blob: 0a857f986584b3b0c241cf0b00004db4d4846cf4 [file] [log] [blame]
//===--- CapturePropagation.cpp - Propagate closure capture constants -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "capture-prop"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "swift/Basic/Demangle.h"
#include "swift/SIL/Mangle.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/ColdBlockInfo.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumCapturesPropagated, "Number of constant captures propagated");
namespace {
/// Propagate constants through closure captures by specializing the partially
/// applied function.
/// Also optimize away partial_apply instructions where all partially applied
/// arguments are dead.
class CapturePropagation : public SILFunctionTransform
{
public:
void run() override;
StringRef getName() override { return "Captured Constant Propagation"; }
protected:
bool optimizePartialApply(PartialApplyInst *PAI);
SILFunction *specializeConstClosure(PartialApplyInst *PAI,
SILFunction *SubstF);
void rewritePartialApply(PartialApplyInst *PAI, SILFunction *SpecialF);
};
} // end anonymous namespace
static LiteralInst *getConstant(SILValue V) {
if (auto I = dyn_cast<ThinToThickFunctionInst>(V))
return getConstant(I->getOperand());
if (auto I = dyn_cast<ConvertFunctionInst>(V))
return getConstant(I->getOperand());
return dyn_cast<LiteralInst>(V);
}
static bool isOptimizableConstant(SILValue V) {
// We do not optimize string literals of length > 32 since we would need to
// encode them into the symbol name for uniqueness.
if (auto *SLI = dyn_cast<StringLiteralInst>(V))
return SLI->getValue().size() <= 32;
return true;
}
static bool isConstant(SILValue V) {
V = getConstant(V);
return V && isOptimizableConstant(V);
}
static std::string getClonedName(PartialApplyInst *PAI, IsFragile_t Fragile,
SILFunction *F) {
Mangle::Mangler M;
auto P = Demangle::SpecializationPass::CapturePropagation;
FunctionSignatureSpecializationMangler OldMangler(P, M, Fragile, F);
NewMangling::FunctionSignatureSpecializationMangler NewMangler(P, Fragile, F);
// We know that all arguments are literal insts.
unsigned argIdx = ApplySite(PAI).getCalleeArgIndexOfFirstAppliedArg();
for (auto arg : PAI->getArguments()) {
OldMangler.setArgumentConstantProp(argIdx, getConstant(arg));
NewMangler.setArgumentConstantProp(argIdx, getConstant(arg));
++argIdx;
}
OldMangler.mangle();
std::string Old = M.finalize();
std::string New = NewMangler.mangle();
return NewMangling::selectMangling(Old, New);
}
namespace {
/// Clone the partially applied function, replacing incoming arguments with
/// literal constants.
///
/// The cloned literals will retain the SILLocation from the partial apply's
/// caller, so the cloned function will have a mix of locations from different
/// functions.
class CapturePropagationCloner
: public SILClonerWithScopes<CapturePropagationCloner> {
using SuperTy = SILClonerWithScopes<CapturePropagationCloner>;
friend class SILVisitor<CapturePropagationCloner>;
friend class SILCloner<CapturePropagationCloner>;
SILFunction *OrigF;
bool IsCloningConstant;
public:
CapturePropagationCloner(SILFunction *OrigF, SILFunction *NewF)
: SuperTy(*NewF), OrigF(OrigF), IsCloningConstant(false) {}
void cloneBlocks(OperandValueArrayRef Args);
protected:
/// Literals cloned from the caller drop their location so the debug line
/// tables don't senselessly jump around. As a placeholder give them the
/// location of the newly cloned function.
SILLocation remapLocation(SILLocation InLoc) {
if (IsCloningConstant)
return getBuilder().getFunction().getLocation();
return InLoc;
}
/// Literals cloned from the caller take on the new function's debug scope.
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
assert(IsCloningConstant == (Orig->getFunction() != OrigF) &&
"Expect only cloned constants from the caller function.");
SILClonerWithScopes<CapturePropagationCloner>::postProcess(Orig, Cloned);
}
const SILDebugScope *remapScope(const SILDebugScope *DS) {
if (IsCloningConstant)
return getBuilder().getFunction().getDebugScope();
else
return SILClonerWithScopes<CapturePropagationCloner>::remapScope(DS);
}
void cloneConstValue(SILValue Const);
};
} // end anonymous namespace
/// Clone a constant value. Recursively walk the operand chain through cast
/// instructions to ensure that all dependents are cloned. Note that the
/// original value may not belong to the same function as the one being cloned
/// by cloneBlocks() (they may be from the partial apply caller).
void CapturePropagationCloner::cloneConstValue(SILValue Val) {
assert(IsCloningConstant && "incorrect mode");
auto Inst = dyn_cast<SILInstruction>(Val);
if (!Inst)
return;
auto II = InstructionMap.find(Inst);
if (II != InstructionMap.end())
return;
if (Inst->getNumOperands() > 0) {
// Only handle single operands for simple recursion without a worklist.
assert(Inst->getNumOperands() == 1 && "expected single-operand cast");
cloneConstValue(Inst->getOperand(0));
}
visit(Inst);
}
/// Clone the original partially applied function into the new specialized
/// function, replacing some arguments with literals.
void CapturePropagationCloner::cloneBlocks(
OperandValueArrayRef PartialApplyArgs) {
SILFunction &CloneF = getBuilder().getFunction();
// Create the entry basic block with the function arguments.
SILBasicBlock *OrigEntryBB = &*OrigF->begin();
SILBasicBlock *ClonedEntryBB = CloneF.createBasicBlock();
auto cloneConv = CloneF.getConventions();
// Only clone the arguments that remain in the new function type. The trailing
// arguments are now propagated through the partial apply.
assert(!IsCloningConstant && "incorrect mode");
unsigned ParamIdx = 0;
for (unsigned NewParamEnd = cloneConv.getNumSILArguments();
ParamIdx != NewParamEnd; ++ParamIdx) {
SILArgument *Arg = OrigEntryBB->getArgument(ParamIdx);
SILValue MappedValue = ClonedEntryBB->createFunctionArgument(
remapType(Arg->getType()), Arg->getDecl());
ValueMap.insert(std::make_pair(Arg, MappedValue));
}
assert(OrigEntryBB->args_size() - ParamIdx == PartialApplyArgs.size() &&
"unexpected number of partial apply arguments");
// Replace the rest of the old arguments with constants.
BBMap.insert(std::make_pair(OrigEntryBB, ClonedEntryBB));
getBuilder().setInsertionPoint(ClonedEntryBB);
IsCloningConstant = true;
for (SILValue PartialApplyArg : PartialApplyArgs) {
assert(isConstant(PartialApplyArg) &&
"expected a constant arg to partial apply");
cloneConstValue(PartialApplyArg);
// The PartialApplyArg from the caller is now mapped to its cloned
// instruction. Also map the original argument to the cloned instruction.
SILArgument *InArg = OrigEntryBB->getArgument(ParamIdx);
ValueMap.insert(std::make_pair(InArg, remapValue(PartialApplyArg)));
++ParamIdx;
}
IsCloningConstant = false;
// Recursively visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions other than terminators.
visitSILBasicBlock(OrigEntryBB);
// Now iterate over the BBs and fix up the terminators.
for (auto BI = BBMap.begin(), BE = BBMap.end(); BI != BE; ++BI) {
getBuilder().setInsertionPoint(BI->second);
visit(BI->first->getTerminator());
}
}
/// Given a partial_apply instruction, create a specialized callee by removing
/// all constant arguments and adding constant literals to the specialized
/// function body.
SILFunction *CapturePropagation::specializeConstClosure(PartialApplyInst *PAI,
SILFunction *OrigF) {
IsFragile_t Fragile = IsNotFragile;
if (PAI->getFunction()->isFragile() && OrigF->isFragile())
Fragile = IsFragile;
std::string Name = getClonedName(PAI, Fragile, OrigF);
// See if we already have a version of this function in the module. If so,
// just return it.
if (auto *NewF = OrigF->getModule().lookUpFunction(Name)) {
assert(NewF->isFragile() == Fragile);
DEBUG(llvm::dbgs()
<< " Found an already specialized version of the callee: ";
NewF->printName(llvm::dbgs()); llvm::dbgs() << "\n");
return NewF;
}
// The new partial_apply will no longer take any arguments--they are all
// expressed as literals. So its callee signature will be the same as its
// return signature.
CanSILFunctionType NewFTy =
Lowering::adjustFunctionType(PAI->getType().castTo<SILFunctionType>(),
SILFunctionType::Representation::Thin);
SILFunction *NewF = OrigF->getModule().createFunction(
SILLinkage::Shared, Name, NewFTy,
OrigF->getGenericEnvironment(), OrigF->getLocation(), OrigF->isBare(),
OrigF->isTransparent(), Fragile, OrigF->isThunk(),
OrigF->getClassVisibility(), OrigF->getInlineStrategy(),
OrigF->getEffectsKind(),
/*InsertBefore*/ OrigF, OrigF->getDebugScope());
if (OrigF->hasUnqualifiedOwnership()) {
NewF->setUnqualifiedOwnership();
}
DEBUG(llvm::dbgs() << " Specialize callee as ";
NewF->printName(llvm::dbgs()); llvm::dbgs() << " " << NewFTy << "\n");
CapturePropagationCloner cloner(OrigF, NewF);
cloner.cloneBlocks(PAI->getArguments());
assert(OrigF->getDebugScope()->Parent != NewF->getDebugScope()->Parent);
return NewF;
}
void CapturePropagation::rewritePartialApply(PartialApplyInst *OrigPAI,
SILFunction *SpecialF) {
SILBuilderWithScope Builder(OrigPAI);
auto FuncRef = Builder.createFunctionRef(OrigPAI->getLoc(), SpecialF);
auto *T2TF = Builder.createThinToThickFunction(OrigPAI->getLoc(),
FuncRef, OrigPAI->getType());
OrigPAI->replaceAllUsesWith(T2TF);
recursivelyDeleteTriviallyDeadInstructions(OrigPAI, true);
DEBUG(llvm::dbgs() << " Rewrote caller:\n" << *T2TF);
}
/// For now, we conservative only specialize if doing so can eliminate dynamic
/// dispatch.
///
/// TODO: Check for other profitable constant propagation, like builtin compare.
static bool isProfitable(SILFunction *Callee) {
SILBasicBlock *EntryBB = &*Callee->begin();
for (auto *Arg : EntryBB->getArguments()) {
for (auto *Operand : Arg->getUses()) {
if (FullApplySite FAS = FullApplySite::isa(Operand->getUser())) {
if (FAS.getCallee() == Operand->get())
return true;
}
}
}
return false;
}
/// Returns true if block \p BB only contains a return or throw of the first
/// block argument and side-effect-free instructions.
static bool onlyContainsReturnOrThrowOfArg(SILBasicBlock *BB) {
for (SILInstruction &I : *BB) {
if (isa<ReturnInst>(&I) || isa<ThrowInst>(&I)) {
SILValue RetVal = I.getOperand(0);
if (BB->getNumArguments() == 1 && RetVal == BB->getArgument(0))
return true;
return false;
}
if (I.mayHaveSideEffects() || isa<TermInst>(&I))
return false;
}
llvm_unreachable("should have seen a terminator instruction");
}
/// Checks if \p Orig is a thunk which calls another function but without
/// passing the trailing \p numDeadParams dead parameters.
static SILFunction *getSpecializedWithDeadParams(SILFunction *Orig,
int numDeadParams) {
SILBasicBlock &EntryBB = *Orig->begin();
unsigned NumArgs = EntryBB.getNumArguments();
SILModule &M = Orig->getModule();
// Check if all dead parameters have trivial types. We don't support non-
// trivial types because it's very hard to find places where we can release
// those parameters (as a replacement for the removed partial_apply).
// TODO: maybe we can skip this restriction when we have semantic ARC.
for (unsigned Idx = NumArgs - numDeadParams; Idx < NumArgs; ++Idx) {
SILType ArgTy = EntryBB.getArgument(Idx)->getType();
if (!ArgTy.isTrivial(M))
return nullptr;
}
SILFunction *Specialized = nullptr;
SILValue RetValue;
// Check all instruction of the entry block.
for (SILInstruction &I : EntryBB) {
if (auto FAS = FullApplySite::isa(&I)) {
// Check if this is the call of the specialized function.
// As the original function is not generic, also the specialized function
// must be not generic.
if (FAS.hasSubstitutions())
return nullptr;
// Is it the only call?
if (Specialized)
return nullptr;
Specialized = FAS.getReferencedFunction();
if (!Specialized)
return nullptr;
// Check if parameters are passes 1-to-1
unsigned NumArgs = FAS.getNumArguments();
if (EntryBB.getNumArguments() - numDeadParams != NumArgs)
return nullptr;
for (unsigned Idx = 0; Idx < NumArgs; ++Idx) {
if (FAS.getArgument(Idx) != (ValueBase *)EntryBB.getArgument(Idx))
return nullptr;
}
if (TryApplyInst *TAI = dyn_cast<TryApplyInst>(&I)) {
// Check the normal and throw blocks of the try_apply.
if (onlyContainsReturnOrThrowOfArg(TAI->getNormalBB()) &&
onlyContainsReturnOrThrowOfArg(TAI->getErrorBB()))
return Specialized;
return nullptr;
}
assert(isa<ApplyInst>(&I) && "unknown FullApplySite instruction");
RetValue = &I;
continue;
}
if (auto *RI = dyn_cast<ReturnInst>(&I)) {
// Check if we return the result of the apply.
if (RI->getOperand() != RetValue)
return nullptr;
continue;
}
if (I.mayHaveSideEffects() || isa<TermInst>(&I))
return nullptr;
}
return Specialized;
}
bool CapturePropagation::optimizePartialApply(PartialApplyInst *PAI) {
// Check if the partial_apply has generic substitutions.
// FIXME: We could handle generic thunks if it's worthwhile.
if (PAI->hasSubstitutions())
return false;
SILFunction *SubstF = PAI->getReferencedFunction();
if (!SubstF)
return false;
if (SubstF->isExternalDeclaration())
return false;
assert(!SubstF->getLoweredFunctionType()->isPolymorphic() &&
"cannot specialize generic partial apply");
// First possibility: Is it a partial_apply where all partially applied
// arguments are dead?
if (SILFunction *NewFunc = getSpecializedWithDeadParams(SubstF,
PAI->getNumArguments())) {
rewritePartialApply(PAI, NewFunc);
return true;
}
// Second possibility: Are all partially applied arguments constant?
for (auto Arg : PAI->getArguments()) {
if (!isConstant(Arg))
return false;
}
if (!isProfitable(SubstF))
return false;
DEBUG(llvm::dbgs() << "Specializing closure for constant arguments:\n"
<< " " << SubstF->getName() << "\n" << *PAI);
++NumCapturesPropagated;
SILFunction *NewF = specializeConstClosure(PAI, SubstF);
rewritePartialApply(PAI, NewF);
notifyPassManagerOfFunction(NewF, SubstF);
return true;
}
void CapturePropagation::run() {
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
auto *F = getFunction();
bool HasChanged = false;
// Don't optimize functions that are marked with the opt.never attribute.
if (!F->shouldOptimize())
return;
// Cache cold blocks per function.
ColdBlockInfo ColdBlocks(DA);
for (auto &BB : *F) {
if (ColdBlocks.isCold(&BB))
continue;
auto I = BB.begin();
while (I != BB.end()) {
SILInstruction *Inst = &*I;
++I;
if (PartialApplyInst *PAI = dyn_cast<PartialApplyInst>(Inst))
HasChanged |= optimizePartialApply(PAI);
}
}
if (HasChanged) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Everything);
}
}
SILTransform *swift::createCapturePropagation() {
return new CapturePropagation();
}