyPathExpr::Component::Kind::Identity:
continue;
}
// By now, `base` is the result type of this component. Set it in the
// constraint system so we can find it later.
CS.setType(E, i, base);
}
// If there was an optional chaining component, the end result must be
// optional.
if (didOptionalChain) {
auto objTy = CS.createTypeVariable(locator, TVO_CanBindToNoEscape);
componentTypeVars.push_back(objTy);
auto optTy = OptionalType::get(objTy);
CS.addConstraint(ConstraintKind::Conversion, base, optTy,
locator);
base = optTy;
}
auto baseLocator =
CS.getConstraintLocator(E, ConstraintLocator::KeyPathValue);
auto rvalueBase = CS.createTypeVariable(baseLocator,
TVO_CanBindToNoEscape);
CS.addConstraint(ConstraintKind::Equal, base, rvalueBase, locator);
// The result is a KeyPath from the root to the end component.
// The type of key path depends on the overloads chosen for the key
// path components.
auto typeLoc =
CS.getConstraintLocator(locator, ConstraintLocator::KeyPathType);
Type kpTy = CS.createTypeVariable(typeLoc, TVO_CanBindToNoEscape);
CS.addKeyPathConstraint(kpTy, root, rvalueBase, componentTypeVars,
locator);
return kpTy;
}
Type visitKeyPathDotExpr(KeyPathDotExpr *E) {
llvm_unreachable("found KeyPathDotExpr in CSGen");
}
Type visitOneWayExpr(OneWayExpr *expr) {
auto locator = CS.getConstraintLocator(expr);
auto resultTypeVar = CS.createTypeVariable(locator, 0);
CS.addConstraint(ConstraintKind::OneWayEqual, resultTypeVar,
CS.getType(expr->getSubExpr()), locator);
return resultTypeVar;
}
Type visitTapExpr(TapExpr *expr) {
DeclContext *varDC = expr->getVar()->getDeclContext();
assert(varDC == CS.DC || (varDC && isa<AbstractClosureExpr>(varDC)) &&
"TapExpr var should be in the same DeclContext we're checking it in!");
auto locator = CS.getConstraintLocator(expr);
auto tv = CS.createTypeVariable(locator, TVO_CanBindToNoEscape);
if (auto subExpr = expr->getSubExpr()) {
auto subExprType = CS.getType(subExpr);
CS.addConstraint(ConstraintKind::Bind, subExprType, tv, locator);
}
return tv;
}
static bool isTriggerFallbackDiagnosticBuiltin(UnresolvedDotExpr *UDE,
ASTContext &Context) {
auto *DRE = dyn_cast<DeclRefExpr>(UDE->getBase());
if (!DRE)
return false;
if (DRE->getDecl() != Context.TheBuiltinModule)
return false;
auto member = UDE->getName().getBaseName().userFacingName();
return member.equals("trigger_fallback_diagnostic");
}
enum class TypeOperation { None,
Join,
JoinInout,
JoinMeta,
JoinNonexistent,
OneWay,
};
static TypeOperation getTypeOperation(UnresolvedDotExpr *UDE,
ASTContext &Context) {
auto *DRE = dyn_cast<DeclRefExpr>(UDE->getBase());
if (!DRE)
return TypeOperation::None;
if (DRE->getDecl() != Context.TheBuiltinModule)
return TypeOperation::None;
return llvm::StringSwitch<TypeOperation>(
UDE->getName().getBaseIdentifier().str())
.Case("one_way", TypeOperation::OneWay)
.Case("type_join", TypeOperation::Join)
.Case("type_join_inout", TypeOperation::JoinInout)
.Case("type_join_meta", TypeOperation::JoinMeta)
.Case("type_join_nonexistent", TypeOperation::JoinNonexistent)
.Default(TypeOperation::None);
}
Type resultOfTypeOperation(TypeOperation op, Expr *Arg) {
auto *tuple = cast<TupleExpr>(Arg);
auto *lhs = tuple->getElement(0);
auto *rhs = tuple->getElement(1);
switch (op) {
case TypeOperation::None:
case TypeOperation::OneWay:
llvm_unreachable(
"We should have a valid type operation at this point!");
case TypeOperation::Join: {
auto lhsMeta = CS.getType(lhs)->getAs<MetatypeType>();
auto rhsMeta = CS.getType(rhs)->getAs<MetatypeType>();
if (!lhsMeta || !rhsMeta)
llvm_unreachable("Unexpected argument types for Builtin.type_join!");
auto &ctx = lhsMeta->getASTContext();
auto join =
Type::join(lhsMeta->getInstanceType(), rhsMeta->getInstanceType());
if (!join)
return ErrorType::get(ctx);
return MetatypeType::get(*join, ctx)->getCanonicalType();
}
case TypeOperation::JoinInout: {
auto lhsInOut = CS.getType(lhs)->getAs<InOutType>();
auto rhsMeta = CS.getType(rhs)->getAs<MetatypeType>();
if (!lhsInOut || !rhsMeta)
llvm_unreachable("Unexpected argument types for Builtin.type_join!");
auto &ctx = lhsInOut->getASTContext();
auto join =
Type::join(lhsInOut, rhsMeta->getInstanceType());
if (!join)
return ErrorType::get(ctx);
return MetatypeType::get(*join, ctx)->getCanonicalType();
}
case TypeOperation::JoinMeta: {
auto lhsMeta = CS.getType(lhs)->getAs<MetatypeType>();
auto rhsMeta = CS.getType(rhs)->getAs<MetatypeType>();
if (!lhsMeta || !rhsMeta)
llvm_unreachable("Unexpected argument types for Builtin.type_join!");
auto &ctx = lhsMeta->getASTContext();
auto join = Type::join(lhsMeta, rhsMeta);
if (!join)
return ErrorType::get(ctx);
return *join;
}
case TypeOperation::JoinNonexistent: {
auto lhsMeta = CS.getType(lhs)->getAs<MetatypeType>();
auto rhsMeta = CS.getType(rhs)->getAs<MetatypeType>();
if (!lhsMeta || !rhsMeta)
llvm_unreachable("Unexpected argument types for Builtin.type_join_nonexistent!");
auto &ctx = lhsMeta->getASTContext();
auto join =
Type::join(lhsMeta->getInstanceType(), rhsMeta->getInstanceType());
// Verify that we could not compute a join.
if (join)
llvm_unreachable("Unexpected result from join - it should not have been computable!");
// The return value is unimportant.
return MetatypeType::get(ctx.TheAnyType)->getCanonicalType();
}
}
llvm_unreachable("unhandled operation");
}
void associateArgumentLabels(ConstraintLocator *locator,
ConstraintSystem::ArgumentInfo info,
bool labelsArePermanent = true) {
assert(locator && locator->getAnchor());
// Record the labels.
if (!labelsArePermanent)
info.Labels = CS.allocateCopy(info.Labels);
CS.ArgumentInfos[CS.getArgumentInfoLocator(locator)] = info;
}
};
/// AST walker that "sanitizes" an expression for the
/// constraint-based type checker.
///
/// This is necessary because Sema fills in too much type information before
/// the type-checker runs, causing redundant work, and for expression that
/// have already been typechecked and may contain unhandled AST nodes.
///
/// FIXME: Remove this one we no longer re-type check expressions during
/// diagnostics and code completion.
class SanitizeExpr : public ASTWalker {
ConstraintSystem &CS;
TypeChecker &TC;
const bool eraseOpenExistentialsOnly;
llvm::SmallDenseMap<OpaqueValueExpr *, Expr *, 4> OpenExistentials;
public:
SanitizeExpr(ConstraintSystem &cs, bool eraseOEsOnly = false)
: CS(cs), TC(cs.getTypeChecker()),
eraseOpenExistentialsOnly(eraseOEsOnly) { }
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
while (true) {
// If we should reuse pre-checked types, don't sanitize the expression
// if it's already type-checked.
if (CS.shouldReusePrecheckedType() && expr->getType())
return { false, expr };
// OpenExistentialExpr contains OpaqueValueExpr in its sub expression.
if (auto OOE = dyn_cast<OpenExistentialExpr>(expr)) {
auto archetypeVal = OOE->getOpaqueValue();
auto base = OOE->getExistentialValue();
bool inserted = OpenExistentials.insert({archetypeVal, base}).second;
assert(inserted && "OpaqueValue appears multiple times?");
(void)inserted;
SWIFT_DEFER { OpenExistentials.erase(archetypeVal); };
// Walk to and return the base expression to erase any existentials
// within it.
return { false, OOE->getSubExpr()->walk(*this) };
}
// Hacky, this behaves just like an OpenedExistential in that it changes
// the expr tree.
if (auto ISLE = dyn_cast<InterpolatedStringLiteralExpr>(expr)) {
if (auto subExpr = ISLE->getAppendingExpr()->getSubExpr()) {
if (auto opaqueValue = dyn_cast<OpaqueValueExpr>(subExpr)) {
ISLE->getAppendingExpr()->setSubExpr(nullptr);
}
}
}
// Substitute OpaqueValue with its representing existental.
if (auto OVE = dyn_cast<OpaqueValueExpr>(expr)) {
auto value = OpenExistentials.find(OVE);
if (value != OpenExistentials.end()) {
expr = value->second;
continue;
} else {
assert((eraseOpenExistentialsOnly || OVE->isPlaceholder()) &&
"Didn't see this OVE in a containing OpenExistentialExpr?");
// NOTE: In 'eraseOpenExistentialsOnly' mode, ASTWalker may walk
// into other kind of expressions holding OVE.
}
}
if (eraseOpenExistentialsOnly)
return {true, expr};
// Skip any implicit conversions applied to this expression.
if (auto ICE = dyn_cast<ImplicitConversionExpr>(expr)) {
expr = ICE->getSubExpr();
continue;
}
// MakeTemporarilyEscapableExpr is typechecked expression.
if (auto MTEE = dyn_cast<MakeTemporarilyEscapableExpr>(expr)) {
expr = MTEE->getOriginalExpr();
continue;
}
// Restore '@autoclosure'd value.
if (auto ACE = dyn_cast<AutoClosureExpr>(expr)) {
expr = ACE->getSingleExpressionBody();
continue;
}
// Remove any semantic expression injected by typechecking.
if (auto EPE = dyn_cast<EditorPlaceholderExpr>(expr)) {
EPE->setSemanticExpr(nullptr);
}
// Strip default arguments and varargs from type-checked call
// argument lists.
if (isa<ParenExpr>(expr) || isa<TupleExpr>(expr)) {
if (shouldSanitizeArgumentList(expr))
expr = sanitizeArgumentList(expr);
}
// If this expression represents keypath based dynamic member
// lookup, let's convert it back to the original form of
// member or subscript reference.
if (auto *SE = dyn_cast<SubscriptExpr>(expr)) {
if (auto *TE = dyn_cast<TupleExpr>(SE->getIndex())) {
auto isImplicitKeyPathExpr = [](Expr *argExpr) -> bool {
if (auto *KP = dyn_cast<KeyPathExpr>(argExpr))
return KP->isImplicit();
return false;
};
if (TE->isImplicit() && TE->getNumElements() == 1 &&
TE->getElementName(0) == TC.Context.Id_dynamicMember &&
isImplicitKeyPathExpr(TE->getElement(0))) {
auto *keyPathExpr = cast<KeyPathExpr>(TE->getElement(0));
auto *componentExpr = keyPathExpr->getParsedPath();
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(componentExpr)) {
UDE->setBase(SE->getBase());
return {true, UDE};
}
if (auto *subscript = dyn_cast<SubscriptExpr>(componentExpr)) {
subscript->setBase(SE->getBase());
return {true, subscript};
}
llvm_unreachable("unknown keypath component type");
}
}
}
// Now, we're ready to walk into sub expressions.
return {true, expr};
}
}
bool isSyntheticArgumentExpr(const Expr *expr) {
if (isa<DefaultArgumentExpr>(expr) ||
isa<CallerDefaultArgumentExpr>(expr))
return true;
if (auto *varargExpr = dyn_cast<VarargExpansionExpr>(expr))
if (isa<ArrayExpr>(varargExpr->getSubExpr()))
return true;
return false;
}
bool shouldSanitizeArgumentList(const Expr *expr) {
if (auto *parenExpr = dyn_cast<ParenExpr>(expr)) {
return isSyntheticArgumentExpr(parenExpr->getSubExpr());
} else if (auto *tupleExpr = dyn_cast<TupleExpr>(expr)) {
for (auto *arg : tupleExpr->getElements()) {
if (isSyntheticArgumentExpr(arg))
return true;
}
return false;
} else {
return isSyntheticArgumentExpr(expr);
}
}
Expr *sanitizeArgumentList(Expr *original) {
auto argList = getOriginalArgumentList(original);
if (argList.args.size() == 1 &&
argList.labels[0].empty() &&
!isa<VarargExpansionExpr>(argList.args[0])) {
auto *result =
new (TC.Context) ParenExpr(argList.lParenLoc,
argList.args[0],
argList.rParenLoc,
argList.hasTrailingClosure);
result->setImplicit();
return result;
}
return TupleExpr::create(TC.Context,
argList.lParenLoc,
argList.args,
argList.labels,
argList.labelLocs,
argList.rParenLoc,
argList.hasTrailingClosure,
/*implicit=*/true);
}
Expr *walkToExprPost(Expr *expr) override {
if (CS.hasType(expr)) {
Type type = CS.getType(expr);
if (type->hasOpenedExistential()) {
type = type.transform([&](Type type) -> Type {
if (auto archetype = type->getAs<OpenedArchetypeType>())
return archetype->getOpenedExistentialType();
return type;
});
CS.setType(expr, type);
// Set new type to the expression directly.
expr->setType(type);
}
}
if (eraseOpenExistentialsOnly)
return expr;
assert(!isa<ImplicitConversionExpr>(expr) &&
"ImplicitConversionExpr should be eliminated in walkToExprPre");
auto buildMemberRef = [&](Type memberType, Expr *base, SourceLoc dotLoc,
ConcreteDeclRef member, DeclNameLoc memberLoc,
bool implicit) -> Expr * {
auto *memberRef = new (TC.Context)
MemberRefExpr(base, dotLoc, member, memberLoc, implicit);
if (memberType) {
memberRef->setType(memberType);
return CS.cacheType(memberRef);
}
return memberRef;
};
// A DotSyntaxCallExpr is a member reference that has already been
// type-checked down to a call; turn it back into an overloaded
// member reference expression.
if (auto dotCall = dyn_cast<DotSyntaxCallExpr>(expr)) {
DeclNameLoc memberLoc;
auto memberAndFunctionRef = findReferencedDecl(dotCall->getFn(),
memberLoc);
if (memberAndFunctionRef.first) {
assert(!isa<ImplicitConversionExpr>(dotCall->getBase()));
return buildMemberRef(dotCall->getType(),
dotCall->getBase(),
dotCall->getDotLoc(),
memberAndFunctionRef.first,
memberLoc, expr->isImplicit());
}
}
if (auto *dynamicMember = dyn_cast<DynamicMemberRefExpr>(expr)) {
if (auto memberRef = dynamicMember->getMember()) {
assert(!isa<ImplicitConversionExpr>(dynamicMember->getBase()));
return buildMemberRef(dynamicMember->getType(),
dynamicMember->getBase(),
dynamicMember->getDotLoc(),
memberRef,
dynamicMember->getNameLoc(),
expr->isImplicit());
}
}
// A DotSyntaxBaseIgnoredExpr is a static member reference that has
// already been type-checked down to a call where the argument doesn't
// actually matter; turn it back into an overloaded member reference
// expression.
if (auto dotIgnored = dyn_cast<DotSyntaxBaseIgnoredExpr>(expr)) {
DeclNameLoc memberLoc;
auto memberAndFunctionRef = findReferencedDecl(dotIgnored->getRHS(),
memberLoc);
if (memberAndFunctionRef.first) {
assert(!isa<ImplicitConversionExpr>(dotIgnored->getLHS()));
return buildMemberRef(dotIgnored->getType(),
dotIgnored->getLHS(),
dotIgnored->getDotLoc(),
memberAndFunctionRef.first,
memberLoc, expr->isImplicit());
}
}
return expr;
}
/// Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
// Don't walk into statements. This handles the BraceStmt in
// non-single-expr closures, so we don't walk into their body.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
return { false, S };
}
};
class ConstraintWalker : public ASTWalker {
ConstraintGenerator &CG;
public:
ConstraintWalker(ConstraintGenerator &CG) : CG(CG) { }
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
if (CG.getConstraintSystem().shouldReusePrecheckedType()) {
if (expr->getType()) {
assert(!expr->getType()->hasTypeVariable());
CG.getConstraintSystem().cacheType(expr);
return { false, expr };
}
}
// Note that the subexpression of a #selector expression is
// unevaluated.
if (auto sel = dyn_cast<ObjCSelectorExpr>(expr)) {
CG.getConstraintSystem().UnevaluatedRootExprs.insert(sel->getSubExpr());
}
// Check an objc key-path expression, which fills in its semantic
// expression as a string literal.
if (auto keyPath = dyn_cast<KeyPathExpr>(expr)) {
if (keyPath->isObjC()) {
auto &cs = CG.getConstraintSystem();
(void)cs.getTypeChecker().checkObjCKeyPathExpr(cs.DC, keyPath);
}
}
// For closures containing only a single expression, the body participates
// in type checking.
if (auto closure = dyn_cast<ClosureExpr>(expr)) {
auto &CS = CG.getConstraintSystem();
if (closure->hasSingleExpressionBody()) {
CG.enterClosure(closure);
// Visit the closure itself, which produces a function type.
auto funcTy = CG.visit(expr)->castTo<FunctionType>();
CS.setType(expr, funcTy);
}
return { true, expr };
}
// Don't visit CoerceExpr with an empty sub expression. They may occur
// if the body of a closure was not visited while pre-checking because
// of an error in the closure's signature.
if (auto coerceExpr = dyn_cast<CoerceExpr>(expr)) {
if (!coerceExpr->getSubExpr()) {
return { false, expr };
}
}
// Don't visit IfExpr with empty sub expressions. They may occur
// if the body of a closure was not visited while pre-checking because
// of an error in the closure's signature.
if (auto ifExpr = dyn_cast<IfExpr>(expr)) {
if (!ifExpr->getThenExpr() || !ifExpr->getElseExpr())
return { false, expr };
}
return { true, expr };
}
/// Once we've visited the children of the given expression,
/// generate constraints from the expression.
Expr *walkToExprPost(Expr *expr) override {
// Translate special type-checker Builtin calls into simpler expressions.
if (auto *apply = dyn_cast<ApplyExpr>(expr)) {
auto fnExpr = apply->getFn();
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(fnExpr)) {
auto &CS = CG.getConstraintSystem();
auto typeOperation =
ConstraintGenerator::getTypeOperation(UDE, CS.getASTContext());
if (typeOperation == ConstraintGenerator::TypeOperation::OneWay) {
// For a one-way constraint, create the OneWayExpr node.
auto *arg = cast<ParenExpr>(apply->getArg())->getSubExpr();
expr = new (CS.getASTContext()) OneWayExpr(arg);
} else if (typeOperation !=
ConstraintGenerator::TypeOperation::None) {
// Handle the Builtin.type_join* family of calls by replacing
// them with dot_self_expr of type_expr with the type being the
// result of the join.
auto joinMetaTy =
CG.resultOfTypeOperation(typeOperation, apply->getArg());
auto joinTy = joinMetaTy->castTo<MetatypeType>()->getInstanceType();
auto *TE = TypeExpr::createImplicit(joinTy, CS.getASTContext());
CS.cacheType(TE);
CS.setType(TE->getTypeLoc(), joinTy);
auto *DSE = new (CS.getASTContext())
DotSelfExpr(TE, SourceLoc(), SourceLoc(), CS.getType(TE));
DSE->setImplicit();
CS.cacheType(DSE);
return DSE;
}
}
}
if (auto closure = dyn_cast<ClosureExpr>(expr)) {
if (closure->hasSingleExpressionBody()) {
CG.exitClosure(closure);
auto &CS = CG.getConstraintSystem();
Type closureTy = CS.getType(closure);
// If the function type has an error in it, we don't want to solve the
// system.
if (closureTy && closureTy->hasError())
return nullptr;
// Visit the body. It's type needs to be convertible to the function's
// return type.
auto resultTy = closureTy->castTo<FunctionType>()->getResult();
Type bodyTy = CS.getType(closure->getSingleExpressionBody());
CG.getConstraintSystem().setFavoredType(expr, bodyTy.getPointer());
CG.getConstraintSystem()
.addConstraint(ConstraintKind::Conversion, bodyTy,
resultTy,
CG.getConstraintSystem()
.getConstraintLocator(
expr,
ConstraintLocator::ClosureResult));
return expr;
}
}
if (auto type = CG.visit(expr)) {
auto &CS = CG.getConstraintSystem();
auto simplifiedType = CS.simplifyType(type);
CS.setType(expr, simplifiedType);
return expr;
}
return nullptr;
}
/// Ignore statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
return { false, stmt };
}
/// Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
};
} // end anonymous namespace
Expr *ConstraintSystem::generateConstraints(Expr *expr, DeclContext *dc) {
// Remove implicit conversions from the expression.
expr = expr->walk(SanitizeExpr(*this));
// Walk the expression, generating constraints.
ConstraintGenerator cg(*this, dc);
ConstraintWalker cw(cg);
Expr* result = expr->walk(cw);
if (result)
this->optimizeConstraints(result);
return result;
}
Type ConstraintSystem::generateConstraints(Pattern *pattern,
ConstraintLocatorBuilder locator) {
ConstraintGenerator cg(*this, nullptr);
return cg.getTypeForPattern(pattern, locator);
}
void ConstraintSystem::optimizeConstraints(Expr *e) {
if (TC.getLangOpts().DisableConstraintSolverPerformanceHacks)
return;
SmallVector<Expr *, 16> linkedExprs;
// Collect any linked expressions.
LinkedExprCollector collector(linkedExprs, *this);
e->walk(collector);
// Favor types, as appropriate.
for (auto linkedExpr : linkedExprs) {
computeFavoredTypeForExpr(linkedExpr, *this);
}
// Optimize the constraints.
ConstraintOptimizer optimizer(*this);
e->walk(optimizer);
}
bool swift::areGenericRequirementsSatisfied(
const DeclContext *DC, GenericSignature sig,
SubstitutionMap Substitutions, bool isExtension) {
TypeChecker &TC = createTypeChecker(DC->getASTContext());
ConstraintSystemOptions Options;
ConstraintSystem CS(TC, const_cast<DeclContext *>(DC), Options);
auto Loc = CS.getConstraintLocator(nullptr);
// For every requirement, add a constraint.
for (auto Req : sig->getRequirements()) {
if (auto resolved = Req.subst(
QuerySubstitutionMap{Substitutions},
LookUpConformanceInModule(DC->getParentModule()))) {
CS.addConstraint(*resolved, Loc);
} else if (isExtension) {
return false;
}
// Unresolved requirements are requirements of the function itself. This
// does not prevent it from being applied. E.g. func foo<T: Sequence>(x: T).
}
// Having a solution implies the requirements have been fulfilled.
return CS.solveSingle().hasValue();
}
bool swift::canSatisfy(Type type1, Type type2, bool openArchetypes,
ConstraintKind kind, DeclContext *dc) {
std::unique_ptr<TypeChecker> CreatedTC;
auto &TC = TypeChecker::createForContext(dc->getASTContext());
return TC.typesSatisfyConstraint(type1, type2, openArchetypes, kind, dc,
/*unwrappedIUO=*/nullptr);
}
void swift::eraseOpenedExistentials(ConstraintSystem &CS, Expr *&expr) {
expr = expr->walk(SanitizeExpr(CS, /*eraseOEsOnly=*/true));
}
struct ResolvedMemberResult::Implementation {
llvm::SmallVector<ValueDecl*, 4> AllDecls;
unsigned ViableStartIdx;
Optional<unsigned> BestIdx;
};
ResolvedMemberResult::ResolvedMemberResult(): Impl(new Implementation()) {};
ResolvedMemberResult::~ResolvedMemberResult() { delete Impl; };
ResolvedMemberResult::operator bool() const {
return !Impl->AllDecls.empty();
}
bool ResolvedMemberResult::
hasBestOverload() const { return Impl->BestIdx.hasValue(); }
ValueDecl* ResolvedMemberResult::
getBestOverload() const { return Impl->AllDecls[Impl->BestIdx.getValue()]; }
ArrayRef<ValueDecl*> ResolvedMemberResult::
getMemberDecls(InterestedMemberKind Kind) {
auto Result = llvm::makeArrayRef(Impl->AllDecls);
switch (Kind) {
case InterestedMemberKind::Viable:
return Result.slice(Impl->ViableStartIdx);
case InterestedMemberKind::Unviable:
return Result.slice(0, Impl->ViableStartIdx);
case InterestedMemberKind::All:
return Result;
}
llvm_unreachable("unhandled kind");
}
ResolvedMemberResult
swift::resolveValueMember(DeclContext &DC, Type BaseTy, DeclName Name) {
ResolvedMemberResult Result;
std::unique_ptr<TypeChecker> CreatedTC;
// If the current ast context has no type checker, create one for it.
auto &TC = TypeChecker::createForContext(DC.getASTContext());
ConstraintSystem CS(TC, &DC, None);
// Look up all members of BaseTy with the given Name.
MemberLookupResult LookupResult = CS.performMemberLookup(
ConstraintKind::ValueMember, Name, BaseTy, FunctionRefKind::SingleApply,
nullptr, false);
// Keep track of all the unviable members.
for (auto Can : LookupResult.UnviableCandidates)
Result.Impl->AllDecls.push_back(Can.getDecl());
// Keep track of the start of viable choices.
Result.Impl->ViableStartIdx = Result.Impl->AllDecls.size();
// If no viable members, we are done.
if (LookupResult.ViableCandidates.empty())
return Result;
// Try to figure out the best overload.
ConstraintLocator *Locator = CS.getConstraintLocator(nullptr);
TypeVariableType *TV = CS.createTypeVariable(Locator,
TVO_CanBindToLValue |
TVO_CanBindToNoEscape);
CS.addOverloadSet(TV, LookupResult.ViableCandidates, &DC, Locator);
Optional<Solution> OpSolution = CS.solveSingle();
ValueDecl *Selected = nullptr;
if (OpSolution.hasValue()) {
Selected = OpSolution.getValue().overloadChoices[Locator].choice.getDecl();
}
for (OverloadChoice& Choice : LookupResult.ViableCandidates) {
ValueDecl *VD = Choice.getDecl();
// If this VD is the best overload, keep track of its index.
if (VD == Selected)
Result.Impl->BestIdx = Result.Impl->AllDecls.size();
Result.Impl->AllDecls.push_back(VD);
}
return Result;
}
OriginalArgumentList
swift::getOriginalArgumentList(Expr *expr) {
OriginalArgumentList result;
auto add = [&](Expr *arg, Identifier label, SourceLoc labelLoc) {
if (isa<DefaultArgumentExpr>(arg) ||
isa<CallerDefaultArgumentExpr>(arg)) {
return;
}
if (auto *varargExpr = dyn_cast<VarargExpansionExpr>(arg)) {
if (auto *arrayExpr = dyn_cast<ArrayExpr>(varargExpr->getSubExpr())) {
for (auto *elt : arrayExpr->getElements()) {
result.args.push_back(elt);
result.labels.push_back(label);
result.labelLocs.push_back(labelLoc);
label = Identifier();
labelLoc = SourceLoc();
}
return;
}
}
result.args.push_back(arg);
result.labels.push_back(label);
result.labelLocs.push_back(labelLoc);
};
if (auto *parenExpr = dyn_cast<ParenExpr>(expr)) {
result.lParenLoc = parenExpr->getLParenLoc();
result.rParenLoc = parenExpr->getRParenLoc();
result.hasTrailingClosure = parenExpr->hasTrailingClosure();
add(parenExpr->getSubExpr(), Identifier(), SourceLoc());
} else if (auto *tupleExpr = dyn_cast<TupleExpr>(expr)) {
result.lParenLoc = tupleExpr->getLParenLoc();
result.rParenLoc = tupleExpr->getRParenLoc();
result.hasTrailingClosure = tupleExpr->hasTrailingClosure();
auto args = tupleExpr->getElements();
auto labels = tupleExpr->getElementNames();
auto labelLocs = tupleExpr->getElementNameLocs();
for (unsigned i = 0, e = args.size(); i != e; ++i) {
// Implicit TupleExprs don't always store label locations.
add(args[i], labels[i],
labelLocs.empty() ? SourceLoc() : labelLocs[i]);
}
} else {
add(expr, Identifier(), SourceLoc());
}
return result;
}