blob: d77111a6623179c6ef10cc47a46477c1cb437e37 [file] [log] [blame]
//===------ ModuleInterfaceLoader.cpp - Loads .swiftinterface files -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "textual-module-interface"
#include "swift/Frontend/ModuleInterfaceLoader.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/FileSystem.h"
#include "swift/AST/Module.h"
#include "swift/Basic/Platform.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/ModuleInterfaceSupport.h"
#include "swift/Serialization/SerializationOptions.h"
#include "swift/Serialization/Validation.h"
#include "clang/Basic/Module.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Frontend/CompilerInstance.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Support/xxhash.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/YAMLTraits.h"
#include "ModuleInterfaceBuilder.h"
using namespace swift;
using FileDependency = SerializationOptions::FileDependency;
/// Extract the specified-or-defaulted -module-cache-path that winds up in
/// the clang importer, for reuse as the .swiftmodule cache path when
/// building a ModuleInterfaceLoader.
std::string
swift::getModuleCachePathFromClang(const clang::CompilerInstance &Clang) {
if (!Clang.hasPreprocessor())
return "";
std::string SpecificModuleCachePath = Clang.getPreprocessor()
.getHeaderSearchInfo()
.getModuleCachePath();
// The returned-from-clang module cache path includes a suffix directory
// that is specific to the clang version and invocation; we want the
// directory above that.
return llvm::sys::path::parent_path(SpecificModuleCachePath);
}
#pragma mark - Forwarding Modules
namespace {
/// Describes a "forwarding module", that is, a .swiftmodule that's actually
/// a YAML file inside, pointing to a the original .swiftmodule but describing
/// a different dependency resolution strategy.
struct ForwardingModule {
/// The path to the original .swiftmodule in the prebuilt cache.
std::string underlyingModulePath;
/// Describes a set of file-based dependencies with their size and
/// modification time stored. This is slightly different from
/// \c SerializationOptions::FileDependency, because this type needs to be
/// serializable to and from YAML.
struct Dependency {
std::string path;
uint64_t size;
uint64_t lastModificationTime;
bool isSDKRelative;
};
std::vector<Dependency> dependencies;
unsigned version = 1;
ForwardingModule() = default;
ForwardingModule(StringRef underlyingModulePath)
: underlyingModulePath(underlyingModulePath) {}
/// Loads the contents of the forwarding module whose contents lie in
/// the provided buffer, and returns a new \c ForwardingModule, or an error
/// if the YAML could not be parsed.
static llvm::ErrorOr<ForwardingModule> load(const llvm::MemoryBuffer &buf);
/// Adds a given dependency to the dependencies list.
void addDependency(StringRef path, bool isSDKRelative, uint64_t size,
uint64_t modTime) {
dependencies.push_back({path.str(), size, modTime, isSDKRelative});
}
};
} // end anonymous namespace
#pragma mark - YAML Serialization
namespace llvm {
namespace yaml {
template <>
struct MappingTraits<ForwardingModule::Dependency> {
static void mapping(IO &io, ForwardingModule::Dependency &dep) {
io.mapRequired("mtime", dep.lastModificationTime);
io.mapRequired("path", dep.path);
io.mapRequired("size", dep.size);
io.mapOptional("sdk_relative", dep.isSDKRelative, /*default*/false);
}
};
template <>
struct SequenceElementTraits<ForwardingModule::Dependency> {
static const bool flow = false;
};
template <>
struct MappingTraits<ForwardingModule> {
static void mapping(IO &io, ForwardingModule &module) {
io.mapRequired("path", module.underlyingModulePath);
io.mapRequired("dependencies", module.dependencies);
io.mapRequired("version", module.version);
}
};
}
} // end namespace llvm
llvm::ErrorOr<ForwardingModule>
ForwardingModule::load(const llvm::MemoryBuffer &buf) {
llvm::yaml::Input yamlIn(buf.getBuffer());
ForwardingModule fwd;
yamlIn >> fwd;
if (yamlIn.error())
return yamlIn.error();
// We only currently support Version 1 of the forwarding module format.
if (fwd.version != 1)
return std::make_error_code(std::errc::not_supported);
return std::move(fwd);
}
#pragma mark - Module Discovery
namespace {
/// The result of a search for a module either alongside an interface, in the
/// module cache, or in the prebuilt module cache.
class DiscoveredModule {
/// The kind of module we've found.
enum class Kind {
/// A module that's either alongside the swiftinterface or in the
/// module cache.
Normal,
/// A module that resides in the prebuilt cache, and has hash-based
/// dependencies.
Prebuilt,
/// A 'forwarded' module. This is a module in the prebuilt cache, but whose
/// dependencies live in a forwarding module.
/// \sa ForwardingModule.
Forwarded
};
/// The kind of module that's been discovered.
const Kind kind;
DiscoveredModule(StringRef path, Kind kind,
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer)
: kind(kind), moduleBuffer(std::move(moduleBuffer)), path(path) {}
public:
/// The contents of the .swiftmodule, if we've read it while validating
/// dependencies.
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer;
/// The path to the discovered serialized .swiftmodule on disk.
const std::string path;
/// Creates a \c Normal discovered module.
static DiscoveredModule normal(StringRef path,
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer) {
return { path, Kind::Normal, std::move(moduleBuffer) };
}
/// Creates a \c Prebuilt discovered module.
static DiscoveredModule prebuilt(
StringRef path, std::unique_ptr<llvm::MemoryBuffer> moduleBuffer) {
return { path, Kind::Prebuilt, std::move(moduleBuffer) };
}
/// Creates a \c Forwarded discovered module, whose dependencies have been
/// externally validated by a \c ForwardingModule.
static DiscoveredModule forwarded(
StringRef path, std::unique_ptr<llvm::MemoryBuffer> moduleBuffer) {
return { path, Kind::Forwarded, std::move(moduleBuffer) };
}
bool isNormal() const { return kind == Kind::Normal; }
bool isPrebuilt() const { return kind == Kind::Prebuilt; }
bool isForwarded() const { return kind == Kind::Forwarded; }
};
} // end anonymous namespace
#pragma mark - Common utilities
namespace path = llvm::sys::path;
static bool serializedASTLooksValid(const llvm::MemoryBuffer &buf) {
auto VI = serialization::validateSerializedAST(buf.getBuffer());
return VI.status == serialization::Status::Valid;
}
#pragma mark - Module Loading
namespace {
/// Keeps track of the various reasons the module interface loader needed to
/// fall back and rebuild a module from its interface.
struct ModuleRebuildInfo {
enum class ModuleKind {
Normal,
Cached,
Forwarding,
Prebuilt
};
struct OutOfDateModule {
std::string path;
Optional<serialization::Status> serializationStatus;
ModuleKind kind;
SmallVector<std::string, 10> outOfDateDependencies;
SmallVector<std::string, 10> missingDependencies;
};
SmallVector<OutOfDateModule, 3> outOfDateModules;
OutOfDateModule &getOrInsertOutOfDateModule(StringRef path) {
for (auto &mod : outOfDateModules) {
if (mod.path == path) return mod;
}
outOfDateModules.push_back({path, None, ModuleKind::Normal, {}, {}});
return outOfDateModules.back();
}
/// Sets the kind of a module that failed to load.
void setModuleKind(StringRef path, ModuleKind kind) {
getOrInsertOutOfDateModule(path).kind = kind;
}
/// Sets the serialization status of the module at \c path. If this is
/// anything other than \c Valid, a note will be added stating why the module
/// was invalid.
void setSerializationStatus(StringRef path, serialization::Status status) {
getOrInsertOutOfDateModule(path).serializationStatus = status;
}
/// Registers an out-of-date dependency at \c depPath for the module
/// at \c modulePath.
void addOutOfDateDependency(StringRef modulePath, StringRef depPath) {
getOrInsertOutOfDateModule(modulePath)
.outOfDateDependencies.push_back(depPath);
}
/// Registers a missing dependency at \c depPath for the module
/// at \c modulePath.
void addMissingDependency(StringRef modulePath, StringRef depPath) {
getOrInsertOutOfDateModule(modulePath)
.missingDependencies.push_back(depPath);
}
/// Determines if we saw the given module path and registered is as out of
/// date.
bool sawOutOfDateModule(StringRef modulePath) {
for (auto &mod : outOfDateModules)
if (mod.path == modulePath)
return true;
return false;
}
const char *invalidModuleReason(serialization::Status status) {
using namespace serialization;
switch (status) {
case Status::FormatTooOld:
return "compiled with an older version of the compiler";
case Status::FormatTooNew:
return "compiled with a newer version of the compiler";
case Status::Malformed:
return "malformed";
case Status::TargetIncompatible:
return "compiled for a different target platform";
case Status::TargetTooNew:
return "target platform newer than current platform";
default: return nullptr;
}
}
/// Emits a diagnostic for all out-of-date compiled or forwarding modules
/// encountered while trying to load a module.
void diagnose(ASTContext &ctx, SourceLoc loc, StringRef moduleName,
StringRef interfacePath) {
ctx.Diags.diagnose(loc, diag::rebuilding_module_from_interface,
moduleName, interfacePath);
// We may have found multiple failing modules, that failed for different
// reasons. Emit a note for each of them.
for (auto &mod : outOfDateModules) {
ctx.Diags.diagnose(loc, diag::out_of_date_module_here,
(unsigned)mod.kind, mod.path);
// Diagnose any out-of-date dependencies in this module.
for (auto &dep : mod.outOfDateDependencies) {
ctx.Diags.diagnose(loc, diag::module_interface_dependency_out_of_date,
dep);
}
// Diagnose any missing dependencies in this module.
for (auto &dep : mod.missingDependencies) {
ctx.Diags.diagnose(loc, diag::module_interface_dependency_missing, dep);
}
// If there was a compiled module that wasn't able to be read, diagnose
// the reason we couldn't read it.
if (auto status = mod.serializationStatus) {
if (auto reason = invalidModuleReason(*status)) {
ctx.Diags.diagnose(loc, diag::compiled_module_invalid_reason,
mod.path, reason);
} else {
ctx.Diags.diagnose(loc, diag::compiled_module_invalid, mod.path);
}
}
}
}
};
/// Handles the details of loading module interfaces as modules, and will
/// do the necessary lookup to determine if we should be loading from the
/// normal cache, the prebuilt cache, a module adjacent to the interface, or
/// a module that we'll build from a module interface.
class ModuleInterfaceLoaderImpl {
using AccessPathElem = std::pair<Identifier, SourceLoc>;
friend class swift::ModuleInterfaceLoader;
ASTContext &ctx;
llvm::vfs::FileSystem &fs;
DiagnosticEngine &diags;
ModuleRebuildInfo rebuildInfo;
const StringRef modulePath;
const std::string interfacePath;
const StringRef moduleName;
const StringRef prebuiltCacheDir;
const StringRef cacheDir;
const SourceLoc diagnosticLoc;
DependencyTracker *const dependencyTracker;
const ModuleLoadingMode loadMode;
const bool remarkOnRebuildFromInterface;
ModuleInterfaceLoaderImpl(
ASTContext &ctx, StringRef modulePath, StringRef interfacePath,
StringRef moduleName, StringRef cacheDir, StringRef prebuiltCacheDir,
SourceLoc diagLoc, bool remarkOnRebuildFromInterface,
DependencyTracker *dependencyTracker = nullptr,
ModuleLoadingMode loadMode = ModuleLoadingMode::PreferSerialized)
: ctx(ctx), fs(*ctx.SourceMgr.getFileSystem()), diags(ctx.Diags),
modulePath(modulePath), interfacePath(interfacePath),
moduleName(moduleName), prebuiltCacheDir(prebuiltCacheDir),
cacheDir(cacheDir), diagnosticLoc(diagLoc),
dependencyTracker(dependencyTracker), loadMode(loadMode),
remarkOnRebuildFromInterface(remarkOnRebuildFromInterface) {}
/// Construct a cache key for the .swiftmodule being generated. There is a
/// balance to be struck here between things that go in the cache key and
/// things that go in the "up to date" check of the cache entry. We want to
/// avoid fighting over a single cache entry too much when (say) running
/// different compiler versions on the same machine or different inputs
/// that happen to have the same short module name, so we will disambiguate
/// those in the key. But we want to invalidate and rebuild a cache entry
/// -- rather than making a new one and potentially filling up the cache
/// with dead entries -- when other factors change, such as the contents of
/// the .swiftinterface input or its dependencies.
std::string getCacheHash(const CompilerInvocation &SubInvocation) {
auto normalizedTargetTriple =
getTargetSpecificModuleTriple(SubInvocation.getLangOptions().Target);
llvm::hash_code H = hash_combine(
// Start with the compiler version (which will be either tag names or
// revs). Explicitly don't pass in the "effective" language version --
// this would mean modules built in different -swift-version modes would
// rebuild their dependencies.
swift::version::getSwiftFullVersion(),
// Simplest representation of input "identity" (not content) is just a
// pathname, and probably all we can get from the VFS in this regard
// anyways.
interfacePath,
// Include the normalized target triple. In practice, .swiftinterface
// files will be in target-specific subdirectories and would have
// target-specific pieces #if'd out. However, it doesn't hurt to include
// it, and it guards against mistakenly reusing cached modules across
// targets. Note that this normalization explicitly doesn't include the
// minimum deployment target (e.g. the '12.0' in 'ios12.0').
normalizedTargetTriple.str(),
// The SDK path is going to affect how this module is imported, so
// include it.
SubInvocation.getSDKPath(),
// Whether or not we're tracking system dependencies affects the
// invalidation behavior of this cache item.
SubInvocation.getFrontendOptions().TrackSystemDeps);
return llvm::APInt(64, H).toString(36, /*Signed=*/false);
}
/// Calculate an output filename in \p SubInvocation's cache path that
/// includes a hash of relevant key data.
void computeCachedOutputPath(const CompilerInvocation &SubInvocation,
llvm::SmallString<256> &OutPath) {
OutPath = SubInvocation.getClangModuleCachePath();
llvm::sys::path::append(OutPath, SubInvocation.getModuleName());
OutPath.append("-");
OutPath.append(getCacheHash(SubInvocation));
OutPath.append(".");
auto OutExt = file_types::getExtension(file_types::TY_SwiftModuleFile);
OutPath.append(OutExt);
}
/// Constructs the full path of the dependency \p dep by prepending the SDK
/// path if necessary.
StringRef getFullDependencyPath(const FileDependency &dep,
SmallVectorImpl<char> &scratch) const {
if (!dep.isSDKRelative())
return dep.getPath();
path::native(ctx.SearchPathOpts.SDKPath, scratch);
llvm::sys::path::append(scratch, dep.getPath());
return StringRef(scratch.data(), scratch.size());
}
enum class DependencyStatus {
UpToDate,
OutOfDate,
Missing
};
// Checks that a dependency read from the cached module is up to date compared
// to the interface file it represents.
DependencyStatus checkDependency(StringRef modulePath,
const FileDependency &dep,
StringRef fullPath) {
auto status = fs.status(fullPath);
if (!status)
return DependencyStatus::Missing;
// If the sizes differ, then we know the file has changed.
if (status->getSize() != dep.getSize())
return DependencyStatus::OutOfDate;
// Otherwise, if this dependency is verified by modification time, check
// it vs. the modification time of the file.
if (dep.isModificationTimeBased()) {
uint64_t mtime =
status->getLastModificationTime().time_since_epoch().count();
return mtime == dep.getModificationTime() ?
DependencyStatus::UpToDate :
DependencyStatus::OutOfDate;
}
// Slow path: if the dependency is verified by content hash, check it vs.
// the hash of the file.
auto buf = fs.getBufferForFile(fullPath, /*FileSize=*/-1,
/*RequiresNullTerminator=*/false);
if (!buf)
return DependencyStatus::Missing;
return xxHash64(buf.get()->getBuffer()) == dep.getContentHash() ?
DependencyStatus::UpToDate :
DependencyStatus::OutOfDate;
}
// Check if all the provided file dependencies are up-to-date compared to
// what's currently on disk.
bool dependenciesAreUpToDate(StringRef modulePath,
ArrayRef<FileDependency> deps,
bool skipSystemDependencies) {
SmallString<128> SDKRelativeBuffer;
for (auto &in : deps) {
if (skipSystemDependencies && in.isSDKRelative() &&
in.isModificationTimeBased()) {
continue;
}
StringRef fullPath = getFullDependencyPath(in, SDKRelativeBuffer);
switch (checkDependency(modulePath, in, fullPath)) {
case DependencyStatus::UpToDate:
LLVM_DEBUG(llvm::dbgs() << "Dep " << fullPath << " is up to date\n");
break;
case DependencyStatus::OutOfDate:
LLVM_DEBUG(llvm::dbgs() << "Dep " << fullPath << " is out of date\n");
rebuildInfo.addOutOfDateDependency(modulePath, fullPath);
return false;
case DependencyStatus::Missing:
LLVM_DEBUG(llvm::dbgs() << "Dep " << fullPath << " is missing\n");
rebuildInfo.addMissingDependency(modulePath, fullPath);
return false;
}
}
return true;
}
// Check that the output .swiftmodule file is at least as new as all the
// dependencies it read when it was built last time.
bool serializedASTBufferIsUpToDate(
StringRef path, const llvm::MemoryBuffer &buf,
SmallVectorImpl<FileDependency> &allDeps) {
// Clear the existing dependencies, because we're going to re-fill them
// in validateSerializedAST.
allDeps.clear();
LLVM_DEBUG(llvm::dbgs() << "Validating deps of " << path << "\n");
auto validationInfo = serialization::validateSerializedAST(
buf.getBuffer(), /*ExtendedValidationInfo=*/nullptr, &allDeps);
if (validationInfo.status != serialization::Status::Valid) {
rebuildInfo.setSerializationStatus(path, validationInfo.status);
return false;
}
bool skipCheckingSystemDependencies =
ctx.SearchPathOpts.DisableModulesValidateSystemDependencies;
return dependenciesAreUpToDate(path, allDeps,
skipCheckingSystemDependencies);
}
// Check that the output .swiftmodule file is at least as new as all the
// dependencies it read when it was built last time.
bool swiftModuleIsUpToDate(
StringRef modulePath, SmallVectorImpl<FileDependency> &AllDeps,
std::unique_ptr<llvm::MemoryBuffer> &moduleBuffer) {
auto OutBuf = fs.getBufferForFile(modulePath);
if (!OutBuf)
return false;
moduleBuffer = std::move(*OutBuf);
return serializedASTBufferIsUpToDate(modulePath, *moduleBuffer, AllDeps);
}
// Check that a "forwarding" .swiftmodule file is at least as new as all the
// dependencies it read when it was built last time. Requires that the
// forwarding module has been loaded from disk.
bool forwardingModuleIsUpToDate(
StringRef path, const ForwardingModule &fwd,
SmallVectorImpl<FileDependency> &deps,
std::unique_ptr<llvm::MemoryBuffer> &moduleBuffer) {
// Clear the existing dependencies, because we're going to re-fill them
// from the forwarding module.
deps.clear();
LLVM_DEBUG(llvm::dbgs() << "Validating deps of " << path << "\n");
// First, make sure the underlying module path exists and is valid.
auto modBuf = fs.getBufferForFile(fwd.underlyingModulePath);
if (!modBuf || !serializedASTLooksValid(*modBuf.get()))
return false;
// Next, check the dependencies in the forwarding file.
for (auto &dep : fwd.dependencies) {
deps.push_back(
FileDependency::modTimeBased(
dep.path, dep.isSDKRelative, dep.size, dep.lastModificationTime));
}
bool skipCheckingSystemDependencies =
ctx.SearchPathOpts.DisableModulesValidateSystemDependencies;
if (!dependenciesAreUpToDate(path, deps, skipCheckingSystemDependencies))
return false;
moduleBuffer = std::move(*modBuf);
return true;
}
Optional<StringRef>
computePrebuiltModulePath(llvm::SmallString<256> &scratch) {
namespace path = llvm::sys::path;
StringRef sdkPath = ctx.SearchPathOpts.SDKPath;
// Check if the interface file comes from the SDK
if (sdkPath.empty() || !hasPrefix(path::begin(interfacePath),
path::end(interfacePath),
path::begin(sdkPath),
path::end(sdkPath)))
return None;
// Assemble the expected path: $PREBUILT_CACHE/Foo.swiftmodule or
// $PREBUILT_CACHE/Foo.swiftmodule/arch.swiftmodule. Note that there's no
// cache key here.
scratch = prebuiltCacheDir;
// FIXME: Would it be possible to only have architecture-specific names
// here? Then we could skip this check.
StringRef inParentDirName =
path::filename(path::parent_path(interfacePath));
if (path::extension(inParentDirName) == ".swiftmodule") {
assert(path::stem(inParentDirName) == moduleName);
path::append(scratch, inParentDirName);
}
path::append(scratch, path::filename(modulePath));
// If there isn't a file at this location, skip returning a path.
if (!fs.exists(scratch))
return None;
return scratch.str();
}
/// Hack to deal with build systems (including the Swift standard library, at
/// the time of this comment) that aren't yet using target-specific names for
/// multi-target swiftmodules, in case the prebuilt cache is.
Optional<StringRef>
computeFallbackPrebuiltModulePath(llvm::SmallString<256> &scratch) {
namespace path = llvm::sys::path;
StringRef sdkPath = ctx.SearchPathOpts.SDKPath;
// Check if the interface file comes from the SDK
if (sdkPath.empty() || !hasPrefix(path::begin(interfacePath),
path::end(interfacePath),
path::begin(sdkPath),
path::end(sdkPath)))
return None;
// If the module isn't target-specific, there's no fallback path.
StringRef inParentDirName =
path::filename(path::parent_path(interfacePath));
if (path::extension(inParentDirName) != ".swiftmodule")
return None;
// If the interface is already using the target-specific name, there's
// nothing else to try.
auto normalizedTarget = getTargetSpecificModuleTriple(ctx.LangOpts.Target);
if (path::stem(modulePath) == normalizedTarget.str())
return None;
// Assemble the expected path:
// $PREBUILT_CACHE/Foo.swiftmodule/target.swiftmodule. Note that there's no
// cache key here.
scratch = prebuiltCacheDir;
path::append(scratch, inParentDirName);
path::append(scratch, normalizedTarget.str());
scratch += ".swiftmodule";
// If there isn't a file at this location, skip returning a path.
if (!fs.exists(scratch))
return None;
return scratch.str();
}
bool isInResourceDir(StringRef path) {
StringRef resourceDir = ctx.SearchPathOpts.RuntimeResourcePath;
if (resourceDir.empty()) return false;
return path.startswith(resourceDir);
}
/// Finds the most appropriate .swiftmodule, whose dependencies are up to
/// date, that we can load for the provided .swiftinterface file.
llvm::ErrorOr<DiscoveredModule> discoverUpToDateModuleForInterface(
StringRef modulePath, StringRef cachedOutputPath,
SmallVectorImpl<FileDependency> &deps) {
auto notFoundError =
std::make_error_code(std::errc::no_such_file_or_directory);
// Keep track of whether we should attempt to load a .swiftmodule adjacent
// to the .swiftinterface.
bool shouldLoadAdjacentModule = true;
switch (loadMode) {
case ModuleLoadingMode::OnlyInterface:
// Always skip both the caches and adjacent modules, and always build the
// module interface.
return notFoundError;
case ModuleLoadingMode::PreferInterface:
// If we're in the load mode that prefers .swiftinterfaces, specifically
// skip the module adjacent to the interface, but use the caches if
// they're present.
shouldLoadAdjacentModule = false;
break;
case ModuleLoadingMode::PreferSerialized:
// The rest of the function should be covered by this.
break;
case ModuleLoadingMode::OnlySerialized:
llvm_unreachable("module interface loader should not have been created");
}
// First, check the cached module path. Whatever's in this cache represents
// the most up-to-date knowledge we have about the module.
if (auto cachedBufOrError = fs.getBufferForFile(cachedOutputPath)) {
auto buf = std::move(*cachedBufOrError);
// Check to see if the module is a serialized AST. If it's not, then we're
// probably dealing with a Forwarding Module, which is a YAML file.
bool isForwardingModule =
!serialization::isSerializedAST(buf->getBuffer());
// If it's a forwarding module, load the YAML file from disk and check
// if it's up-to-date.
if (isForwardingModule) {
if (auto forwardingModule = ForwardingModule::load(*buf)) {
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer;
if (forwardingModuleIsUpToDate(cachedOutputPath,
*forwardingModule, deps,
moduleBuffer)) {
LLVM_DEBUG(llvm::dbgs() << "Found up-to-date forwarding module at "
<< cachedOutputPath << "\n");
return DiscoveredModule::forwarded(
forwardingModule->underlyingModulePath, std::move(moduleBuffer));
}
LLVM_DEBUG(llvm::dbgs() << "Found out-of-date forwarding module at "
<< cachedOutputPath << "\n");
rebuildInfo.setModuleKind(cachedOutputPath,
ModuleRebuildInfo::ModuleKind::Forwarding);
}
// Otherwise, check if the AST buffer itself is up to date.
} else if (serializedASTBufferIsUpToDate(cachedOutputPath, *buf, deps)) {
LLVM_DEBUG(llvm::dbgs() << "Found up-to-date cached module at "
<< cachedOutputPath << "\n");
return DiscoveredModule::normal(cachedOutputPath, std::move(buf));
} else {
LLVM_DEBUG(llvm::dbgs() << "Found out-of-date cached module at "
<< cachedOutputPath << "\n");
rebuildInfo.setModuleKind(cachedOutputPath,
ModuleRebuildInfo::ModuleKind::Cached);
}
}
// If we weren't able to open the file for any reason, including it not
// existing, keep going.
// If we have a prebuilt cache path, check that too if the interface comes
// from the SDK.
if (!prebuiltCacheDir.empty()) {
llvm::SmallString<256> scratch;
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer;
Optional<StringRef> path = computePrebuiltModulePath(scratch);
if (!path) {
// Hack: deal with prebuilds of modules that still use the target-based
// names.
path = computeFallbackPrebuiltModulePath(scratch);
}
if (path) {
if (swiftModuleIsUpToDate(*path, deps, moduleBuffer)) {
LLVM_DEBUG(llvm::dbgs() << "Found up-to-date prebuilt module at "
<< path->str() << "\n");
return DiscoveredModule::prebuilt(*path, std::move(moduleBuffer));
} else {
LLVM_DEBUG(llvm::dbgs() << "Found out-of-date prebuilt module at "
<< path->str() << "\n");
rebuildInfo.setModuleKind(*path,
ModuleRebuildInfo::ModuleKind::Prebuilt);
}
}
}
// Finally, if there's a module adjacent to the .swiftinterface that we can
// _likely_ load (it validates OK and is up to date), bail early with
// errc::not_supported, so the next (serialized) loader in the chain will
// load it.
// Alternately, if there's a .swiftmodule present but we can't even
// read it (for whatever reason), we should let the other module loader
// diagnose it.
if (!shouldLoadAdjacentModule)
return notFoundError;
auto adjacentModuleBuffer = fs.getBufferForFile(modulePath);
if (adjacentModuleBuffer) {
if (serializedASTBufferIsUpToDate(modulePath, *adjacentModuleBuffer.get(),
deps)) {
LLVM_DEBUG(llvm::dbgs() << "Found up-to-date module at "
<< modulePath
<< "; deferring to serialized module loader\n");
return std::make_error_code(std::errc::not_supported);
} else if (isInResourceDir(modulePath) &&
loadMode == ModuleLoadingMode::PreferSerialized) {
// Special-case here: If we're loading a .swiftmodule from the resource
// dir adjacent to the compiler, defer to the serialized loader instead
// of falling back. This is mainly to support development of Swift,
// where one might change the module format version but forget to
// recompile the standard library. If that happens, don't fall back
// and silently recompile the standard library -- instead, error like
// we used to.
LLVM_DEBUG(llvm::dbgs() << "Found out-of-date module in the "
"resource-dir at "
<< modulePath
<< "; deferring to serialized module loader "
"to diagnose\n");
return std::make_error_code(std::errc::not_supported);
} else {
LLVM_DEBUG(llvm::dbgs() << "Found out-of-date module at "
<< modulePath << "\n");
rebuildInfo.setModuleKind(modulePath,
ModuleRebuildInfo::ModuleKind::Normal);
}
} else if (adjacentModuleBuffer.getError() != notFoundError) {
LLVM_DEBUG(llvm::dbgs() << "Found unreadable module at "
<< modulePath
<< "; deferring to serialized module loader\n");
return std::make_error_code(std::errc::not_supported);
}
// Couldn't find an up-to-date .swiftmodule, will need to build module from
// interface.
return notFoundError;
}
/// Writes the "forwarding module" that will forward to a module in the
/// prebuilt cache.
///
/// Since forwarding modules track dependencies separately from the module
/// they point to, we'll need to grab the up-to-date file status while doing
/// this. If the write was successful, it also updates the
/// list of dependencies to match what was written to the forwarding file.
bool writeForwardingModuleAndUpdateDeps(
const DiscoveredModule &mod, StringRef outputPath,
SmallVectorImpl<FileDependency> &deps) {
assert(mod.isPrebuilt() &&
"cannot write forwarding file for non-prebuilt module");
ForwardingModule fwd(mod.path);
SmallVector<FileDependency, 16> depsAdjustedToMTime;
// FIXME: We need to avoid re-statting all these dependencies, otherwise
// we may record out-of-date information.
SmallString<128> SDKRelativeBuffer;
auto addDependency = [&](FileDependency dep) -> FileDependency {
auto status = fs.status(getFullDependencyPath(dep, SDKRelativeBuffer));
uint64_t mtime =
status->getLastModificationTime().time_since_epoch().count();
fwd.addDependency(dep.getPath(), dep.isSDKRelative(), status->getSize(),
mtime);
// Construct new FileDependency matching what we've added to the
// forwarding module.
return FileDependency::modTimeBased(dep.getPath(), dep.isSDKRelative(),
status->getSize(), mtime);
};
// Add the prebuilt module as a dependency of the forwarding module, but
// don't add it to the outer dependency list.
(void)addDependency(FileDependency::hashBased(fwd.underlyingModulePath,
/*SDKRelative*/false,
/*size*/0, /*hash*/0));
// Add all the dependencies from the prebuilt module, and update our list
// of dependencies to reflect what's recorded in the forwarding module.
for (auto dep : deps) {
auto adjustedDep = addDependency(dep);
depsAdjustedToMTime.push_back(adjustedDep);
}
// Create the module cache if we haven't created it yet.
StringRef parentDir = path::parent_path(outputPath);
(void)llvm::sys::fs::create_directories(parentDir);
auto hadError = withOutputFile(diags, outputPath,
[&](llvm::raw_pwrite_stream &out) {
llvm::yaml::Output yamlWriter(out);
yamlWriter << fwd;
return false;
});
if (hadError)
return true;
// If and only if we succeeded writing the forwarding file, update the
// provided list of dependencies.
deps = depsAdjustedToMTime;
return false;
}
/// Looks up the best module to load for a given interface, and returns a
/// buffer of the module's contents. Also reports the module's dependencies
/// to the parent \c dependencyTracker if it came from the cache, or was built
/// from the given interface. See the main comment in
/// \c ModuleInterfaceLoader.h for an explanation of the module
/// loading strategy.
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>>
findOrBuildLoadableModule() {
// Track system dependencies if the parent tracker is set to do so.
bool trackSystemDependencies = false;
if (dependencyTracker) {
auto ClangDependencyTracker = dependencyTracker->getClangCollector();
trackSystemDependencies = ClangDependencyTracker->needSystemDependencies();
}
// Set up a builder if we need to build the module. It'll also set up
// the subinvocation we'll need to use to compute the cache paths.
ModuleInterfaceBuilder builder(
ctx.SourceMgr, ctx.Diags, ctx.SearchPathOpts, ctx.LangOpts,
ctx.getClangModuleLoader(), interfacePath, moduleName, cacheDir,
prebuiltCacheDir, /*serializeDependencyHashes*/false,
trackSystemDependencies, remarkOnRebuildFromInterface, diagnosticLoc,
dependencyTracker);
auto &subInvocation = builder.getSubInvocation();
// Compute the output path if we're loading or emitting a cached module.
llvm::SmallString<256> cachedOutputPath;
computeCachedOutputPath(subInvocation, cachedOutputPath);
// Try to find the right module for this interface, either alongside it,
// in the cache, or in the prebuilt cache.
SmallVector<FileDependency, 16> allDeps;
auto moduleOrErr =
discoverUpToDateModuleForInterface(modulePath, cachedOutputPath, allDeps);
// If we errored with anything other than 'no such file or directory',
// fail this load and let the other module loader diagnose it.
if (!moduleOrErr &&
moduleOrErr.getError() != std::errc::no_such_file_or_directory)
return moduleOrErr.getError();
// We discovered a module! Return that module's buffer so we can load it.
if (moduleOrErr) {
auto module = std::move(moduleOrErr.get());
// If it's prebuilt, use this time to generate a forwarding module and
// update the dependencies to use modification times.
if (module.isPrebuilt())
if (writeForwardingModuleAndUpdateDeps(module, cachedOutputPath,
allDeps))
return std::make_error_code(std::errc::not_supported);
// Report the module's dependencies to the dependencyTracker
if (dependencyTracker) {
SmallString<128> SDKRelativeBuffer;
for (auto &dep: allDeps) {
StringRef fullPath = getFullDependencyPath(dep, SDKRelativeBuffer);
dependencyTracker->addDependency(fullPath,
/*IsSystem=*/dep.isSDKRelative());
}
}
return std::move(module.moduleBuffer);
}
std::unique_ptr<llvm::MemoryBuffer> moduleBuffer;
// We didn't discover a module corresponding to this interface.
// Diagnose that we didn't find a loadable module, if we were asked to.
if (remarkOnRebuildFromInterface) {
rebuildInfo.diagnose(ctx, diagnosticLoc, moduleName,
interfacePath);
}
// If we found an out-of-date .swiftmodule, we still want to add it as
// a dependency of the .swiftinterface. That way if it's updated, but
// the .swiftinterface remains the same, we invalidate the cache and
// check the new .swiftmodule, because it likely has more information
// about the state of the world.
if (rebuildInfo.sawOutOfDateModule(modulePath))
builder.addExtraDependency(modulePath);
if (builder.buildSwiftModule(cachedOutputPath, /*shouldSerializeDeps*/true,
&moduleBuffer))
return std::make_error_code(std::errc::invalid_argument);
assert(moduleBuffer &&
"failed to write module buffer but returned success?");
return std::move(moduleBuffer);
}
};
} // end anonymous namespace
bool ModuleInterfaceLoader::isCached(StringRef DepPath) {
if (!CacheDir.empty() && DepPath.startswith(CacheDir))
return true;
return !PrebuiltCacheDir.empty() && DepPath.startswith(PrebuiltCacheDir);
}
/// Load a .swiftmodule associated with a .swiftinterface either from a
/// cache or by converting it in a subordinate \c CompilerInstance, caching
/// the results.
std::error_code ModuleInterfaceLoader::findModuleFilesInDirectory(
AccessPathElem ModuleID, StringRef DirPath, StringRef ModuleFilename,
StringRef ModuleDocFilename,
std::unique_ptr<llvm::MemoryBuffer> *ModuleBuffer,
std::unique_ptr<llvm::MemoryBuffer> *ModuleDocBuffer) {
// If running in OnlySerialized mode, ModuleInterfaceLoader
// should not have been constructed at all.
assert(LoadMode != ModuleLoadingMode::OnlySerialized);
auto &fs = *Ctx.SourceMgr.getFileSystem();
llvm::SmallString<256> ModPath, InPath;
// First check to see if the .swiftinterface exists at all. Bail if not.
ModPath = DirPath;
path::append(ModPath, ModuleFilename);
auto Ext = file_types::getExtension(file_types::TY_SwiftModuleInterfaceFile);
InPath = ModPath;
path::replace_extension(InPath, Ext);
if (!fs.exists(InPath)) {
if (fs.exists(ModPath)) {
LLVM_DEBUG(llvm::dbgs()
<< "No .swiftinterface file found adjacent to module file "
<< ModPath.str() << "\n");
return std::make_error_code(std::errc::not_supported);
}
return std::make_error_code(std::errc::no_such_file_or_directory);
}
// Create an instance of the Impl to do the heavy lifting.
auto ModuleName = ModuleID.first.str();
ModuleInterfaceLoaderImpl Impl(
Ctx, ModPath, InPath, ModuleName,
CacheDir, PrebuiltCacheDir, ModuleID.second,
RemarkOnRebuildFromInterface, dependencyTracker,
llvm::is_contained(PreferInterfaceForModules,
ModuleName) ?
ModuleLoadingMode::PreferInterface : LoadMode);
// Ask the impl to find us a module that we can load or give us an error
// telling us that we couldn't load it.
auto ModuleBufferOrErr = Impl.findOrBuildLoadableModule();
if (!ModuleBufferOrErr)
return ModuleBufferOrErr.getError();
if (ModuleBuffer) {
*ModuleBuffer = std::move(*ModuleBufferOrErr);
}
// Delegate back to the serialized module loader to load the module doc.
llvm::SmallString<256> DocPath{DirPath};
path::append(DocPath, ModuleDocFilename);
auto DocLoadErr =
SerializedModuleLoaderBase::openModuleDocFile(ModuleID, DocPath,
ModuleDocBuffer);
if (DocLoadErr)
return DocLoadErr;
return std::error_code();
}
bool ModuleInterfaceLoader::buildSwiftModuleFromSwiftInterface(
SourceManager &SourceMgr, DiagnosticEngine &Diags,
const SearchPathOptions &SearchPathOpts, const LangOptions &LangOpts,
StringRef CacheDir, StringRef PrebuiltCacheDir,
StringRef ModuleName, StringRef InPath, StringRef OutPath,
bool SerializeDependencyHashes, bool TrackSystemDependencies,
bool RemarkOnRebuildFromInterface) {
ModuleInterfaceBuilder builder(SourceMgr, Diags, SearchPathOpts, LangOpts,
/*clangImporter*/nullptr, InPath,
ModuleName, CacheDir, PrebuiltCacheDir,
SerializeDependencyHashes,
TrackSystemDependencies,
RemarkOnRebuildFromInterface);
// FIXME: We really only want to serialize 'important' dependencies here, if
// we want to ship the built swiftmodules to another machine.
return builder.buildSwiftModule(OutPath, /*shouldSerializeDeps*/true,
/*ModuleBuffer*/nullptr);
}
void ModuleInterfaceLoader::collectVisibleTopLevelModuleNames(
SmallVectorImpl<Identifier> &names) const {
collectVisibleTopLevelModuleNamesImpl(
names,
file_types::getExtension(file_types::TY_SwiftModuleInterfaceFile));
}