blob: fefc5ec607b0e19a63075fed9d673062457936e6 [file] [log] [blame]
//===--- SILGenApply.cpp - Constructs call sites for SILGen ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ArgumentSource.h"
#include "FormalEvaluation.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "Scope.h"
#include "SpecializedEmitter.h"
#include "Varargs.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/Module.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/Unicode.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILArgument.h"
#include "llvm/Support/Compiler.h"
using namespace swift;
using namespace Lowering;
/// Retrieve the type to use for a method found via dynamic lookup.
static CanAnyFunctionType getDynamicMethodFormalType(SILValue proto,
ValueDecl *member,
Type memberType) {
auto &ctx = member->getASTContext();
CanType selfTy;
if (member->isInstanceMember()) {
selfTy = ctx.TheUnknownObjectType;
} else {
selfTy = proto->getType().getSwiftRValueType();
}
auto extInfo = FunctionType::ExtInfo()
.withRepresentation(FunctionType::Representation::Thin);
return CanFunctionType::get(selfTy, memberType->getCanonicalType(),
extInfo);
}
/// Replace the 'self' parameter in the given type.
static CanSILFunctionType
replaceSelfTypeForDynamicLookup(ASTContext &ctx,
CanSILFunctionType fnType,
CanType newSelfType,
SILDeclRef methodName) {
auto oldParams = fnType->getParameters();
SmallVector<SILParameterInfo, 4> newParams;
newParams.append(oldParams.begin(), oldParams.end() - 1);
newParams.push_back({newSelfType, oldParams.back().getConvention()});
// If the method returns Self, substitute AnyObject for the result type.
SmallVector<SILResultInfo, 4> newResults;
newResults.append(fnType->getResults().begin(), fnType->getResults().end());
if (auto fnDecl = dyn_cast<FuncDecl>(methodName.getDecl())) {
if (fnDecl->hasDynamicSelf()) {
auto anyObjectTy = ctx.getProtocol(KnownProtocolKind::AnyObject)
->getDeclaredType();
for (auto &result : newResults) {
auto newResultTy
= result.getType()->replaceCovariantResultType(anyObjectTy, 0);
result = result.getWithType(newResultTy->getCanonicalType());
}
}
}
return SILFunctionType::get(nullptr,
fnType->getExtInfo(),
fnType->getCalleeConvention(),
newParams,
newResults,
fnType->getOptionalErrorResult(),
ctx);
}
/// Retrieve the type to use for a method found via dynamic lookup.
static CanSILFunctionType getDynamicMethodLoweredType(SILGenFunction &gen,
SILValue proto,
SILDeclRef methodName,
CanAnyFunctionType substMemberTy) {
auto &ctx = gen.getASTContext();
// Determine the opaque 'self' parameter type.
CanType selfTy;
if (methodName.getDecl()->isInstanceMember()) {
selfTy = proto->getType().getSwiftRValueType();
assert(selfTy->is<ArchetypeType>() && "Dynamic lookup needs an archetype");
} else {
selfTy = proto->getType().getSwiftRValueType();
}
// Replace the 'self' parameter type in the method type with it.
auto objcFormalTy = substMemberTy.withExtInfo(substMemberTy->getExtInfo()
.withSILRepresentation(SILFunctionTypeRepresentation::ObjCMethod));
auto methodTy = gen.SGM.M.Types
.getUncachedSILFunctionTypeForConstant(methodName, objcFormalTy);
return replaceSelfTypeForDynamicLookup(ctx, methodTy, selfTy, methodName);
}
/// Check if we can perform a dynamic dispatch on a super method call.
static bool canUseStaticDispatch(SILGenFunction &gen,
SILDeclRef constant) {
auto *funcDecl = cast<AbstractFunctionDecl>(constant.getDecl());
if (funcDecl->isFinal())
return true;
// Extension methods currently must be statically dispatched, unless they're
// @objc or dynamic.
if (funcDecl->getDeclContext()->isExtensionContext()
&& !constant.isForeign)
return true;
// We cannot form a direct reference to a method body defined in
// Objective-C.
if (constant.isForeign)
return false;
// If we cannot form a direct reference due to resilience constraints,
// we have to dynamic dispatch.
if (gen.F.isFragile() && !constant.isFragile())
return false;
// If the method is defined in the same module, we can reference it
// directly.
auto thisModule = gen.SGM.M.getSwiftModule();
if (thisModule == funcDecl->getModuleContext())
return true;
// Otherwise, we must dynamic dispatch.
return false;
}
namespace {
/// Abstractly represents a callee, which may be a constant or function value,
/// and knows how to perform dynamic dispatch and reference the appropriate
/// entry point at any valid uncurry level.
class Callee {
public:
enum class Kind {
/// An indirect function value.
IndirectValue,
/// A direct standalone function call, referenceable by a FunctionRefInst.
StandaloneFunction,
/// Enum case constructor call.
EnumElement,
VirtualMethod_First,
/// A method call using class method dispatch.
ClassMethod = VirtualMethod_First,
/// A method call using super method dispatch.
SuperMethod,
VirtualMethod_Last = SuperMethod,
GenericMethod_First,
/// A method call using archetype dispatch.
WitnessMethod = GenericMethod_First,
/// A method call using dynamic lookup.
DynamicMethod,
GenericMethod_Last = DynamicMethod
};
const Kind kind;
// Move, don't copy.
Callee(const Callee &) = delete;
Callee &operator=(const Callee &) = delete;
private:
union {
ManagedValue IndirectValue;
SILDeclRef Constant;
};
SILValue SelfValue;
SubstitutionList Substitutions;
CanAnyFunctionType OrigFormalInterfaceType;
Optional<SmallVector<ManagedValue, 2>> Captures;
// The pointer back to the AST node that produced the callee.
SILLocation Loc;
private:
Callee(ManagedValue indirectValue,
CanAnyFunctionType origFormalType,
SILLocation L)
: kind(Kind::IndirectValue),
IndirectValue(indirectValue),
OrigFormalInterfaceType(origFormalType),
Loc(L)
{}
static CanAnyFunctionType getConstantFormalInterfaceType(SILGenFunction &gen,
SILDeclRef fn) {
return gen.SGM.Types.getConstantInfo(fn.atUncurryLevel(0))
.FormalInterfaceType;
}
Callee(SILGenFunction &gen, SILDeclRef standaloneFunction,
SILLocation l)
: kind(Kind::StandaloneFunction), Constant(standaloneFunction),
OrigFormalInterfaceType(getConstantFormalInterfaceType(gen,
standaloneFunction)),
Loc(l)
{
}
Callee(Kind methodKind,
SILGenFunction &gen,
SILValue selfValue,
SILDeclRef methodName,
SILLocation l)
: kind(methodKind), Constant(methodName), SelfValue(selfValue),
OrigFormalInterfaceType(getConstantFormalInterfaceType(gen, methodName)),
Loc(l)
{
}
CanArchetypeType getWitnessMethodSelfType() const {
return cast<ArchetypeType>(getSubstFormalType().getInput()
->getRValueInstanceType()
->getCanonicalType());
}
CanSILFunctionType getSubstFunctionType(SILGenModule &SGM,
CanSILFunctionType origFnType) const {
return origFnType->substGenericArgs(SGM.M, Substitutions);
}
/// Add the 'self' type to the substituted function type of this
/// dynamic callee.
void addDynamicCalleeSelfToFormalType(Type substFormalType) {
assert(kind == Kind::DynamicMethod);
OrigFormalInterfaceType
= getDynamicMethodFormalType(SelfValue,
Constant.getDecl(),
substFormalType);
assert(!OrigFormalInterfaceType->hasTypeParameter());
}
public:
static Callee forIndirect(ManagedValue indirectValue,
CanAnyFunctionType origFormalType,
SILLocation l) {
return Callee(indirectValue, origFormalType, l);
}
static Callee forDirect(SILGenFunction &gen, SILDeclRef c,
SILLocation l) {
return Callee(gen, c, l);
}
static Callee forEnumElement(SILGenFunction &gen, SILDeclRef c,
SILLocation l) {
assert(isa<EnumElementDecl>(c.getDecl()));
return Callee(Kind::EnumElement, gen, SILValue(), c, l);
}
static Callee forClassMethod(SILGenFunction &gen, SILValue selfValue,
SILDeclRef name,
SILLocation l) {
return Callee(Kind::ClassMethod, gen, selfValue, name, l);
}
static Callee forSuperMethod(SILGenFunction &gen, SILValue selfValue,
SILDeclRef name,
SILLocation l) {
while (auto *UI = dyn_cast<UpcastInst>(selfValue))
selfValue = UI->getOperand();
return Callee(Kind::SuperMethod, gen, selfValue, name, l);
}
static Callee forArchetype(SILGenFunction &gen,
SILValue optOpeningInstruction,
CanType protocolSelfType,
SILDeclRef name,
SILLocation l) {
Callee callee(Kind::WitnessMethod, gen, optOpeningInstruction, name, l);
return callee;
}
static Callee forDynamic(SILGenFunction &gen, SILValue proto,
SILDeclRef name, Type substFormalType,
SILLocation l) {
Callee callee(Kind::DynamicMethod, gen, proto, name, l);
callee.addDynamicCalleeSelfToFormalType(substFormalType);
return callee;
}
Callee(Callee &&) = default;
Callee &operator=(Callee &&) = default;
void setSubstitutions(SubstitutionList newSubs) {
assert(Substitutions.empty() && "Already have substitutions?");
Substitutions = newSubs;
}
void setCaptures(SmallVectorImpl<ManagedValue> &&captures) {
Captures = std::move(captures);
}
ArrayRef<ManagedValue> getCaptures() const {
if (Captures)
return *Captures;
return {};
}
bool hasCaptures() const {
return Captures.hasValue();
}
CanAnyFunctionType getOrigFormalType() const {
return OrigFormalInterfaceType;
}
CanFunctionType getSubstFormalType() const {
if (auto *gft = OrigFormalInterfaceType->getAs<GenericFunctionType>()) {
return cast<FunctionType>(
gft->substGenericArgs(getSubstitutions())
->getCanonicalType());
}
return cast<FunctionType>(OrigFormalInterfaceType);
}
unsigned getNaturalUncurryLevel() const {
switch (kind) {
case Kind::IndirectValue:
return 0;
case Kind::StandaloneFunction:
case Kind::EnumElement:
case Kind::ClassMethod:
case Kind::SuperMethod:
case Kind::WitnessMethod:
case Kind::DynamicMethod:
return Constant.uncurryLevel;
}
llvm_unreachable("Unhandled Kind in switch.");
}
EnumElementDecl *getEnumElementDecl() {
assert(kind == Kind::EnumElement);
return cast<EnumElementDecl>(Constant.getDecl());
}
std::tuple<ManagedValue, CanSILFunctionType,
Optional<ForeignErrorConvention>, ImportAsMemberStatus, ApplyOptions>
getAtUncurryLevel(SILGenFunction &gen, unsigned level) const {
ManagedValue mv;
ApplyOptions options = ApplyOptions::None;
Optional<SILDeclRef> constant = None;
switch (kind) {
case Kind::IndirectValue:
assert(level == 0 && "can't curry indirect function");
mv = IndirectValue;
assert(Substitutions.empty());
break;
case Kind::StandaloneFunction: {
assert(level <= Constant.uncurryLevel
&& "uncurrying past natural uncurry level of standalone function");
constant = Constant.atUncurryLevel(level);
// If we're currying a direct reference to a class-dispatched method,
// make sure we emit the right set of thunks.
if (constant->isCurried && Constant.hasDecl())
if (auto func = Constant.getAbstractFunctionDecl())
if (getMethodDispatch(func) == MethodDispatch::Class)
constant = constant->asDirectReference(true);
auto constantInfo = gen.getConstantInfo(*constant);
SILValue ref = gen.emitGlobalFunctionRef(Loc, *constant, constantInfo);
mv = ManagedValue::forUnmanaged(ref);
break;
}
case Kind::EnumElement: {
assert(level <= Constant.uncurryLevel
&& "uncurrying past natural uncurry level of enum constructor");
constant = Constant.atUncurryLevel(level);
auto constantInfo = gen.getConstantInfo(*constant);
// We should not end up here if the enum constructor call is fully
// applied.
assert(constant->isCurried);
SILValue ref = gen.emitGlobalFunctionRef(Loc, *constant, constantInfo);
mv = ManagedValue::forUnmanaged(ref);
break;
}
case Kind::ClassMethod: {
assert(level <= Constant.uncurryLevel
&& "uncurrying past natural uncurry level of method");
constant = Constant.atUncurryLevel(level);
auto constantInfo = gen.getConstantInfo(*constant);
// If the call is curried, emit a direct call to the curry thunk.
if (level < Constant.uncurryLevel) {
SILValue ref = gen.emitGlobalFunctionRef(Loc, *constant, constantInfo);
mv = ManagedValue::forUnmanaged(ref);
break;
}
// Otherwise, do the dynamic dispatch inline.
SILValue methodVal = gen.B.createClassMethod(Loc,
SelfValue,
*constant,
/*volatile*/
constant->isForeign);
mv = ManagedValue::forUnmanaged(methodVal);
break;
}
case Kind::SuperMethod: {
assert(level <= Constant.uncurryLevel
&& "uncurrying past natural uncurry level of method");
assert(level == getNaturalUncurryLevel() &&
"Currying the self parameter of super method calls should've been emitted");
constant = Constant.atUncurryLevel(level);
auto constantInfo = gen.getConstantInfo(*constant);
if (SILDeclRef baseConstant = Constant.getBaseOverriddenVTableEntry())
constantInfo = gen.SGM.Types.getConstantOverrideInfo(Constant,
baseConstant);
auto methodVal = gen.B.createSuperMethod(Loc,
SelfValue,
*constant,
constantInfo.getSILType(),
/*volatile*/
constant->isForeign);
mv = ManagedValue::forUnmanaged(methodVal);
break;
}
case Kind::WitnessMethod: {
assert(level <= Constant.uncurryLevel
&& "uncurrying past natural uncurry level of method");
constant = Constant.atUncurryLevel(level);
auto constantInfo = gen.getConstantInfo(*constant);
// If the call is curried, emit a direct call to the curry thunk.
if (level < Constant.uncurryLevel) {
SILValue ref = gen.emitGlobalFunctionRef(Loc, *constant, constantInfo);
mv = ManagedValue::forUnmanaged(ref);
break;
}
// Look up the witness for the archetype.
auto proto = Constant.getDecl()->getDeclContext()
->getAsProtocolOrProtocolExtensionContext();
auto archetype = getWitnessMethodSelfType();
SILValue fn = gen.B.createWitnessMethod(Loc,
archetype,
ProtocolConformanceRef(proto),
*constant,
constantInfo.getSILType(),
constant->isForeign);
mv = ManagedValue::forUnmanaged(fn);
break;
}
case Kind::DynamicMethod: {
assert(level >= 1
&& "currying 'self' of dynamic method dispatch not yet supported");
assert(level <= Constant.uncurryLevel
&& "uncurrying past natural uncurry level of method");
constant = Constant.atUncurryLevel(level);
// Lower the substituted type from the AST, which should have any generic
// parameters in the original signature erased to their upper bounds.
auto substFormalType = getSubstFormalType();
auto objcFormalType = substFormalType.withExtInfo(
substFormalType->getExtInfo()
.withSILRepresentation(SILFunctionTypeRepresentation::ObjCMethod));
auto fnType = gen.SGM.M.Types
.getUncachedSILFunctionTypeForConstant(*constant, objcFormalType);
auto closureType =
replaceSelfTypeForDynamicLookup(gen.getASTContext(), fnType,
SelfValue->getType().getSwiftRValueType(),
Constant);
SILValue fn = gen.B.createDynamicMethod(Loc,
SelfValue,
*constant,
SILType::getPrimitiveObjectType(closureType),
/*volatile*/ Constant.isForeign);
mv = ManagedValue::forUnmanaged(fn);
break;
}
}
Optional<ForeignErrorConvention> foreignError;
ImportAsMemberStatus foreignSelf;
if (constant && constant->isForeign) {
auto func = cast<AbstractFunctionDecl>(constant->getDecl());
foreignError = func->getForeignErrorConvention();
foreignSelf = func->getImportAsMemberStatus();
}
CanSILFunctionType substFnType =
getSubstFunctionType(gen.SGM, mv.getType().castTo<SILFunctionType>());
return std::make_tuple(mv, substFnType, foreignError, foreignSelf, options);
}
SubstitutionList getSubstitutions() const {
return Substitutions;
}
SILDeclRef getMethodName() const {
return Constant;
}
/// Return a specialized emission function if this is a function with a known
/// lowering, such as a builtin, or return null if there is no specialized
/// emitter.
Optional<SpecializedEmitter>
getSpecializedEmitter(SILGenModule &SGM, unsigned uncurryLevel) const {
// Currently we have no curried known functions.
if (uncurryLevel != 0)
return None;
switch (kind) {
case Kind::StandaloneFunction: {
return SpecializedEmitter::forDecl(SGM, Constant);
}
case Kind::EnumElement:
case Kind::IndirectValue:
case Kind::ClassMethod:
case Kind::SuperMethod:
case Kind::WitnessMethod:
case Kind::DynamicMethod:
return None;
}
llvm_unreachable("bad callee kind");
}
};
/// Given that we've applied some sort of trivial transform to the
/// value of the given ManagedValue, enter a cleanup for the result if
/// the original had a cleanup.
static ManagedValue maybeEnterCleanupForTransformed(SILGenFunction &gen,
ManagedValue orig,
SILValue result,
SILLocation loc) {
if (orig.hasCleanup()) {
orig.forwardCleanup(gen);
return gen.emitFormalAccessManagedBufferWithCleanup(loc, result);
} else {
return ManagedValue::forUnmanaged(result);
}
}
namespace {
class ArchetypeCalleeBuilder {
SILGenFunction &gen;
SILLocation loc;
ArgumentSource &selfValue;
SILParameterInfo selfParam;
AbstractFunctionDecl *fd;
ProtocolDecl *protocol;
SILDeclRef constant;
public:
ArchetypeCalleeBuilder(SILGenFunction &gen, SILLocation loc,
SILDeclRef inputConstant, ArgumentSource &selfValue)
: gen(gen), loc(loc), selfValue(selfValue),
selfParam(), fd(cast<AbstractFunctionDecl>(inputConstant.getDecl())),
protocol(cast<ProtocolDecl>(fd->getDeclContext())),
constant(inputConstant.asForeign(protocol->isObjC())) {}
Callee build() {
// Link back to something to create a data dependency if we have
// an opened type.
SILValue openingSite;
auto archetype =
cast<ArchetypeType>(CanType(getSelfType()->getRValueInstanceType()));
if (archetype->getOpenedExistentialType()) {
openingSite = gen.getArchetypeOpeningSite(archetype);
}
// Then if we need to materialize self into memory, do so.
if (shouldMaterializeSelf()) {
SILLocation selfLoc = selfValue.getLocation();
ManagedValue address = evaluateAddressIntoMemory(selfLoc);
setSelfValueToAddress(selfLoc, address);
}
return Callee::forArchetype(gen, openingSite, getSelfType(), constant, loc);
}
private:
CanType getSelfType() const { return selfValue.getSubstRValueType(); }
SILParameterInfo getSelfParameterInfo() const {
if (selfParam == SILParameterInfo()) {
auto &Self = const_cast<ArchetypeCalleeBuilder &>(*this);
auto constantFnType = gen.SGM.Types.getConstantFunctionType(constant);
Self.selfParam = constantFnType->getSelfParameter();
}
return selfParam;
}
SGFContext getSGFContextForSelf() {
if (getSelfParameterInfo().isConsumed())
return SGFContext();
return SGFContext::AllowGuaranteedPlusZero;
}
void setSelfValueToAddress(SILLocation loc, ManagedValue address) {
assert(address.getType().isAddress());
assert(address.getType().is<ArchetypeType>());
auto formalTy = address.getType().getSwiftRValueType();
if (getSelfParameterInfo().isIndirectMutating()) {
// Be sure not to consume the cleanup for an inout argument.
auto selfLV = ManagedValue::forLValue(address.getValue());
selfValue = ArgumentSource(loc,
LValue::forAddress(selfLV, AbstractionPattern(formalTy),
formalTy));
} else {
selfValue = ArgumentSource(loc, RValue(gen, loc, formalTy, address));
}
}
bool shouldMaterializeSelf() const {
// Only an instance method of a non-class protocol is ever passed
// indirectly.
if (!fd->isInstanceMember() ||
protocol->requiresClass() ||
selfValue.hasLValueType() ||
!cast<ArchetypeType>(selfValue.getSubstRValueType())->requiresClass())
return false;
assert(gen.silConv.useLoweredAddresses() ==
gen.silConv.isSILIndirect(getSelfParameterInfo()));
if (!gen.silConv.useLoweredAddresses())
return false;
return true;
}
// If we're calling a member of a non-class-constrained protocol,
// but our archetype refines it to be class-bound, then
// we have to materialize the value in order to pass it indirectly.
ManagedValue evaluateAddressIntoMemory(SILLocation selfLoc) {
// Do so at +0 if we can.
ManagedValue ref =
std::move(selfValue).getAsSingleValue(gen, getSGFContextForSelf());
// If we're already in memory for some reason, great.
if (ref.getType().isAddress())
return ref;
// Store the reference into a temporary.
SILValue temp =
gen.emitTemporaryAllocation(selfLoc, ref.getValue()->getType());
gen.B.emitStoreValueOperation(selfLoc, ref.getValue(), temp,
StoreOwnershipQualifier::Init);
// If we had a cleanup, create a cleanup at the new address.
return maybeEnterCleanupForTransformed(gen, ref, temp, selfLoc);
}
};
} // end anonymous namespace
static Callee prepareArchetypeCallee(SILGenFunction &gen, SILLocation loc,
SILDeclRef constant,
ArgumentSource &selfValue,
SubstitutionList &substitutions) {
// Construct an archetype call.
ArchetypeCalleeBuilder Builder{gen, loc, constant, selfValue};
return Builder.build();
}
/// For ObjC init methods, we generate a shared-linkage Swift allocating entry
/// point that does the [[T alloc] init] dance. We want to use this native
/// thunk where we expect to be calling an allocating entry point for an ObjC
/// constructor.
static bool isConstructorWithGeneratedAllocatorThunk(ValueDecl *vd) {
return vd->isObjC() && isa<ConstructorDecl>(vd);
}
/// An ASTVisitor for decomposing a nesting of ApplyExprs into an initial
/// Callee and a list of CallSites. The CallEmission class below uses these
/// to generate the actual SIL call.
///
/// Formally, an ApplyExpr in the AST always has a single argument, which may
/// be of tuple type, possibly empty. Also, some callees have a formal type
/// which is curried -- for example, methods have type Self -> Arg -> Result.
///
/// However, SIL functions take zero or more parameters and the natural entry
/// point of a method takes Self as an additional argument, rather than
/// returning a partial application.
///
/// Therefore, nested ApplyExprs applied to a constant are flattened into a
/// single call of the most uncurried entry point fitting the call site.
/// This avoids intermediate closure construction.
///
/// For example, a method reference 'self.method' decomposes into curry thunk
/// as the callee, with a single call site '(self)'.
///
/// On the other hand, a call of a method 'self.method(x)(y)' with a function
/// return type decomposes into the method's natural entry point as the callee,
/// and two call sites, first '(x, self)' then '(y)'.
class SILGenApply : public Lowering::ExprVisitor<SILGenApply> {
public:
/// The SILGenFunction that we are emitting SIL into.
SILGenFunction &SGF;
/// The apply callee that abstractly represents the entry point that is being
/// called.
Optional<Callee> ApplyCallee;
/// The lvalue or rvalue representing the argument source of self.
ArgumentSource SelfParam;
Expr *SelfApplyExpr = nullptr;
Type SelfType;
std::vector<ApplyExpr*> CallSites;
Expr *SideEffect = nullptr;
/// When visiting expressions, sometimes we need to emit self before we know
/// what the actual callee is. In such cases, we assume that we are passing
/// self at +0 and then after we know what the callee is, we check if the
/// self is passed at +1. If so, we add an extra retain.
bool AssumedPlusZeroSelf = false;
SILGenApply(SILGenFunction &gen)
: SGF(gen)
{}
void setCallee(Callee &&c) {
assert(!ApplyCallee && "already set callee!");
ApplyCallee.emplace(std::move(c));
}
void setSideEffect(Expr *sideEffectExpr) {
assert(!SideEffect && "already set side effect!");
SideEffect = sideEffectExpr;
}
void setSelfParam(ArgumentSource &&theSelfParam, Expr *theSelfApplyExpr) {
assert(!SelfParam && "already set this!");
SelfParam = std::move(theSelfParam);
SelfApplyExpr = theSelfApplyExpr;
SelfType = theSelfApplyExpr->getType();
}
void setSelfParam(ArgumentSource &&theSelfParam, Type selfType) {
assert(!SelfParam && "already set this!");
SelfParam = std::move(theSelfParam);
SelfApplyExpr = nullptr;
SelfType = selfType;
}
void decompose(Expr *e) {
visit(e);
}
/// Fall back to an unknown, indirect callee.
void visitExpr(Expr *e) {
ManagedValue fn = SGF.emitRValueAsSingleValue(e);
auto origType = cast<AnyFunctionType>(e->getType()->getCanonicalType());
setCallee(Callee::forIndirect(fn, origType, e));
}
void visitLoadExpr(LoadExpr *e) {
// TODO: preserve the function pointer at its original abstraction level
ManagedValue fn = SGF.emitRValueAsSingleValue(e);
auto origType = cast<AnyFunctionType>(e->getType()->getCanonicalType());
setCallee(Callee::forIndirect(fn, origType, e));
}
/// Add a call site to the curry.
void visitApplyExpr(ApplyExpr *e) {
if (e->isSuper()) {
applySuper(e);
} else if (applyInitDelegation(e)) {
// Already done
} else {
CallSites.push_back(e);
visit(e->getFn());
}
}
/// Given a metatype value for the type, allocate an Objective-C
/// object (with alloc_ref_dynamic) of that type.
///
/// \returns the self object.
ManagedValue allocateObjCObject(ManagedValue selfMeta, SILLocation loc) {
auto metaType = selfMeta.getType().castTo<AnyMetatypeType>();
CanType type = metaType.getInstanceType();
// Convert to an Objective-C metatype representation, if needed.
ManagedValue selfMetaObjC;
if (metaType->getRepresentation() == MetatypeRepresentation::ObjC) {
selfMetaObjC = selfMeta;
} else {
CanAnyMetatypeType objcMetaType;
if (isa<MetatypeType>(metaType)) {
objcMetaType = CanMetatypeType::get(type, MetatypeRepresentation::ObjC);
} else {
objcMetaType = CanExistentialMetatypeType::get(type,
MetatypeRepresentation::ObjC);
}
// ObjC metatypes are trivial and thus do not have a cleanup. Only if we
// convert them to an object do they become non-trivial.
assert(!selfMeta.hasCleanup());
selfMetaObjC = ManagedValue::forUnmanaged(SGF.B.emitThickToObjCMetatype(
loc, selfMeta.getValue(), SGF.SGM.getLoweredType(objcMetaType)));
}
// Allocate the object.
return ManagedValue(SGF.B.createAllocRefDynamic(
loc,
selfMetaObjC.getValue(),
SGF.SGM.getLoweredType(type),
/*objc=*/true, {}, {}),
selfMetaObjC.getCleanup());
}
//
// Known callees.
//
void visitDeclRefExpr(DeclRefExpr *e) {
// If we need to perform dynamic dispatch for the given function,
// emit class_method to do so.
if (auto afd = dyn_cast<AbstractFunctionDecl>(e->getDecl())) {
Optional<SILDeclRef::Kind> kind;
bool isDynamicallyDispatched;
bool requiresAllocRefDynamic = false;
// Determine whether the method is dynamically dispatched.
if (auto *proto = dyn_cast<ProtocolDecl>(afd->getDeclContext())) {
// We have four cases to deal with here:
//
// 1) for a "static" / "type" method, the base is a metatype.
// 2) for a classbound protocol, the base is a class-bound protocol rvalue,
// which is loadable.
// 3) for a mutating method, the base has inout type.
// 4) for a nonmutating method, the base is a general archetype
// rvalue, which is address-only. The base is passed at +0, so it isn't
// consumed.
//
// In the last case, the AST has this call typed as being applied
// to an rvalue, but the witness is actually expecting a pointer
// to the +0 value in memory. We just pass in the address since
// archetypes are address-only.
assert(!CallSites.empty());
ApplyExpr *thisCallSite = CallSites.back();
CallSites.pop_back();
ArgumentSource selfValue = thisCallSite->getArg();
SubstitutionList subs = e->getDeclRef().getSubstitutions();
SILDeclRef::Kind kind = SILDeclRef::Kind::Func;
if (isa<ConstructorDecl>(afd)) {
if (proto->isObjC()) {
SILLocation loc = thisCallSite->getArg();
// For Objective-C initializers, we only have an initializing
// initializer. We need to allocate the object ourselves.
kind = SILDeclRef::Kind::Initializer;
auto metatype = std::move(selfValue).getAsSingleValue(SGF);
auto allocated = allocateObjCObject(metatype, loc);
auto allocatedType = allocated.getType().getSwiftRValueType();
selfValue = ArgumentSource(loc, RValue(SGF, loc,
allocatedType, allocated));
} else {
// For non-Objective-C initializers, we have an allocating
// initializer to call.
kind = SILDeclRef::Kind::Allocator;
}
}
SILDeclRef constant = SILDeclRef(afd, kind);
// Prepare the callee. This can modify both selfValue and subs.
Callee theCallee = prepareArchetypeCallee(SGF, e, constant, selfValue,
subs);
AssumedPlusZeroSelf = selfValue.isRValue()
&& selfValue.forceAndPeekRValue(SGF).peekIsPlusZeroRValueOrTrivial();
setSelfParam(std::move(selfValue), thisCallSite);
setCallee(std::move(theCallee));
// If there are substitutions, add them now.
if (!subs.empty())
ApplyCallee->setSubstitutions(subs);
return;
}
if (e->getAccessSemantics() != AccessSemantics::Ordinary) {
isDynamicallyDispatched = false;
} else {
switch (getMethodDispatch(afd)) {
case MethodDispatch::Class:
isDynamicallyDispatched = true;
break;
case MethodDispatch::Static:
isDynamicallyDispatched = false;
break;
}
}
if (isa<FuncDecl>(afd) && isDynamicallyDispatched) {
kind = SILDeclRef::Kind::Func;
} else if (auto ctor = dyn_cast<ConstructorDecl>(afd)) {
ApplyExpr *thisCallSite = CallSites.back();
// Required constructors are dynamically dispatched when the 'self'
// value is not statically derived.
if (ctor->isRequired() &&
thisCallSite->getArg()->getType()->is<AnyMetatypeType>() &&
!thisCallSite->getArg()->isStaticallyDerivedMetatype()) {
if (requiresForeignEntryPoint(afd)) {
// When we're performing Objective-C dispatch, we don't have an
// allocating constructor to call. So, perform an alloc_ref_dynamic
// and pass that along to the initializer.
requiresAllocRefDynamic = true;
kind = SILDeclRef::Kind::Initializer;
} else {
kind = SILDeclRef::Kind::Allocator;
}
} else {
isDynamicallyDispatched = false;
}
}
if (isDynamicallyDispatched) {
ApplyExpr *thisCallSite = CallSites.back();
CallSites.pop_back();
// Emit the rvalue for self, allowing for guaranteed plus zero if we
// have a func.
bool AllowPlusZero = kind && *kind == SILDeclRef::Kind::Func;
RValue self =
SGF.emitRValue(thisCallSite->getArg(),
AllowPlusZero ? SGFContext::AllowGuaranteedPlusZero :
SGFContext());
// If we allowed for PlusZero and we *did* get the value back at +0,
// then we assumed that self could be passed at +0. We will check later
// if the actual callee passes self at +1 later when we know its actual
// type.
AssumedPlusZeroSelf =
AllowPlusZero && self.peekIsPlusZeroRValueOrTrivial();
// If we require a dynamic allocation of the object here, do so now.
if (requiresAllocRefDynamic) {
SILLocation loc = thisCallSite->getArg();
auto selfValue = allocateObjCObject(
std::move(self).getAsSingleValue(SGF, loc),
loc);
self = RValue(SGF, loc, selfValue.getType().getSwiftRValueType(),
selfValue);
}
auto selfValue = self.peekScalarValue();
setSelfParam(ArgumentSource(thisCallSite->getArg(), std::move(self)),
thisCallSite);
SILDeclRef constant(afd, kind.getValue(),
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
requiresForeignEntryPoint(afd));
setCallee(Callee::forClassMethod(SGF, selfValue, constant, e));
// If there are substitutions, add them.
if (e->getDeclRef().isSpecialized()) {
ApplyCallee->setSubstitutions(e->getDeclRef().getSubstitutions());
}
return;
}
}
// If this is a direct reference to a vardecl, just emit its value directly.
// Recursive references to callable declarations are allowed.
if (isa<VarDecl>(e->getDecl())) {
visitExpr(e);
return;
}
SILDeclRef constant(e->getDecl(),
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
!isConstructorWithGeneratedAllocatorThunk(e->getDecl())
&& requiresForeignEntryPoint(e->getDecl()));
// Otherwise, we have a statically-dispatched call.
SubstitutionList subs;
if (e->getDeclRef().isSpecialized())
subs = e->getDeclRef().getSubstitutions();
// Enum case constructor references are open-coded.
if (isa<EnumElementDecl>(e->getDecl()))
setCallee(Callee::forEnumElement(SGF, constant, e));
else
setCallee(Callee::forDirect(SGF, constant, e));
// If the decl ref requires captures, emit the capture params.
auto afd = dyn_cast<AbstractFunctionDecl>(e->getDecl());
if (afd) {
// FIXME: We should be checking hasLocalCaptures() on the lowered
// captures in the constant info too, to generate more efficient
// code for mutually recursive local functions which otherwise
// capture no state.
if (SGF.SGM.M.Types.hasLoweredLocalCaptures(afd)) {
SmallVector<ManagedValue, 4> captures;
SGF.emitCaptures(e, afd, CaptureEmission::ImmediateApplication,
captures);
ApplyCallee->setCaptures(std::move(captures));
}
}
// If there are substitutions, add them.
if (!subs.empty() &&
(!afd ||
!afd->getDeclContext()->isLocalContext() ||
afd->getCaptureInfo().hasGenericParamCaptures()))
ApplyCallee->setSubstitutions(subs);
}
void visitAbstractClosureExpr(AbstractClosureExpr *e) {
// Emit the closure body.
SGF.SGM.emitClosure(e);
// If we're in top-level code, we don't need to physically capture script
// globals, but we still need to mark them as escaping so that DI can flag
// uninitialized uses.
if (&SGF == SGF.SGM.TopLevelSGF) {
SGF.SGM.emitMarkFunctionEscapeForTopLevelCodeGlobals(e,e->getCaptureInfo());
}
// A directly-called closure can be emitted as a direct call instead of
// really producing a closure object.
SILDeclRef constant(e);
SubstitutionList subs;
if (e->getCaptureInfo().hasGenericParamCaptures())
subs = SGF.getForwardingSubstitutions();
setCallee(Callee::forDirect(SGF, constant, e));
// If the closure requires captures, emit them.
bool hasCaptures = SGF.SGM.M.Types.hasLoweredLocalCaptures(e);
if (hasCaptures) {
SmallVector<ManagedValue, 4> captures;
SGF.emitCaptures(e, e, CaptureEmission::ImmediateApplication,
captures);
ApplyCallee->setCaptures(std::move(captures));
}
// If there are substitutions, add them.
if (!subs.empty())
ApplyCallee->setSubstitutions(subs);
}
void visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *e) {
// FIXME: We might need to go through ObjC dispatch for references to
// constructors imported from Clang (which won't have a direct entry point)
// or to delegate to a designated initializer.
setCallee(Callee::forDirect(SGF,
SILDeclRef(e->getDecl(), SILDeclRef::Kind::Initializer), e));
// If there are substitutions, add them.
if (e->getDeclRef().isSpecialized())
ApplyCallee->setSubstitutions(e->getDeclRef().getSubstitutions());
}
void visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *e) {
setSideEffect(e->getLHS());
visit(e->getRHS());
}
void visitFunctionConversionExpr(FunctionConversionExpr *e) {
// FIXME: Check whether this function conversion requires us to build a
// thunk.
visit(e->getSubExpr());
}
void visitCovariantFunctionConversionExpr(CovariantFunctionConversionExpr *e){
// FIXME: These expressions merely adjust the result type for DynamicSelf
// in an unchecked, ABI-compatible manner. They shouldn't prevent us form
// forming a complete call.
visitExpr(e);
}
void visitIdentityExpr(IdentityExpr *e) {
visit(e->getSubExpr());
}
void applySuper(ApplyExpr *apply) {
// Load the 'super' argument.
Expr *arg = apply->getArg();
ManagedValue super;
// The callee for a super call has to be either a method or constructor.
Expr *fn = apply->getFn();
SubstitutionList substitutions;
SILDeclRef constant;
if (auto *ctorRef = dyn_cast<OtherConstructorDeclRefExpr>(fn)) {
constant = SILDeclRef(ctorRef->getDecl(), SILDeclRef::Kind::Initializer,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
requiresForeignEntryPoint(ctorRef->getDecl()));
if (ctorRef->getDeclRef().isSpecialized())
substitutions = ctorRef->getDeclRef().getSubstitutions();
assert(SGF.SelfInitDelegationState ==
SILGenFunction::WillSharedBorrowSelf);
SGF.SelfInitDelegationState = SILGenFunction::WillExclusiveBorrowSelf;
super = SGF.emitRValueAsSingleValue(arg);
assert(SGF.SelfInitDelegationState ==
SILGenFunction::DidExclusiveBorrowSelf);
// Check if super is not the same as our base type. This means that we
// performed an upcast. Set SuperInitDelegationState to super.
if (super.getValue() != SGF.InitDelegationSelf.getValue()) {
assert(super.getCleanup() == SGF.InitDelegationSelf.getCleanup());
SILValue underlyingSelf = SGF.InitDelegationSelf.forward(SGF);
SGF.InitDelegationSelf = ManagedValue::forUnmanaged(underlyingSelf);
CleanupHandle newWriteback = SGF.enterDelegateInitSelfWritebackCleanup(
SGF.InitDelegationLoc.getValue(), SGF.InitDelegationSelfBox,
super.getValue());
SGF.SuperInitDelegationSelf =
ManagedValue(super.getValue(), newWriteback);
super = SGF.SuperInitDelegationSelf;
}
} else if (auto *declRef = dyn_cast<DeclRefExpr>(fn)) {
assert(isa<FuncDecl>(declRef->getDecl()) && "non-function super call?!");
constant = SILDeclRef(declRef->getDecl(),
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
requiresForeignEntryPoint(declRef->getDecl()));
if (declRef->getDeclRef().isSpecialized())
substitutions = declRef->getDeclRef().getSubstitutions();
super = SGF.emitRValueAsSingleValue(arg);
} else {
llvm_unreachable("invalid super callee");
}
CanType superFormalType = arg->getType()->getCanonicalType();
setSelfParam(ArgumentSource(arg, RValue(SGF, apply, superFormalType, super)),
apply);
if (!canUseStaticDispatch(SGF, constant)) {
// ObjC super calls require dynamic dispatch.
setCallee(Callee::forSuperMethod(SGF, super.getValue(), constant, fn));
} else {
// Native Swift super calls to final methods are direct.
setCallee(Callee::forDirect(SGF, constant, fn));
}
// If there are any substitutions for the callee, apply them now.
if (!substitutions.empty())
ApplyCallee->setSubstitutions(substitutions);
}
/// Walk the given \c selfArg expression that produces the appropriate
/// `self` for a call, applying the same transformations to the provided
/// \c selfValue (which might be a metatype).
///
/// This is used for initializer delegation, so it covers only the narrow
/// subset of expressions used there.
ManagedValue emitCorrespondingSelfValue(ManagedValue selfValue,
Expr *selfArg) {
while (true) {
// Handle archetype-to-super and derived-to-base upcasts.
if (isa<ArchetypeToSuperExpr>(selfArg) ||
isa<DerivedToBaseExpr>(selfArg)) {
auto ice = cast<ImplicitConversionExpr>(selfArg);
auto resultTy = ice->getType()->getCanonicalType();
// If the 'self' value is a metatype, update the target type
// accordingly.
if (auto selfMetaTy = selfValue.getType().getAs<AnyMetatypeType>()) {
resultTy = CanMetatypeType::get(resultTy,
selfMetaTy->getRepresentation());
}
auto loweredResultTy = SGF.getLoweredLoadableType(resultTy);
if (loweredResultTy != selfValue.getType()) {
auto upcast = SGF.B.createUpcast(ice,
selfValue.getValue(),
loweredResultTy);
selfValue = ManagedValue(upcast, selfValue.getCleanup());
}
selfArg = ice->getSubExpr();
continue;
}
// Skip over loads.
if (auto load = dyn_cast<LoadExpr>(selfArg)) {
selfArg = load->getSubExpr();
continue;
}
// Skip over inout expressions.
if (auto inout = dyn_cast<InOutExpr>(selfArg)) {
selfArg = inout->getSubExpr();
continue;
}
// Declaration references terminate the search.
if (isa<DeclRefExpr>(selfArg))
break;
llvm_unreachable("unhandled conversion for metatype value");
}
return selfValue;
}
/// Try to emit the given application as initializer delegation.
bool applyInitDelegation(ApplyExpr *expr) {
// Dig out the constructor we're delegating to.
Expr *fn = expr->getFn();
auto ctorRef = dyn_cast<OtherConstructorDeclRefExpr>(
fn->getSemanticsProvidingExpr());
if (!ctorRef)
return false;
// Determine whether we'll need to use an allocating constructor (vs. the
// initializing constructor).
auto nominal = ctorRef->getDecl()->getDeclContext()
->getAsNominalTypeOrNominalTypeExtensionContext();
bool useAllocatingCtor;
// Value types only have allocating initializers.
if (isa<StructDecl>(nominal) || isa<EnumDecl>(nominal))
useAllocatingCtor = true;
// Protocols only witness allocating initializers, except for @objc
// protocols, which only witness initializing initializers.
else if (auto proto = dyn_cast<ProtocolDecl>(nominal)) {
useAllocatingCtor = !proto->isObjC();
// Factory initializers are effectively "allocating" initializers with no
// corresponding initializing entry point.
} else if (ctorRef->getDecl()->isFactoryInit()) {
useAllocatingCtor = true;
} else {
// We've established we're in a class initializer or a protocol extension
// initializer for a class-bound protocol, In either case, we're
// delegating initialization, but we only have an instance in the former
// case.
assert(isa<ClassDecl>(nominal)
&& "some new kind of init context we haven't implemented");
useAllocatingCtor = static_cast<bool>(SGF.AllocatorMetatype) &&
!ctorRef->getDecl()->isObjC();
}
// Load the 'self' argument.
Expr *arg = expr->getArg();
ManagedValue self;
CanType selfFormalType = arg->getType()->getCanonicalType();
// If we're using the allocating constructor, we need to pass along the
// metatype.
if (useAllocatingCtor) {
selfFormalType = CanMetatypeType::get(
selfFormalType->getInOutObjectType()->getCanonicalType());
// If the initializer is a C function imported as a member,
// there is no 'self' parameter. Mark it undef.
if (ctorRef->getDecl()->isImportAsMember()) {
self = SGF.emitUndef(expr, selfFormalType);
} else if (SGF.AllocatorMetatype) {
self = emitCorrespondingSelfValue(
ManagedValue::forUnmanaged(SGF.AllocatorMetatype), arg);
} else {
self = ManagedValue::forUnmanaged(SGF.emitMetatypeOfValue(expr, arg));
}
} else {
// If we're in a protocol extension initializer, we haven't allocated
// "self" yet at this point. Do so. Use alloc_ref_dynamic since we should
// only ever get here in ObjC protocol extensions currently.
if (SGF.AllocatorMetatype) {
assert(ctorRef->getDecl()->isObjC()
&& "only expect to delegate an initializer from an allocator "
"in objc protocol extensions");
self = allocateObjCObject(
ManagedValue::forUnmanaged(SGF.AllocatorMetatype), arg);
// Perform any adjustments needed to 'self'.
self = emitCorrespondingSelfValue(self, arg);
} else {
assert(SGF.SelfInitDelegationState ==
SILGenFunction::WillSharedBorrowSelf);
SGF.SelfInitDelegationState = SILGenFunction::WillExclusiveBorrowSelf;
self = SGF.emitRValueAsSingleValue(arg);
assert(SGF.SelfInitDelegationState ==
SILGenFunction::DidExclusiveBorrowSelf);
}
}
setSelfParam(ArgumentSource(arg, RValue(SGF, expr, selfFormalType, self)),
expr);
// Determine the callee. For structs and enums, this is the allocating
// constructor (because there is no initializing constructor). For protocol
// default implementations, we also use the allocating constructor, because
// that's the only thing that's witnessed. For classes,
// this is the initializing constructor, to which we will dynamically
// dispatch.
if (SelfParam.getSubstRValueType()->getRValueInstanceType()
->is<ArchetypeType>()
&& isa<ProtocolDecl>(ctorRef->getDecl()->getDeclContext())) {
// Look up the witness for the constructor.
auto constant = SILDeclRef(ctorRef->getDecl(),
useAllocatingCtor
? SILDeclRef::Kind::Allocator
: SILDeclRef::Kind::Initializer,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
requiresForeignEntryPoint(ctorRef->getDecl()));
setCallee(Callee::forArchetype(SGF, SILValue(),
self.getType().getSwiftRValueType(), constant, expr));
} else if (getMethodDispatch(ctorRef->getDecl())
== MethodDispatch::Class) {
// Dynamic dispatch to the initializer.
setCallee(Callee::forClassMethod(
SGF,
self.getValue(),
SILDeclRef(ctorRef->getDecl(),
useAllocatingCtor
? SILDeclRef::Kind::Allocator
: SILDeclRef::Kind::Initializer,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
requiresForeignEntryPoint(ctorRef->getDecl())),
fn));
} else {
// Directly call the peer constructor.
setCallee(
Callee::forDirect(
SGF,
SILDeclRef(ctorRef->getDecl(),
useAllocatingCtor
? SILDeclRef::Kind::Allocator
: SILDeclRef::Kind::Initializer,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
requiresForeignEntryPoint(ctorRef->getDecl())),
fn));
}
// Set up the substitutions, if we have any.
if (ctorRef->getDeclRef().isSpecialized())
ApplyCallee->setSubstitutions(ctorRef->getDeclRef().getSubstitutions());
return true;
}
Callee getCallee() {
assert(ApplyCallee && "did not find callee?!");
return std::move(*ApplyCallee);
}
/// Ignore parentheses and implicit conversions.
static Expr *ignoreParensAndImpConversions(Expr *expr) {
while (true) {
if (auto ice = dyn_cast<ImplicitConversionExpr>(expr)) {
expr = ice->getSubExpr();
continue;
}
// Simple optional-to-optional conversions. This doesn't work
// for the full generality of OptionalEvaluationExpr, but it
// works given that we check the result for certain forms.
if (auto eval = dyn_cast<OptionalEvaluationExpr>(expr)) {
if (auto inject = dyn_cast<InjectIntoOptionalExpr>(eval->getSubExpr())) {
if (auto bind = dyn_cast<BindOptionalExpr>(inject->getSubExpr())) {
if (bind->getDepth() == 0)
return bind->getSubExpr();
}
}
}
auto valueProviding = expr->getValueProvidingExpr();
if (valueProviding != expr) {
expr = valueProviding;
continue;
}
return expr;
}
}
void visitForceValueExpr(ForceValueExpr *e) {
// If this application is a dynamic member reference that is forced to
// succeed with the '!' operator, emit it as a direct invocation of the
// method we found.
if (emitForcedDynamicMemberRef(e))
return;
visitExpr(e);
}
/// If this application forces a dynamic member reference with !, emit
/// a direct reference to the member.
bool emitForcedDynamicMemberRef(ForceValueExpr *e) {
// Check whether the argument is a dynamic member reference.
auto arg = ignoreParensAndImpConversions(e->getSubExpr());
auto openExistential = dyn_cast<OpenExistentialExpr>(arg);
if (openExistential)
arg = openExistential->getSubExpr();
auto dynamicMemberRef = dyn_cast<DynamicMemberRefExpr>(arg);
if (!dynamicMemberRef)
return false;
// Since we'll be collapsing this call site, make sure there's another
// call site that will actually perform the invocation.
if (CallSites.empty())
return false;
// Only @objc methods can be forced.
auto *fd = dyn_cast<FuncDecl>(dynamicMemberRef->getMember().getDecl());
if (!fd || !fd->isObjC())
return false;
// Local function that actually emits the dynamic member reference.
auto emitDynamicMemberRef = [&] {
// We found it. Emit the base.
ManagedValue base =
SGF.emitRValueAsSingleValue(dynamicMemberRef->getBase());
setSelfParam(ArgumentSource(dynamicMemberRef->getBase(),
RValue(SGF, dynamicMemberRef,
base.getType().getSwiftRValueType(), base)),
dynamicMemberRef);
// Determine the type of the method we referenced, by replacing the
// class type of the 'Self' parameter with Builtin.UnknownObject.
SILDeclRef member(fd, SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
/*isObjC=*/true);
auto substFormalType = dynamicMemberRef->getType()
->getAnyOptionalObjectType();
setCallee(Callee::forDynamic(SGF, base.getValue(), member,
substFormalType, e));
};
// When we have an open existential, open it and then emit the
// member reference.
if (openExistential) {
SGF.emitOpenExistentialExpr(openExistential,
[&](Expr*) { emitDynamicMemberRef(); });
} else {
emitDynamicMemberRef();
}
return true;
}
};
} // end anonymous namespace
#ifndef NDEBUG
static bool areOnlyAbstractionDifferent(CanType type1, CanType type2) {
assert(type1->isLegalSILType());
assert(type2->isLegalSILType());
// Exact equality is fine.
if (type1 == type2) return true;
// Either both types should be optional or neither should be.
if (auto object1 = type1.getAnyOptionalObjectType()) {
auto object2 = type2.getAnyOptionalObjectType();
if (!object2) return false;
return areOnlyAbstractionDifferent(object1, object2);
}
if (type2.getAnyOptionalObjectType()) return false;
// Either both types should be tuples or neither should be.
if (auto tuple1 = dyn_cast<TupleType>(type1)) {
auto tuple2 = dyn_cast<TupleType>(type2);
if (!tuple2) return false;
if (tuple1->getNumElements() != tuple2->getNumElements()) return false;
for (auto i : indices(tuple2->getElementTypes()))
if (!areOnlyAbstractionDifferent(tuple1.getElementType(i),
tuple2.getElementType(i)))
return false;
return true;
}
if (isa<TupleType>(type2)) return false;
// Either both types should be metatypes or neither should be.
if (auto meta1 = dyn_cast<AnyMetatypeType>(type1)) {
auto meta2 = dyn_cast<AnyMetatypeType>(type2);
if (!meta2) return false;
if (meta1.getInstanceType() != meta2.getInstanceType()) return false;
return true;
}
// Either both types should be functions or neither should be.
if (auto fn1 = dyn_cast<SILFunctionType>(type1)) {
auto fn2 = dyn_cast<SILFunctionType>(type2);
if (!fn2) return false;
// TODO: maybe there are checks we can do here?
(void) fn1; (void) fn2;
return true;
}
if (isa<SILFunctionType>(type2)) return false;
llvm_unreachable("no other types should differ by abstraction");
}
#endif
/// Given two SIL types which are representations of the same type,
/// check whether they have an abstraction difference.
static bool hasAbstractionDifference(SILFunctionTypeRepresentation rep,
SILType type1, SILType type2) {
CanType ct1 = type1.getSwiftRValueType();
CanType ct2 = type2.getSwiftRValueType();
assert(getSILFunctionLanguage(rep) == SILFunctionLanguage::C ||
areOnlyAbstractionDifferent(ct1, ct2));
(void)ct1;
(void)ct2;
// Assuming that we've applied the same substitutions to both types,
// abstraction equality should equal type equality.
return (type1 != type2);
}
/// Emit either an 'apply' or a 'try_apply', with the error branch of
/// the 'try_apply' simply branching out of all cleanups and throwing.
SILValue SILGenFunction::emitApplyWithRethrow(SILLocation loc,
SILValue fn,
SILType substFnType,
SubstitutionList subs,
ArrayRef<SILValue> args) {
CanSILFunctionType silFnType = substFnType.castTo<SILFunctionType>();
SILFunctionConventions fnConv(silFnType, SGM.M);
SILType resultType = fnConv.getSILResultType();
if (!silFnType->hasErrorResult()) {
return B.createApply(loc, fn, substFnType, resultType, subs, args);
}
SILBasicBlock *errorBB = createBasicBlock();
SILBasicBlock *normalBB = createBasicBlock();
B.createTryApply(loc, fn, substFnType, subs, args, normalBB, errorBB);
// Emit the rethrow logic.
{
B.emitBlock(errorBB);
SILValue error = errorBB->createPHIArgument(fnConv.getSILErrorType(),
ValueOwnershipKind::Owned);
B.createBuiltin(loc, SGM.getASTContext().getIdentifier("willThrow"),
SGM.Types.getEmptyTupleType(), {}, {error});
Cleanups.emitCleanupsForReturn(CleanupLocation::get(loc));
B.createThrow(loc, error);
}
// Enter the normal path.
B.emitBlock(normalBB);
return normalBB->createPHIArgument(resultType, ValueOwnershipKind::Owned);
}
static RValue emitStringLiteral(SILGenFunction &SGF, Expr *E, StringRef Str,
SGFContext C,
StringLiteralExpr::Encoding encoding) {
uint64_t Length;
bool isASCII = true;
for (unsigned char c : Str) {
if (c > 127) {
isASCII = false;
break;
}
}
StringLiteralInst::Encoding instEncoding;
switch (encoding) {
case StringLiteralExpr::UTF8:
instEncoding = StringLiteralInst::Encoding::UTF8;
Length = Str.size();
break;
case StringLiteralExpr::UTF16: {
instEncoding = StringLiteralInst::Encoding::UTF16;
Length = unicode::getUTF16Length(Str);
break;
}
case StringLiteralExpr::OneUnicodeScalar: {
SILType Int32Ty = SILType::getBuiltinIntegerType(32, SGF.getASTContext());
SILValue UnicodeScalarValue =
SGF.B.createIntegerLiteral(E, Int32Ty,
unicode::extractFirstUnicodeScalar(Str));
return RValue(SGF, E, Int32Ty.getSwiftRValueType(),
ManagedValue::forUnmanaged(UnicodeScalarValue));
}
}
// The string literal provides the data.
StringLiteralInst *string = SGF.B.createStringLiteral(E, Str, instEncoding);
// The length is lowered as an integer_literal.
auto WordTy = SILType::getBuiltinWordType(SGF.getASTContext());
auto *lengthInst = SGF.B.createIntegerLiteral(E, WordTy, Length);
// The 'isascii' bit is lowered as an integer_literal.
auto Int1Ty = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
auto *isASCIIInst = SGF.B.createIntegerLiteral(E, Int1Ty, isASCII);
ManagedValue EltsArray[] = {
ManagedValue::forUnmanaged(string),
ManagedValue::forUnmanaged(lengthInst),
ManagedValue::forUnmanaged(isASCIIInst)
};
TupleTypeElt TypeEltsArray[] = {
EltsArray[0].getType().getSwiftRValueType(),
EltsArray[1].getType().getSwiftRValueType(),
EltsArray[2].getType().getSwiftRValueType()
};
ArrayRef<ManagedValue> Elts;
ArrayRef<TupleTypeElt> TypeElts;
switch (instEncoding) {
case StringLiteralInst::Encoding::UTF16:
Elts = llvm::makeArrayRef(EltsArray).slice(0, 2);
TypeElts = llvm::makeArrayRef(TypeEltsArray).slice(0, 2);
break;
case StringLiteralInst::Encoding::UTF8:
Elts = EltsArray;
TypeElts = TypeEltsArray;
break;
case StringLiteralInst::Encoding::ObjCSelector:
llvm_unreachable("Objective-C selectors cannot be formed here");
}
CanType ty =
TupleType::get(TypeElts, SGF.getASTContext())->getCanonicalType();
return RValue::withPreExplodedElements(Elts, ty);
}
/// Emit a raw apply operation, performing no additional lowering of
/// either the arguments or the result.
static SILValue emitRawApply(SILGenFunction &gen,
SILLocation loc,
ManagedValue fn,
SubstitutionList subs,
ArrayRef<ManagedValue> args,
CanSILFunctionType substFnType,
ApplyOptions options,
ArrayRef<SILValue> indirectResultAddrs) {
SILFunctionConventions substFnConv(substFnType, gen.SGM.M);
// Get the callee value.
SILValue fnValue = substFnType->isCalleeConsumed()
? fn.forward(gen)
: fn.getValue();
SmallVector<SILValue, 4> argValues;
// Add the buffers for the indirect results if needed.
#ifndef NDEBUG
assert(indirectResultAddrs.size() == substFnConv.getNumIndirectSILResults());
unsigned resultIdx = 0;
for (auto indResultTy : substFnConv.getIndirectSILResultTypes()) {
assert(indResultTy == indirectResultAddrs[resultIdx++]->getType());
}
#endif
argValues.append(indirectResultAddrs.begin(), indirectResultAddrs.end());
auto inputParams = substFnType->getParameters();
assert(inputParams.size() == args.size());
// Gather the arguments.
for (auto i : indices(args)) {
auto argValue = (inputParams[i].isConsumed() ? args[i].forward(gen)
: args[i].getValue());
#ifndef NDEBUG
auto inputTy = substFnConv.getSILType(inputParams[i]);
if (argValue->getType() != inputTy) {
auto &out = llvm::errs();
out << "TYPE MISMATCH IN ARGUMENT " << i << " OF APPLY AT ";
printSILLocationDescription(out, loc, gen.getASTContext());
out << " argument value: ";
argValue->print(out);
out << " parameter type: ";
inputTy.print(out);
out << "\n";
abort();
}
#endif
argValues.push_back(argValue);
}
auto resultType = substFnConv.getSILResultType();
auto calleeType = SILType::getPrimitiveObjectType(substFnType);
// If we don't have an error result, we can make a simple 'apply'.
SILValue result;
if (!substFnType->hasErrorResult()) {
result = gen.B.createApply(loc, fnValue, calleeType,
resultType, subs, argValues);
// Otherwise, we need to create a try_apply.
} else {
SILBasicBlock *normalBB = gen.createBasicBlock();
result = normalBB->createPHIArgument(resultType, ValueOwnershipKind::Owned);
SILBasicBlock *errorBB =
gen.getTryApplyErrorDest(loc, substFnType->getErrorResult(),
options & ApplyOptions::DoesNotThrow);
gen.B.createTryApply(loc, fnValue, calleeType, subs, argValues,
normalBB, errorBB);
gen.B.emitBlock(normalBB);
}
// Given any guaranteed arguments that are not being passed at +0, insert the
// decrement here instead of at the end of scope. Guaranteed just means that
// we guarantee the lifetime of the object for the duration of the call.
// Be sure to use a CleanupLocation so that unreachable code diagnostics don't
// trigger.
for (auto i : indices(args)) {
if (!inputParams[i].isGuaranteed() || args[i].isPlusZeroRValueOrTrivial())
continue;
SILValue argValue = args[i].forward(gen);
SILType argType = argValue->getType();
CleanupLocation cleanupLoc = CleanupLocation::get(loc);
if (!argType.isAddress())
gen.getTypeLowering(argType).emitDestroyRValue(gen.B, cleanupLoc, argValue);
else
gen.getTypeLowering(argType).emitDestroyAddress(gen.B, cleanupLoc, argValue);
}
return result;
}
static std::pair<ManagedValue, ManagedValue>
emitForeignErrorArgument(SILGenFunction &gen,
SILLocation loc,
SILParameterInfo errorParameter) {
// We assume that there's no interesting reabstraction here beyond a layer of
// optional.
OptionalTypeKind optKind;
CanType errorPtrType = errorParameter.getType();
CanType unwrappedPtrType = errorPtrType;
if (Type unwrapped = errorPtrType->getAnyOptionalObjectType(optKind))
unwrappedPtrType = unwrapped->getCanonicalType();
PointerTypeKind ptrKind;
auto errorType = CanType(unwrappedPtrType->getAnyPointerElementType(ptrKind));
auto &errorTL = gen.getTypeLowering(errorType);
// Allocate a temporary.
SILValue errorTemp =
gen.emitTemporaryAllocation(loc, errorTL.getLoweredType());
// Nil-initialize it.
gen.emitInjectOptionalNothingInto(loc, errorTemp, errorTL);
// Enter a cleanup to destroy the value there.
auto managedErrorTemp = gen.emitManagedBufferWithCleanup(errorTemp, errorTL);
// Create the appropriate pointer type.
LValue lvalue = LValue::forAddress(ManagedValue::forLValue(errorTemp),
AbstractionPattern(errorType),
errorType);
auto pointerValue = gen.emitLValueToPointer(loc, std::move(lvalue),
unwrappedPtrType, ptrKind,
AccessKind::ReadWrite);
// Wrap up in an Optional if called for.
if (optKind != OTK_None) {
auto &optTL = gen.getTypeLowering(errorPtrType);
pointerValue = gen.getOptionalSomeValue(loc, pointerValue, optTL);
}
return {managedErrorTemp, pointerValue};
}
namespace {
/// An abstract class for working with results.
class ResultPlan {
public:
virtual RValue finish(SILGenFunction &gen, SILLocation loc,
CanType substType,
ArrayRef<ManagedValue> &directResults) = 0;
virtual ~ResultPlan() = default;
};
using ResultPlanPtr = std::unique_ptr<ResultPlan>;
/// The class for building result plans.
struct ResultPlanBuilder {
SILGenFunction &Gen;
SILLocation Loc;
ArrayRef<SILResultInfo> AllResults;
SILFunctionTypeRepresentation Rep;
SmallVectorImpl<SILValue> &IndirectResultAddrs;
ResultPlanBuilder(SILGenFunction &gen, SILLocation loc,
ArrayRef<SILResultInfo> allResults,
SILFunctionTypeRepresentation rep,
SmallVectorImpl<SILValue> &resultAddrs)
: Gen(gen), Loc(loc), AllResults(allResults), Rep(rep),
IndirectResultAddrs(resultAddrs) {
}
ResultPlanPtr build(Initialization *emitInto,
AbstractionPattern origType, CanType substType);
ResultPlanPtr buildForTuple(Initialization *emitInto,
AbstractionPattern origType,
CanTupleType substType);
~ResultPlanBuilder() {
assert(AllResults.empty() && "didn't consume all results!");
}
};
/// A result plan for evaluating an indirect result into the address
/// associated with an initialization.
class InPlaceInitializationResultPlan : public ResultPlan {
Initialization *Init;
public:
InPlaceInitializationResultPlan(Initialization *init) : Init(init) {}
RValue finish(SILGenFunction &gen, SILLocation loc, CanType substType,
ArrayRef<ManagedValue> &directResults) override {
Init->finishInitialization(gen);
return RValue();
}
};
/// A result plan for working with a single value and potentially
/// reabstracting it. The value can actually be a tuple if the
/// abstraction is opaque.
class ScalarResultPlan : public ResultPlan {
std::unique_ptr<TemporaryInitialization> Temporary;
AbstractionPattern OrigType;
Initialization *Init;
SILFunctionTypeRepresentation Rep;
public:
ScalarResultPlan(std::unique_ptr<TemporaryInitialization> &&temporary,
AbstractionPattern origType, Initialization *init,
SILFunctionTypeRepresentation rep)
: Temporary(std::move(temporary)), OrigType(origType),
Init(init), Rep(rep) {}
RValue finish(SILGenFunction &gen, SILLocation loc, CanType substType,
ArrayRef<ManagedValue> &directResults) override {
// Lower the unabstracted result type.
auto &substTL = gen.getTypeLowering(substType);
// Claim the value:
ManagedValue value;
// If we were created with a temporary, that address was passed as
// an indirect result.
if (Temporary) {
// Establish the cleanup.
Temporary->finishInitialization(gen);
value = Temporary->getManagedAddress();
// If the value isn't address-only, go ahead and load.
if (!substTL.isAddressOnly()) {
auto load = substTL.emitLoad(gen.B, loc, value.forward(gen),
LoadOwnershipQualifier::Take);
value = gen.emitManagedRValueWithCleanup(load);
}
// Otherwise, it was returned as a direct result.
} else {
value = directResults.front();
directResults = directResults.slice(1);
}
// Reabstract the value if the types don't match. This can happen
// due to either substitution reabstractions or bridging.
if (hasAbstractionDifference(Rep, value.getType(),
substTL.getLoweredType())) {
// Assume that a C-language API doesn't have substitution
// reabstractions. This shouldn't be necessary, but
// emitOrigToSubstValue can get upset.
if (getSILFunctionLanguage(Rep) == SILFunctionLanguage::C) {
value = gen.emitBridgedToNativeValue(loc, value, Rep, substType);
} else {
value = gen.emitOrigToSubstValue(loc, value, OrigType, substType,
SGFContext(Init));
// If that successfully emitted into the initialization, we're done.
if (value.isInContext())
return RValue();
}
}
// Otherwise, forcibly emit into the initialization if it exists.
if (Init) {
Init->copyOrInitValueInto(gen, loc, value, /*init*/ true);
Init->finishInitialization(gen);
return RValue();
// Otherwise, we've got the r-value we want.
} else {
return RValue(gen, loc, substType, value);
}
}
};
/// A result plan which calls copyOrInitValueInto on an Initialization
/// using a temporary buffer initialized by a sub-plan.
class InitValueFromTemporaryResultPlan : public ResultPlan {
Initialization *Init;
ResultPlanPtr SubPlan;
std::unique_ptr<TemporaryInitialization> Temporary;
public:
InitValueFromTemporaryResultPlan(Initialization *init,
ResultPlanPtr &&subPlan,
std::unique_ptr<TemporaryInitialization> &&temporary)
: Init(init),
SubPlan(std::move(subPlan)),
Temporary(std::move(temporary)) {}
RValue finish(SILGenFunction &gen, SILLocation loc, CanType substType,
ArrayRef<ManagedValue> &directResults) override {
RValue subResult = SubPlan->finish(gen, loc, substType, directResults);
assert(subResult.isUsed() && "sub-plan didn't emit into context?");
(void) subResult;
ManagedValue value = Temporary->getManagedAddress();
Init->copyOrInitValueInto(gen, loc, value, /*init*/ true);
Init->finishInitialization(gen);
return RValue();
}
};
/// A result plan which calls copyOrInitValueInto using the result of
/// a sub-plan.
class InitValueFromRValueResultPlan : public ResultPlan {
Initialization *Init;
ResultPlanPtr SubPlan;
public:
InitValueFromRValueResultPlan(Initialization *init,
ResultPlanPtr &&subPlan)
: Init(init), SubPlan(std::move(subPlan)) {}
RValue finish(SILGenFunction &gen, SILLocation loc, CanType substType,
ArrayRef<ManagedValue> &directResults) override {
RValue subResult = SubPlan->finish(gen, loc, substType, directResults);
ManagedValue value = std::move(subResult).getAsSingleValue(gen, loc);
Init->copyOrInitValueInto(gen, loc, value, /*init*/ true);
Init->finishInitialization(gen);
return RValue();
}
};
/// A result plan which produces a larger RValue from a bunch of
/// components.
class TupleRValueResultPlan : public ResultPlan {
SmallVector<ResultPlanPtr, 4> EltPlans;
public:
TupleRValueResultPlan(ResultPlanBuilder &builder,
AbstractionPattern origType,
CanTupleType substType) {
// Create plans for all the elements.
EltPlans.reserve(substType->getNumElements());
for (auto i : indices(substType->getElementTypes())) {
AbstractionPattern origEltType = origType.getTupleElementType(i);
CanType substEltType = substType.getElementType(i);
EltPlans.push_back(builder.build(nullptr, origEltType, substEltType));
}
}
RValue finish(SILGenFunction &gen, SILLocation loc, CanType substType,
ArrayRef<ManagedValue> &directResults) override {
RValue tupleRV(substType);
// Finish all the component tuples.
auto substTupleType = cast<TupleType>(substType);
assert(substTupleType.getElementTypes().size() == EltPlans.size());
for (auto i : indices(substTupleType.getElementTypes())) {
RValue eltRV =
EltPlans[i]->finish(gen, loc, substTupleType.getElementType(i),
directResults);
tupleRV.addElement(std::move(eltRV));
}
return tupleRV;
}
};
/// A result plan which evaluates into the sub-components
/// of a splittable tuple initialization.
class TupleInitializationResultPlan : public ResultPlan {
Initialization *TupleInit;
SmallVector<InitializationPtr, 4> EltInitsBuffer;
MutableArrayRef<InitializationPtr> EltInits;
SmallVector<ResultPlanPtr, 4> EltPlans;
public:
TupleInitializationResultPlan(ResultPlanBuilder &builder,
Initialization *tupleInit,
AbstractionPattern origType,
CanTupleType substType)
: TupleInit(tupleInit) {
// Get the sub-initializations.
EltInits = tupleInit->splitIntoTupleElements(builder.Gen, builder.Loc,
substType, EltInitsBuffer);
// Create plans for all the sub-initializations.
EltPlans.reserve(substType->getNumElements());
for (auto i : indices(substType->getElementTypes())) {
AbstractionPattern origEltType = origType.getTupleElementType(i);
CanType substEltType = substType.getElementType(i);
Initialization *eltInit = EltInits[i].get();
EltPlans.push_back(builder.build(eltInit, origEltType, substEltType));
}
}
RValue finish(SILGenFunction &gen, SILLocation loc, CanType substType,
ArrayRef<ManagedValue> &directResults) override {
auto substTupleType = cast<TupleType>(substType);
assert(substTupleType.getElementTypes().size() == EltPlans.size());
for (auto i : indices(substTupleType.getElementTypes())) {
auto eltType = substTupleType.getElementType(i);
RValue eltRV = EltPlans[i]->finish(gen, loc, eltType, directResults);
assert(eltRV.isUsed()); (void) eltRV;
}
TupleInit->finishInitialization(gen);
return RValue();
}
};
} // end anonymous namespace
/// Build a result plan for the results of an apply.
///
/// If the initialization is non-null, the result plan will emit into it.
ResultPlanPtr ResultPlanBuilder::build(Initialization *init,
AbstractionPattern origType,
CanType substType) {
// Destructure original tuples.
if (origType.isTuple()) {
return buildForTuple(init, origType, cast<TupleType>(substType));
}
// Otherwise, grab the next result.
auto result = AllResults.front();
AllResults = AllResults.slice(1);
SILValue initAddr;
if (init) {
initAddr = init->getAddressForInPlaceInitialization();
// If the result is indirect, and we have an address to emit into, and
// there are no abstraction differences, then just do it.
if (initAddr && Gen.silConv.isSILIndirect(result) &&
!hasAbstractionDifference(Rep, initAddr->getType(),
result.getSILStorageType())) {
IndirectResultAddrs.push_back(initAddr);
return ResultPlanPtr(new InPlaceInitializationResultPlan(init));
}
}
// Otherwise, we need to:
// - get the value, either directly or indirectly
// - possibly reabstract it
// - store it to the destination
// We could break this down into different ResultPlan implementations,
// but it's easier not to.
// Create a temporary if the result is indirect.
std::unique_ptr<TemporaryInitialization> temporary;
if (Gen.silConv.isSILIndirect(result)) {
auto &resultTL = Gen.getTypeLowering(result.getType());
temporary = Gen.emitTemporary(Loc, resultTL);
IndirectResultAddrs.push_back(temporary->getAddress());
}
return ResultPlanPtr(
new ScalarResultPlan(std::move(temporary), origType, init, Rep));
}
ResultPlanPtr ResultPlanBuilder::buildForTuple(Initialization *init,
AbstractionPattern origType,
CanTupleType substType) {
// If we don't have an initialization for the tuple, just build the
// individual components.
if (!init) {
return ResultPlanPtr(new TupleRValueResultPlan(*this, origType, substType));
}
// Okay, we have an initialization for the tuple that we need to emit into.
// If we can just split the initialization, do so.
if (init->canSplitIntoTupleElements()) {
return ResultPlanPtr(
new TupleInitializationResultPlan(*this, init, origType, substType));
}
// Otherwise, we're going to have to call copyOrInitValueInto, which only
// takes a single value.
// If the tuple is address-only, we'll get much better code if we
// emit into a single buffer.
auto &substTL = Gen.getTypeLowering(substType);
if (substTL.isAddressOnly()) {
// Create a temporary.
auto temporary = Gen.emitTemporary(Loc, substTL);
// Build a sub-plan to emit into the temporary.
auto subplan = buildForTuple(temporary.get(), origType, substType);
// Make a plan to initialize into that.
return ResultPlanPtr(
new InitValueFromTemporaryResultPlan(init, std::move(subplan),
std::move(temporary)));
}
// Build a sub-plan that doesn't know about the initialization.
auto subplan = buildForTuple(nullptr, origType, substType);
// Make a plan that calls copyOrInitValueInto.
return ResultPlanPtr(
new InitValueFromRValueResultPlan(init, std::move(subplan)));
}
static bool hasUnownedInnerPointerResult(CanSILFunctionType fnType) {
for (auto result : fnType->getResults()) {
if (result.getConvention() == ResultConvention::UnownedInnerPointer)
return true;
}
return false;
}
static ResultPlanPtr
computeResultPlan(SILGenFunction *SGF, CanSILFunctionType substFnType,
AbstractionPattern origResultType, CanType substResultType,
const Optional<ForeignErrorConvention> &foreignError,
SILFunctionTypeRepresentation rep, SILLocation loc,
SGFContext evalContext,
SmallVectorImpl<SILValue> &indirectResultAddrs) {
auto origResultTypeForPlan = origResultType;
auto substResultTypeForPlan = substResultType;
ArrayRef<SILResultInfo> allResults = substFnType->getResults();
SILResultInfo optResult;
// The plan needs to be built using the formal result type
// after foreign-error adjustment.
if (foreignError) {
switch (foreignError->getKind()) {
// These conventions make the formal result type ().
case ForeignErrorConvention::ZeroResult:
case ForeignErrorConvention::NonZeroResult:
assert(substResultType->isVoid());
allResults = {};
break;
// These conventions leave the formal result alone.
case ForeignErrorConvention::ZeroPreservedResult:
case ForeignErrorConvention::NonNilError:
break;
// This convention changes the formal result to the optional object
// type; we need to make our own make SILResultInfo array.
case ForeignErrorConvention::NilResult: {
assert(allResults.size() == 1);
CanType objectType = allResults[0].getType().getAnyOptionalObjectType();
optResult = allResults[0].getWithType(objectType);
allResults = optResult;
break;
}
}
}
ResultPlanBuilder builder(*SGF, loc, allResults, rep, indirectResultAddrs);
return builder.build(evalContext.getEmitInto(), origResultTypeForPlan,
substResultTypeForPlan);
}
/// Emit a function application, assuming that the arguments have been
/// lowered appropriately for the abstraction level but that the
/// result does need to be turned back into something matching a
/// formal type.
RValue SILGenFunction::emitApply(
SILLocation loc,
ManagedValue fn,
SubstitutionList subs,
ArrayRef<ManagedValue> args,
CanSILFunctionType substFnType,
AbstractionPattern origResultType,
CanType substResultType,
ApplyOptions options,
Optional<SILFunctionTypeRepresentation> overrideRep,
const Optional<ForeignErrorConvention> &foreignError,
SGFContext evalContext) {
auto rep = overrideRep ? *overrideRep : substFnType->getRepresentation();
// Create the result plan.
SmallVector<SILValue, 4> indirectResultAddrs;
ResultPlanPtr resultPlan = computeResultPlan(
this, substFnType, origResultType, substResultType, foreignError, rep,
loc, evalContext, indirectResultAddrs);
// If the function returns an inner pointer, we'll need to lifetime-extend
// the 'self' parameter.
SILValue lifetimeExtendedSelf;
bool hasAlreadyLifetimeExtendedSelf = false;
if (hasUnownedInnerPointerResult(substFnType)) {
auto selfMV = args.back();
lifetimeExtendedSelf = selfMV.getValue();
switch (substFnType->getParameters().back().getConvention()) {
case ParameterConvention::Direct_Owned:
// If the callee will consume the 'self' parameter, let's retain it so we
// can keep it alive.
lifetimeExtendedSelf = B.emitCopyValueOperation(loc, lifetimeExtendedSelf);
break;
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Direct_Unowned:
// We'll manually manage the argument's lifetime after the
// call. Disable its cleanup, forcing a copy if it was emitted +0.
if (selfMV.hasCleanup()) {
selfMV.forwardCleanup(*this);
} else {
lifetimeExtendedSelf = selfMV.copyUnmanaged(*this, loc).forward(*this);
}
break;
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
// We may need to support this at some point, but currently only imported
// objc methods are returns_inner_pointer.
llvm_unreachable("indirect self argument to method that"
" returns_inner_pointer?!");
}
}
// If there's a foreign error parameter, fill it in.
Optional<FormalEvaluationScope> errorTempWriteback;
ManagedValue errorTemp;
if (foreignError) {
// Error-temporary emission may need writeback.
errorTempWriteback.emplace(*this);
auto errorParamIndex = foreignError->getErrorParameterIndex();
auto errorParam = substFnType->getParameters()[errorParamIndex];
// This is pretty evil.
auto &errorArgSlot = const_cast<ManagedValue&>(args[errorParamIndex]);
std::tie(errorTemp, errorArgSlot)
= emitForeignErrorArgument(*this, loc, errorParam);
}
// Emit the raw application.
SILValue rawDirectResult = emitRawApply(*this, loc, fn, subs, args,
substFnType, options,
indirectResultAddrs);
// Explode the direct results.
SILFunctionConventions substFnConv(substFnType, SGM.M);
SmallVector<ManagedValue, 4> directResults;
auto addManagedDirectResult = [&](SILValue result,
const SILResultInfo &resultInfo) {
auto &resultTL = getTypeLowering(resultInfo.getType());
switch (resultInfo.getConvention()) {
case ResultConvention::Indirect:
assert(!substFnConv.isSILIndirect(resultInfo)
&& "indirect direct result?");
break;
case ResultConvention::Owned:
break;
// For autoreleased results, the reclaim is implicit, so the value is
// effectively +1.
case ResultConvention::Autoreleased:
break;
// Autorelease the 'self' value to lifetime-extend it.
case ResultConvention::UnownedInnerPointer:
assert(lifetimeExtendedSelf
&& "did not save lifetime-extended self param");
if (!hasAlreadyLifetimeExtendedSelf) {
B.createAutoreleaseValue(loc, lifetimeExtendedSelf, B.getDefaultAtomicity());
hasAlreadyLifetimeExtendedSelf = true;
}
LLVM_FALLTHROUGH;
case ResultConvention::Unowned:
// Unretained. Retain the value.
result = resultTL.emitCopyValue(B, loc, result);
break;
}
directResults.push_back(emitManagedRValueWithCleanup(result, resultTL));
};
auto directSILResults = substFnConv.getDirectSILResults();
if (directSILResults.empty()) {
// Nothing to do.
} else if (substFnConv.getNumDirectSILResults() == 1) {
addManagedDirectResult(rawDirectResult, *directSILResults.begin());
} else {
llvm::SmallVector<std::pair<SILValue, const SILResultInfo &>, 8> copiedResults;
{
Scope S(Cleanups, CleanupLocation::get(loc));
// First create an rvalue cleanup for our direct result.
ManagedValue managedDirectResult = emitManagedRValueWithCleanup(rawDirectResult);
// Then borrow the managed direct result.
ManagedValue borrowedDirectResult = managedDirectResult.borrow(*this, loc);
// Then create unmanaged copies of the direct result and forward the
// result as expected by addManageDirectResult.
unsigned Index = 0;
for (const SILResultInfo &directResult : directSILResults) {
ManagedValue elt = B.createTupleExtract(loc, borrowedDirectResult, Index,
substFnConv.getSILType(directResult));
SILValue v = elt.copyUnmanaged(*this, loc).forward(*this);
// We assume that unowned inner pointers, autoreleased values, and
// indirect values are never returned in tuples.
// FIXME: can this assertion be removed without lowered addresses?
assert(directResult.getConvention() == ResultConvention::Owned
|| directResult.getConvention() == ResultConvention::Unowned
|| !substFnConv.useLoweredAddresses());
copiedResults.push_back({v, directResult});
++Index;
}
// Then allow the cleanups to be emitted in the proper reverse order.
}
// Finally add our managed direct results.
for (auto p : copiedResults) {
addManagedDirectResult(p.first, p.second);
}
}
// If there was a foreign error convention, consider it.
// TODO: maybe this should happen after managing the result if it's
// not a result-checking convention?
if (foreignError) {
// Force immediate writeback to the error temporary.
errorTempWriteback.reset();
bool doesNotThrow = (options & ApplyOptions::DoesNotThrow);
emitForeignErrorCheck(loc, directResults, errorTemp,
doesNotThrow, *foreignError);
}
auto directResultsArray = makeArrayRef(directResults);
RValue result =
resultPlan->finish(*this, loc, substResultType, directResultsArray);
assert(directResultsArray.empty() && "didn't claim all direct results");
return result;
}
RValue SILGenFunction::emitMonomorphicApply(SILLocation loc,
ManagedValue fn,
ArrayRef<ManagedValue> args,
CanType resultType,
ApplyOptions options,
Optional<SILFunctionTypeRepresentation> overrideRep,
const Optional<ForeignErrorConvention> &foreignError){
auto fnType = fn.getType().castTo<SILFunctionType>();
assert(!fnType->isPolymorphic());
return emitApply(loc, fn, {}, args, fnType,
AbstractionPattern(resultType), resultType,
options, overrideRep, foreignError, SGFContext());
}
/// Count the number of SILParameterInfos that are needed in order to
/// pass the given argument.
static unsigned getFlattenedValueCount(AbstractionPattern origType,
CanType substType,
ImportAsMemberStatus foreignSelf) {
// C functions imported as static methods don't consume any real arguments.
if (foreignSelf.isStatic())
return 0;
// The count is always 1 unless the substituted type is a tuple.
auto substTuple = dyn_cast<TupleType>(substType);
if (!substTuple) return 1;
// If the original type is opaque and the substituted type is
// materializable, the count is 1 anyway.
if (origType.isTypeParameter() && substTuple->isMaterializable())
return 1;
// Otherwise, add up the elements.
unsigned count = 0;
for (auto i : indices(substTuple.getElementTypes())) {
count += getFlattenedValueCount(origType.getTupleElementType(i),
substTuple.getElementType(i),
ImportAsMemberStatus());
}
return count;
}
static AbstractionPattern claimNextParamClause(AbstractionPattern &type) {
auto result = type.getFunctionInputType();
type = type.getFunctionResultType();
return result;
}
static CanType claimNextParamClause(CanAnyFunctionType &type) {
auto result = type.getInput();
type = dyn_cast<AnyFunctionType>(type.getResult());
return result;
}
using InOutArgument = std::pair<LValue, SILLocation>;
/// Begin all the formal accesses for a set of inout arguments.
static void beginInOutFormalAccesses(SILGenFunction &gen,
MutableArrayRef<InOutArgument> inoutArgs,
MutableArrayRef<SmallVector<ManagedValue, 4>> args) {
assert(!inoutArgs.empty());
SmallVector<std::pair<SILValue, SILLocation>, 4> emittedInoutArgs;
auto inoutNext = inoutArgs.begin();
// The assumption we make is that 'args' and 'inoutArgs' were built
// up in parallel, with empty spots being dropped into 'args'
// wherever there's an inout argument to insert.
//
// Note that this also begins the formal accesses in evaluation order.
for (auto &siteArgs : args) {
for (ManagedValue &siteArg : siteArgs) {
if (siteArg) continue;
LValue &inoutArg = inoutNext->first;
SILLocation loc = inoutNext->second;
ManagedValue address = gen.emitAddressOfLValue(loc, std::move(inoutArg),
AccessKind::ReadWrite);
siteArg = address;
emittedInoutArgs.push_back({address.getValue(), loc});
if (++inoutNext == inoutArgs.end())
goto done;
}
}
llvm_unreachable("ran out of null arguments before we ran out of inouts");
done:
// Check to see if we have multiple inout arguments which obviously
// alias. Note that we could do this in a later SILDiagnostics pass
// as well: this would be stronger (more equivalences exposed) but
// would have worse source location information.
for (auto i = emittedInoutArgs.begin(), e = emittedInoutArgs.end();
i != e; ++i) {
for (auto j = emittedInoutArgs.begin(); j != i; ++j) {
// TODO: This uses exact SILValue equivalence to detect aliases,
// we could do something stronger here to catch other obvious cases.
if (i->first != j->first) continue;
gen.SGM.diagnose(i->second, diag::inout_argument_alias)
.highlight(i->second.getSourceRange());
gen.SGM.diagnose(j->second, diag::previous_inout_alias)
.highlight(j->second.getSourceRange());
}
}
}
/// Given a scalar value, materialize it into memory with the
/// exact same level of cleanup it had before.
static ManagedValue emitMaterializeIntoTemporary(SILGenFunction &gen,
SILLocation loc,
ManagedValue object) {
auto temporary = gen.emitTemporaryAllocation(loc, object.getType());
bool hadCleanup = object.hasCleanup();
// The temporary memory is +0 if the value was.
if (hadCleanup) {
gen.B.emitStoreValueOperation(loc, object.forward(gen), temporary,
StoreOwnershipQualifier::Init);
// SEMANTIC SIL TODO: This should really be called a temporary LValue.
return ManagedValue::forOwnedAddressRValue(temporary,
gen.enterDestroyCleanup(temporary));
} else {
object = gen.emitManagedBeginBorrow(loc, object.getValue());
gen.emitManagedStoreBorrow(loc, object.getValue(), temporary);
return ManagedValue::forBorrowedAddressRValue(temporary);
}
}
namespace {
/// A destination for an argument other than just "onto to the end
/// of the arguments lists".
///
/// This allows us to re-use the argument expression emitter for
/// some weird cases, like a shuffled tuple where some of the
/// arguments are going into a varargs array.
struct ArgSpecialDest {
VarargsInfo *SharedInfo;
unsigned Index;
CleanupHandle Cleanup;
ArgSpecialDest() : SharedInfo(nullptr) {}
explicit ArgSpecialDest(VarargsInfo &info, unsigned index)
: SharedInfo(&info), Index(index) {}
// Reference semantics: need to preserve the cleanup handle.
ArgSpecialDest(const ArgSpecialDest &) = delete;
ArgSpecialDest &operator=(const ArgSpecialDest &) = delete;
ArgSpecialDest(ArgSpecialDest &&other)
: SharedInfo(other.SharedInfo), Index(other.Index),
Cleanup(other.Cleanup) {
other.SharedInfo = nullptr;
}
ArgSpecialDest &operator=(ArgSpecialDest &&other) {
assert(!isValid() && "overwriting valid special destination!");
SharedInfo = other.SharedInfo;
Index = other.Index;
Cleanup = other.Cleanup;
other.SharedInfo = nullptr;
return *this;
}
~ArgSpecialDest() {
assert(!isValid() && "failed to deactivate special dest");
}
/// Is this a valid special destination?
///
/// Most of the time, most arguments don't have special
/// destinations, and making an array of Optional<Special special
/// destinations has t
bool isValid() const { return SharedInfo != nullptr; }
/// Fill this special destination with a value.
void fill(SILGenFunction &gen, ArgumentSource &&arg,
AbstractionPattern _unused_origType,
SILType loweredSubstParamType) {
assert(isValid() && "filling an invalid destination");
SILLocation loc = arg.getLocation();
auto destAddr = SharedInfo->getBaseAddress();
if (Index != 0) {
SILValue index = gen.B.createIntegerLiteral(loc,
SILType::getBuiltinWordType(gen.getASTContext()), Index);
destAddr = gen.B.createIndexAddr(loc, destAddr, index);
}
assert(destAddr->getType() == loweredSubstParamType.getAddressType());
auto &destTL = SharedInfo->getBaseTypeLowering();
Cleanup =
gen.enterDormantFormalAccessTemporaryCleanup(destAddr, loc, destTL);
TemporaryInitialization init(destAddr, Cleanup);
std::move(arg).forwardInto(gen, SharedInfo->getBaseAbstractionPattern(),
&init, destTL);
}
/// Deactivate this special destination. Must always be called
/// before destruction.
void deactivate(SILGenFunction &gen) {
assert(isValid() && "deactivating an invalid destination");
if (Cleanup.isValid())
gen.Cleanups.forwardCleanup(Cleanup);
SharedInfo = nullptr;
}
};
/// A possibly-discontiguous slice of function parameters claimed by a
/// function application.
class ClaimedParamsRef {
public:
static constexpr const unsigned NoSkip = (unsigned)-1;
private:
ArrayRef<SILParameterInfo> Params;
// The index of the param excluded from this range, if any, or ~0.
unsigned SkipParamIndex;
friend struct ParamLowering;
explicit ClaimedParamsRef(ArrayRef<SILParameterInfo> params,
unsigned skip)
: Params(params), SkipParamIndex(skip)
{
// Eagerly chop a skipped parameter off either end.
if (SkipParamIndex == 0) {
Params = Params.slice(1);
SkipParamIndex = NoSkip;
}
assert(!hasSkip() || SkipParamIndex < Params.size());
}
bool hasSkip() const {
return SkipParamIndex != (unsigned)NoSkip;
}
public:
ClaimedParamsRef() : Params({}), SkipParamIndex(-1) {}
explicit ClaimedParamsRef(ArrayRef<SILParameterInfo> params)
: Params(params), SkipParamIndex(NoSkip)
{}
struct iterator : public std::iterator<std::random_access_iterator_tag,
SILParameterInfo>
{
const SILParameterInfo *Base;
unsigned I, SkipParamIndex;
iterator(const SILParameterInfo *Base,
unsigned I, unsigned SkipParamIndex)
: Base(Base), I(I), SkipParamIndex(SkipParamIndex)
{}
iterator &operator++() {
++I;
if (I == SkipParamIndex)
++I;
return *this;
}
iterator operator++(int) {
iterator old(*this);
++*this;
return old;
}
iterator &operator--() {
--I;
if (I == SkipParamIndex)
--I;
return *this;
}
iterator operator--(int) {
iterator old(*this);
--*this;
return old;
}
const SILParameterInfo &operator*() const {
return Base[I];
}
const SILParameterInfo *operator->() const {
return Base + I;
}
bool operator==(iterator other) const {
return Base == other.Base && I == other.I
&& SkipParamIndex == other.SkipParamIndex;
}
bool operator!=(iterator other) const {
return !(*this == other);
}
iterator operator+(std::ptrdiff_t distance) const {
if (distance > 0)
return goForward(distance);
if (distance < 0)
return goBackward(distance);
return *this;
}
iterator operator-(std::ptrdiff_t distance) const {
if (distance > 0)
return goBackward(distance);
if (distance < 0)
return goForward(distance);
return *this;
}
std::ptrdiff_t operator-(iterator other) const {
assert(Base == other.Base && SkipParamIndex == other.SkipParamIndex);
auto baseDistance = (std::ptrdiff_t)I - (std::ptrdiff_t)other.I;
if (std::min(I, other.I) < SkipParamIndex &&
std::max(I, other.I) > SkipParamIndex)
return baseDistance - 1;
return baseDistance;
}
iterator goBackward(unsigned distance) const {
auto result = *this;
if (I > SkipParamIndex && I <= SkipParamIndex + distance)
result.I -= (distance + 1);
result.I -= distance;
return result;
}
iterator goForward(unsigned distance) const {
auto result = *this;
if (I < SkipParamIndex && I + distance >= SkipParamIndex)
result.I += distance + 1;
result.I += distance;
return result;
}
};
iterator begin() const {
return iterator{Params.data(), 0, SkipParamIndex};
}
iterator end() const {
return iterator{Params.data(), (unsigned)Params.size(), SkipParamIndex};
}
unsigned size() const {
return Params.size() - (hasSkip() ? 1 : 0);
}
bool empty() const { return size() == 0; }
SILParameterInfo front() const { return *begin(); }
ClaimedParamsRef slice(unsigned start) const {
if (start >= SkipParamIndex)
return ClaimedParamsRef(Params.slice(start + 1), NoSkip);
return ClaimedParamsRef(Params.slice(start),
hasSkip() ? SkipParamIndex - start : NoSkip);
}
ClaimedParamsRef slice(unsigned start, unsigned count) const {
if (start >= SkipParamIndex)
return ClaimedParamsRef(Params.slice(start + 1, count), NoSkip);
unsigned newSkip = SkipParamIndex;
if (hasSkip())
newSkip -= start;
if (newSkip < count)
return ClaimedParamsRef(Params.slice(start, count+1), newSkip);
return ClaimedParamsRef(Params.slice(start, count), NoSkip);
}
};
using ArgSpecialDestArray = MutableArrayRef<ArgSpecialDest>;
class ArgEmitter {
SILGenFunction &SGF;
SILFunctionTypeRepresentation Rep;
const Optional<ForeignErrorConvention> &ForeignError;
ImportAsMemberStatus ForeignSelf;
ClaimedParamsRef ParamInfos;
SmallVectorImpl<ManagedValue> &Args;
/// Track any inout arguments that are emitted. Each corresponds
/// in order to a "hole" (a null value) in Args.
SmallVectorImpl<InOutArgument> &InOutArguments;
Optional<ArgSpecialDestArray> SpecialDests;
public:
ArgEmitter(SILGenFunction &SGF, SILFunctionTypeRepresentation Rep,
ClaimedParamsRef paramInfos,
SmallVectorImpl<ManagedValue> &args,
SmallVectorImpl<InOutArgument> &inoutArgs,
const Optional<ForeignErrorConvention> &foreignError,
ImportAsMemberStatus foreignSelf,
Optional<ArgSpecialDestArray> specialDests = None)
: SGF(SGF), Rep(Rep), ForeignError(foreignError),
ForeignSelf(foreignSelf),
ParamInfos(paramInfos),
Args(args), InOutArguments(inoutArgs), SpecialDests(specialDests) {
assert(!specialDests || specialDests->size() == paramInfos.size());
}
void emitTopLevel(ArgumentSource &&arg, AbstractionPattern origParamType) {
emit(std::move(arg), origParamType);
maybeEmitForeignErrorArgument();
}
private:
void emit(ArgumentSource &&arg, AbstractionPattern origParamType) {
// If it was a tuple in the original type, or the argument
// requires the callee to evaluate, the parameters will have
// been exploded.
if (origParamType.isTuple() || arg.requiresCalleeToEvaluate()) {
emitExpanded(std::move(arg), origParamType);
return;
}
auto substArgType = arg.getSubstType();
// Otherwise, if the substituted type is a tuple, then we should
// emit the tuple in its most general form, because there's a
// substitution of an opaque archetype to a tuple or function
// type in play. The most general convention is generally to
// pass the entire tuple indirectly, but if it's not
// materializable, the convention is actually to break it up
// into materializable chunks. See the comment in SILType.cpp.
if (isUnmaterializableTupleType(substArgType)) {
assert(origParamType.isTypeParameter());
emitExpanded(std::move(arg), origParamType);
return;
}
// Okay, everything else will be passed as a single value, one
// way or another.
// If this is a discarded foreign static 'self' parameter, force the
// argument and discard it.
if (ForeignSelf.isStatic()) {
std::move(arg).getAsRValue(SGF);
return;
}
// Adjust for the foreign-error argument if necessary.
maybeEmitForeignErrorArgument();
// The substituted parameter type. Might be different from the
// substituted argument type by abstraction and/or bridging.
SILParameterInfo param = claimNextParameter();
ArgSpecialDest *specialDest = claimNextSpecialDest();
// Make sure we use the same value category for these so that we
// can hereafter just use simple equality checks to test for
// abstraction.
SILType loweredSubstArgType = SGF.getLoweredType(substArgType);
SILType loweredSubstParamType =
SILType::getPrimitiveType(param.getType(),
loweredSubstArgType.getCategory());
// If the caller takes the argument indirectly, the argument has an
// inout type.
if (param.isIndirectInOut()) {
assert(!specialDest);
assert(isa<InOutType>(substArgType));
emitInOut(std::move(arg), loweredSubstArgType, loweredSubstParamType,
origParamType, substArgType);
return;
}
// If the original type is passed indirectly, copy to memory if
// it's not already there. (Note that this potentially includes
// conventions which pass indirectly without transferring
// ownership, like Itanium C++.)
if (specialDest) {
assert(param.isFormalIndirect() &&
"SpecialDest should imply indirect parameter");
// TODO: Change the way we initialize array storage in opaque mode
emitIndirectInto(std::move(arg), origParamType, loweredSubstParamType,
*specialDest);
Args.push_back(ManagedValue::forInContext());
return;
} else if (SGF.silConv.isSILIndirect(param)) {
auto value = emitIndirect(std::move(arg), loweredSubstArgType,
origParamType, param);
Args.push_back(value);
return;
}
// Okay, if the original parameter is passed directly, then we
// just need to handle abstraction differences and bridging.
assert(!specialDest);
emitDirect(std::move(arg), loweredSubstArgType, origParamType, param);
}
SILParameterInfo claimNextParameter() {
assert(!ParamInfos.empty());
auto param = ParamInfos.front();
ParamInfos = ParamInfos.slice(1);
return param;
}
/// Claim the next destination, returning a null pointer if there
/// is no special destination.
ArgSpecialDest *claimNextSpecialDest() {
if (!SpecialDests) return nullptr;
assert(!SpecialDests->empty());
auto dest = &SpecialDests->front();
SpecialDests = SpecialDests->slice(1);
return (dest->isValid() ? dest : nullptr);
}
bool isUnmaterializableTupleType(CanType type) {
if (auto tuple = dyn_cast<TupleType>(type))
if (!tuple->isMaterializable())
return true;
return false;
}
/// Emit an argument as an expanded tuple.
void emitExpanded(ArgumentSource &&arg, AbstractionPattern origParamType) {
assert(!arg.isLValue() && "argument is l-value but parameter is tuple?");
// If we're working with an r-value, just expand it out and emit
// all the elements individually.
if (arg.isRValue()) {
if (CanTupleType substArgType =
dyn_cast<TupleType>(arg.getSubstType())) {
// The original type isn't necessarily a tuple.
assert(origParamType.matchesTuple(substArgType));
auto loc = arg.getKnownRValueLocation();
SmallVector<RValue, 4> elts;
std::move(arg).asKnownRValue().extractElements(elts);
for (auto i : indices(substArgType.getElementTypes())) {
emit({ loc, std::move(elts[i]) },
origParamType.getTupleElementType(i));
}
return;
}
auto loc = arg.getKnownRValueLocation();
SmallVector<RValue, 1> elts;
std::move(arg).asKnownRValue().extractElements(elts);
emit({ loc, std::move(elts[0]) },
origParamType.getTupleElementType(0));
return;
}
// Otherwise, we're working with an expression.
Expr *e = std::move(arg).asKnownExpr();
e = e->getSemanticsProvidingExpr();
// If the source expression is a tuple literal, we can break it
// up directly.
if (auto tuple = dyn_cast<TupleExpr>(e)) {
for (auto i : indices(tuple->getElements())) {
emit(tuple->getElement(i),
origParamType.getTupleElementType(i));
}
return;
}
if (auto shuffle = dyn_cast<TupleShuffleExpr>(e)) {
emitShuffle(shuffle, origParamType);
return;
}
// Fall back to the r-value case.
emitExpanded({ e, SGF.emitRValue(e) }, origParamType);
}
void emitShuffle(Expr *inner,
Expr *outer,
ArrayRef<TupleTypeElt> innerElts,
ConcreteDeclRef defaultArgsOwner,
ArrayRef<Expr*> callerDefaultArgs,
ArrayRef<int> elementMapping,
ArrayRef<unsigned> variadicArgs,
Type varargsArrayType,
AbstractionPattern origParamType);
void emitShuffle(TupleShuffleExpr *shuffle, AbstractionPattern origType);
ManagedValue emitIndirect(ArgumentSource &&arg,
SILType loweredSubstArgType,
AbstractionPattern origParamType,
SILParameterInfo param) {
auto contexts = getRValueEmissionContexts(loweredSubstArgType, param);
// If no abstraction is required, try to honor the emission contexts.
if (!contexts.RequiresReabstraction) {
auto loc = arg.getLocation();
ManagedValue result =
std::move(arg).getAsSingleValue(SGF, contexts.ForEmission);
// If it's already in memory, great.
if (result.getType().isAddress()) {
return result;
// Otherwise, put it there.
} else {
return emitMaterializeIntoTemporary(SGF, loc, result);
}
}
// Otherwise, simultaneously emit and reabstract.
return std::move(arg).materialize(SGF, origParamType,
SGF.getSILType(param));
}
void emitIndirectInto(ArgumentSource &&arg,
AbstractionPattern origType,
SILType loweredSubstParamType,
ArgSpecialDest &dest) {
dest.fill(SGF, std::move(arg), origType, loweredSubstParamType);
}
void emitInOut(ArgumentSource &&arg,
SILType loweredSubstArgType, SILType loweredSubstParamType,
AbstractionPattern origType, CanType substType) {
SILLocation loc = arg.getLocation();
LValue lv = [&]{
// If the argument is already lowered to an LValue, it must be the
// receiver of a self argument, which will be the first inout.
if (arg.isLValue()) {
return std::move(arg).asKnownLValue();
// This is logically wrong, but propagating l-values within
// RValues is hard to avoid in custom argument-emission code
// without making ArgumentSource capable of holding mixed
// RValue/LValue tuples. (materializeForSet has to do this,
// for one.) The onus is on the caller to ensure that formal
// access semantics are honored.
} else if (arg.isRValue()) {
auto address = std::move(arg).asKnownRValue()
.getAsSingleValue(SGF, arg.getKnownRValueLocation());
assert(address.isLValue());
auto substObjectType = cast<InOutType>(substType).getObjectType();
return LValue::forAddress(address,
AbstractionPattern(substObjectType),
substObjectType);
} else {
auto *e = cast<InOutExpr>(std::move(arg).asKnownExpr()->
getSemanticsProvidingExpr());
return SGF.emitLValue(e->getSubExpr(), AccessKind::ReadWrite);
}
}();
if (hasAbstractionDifference(Rep, loweredSubstParamType,
loweredSubstArgType)) {
AbstractionPattern origObjectType = origType.transformType(
[](CanType type)->CanType {
return CanType(type->getInOutObjectType());
});
lv.addSubstToOrigComponent(origObjectType, loweredSubstParamType);
}
// Leave an empty space in the ManagedValue sequence and
// remember that we had an inout argument.
InOutArguments.push_back({std::move(lv), loc});
Args.push_back(ManagedValue());
return;
}
void emitDirect(ArgumentSource &&arg, SILType loweredSubstArgType,
AbstractionPattern origParamType,
SILParameterInfo param) {
ManagedValue value;
auto contexts = getRValueEmissionContexts(loweredSubstArgType, param);
if (contexts.RequiresReabstraction) {
switch (getSILFunctionLanguage(Rep)) {
case SILFunctionLanguage::Swift:
value = emitSubstToOrigArgument(std::move(arg), loweredSubstArgType,
origParamType, param);
break;
case SILFunctionLanguage::C:
value = emitNativeToBridgedArgument(
std::move(arg), loweredSubstArgType, origParamType, param);
break;
}
} else {
value = std::move(arg).getAsSingleValue(SGF, contexts.ForEmission);
}
if (param.isConsumed() &&
value.getOwnershipKind() == ValueOwnershipKind::Guaranteed) {
value = value.copyUnmanaged(SGF, arg.getLocation());
}
Args.push_back(value);
}
ManagedValue emitSubstToOrigArgument(ArgumentSource &&arg,
SILType loweredSubstArgType,
AbstractionPattern origParamType,
SILParameterInfo param) {
// TODO: We should take the opportunity to peephole certain abstraction
// changes here, for instance, directly emitting a closure literal at the
// callee's expected abstraction level instead of emitting it maximally
// substituted and thunking.
auto emitted = emitArgumentFromSource(std::move(arg), loweredSubstArgType,
origParamType, param);
return SGF.emitSubstToOrigValue(emitted.loc,
std::move(emitted.value).getScalarValue(),
origParamType, emitted.value.getType(),
emitted.contextForReabstraction);
}
CanType getAnyObjectType() {
return SGF.getASTContext()
.getProtocol(KnownProtocolKind::AnyObject)
->getDeclaredType()
->getCanonicalType();
}
bool isAnyObjectType(CanType t) {
return t == getAnyObjectType();
}
ManagedValue emitNativeToBridgedArgument(ArgumentSource &&arg,
SILType loweredSubstArgType,
AbstractionPattern origParamType,
SILParameterInfo param) {
// If we're bridging a concrete type to `id` via Any, skip the Any
// boxing.
// TODO: Generalize. Similarly, when bridging from NSFoo -> Foo -> NSFoo,
// we should elide the bridge altogether and pass the original object.
auto paramObjTy = param.getType();
if (auto objTy = paramObjTy.getAnyOptionalObjectType())
paramObjTy = objTy;
if (isAnyObjectType(paramObjTy) && !arg.isRValue()) {
return emitNativeToBridgedObjectArgument(std::move(arg).asKnownExpr(),
loweredSubstArgType,
origParamType, param);
}
auto emitted = emitArgumentFromSource(std::move(arg), loweredSubstArgType,
origParamType, param);
return SGF.emitNativeToBridgedValue(emitted.loc,
std::move(emitted.value).getAsSingleValue(SGF, emitted.loc),
Rep, param.getType());
}
enum class ExistentialPeepholeOptionality {
/// A non-optional value erased to a non-optional existential.
Nonoptional,
/// A non-optional value erased to an optional existential.
NonoptionalToOptional,
/// An optional value erased to an optional existential.
OptionalToOptional,
};
std::pair<Expr *, ExistentialPeepholeOptionality>
lookThroughExistentialErasures(Expr *argExpr) {
auto origArgExpr = argExpr;
auto optionality = ExistentialPeepholeOptionality::Nonoptional;
argExpr = argExpr->getSemanticsProvidingExpr();
// Check for an OptionalEvaluation. If we see one we'll want to match it
// to the inner BindOptional.
if (auto optEval = dyn_cast<OptionalEvaluationExpr>(argExpr)) {
// The result of the conversion should be promoted back to optional
// at the outermost level.
if (auto inject = dyn_cast<InjectIntoOptionalExpr>(
optEval->getSubExpr()->getSemanticsProvidingExpr())) {
optionality = ExistentialPeepholeOptionality::OptionalToOptional;
argExpr = inject->getSubExpr()->getSemanticsProvidingExpr();
}
}
// Look through a BindOptionalExpr if we have an optional-to-optional
// peephole, or fail the peephole if there isn't a BindOptionalToOptional.
auto tryToBindOptional =
[&](Expr *subExpr) -> std::pair<Expr *, ExistentialPeepholeOptionality> {
if (optionality ==
ExistentialPeepholeOptionality::OptionalToOptional) {
// If we see the binding, look through it.
if (auto bind = dyn_cast<BindOptionalExpr>(subExpr))
return {bind->getSubExpr()->getSemanticsProvidingExpr(),
optionality};
// Otherwise, we don't know what we're seeing. Back out of the
// peephole.
return {origArgExpr, ExistentialPeepholeOptionality::Nonoptional};
}
return {subExpr, optionality};
};
// Look through an optional injection.
if (auto inject = dyn_cast<InjectIntoOptionalExpr>(argExpr)) {
optionality = ExistentialPeepholeOptionality::NonoptionalToOptional;
argExpr = inject->getSubExpr()->getSemanticsProvidingExpr();
}
// When converting from an existential type to a more general existential,
// the inner existential is opened first. Look through this pattern.
if (auto open = dyn_cast<OpenExistentialExpr>(argExpr)) {
auto subExpr = open->getSubExpr()->getSemanticsProvidingExpr();
while (auto erasure = dyn_cast<ErasureExpr>(subExpr)) {
subExpr = erasure->getSubExpr()->getSemanticsProvidingExpr();
}
// If we drilled down to the underlying opened existential, look
// through it.
if (subExpr == open->getOpaqueValue())
return tryToBindOptional(open->getExistentialValue());
// TODO: Maybe there are other peepholes we could attempt on opened
// existentials?
return tryToBindOptional(open);
}
// Look through ErasureExprs and try to bridge the underlying
// concrete value instead.
while (auto erasure = dyn_cast<ErasureExpr>(argExpr))
argExpr = erasure->getSubExpr()->getSemanticsProvidingExpr();
return tryToBindOptional(argExpr);
}
/// Emit an argument expression that we know will be bridged to an
/// Objective-C object.
ManagedValue emitNativeToBridgedObjectArgument(Expr *argExpr,
SILType loweredSubstArgType,
AbstractionPattern origParamType,
SILParameterInfo param) {
auto origArgExpr = argExpr;
// Look through existential erasures.
ExistentialPeepholeOptionality optionality;
std::tie(argExpr, optionality) = lookThroughExistentialErasures(argExpr);
// TODO: Only do the peephole for trivially-lowered types, since we
// unfortunately don't plumb formal types through
// emitNativeToBridgedValue, so can't correctly construct the
// substitution for the call to _bridgeAnythingToObjectiveC for function
// or metatype values.
if (!argExpr->getType()->isLegalSILType()) {
argExpr = origArgExpr;
optionality = ExistentialPeepholeOptionality::Nonoptional;
}
// Emit the argument.
auto contexts = getRValueEmissionContexts(loweredSubstArgType, param);
ManagedValue emittedArg = SGF.emitRValue(argExpr, contexts.ForEmission)
.getAsSingleValue(SGF, argExpr);
// Early exit if we already exactly match the parameter type.
if (emittedArg.getType() == SGF.getSILType(param)) {
return emittedArg;
}
// Factor the bridging conversion out in case we need to do it as an
// optional-to-optional transform.
auto doBridge = [&](SILGenFunction &gen,
SILLocation loc,
ManagedValue emittedArg,
SILType loweredResultTy) -> ManagedValue {
// If the argument is not already a class instance, bridge it.
if (!emittedArg.getType().getSwiftRValueType()->mayHaveSuperclass()
&& !emittedArg.getType().isClassExistentialType()) {
emittedArg = SGF.emitNativeToBridgedValue(loc, emittedArg, Rep,
loweredResultTy.getSwiftRValueType());
}
auto emittedArgTy = emittedArg.getType().getSwiftRValueType();
assert(emittedArgTy->mayHaveSuperclass()
|| emittedArgTy->isClassExistentialType());
// Upcast reference types to AnyObject.
if (!isAnyObjectType(emittedArgTy)) {
// Open class existentials first to upcast the reference inside.
if (emittedArgTy->isClassExistentialType()) {
emittedArgTy = ArchetypeType::getOpened(emittedArgTy);
auto opened = SGF.B.createOpenExistentialRef(loc,
emittedArg.getValue(),
SILType::getPrimitiveObjectType(emittedArgTy));
emittedArg = ManagedValue(opened, emittedArg.getCleanup());
}
// Erase to AnyObject.
auto conformance = SGF.SGM.SwiftModule->lookupConformance(
emittedArgTy,
SGF.getASTContext().getProtocol(KnownProtocolKind::AnyObject),
nullptr);
assert(conformance &&
"no AnyObject conformance for class?!");
ArrayRef<ProtocolConformanceRef> conformances(*conformance);
auto ctxConformances = SGF.getASTContext().AllocateCopy(conformances);
auto erased = SGF.B.createInitExistentialRef(loc,
SILType::getPrimitiveObjectType(getAnyObjectType()),
emittedArgTy, emittedArg.getValue(),
ctxConformances);
emittedArg = ManagedValue(erased, emittedArg.getCleanup());
}
assert(isAnyObjectType(emittedArg.getType().getSwiftRValueType()));
return emittedArg;
};
// Bind the optional value if we started with an optional.
bool nativeIsOptional = (bool)emittedArg.getType().getSwiftRValueType()
->getAnyOptionalObjectType();
bool bridgedIsOptional =
(bool)param.getType()->getAnyOptionalObjectType();
if (nativeIsOptional && bridgedIsOptional) {
return SGF.emitOptionalToOptional(argExpr, emittedArg,
SGF.getSILType(param), doBridge);
} else if (!nativeIsOptional && bridgedIsOptional) {
auto paramObjTy = SGF.getSILType(param).getAnyOptionalObjectType();
auto transformed = doBridge(SGF, argExpr, emittedArg,
paramObjTy);
// Inject into optional.
auto opt = SGF.B.createEnum(argExpr, transformed.getValue(),
SGF.getASTContext().getOptionalSomeDecl(),
SGF.getSILType(param));
return ManagedValue(opt, transformed.getCleanup());
} else {
return doBridge(SGF, argExpr, emittedArg, SGF.getSILType(param));
}
}
struct EmittedArgument {
SILLocation loc;
RValue value;
SGFContext contextForReabstraction;
};
EmittedArgument emitArgumentFromSource(ArgumentSource &&arg,
SILType loweredSubstArgType,
AbstractionPattern origParamType,
SILParameterInfo param) {
auto contexts = getRValueEmissionContexts(loweredSubstArgType, param);
Optional<SILLocation> loc;
RValue rv;
if (arg.isRValue()) {
loc = arg.getKnownRValueLocation();
rv = std::move(arg).asKnownRValue();
} else {
Expr *e = std::move(arg).asKnownExpr();
loc = e;
rv = SGF.emitRValue(e, contexts.ForEmission);
}
return {*loc, std::move(rv), contexts.ForReabstraction};
}
void maybeEmitForeignErrorArgument() {
if (!ForeignError ||
ForeignError->getErrorParameterIndex() != Args.size())
return;
SILParameterInfo param = claimNextParameter();
ArgSpecialDest *specialDest = claimNextSpecialDest();
assert(param.getConvention() == ParameterConvention::Direct_Unowned);
assert(!specialDest && "special dest for error argument?");
(void) param; (void) specialDest;
// Leave a placeholder in the position.
Args.push_back(ManagedValue::forInContext());
}
struct EmissionContexts {
/// The context for emitting the r-value.
SGFContext ForEmission;
/// The context for reabstracting the r-value.
SGFContext ForReabstraction;
/// If the context requires reabstraction
bool RequiresReabstraction;
};
static EmissionContexts getRValueEmissionContexts(SILType loweredArgType,
SILParameterInfo param) {
bool requiresReabstraction =
loweredArgType.getSwiftRValueType() != param.getType();
// If the parameter is consumed, we have to emit at +1.
if (param.isConsumed()) {
return {SGFContext(), SGFContext(), requiresReabstraction};
}
// Otherwise, we can emit the final value at +0 (but only with a
// guarantee that the value will survive).
//
// TODO: we can pass at +0 (immediate) to an unowned parameter
// if we know that there will be no arbitrary side-effects
// between now and the call.
SGFContext finalContext = SGFContext::AllowGuaranteedPlusZero;
// If the r-value doesn't require reabstraction, the final context
// is the emission context.
if (!requiresReabstraction) {
return {finalContext, SGFContext(), requiresReabstraction};
}
// Otherwise, the final context is the reabstraction context.
return {SGFContext(), finalContext, requiresReabstraction};
}
};
} // end anonymous namespace
/// Decompose a type, whether it is a tuple or a single type, into an
/// array of tuple type elements.
static ArrayRef<TupleTypeElt> decomposeTupleOrSingle(Type type,
TupleTypeElt &single) {
if (auto tupleTy = type->getAs<TupleType>()) {
return tupleTy->getElements();
}
single = TupleTypeElt(type);
return single;
}
void ArgEmitter::emitShuffle(Expr *inner,
Expr *outer,
ArrayRef<TupleTypeElt> innerElts,
ConcreteDeclRef defaultArgsOwner,
ArrayRef<Expr*> callerDefaultArgs,
ArrayRef<int> elementMapping,
ArrayRef<unsigned> variadicArgs,
Type varargsArrayType,
AbstractionPattern origParamType) {
TupleTypeElt singleOuterElement;
ArrayRef<TupleTypeElt> outerElements =
decomposeTupleOrSingle(outer->getType()->getCanonicalType(),
singleOuterElement);
CanType canVarargsArrayType;
if (varargsArrayType)
canVarargsArrayType = varargsArrayType->getCanonicalType();
// We could support dest addrs here, but it can't actually happen
// with the current limitations on default arguments in tuples.
assert(!SpecialDests && "shuffle nested within varargs expansion?");
struct ElementExtent {
/// The parameters which go into this tuple element.
/// This is set in the first pass.
ClaimedParamsRef Params;
/// The destination index, if any.
/// This is set in the first pass.
unsigned DestIndex : 30;
unsigned HasDestIndex : 1;
#ifndef NDEBUG
unsigned Used : 1;
#endif
/// The arguments which feed this tuple element.
/// This is set in the second pass.
ArrayRef<ManagedValue> Args;
/// The inout arguments which feed this tuple element.
/// This is set in the second pass.
MutableArrayRef<InOutArgument> InOutArgs;
ElementExtent() : HasDestIndex(false)
#ifndef NDEBUG
, Used(false)
#endif
{}
};
// The original parameter type.
SmallVector<AbstractionPattern, 8>
origInnerElts(innerElts.size(), AbstractionPattern::getInvalid());
AbstractionPattern innerOrigParamType = AbstractionPattern::getInvalid();
// Flattened inner parameter sequence.
SmallVector<SILParameterInfo, 8> innerParams;
// Extents of the inner elements.
SmallVector<ElementExtent, 8> innerExtents(innerElts.size());
Optional<VarargsInfo> varargsInfo;
SILParameterInfo variadicParamInfo; // innerExtents will point at this
Optional<SmallVector<ArgSpecialDest, 8>> innerSpecialDests;
// First, construct an abstraction pattern and parameter sequence
// which we can use to emit the inner tuple.
{
unsigned nextParamIndex = 0;
for (unsigned outerIndex : indices(outerElements)) {
CanType substEltType =
outerElements[outerIndex].getType()->getCanonicalType();
AbstractionPattern origEltType =
origParamType.getTupleElementType(outerIndex);
unsigned numParams = getFlattenedValueCount(origEltType, substEltType,
ForeignSelf);
// Skip the foreign-error parameter.
assert((!ForeignError ||
ForeignError->getErrorParameterIndex() <= nextParamIndex ||
ForeignError->getErrorParameterIndex() >= nextParamIndex + numParams)
&& "error parameter falls within shuffled range?");
if (numParams && // Don't skip it twice if there's an empty tuple.
ForeignError &&
ForeignError->getErrorParameterIndex() == nextParamIndex) {
nextParamIndex++;
}
// Grab the parameter infos corresponding to this tuple element
// (but don't drop them from ParamInfos yet).
auto eltParams = ParamInfos.slice(nextParamIndex, numParams);
nextParamIndex += numParams;
int innerIndex = elementMapping[outerIndex];
if (innerIndex >= 0) {
#ifndef NDEBUG
assert(!innerExtents[innerIndex].Used && "using element twice");
innerExtents[innerIndex].Used = true;
#endif
innerExtents[innerIndex].Params = eltParams;
origInnerElts[innerIndex] = origEltType;
} else if (innerIndex == TupleShuffleExpr::Variadic) {
auto &varargsField = outerElements[outerIndex];
assert(varargsField.isVararg());
assert(!varargsInfo.hasValue() && "already had varargs entry?");
CanType varargsEltType = CanType(varargsField.getVarargBaseTy());
unsigned numVarargs = variadicArgs.size();
assert(canVarargsArrayType == substEltType);
// Create the array value.
varargsInfo.emplace(emitBeginVarargs(SGF, outer, varargsEltType,
canVarargsArrayType, numVarargs));
// If we have any varargs, we'll need to actually initialize
// the array buffer.
if (numVarargs) {
// For this, we'll need special destinations.
assert(!innerSpecialDests);
innerSpecialDests.emplace();
// Prepare the variadic "arguments" as single +1 indirect
// parameters with the array's desired abstraction pattern.
// The vararg element type should be materializable, and the
// abstraction pattern should be opaque, so ArgEmitter's
// lowering should always generate exactly one "argument"
// per element even if the substituted element type is a tuple.
variadicParamInfo =
SILParameterInfo(varargsInfo->getBaseTypeLowering()
.getLoweredType().getSwiftRValueType(),
ParameterConvention::Indirect_In);
unsigned i = 0;
for (unsigned innerIndex : variadicArgs) {
// Find out where the next varargs element is coming from.
assert(innerIndex >= 0 && "special source for varargs element??");
#ifndef NDEBUG
assert(!innerExtents[innerIndex].Used && "using element twice");
innerExtents[innerIndex].Used = true;
#endif
// Set the destination index.
innerExtents[innerIndex].HasDestIndex = true;
innerExtents[innerIndex].DestIndex = i++;
// Use the singleton param info we prepared before.
innerExtents[innerIndex].Params =
ClaimedParamsRef(variadicParamInfo);
// Propagate the element abstraction pattern.
origInnerElts[innerIndex] =
varargsInfo->getBaseAbstractionPattern();
}
}
}
}
// The inner abstraction pattern is opaque if we started with an
// opaque pattern; otherwise, it's a tuple of the de-shuffled
// tuple elements.
innerOrigParamType = origParamType;
if (!origParamType.isTypeParameter()) {
// That "tuple" might not actually be a tuple.
if (innerElts.size() == 1 && !innerElts[0].hasName()) {
innerOrigParamType = origInnerElts[0];
} else {
innerOrigParamType = AbstractionPattern::getTuple(origInnerElts);
}
}
// Flatten the parameters from innerExtents into innerParams, and
// fill out varargsAddrs if necessary.
for (auto &extent : innerExtents) {
assert(extent.Used && "didn't use all the inner tuple elements!");
for (auto param : extent.Params) {
innerParams.push_back(param);
}
// Fill in the special destinations array.
if (innerSpecialDests) {
// Use the saved index if applicable.
if (extent.HasDestIndex) {
assert(extent.Params.size() == 1);
innerSpecialDests->push_back(
ArgSpecialDest(*varargsInfo, extent.DestIndex));
// Otherwise, fill in with the appropriate number of invalid
// special dests.
} else {
// ArgSpecialDest isn't copyable, so we can't just use append.
for (auto &p : extent.Params) {
(void) p;
innerSpecialDests->push_back(ArgSpecialDest());
}
}
}
}
}
// Emit the inner expression.
SmallVector<ManagedValue, 8> innerArgs;
SmallVector<InOutArgument, 2> innerInOutArgs;
if (!innerParams.empty()) {
ArgEmitter(SGF, Rep, ClaimedParamsRef(innerParams), innerArgs, innerInOutArgs,
/*foreign error*/ None, /*foreign self*/ ImportAsMemberStatus(),
(innerSpecialDests ? ArgSpecialDestArray(*innerSpecialDests)
: Optional<ArgSpecialDestArray>()))
.emitTopLevel(ArgumentSource(inner), innerOrigParamType);
}
// Make a second pass to split the inner arguments correctly.
{
ArrayRef<ManagedValue> nextArgs = innerArgs;
MutableArrayRef<InOutArgument> nextInOutArgs = innerInOutArgs;
for (auto &extent : innerExtents) {
auto length = extent.Params.size();
// Claim the next N inner args for this inner argument.
extent.Args = nextArgs.slice(0, length);
nextArgs = nextArgs.slice(length);
// Claim the correct number of inout arguments as well.
unsigned numInOut = 0;
for (auto arg : extent.Args) {
assert(!arg.isInContext() || extent.HasDestIndex);
if (!arg) numInOut++;
}
extent.InOutArgs = nextInOutArgs.slice(0, numInOut);
nextInOutArgs = nextInOutArgs.slice(numInOut);
}
assert(nextArgs.empty() && "didn't claim all args");
assert(nextInOutArgs.empty() && "didn't claim all inout args");
}
// Make a final pass to emit default arguments and move things into
// the outer arguments lists.
unsigned nextCallerDefaultArg = 0;
for (unsigned outerIndex = 0, e = outerElements.size();
outerIndex != e; ++outerIndex) {
// If this comes from an inner element, move the appropriate
// inner element values over.
int innerIndex = elementMapping[outerIndex];
if (innerIndex >= 0) {
auto &extent = innerExtents[innerIndex];
auto numArgs = extent.Args.size();
maybeEmitForeignErrorArgument();
// Drop N parameters off of ParamInfos.
ParamInfos = ParamInfos.slice(numArgs);
// Move the appropriate inner arguments over as outer arguments.
Args.append(extent.Args.begin(), extent.Args.end());
for (auto &inoutArg : extent.InOutArgs)
InOutArguments.push_back(std::move(inoutArg));
// If this is default initialization, call the default argument
// generator.
} else if (innerIndex == TupleShuffleExpr::DefaultInitialize) {
// Otherwise, emit the default initializer, then map that as a
// default argument.
CanType eltType = outerElements[outerIndex].getType()->getCanonicalType();
auto origType = origParamType.getTupleElementType(outerIndex);
RValue value =
SGF.emitApplyOfDefaultArgGenerator(outer, defaultArgsOwner,
outerIndex, eltType, origType);
emit(ArgumentSource(outer, std::move(value)), origType);
// If this is caller default initialization, generate the
// appropriate value.
} else if (innerIndex == TupleShuffleExpr::CallerDefaultInitialize) {
auto arg = callerDefaultArgs[nextCallerDefaultArg++];
emit(ArgumentSource(arg), origParamType.getTupleElementType(outerIndex));
// If we're supposed to create a varargs array with the rest, do so.
} else if (innerIndex == TupleShuffleExpr::Variadic) {
auto &varargsField = outerElements[outerIndex];
assert(varargsField.isVararg() &&
"Cannot initialize nonvariadic element");
assert(varargsInfo.hasValue());
(void) varargsField;
// We've successfully built the varargs array; deactivate all
// the special destinations.
if (innerSpecialDests) {
for (auto &dest : *innerSpecialDests) {
if (dest.isValid())
dest.deactivate(SGF);
}
}
CanType eltType = outerElements[outerIndex].getType()->getCanonicalType();
ManagedValue varargs = emitEndVarargs(SGF, outer, std::move(*varargsInfo));
emit(ArgumentSource(outer, RValue(SGF, outer, eltType, varargs)),
origParamType.getTupleElementType(outerIndex));
// That's the last special case defined so far.
} else {
llvm_unreachable("unexpected special case in tuple shuffle!");
}
}
}
void ArgEmitter::emitShuffle(TupleShuffleExpr *E,
AbstractionPattern origParamType) {
ArrayRef<TupleTypeElt> srcElts;
TupleTypeElt singletonSrcElt;
if (E->isSourceScalar()) {
singletonSrcElt = E->getSubExpr()->getType()->getCanonicalType();
srcElts = singletonSrcElt;
} else {
srcElts = cast<TupleType>(E->getSubExpr()->getType()->getCanonicalType())
->getElements();
}
emitShuffle(E->getSubExpr(), E, srcElts,
E->getDefaultArgsOwner(),
E->getCallerDefaultArgs(),
E->getElementMapping(),
E->getVariadicArgs(),
E->getVarargsArrayTypeOrNull(),
origParamType);
}
namespace {
/// Cleanup to destroy an uninitialized box.
class DeallocateUninitializedBox : public Cleanup {
SILValue box;
public:
DeallocateUninitializedBox(SILValue box) : box(box) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.createDeallocBox(l, box);
}
void dump(SILGenFunction &gen) const override {
#ifndef NDEBUG
llvm::errs() << "DeallocateUninitializedBox "
<< "State:" << getState() << " "
<< "Box: " << box << "\n";
#endif
}
};
} // end anonymous namespace
static CleanupHandle enterDeallocBoxCleanup(SILGenFunction &gen, SILValue box) {
gen.Cleanups.pushCleanup<DeallocateUninitializedBox>(box);
return gen.Cleanups.getTopCleanup();
}
/// This is an initialization for a box.
class BoxInitialization : public SingleBufferInitialization {
SILValue box;
SILValue addr;
CleanupHandle uninitCleanup;
CleanupHandle initCleanup;
public:
BoxInitialization(SILValue box, SILValue addr,
CleanupHandle uninitCleanup,
CleanupHandle initCleanup)
: box(box), addr(addr),
uninitCleanup(uninitCleanup),
initCleanup(initCleanup) {}
void finishInitialization(SILGenFunction &gen) override {
SingleBufferInitialization::finishInitialization(gen);
gen.Cleanups.setCleanupState(uninitCleanup, CleanupState::Dead);
if (initCleanup.isValid())
gen.Cleanups.setCleanupState(initCleanup, CleanupState::Active);
}
SILValue getAddressOrNull() const override {
return addr;
}
ManagedValue getManagedBox() const {
return ManagedValue(box, initCleanup);
}
};
/// Emits SIL instructions to create an enum value. Attempts to avoid
/// unnecessary copies by emitting the payload directly into the enum
/// payload, or into the box in the case of an indirect payload.
ManagedValue SILGenFunction::emitInjectEnum(SILLocation loc,
ArgumentSource payload,
SILType enumTy,
EnumElementDecl *element,
SGFContext C) {
element = SGM.getLoweredEnumElementDecl(element);
// Easy case -- no payload
if (!payload) {
if (enumTy.isLoadable(SGM.M)) {
return emitManagedRValueWithCleanup(
B.createEnum(loc, SILValue(), element,
enumTy.getObjectType()));
}
// Emit the enum directly into the context if possible
return B.bufferForExpr(loc, enumTy, getTypeLowering(enumTy), C,
[&](SILValue newAddr) {
B.createInjectEnumAddr(loc, newAddr, element);
});
}
ManagedValue payloadMV;
AbstractionPattern origFormalType =
(element == getASTContext().getOptionalSomeDecl()
? AbstractionPattern(payload.getSubstType())
: SGM.M.Types.getAbstractionPattern(element));
auto &payloadTL = getTypeLowering(origFormalType,
payload.getSubstType());
SILType loweredPayloadType = payloadTL.getLoweredType();
// If the payload is indirect, emit it into a heap allocated box.
//
// To avoid copies, evaluate it directly into the box, being
// careful to stage the cleanups so that if the expression
// throws, we know to deallocate the uninitialized box.
if (element->isIndirect() ||
element->getParentEnum()->isIndirect()) {
auto boxTy = SILBoxType::get(payloadTL.getLoweredType().getSwiftRValueType());
auto *box = B.createAllocBox(loc, boxTy);
auto *addr = B.createProjectBox(loc, box, 0);
CleanupHandle initCleanup = enterDestroyCleanup(box);
Cleanups.setCleanupState(initCleanup, CleanupState::Dormant);
CleanupHandle uninitCleanup = enterDeallocBoxCleanup(*this, box);
BoxInitialization dest(box, addr, uninitCleanup, initCleanup);
std::move(payload).forwardInto(*this, origFormalType,
&dest, payloadTL);
payloadMV = dest.getManagedBox();
loweredPayloadType = payloadMV.getType();
}
// Loadable with payload
if (enumTy.isLoadable(SGM.M) || !silConv.useLoweredAddresses()) {
if (!payloadMV) {
// If the payload was indirect, we already evaluated it and
// have a single value. Otherwise, evaluate the payload.
payloadMV = std::move(payload).getAsSingleValue(*this, origFormalType);
}
SILValue argValue = payloadMV.forward(*this);
return emitManagedRValueWithCleanup(
B.createEnum(loc, argValue, element,
enumTy.getObjectType()));
}
// Address-only with payload
return B.bufferForExpr(
loc, enumTy, getTypeLowering(enumTy), C,
[&](SILValue bufferAddr) {
SILValue resultData =
B.createInitEnumDataAddr(loc, bufferAddr, element,
loweredPayloadType.getAddressType());
if (payloadMV) {
// If the payload was indirect, we already evaluated it and
// have a single value. Store it into the result.
B.emitStoreValueOperation(loc, payloadMV.forward(*this), resultData,
StoreOwnershipQualifier::Init);
} else if (payloadTL.isLoadable()) {
// The payload of this specific enum case might be loadable
// even if the overall enum is address-only.
payloadMV = std::move(payload).getAsSingleValue(*this, origFormalType);
B.emitStoreValueOperation(loc, payloadMV.forward(*this), resultData,
StoreOwnershipQualifier::Init);
} else {
// The payload is address-only. Evaluate it directly into
// the enum.
TemporaryInitialization dest(resultData, CleanupHandle::invalid());
std::move(payload).forwardInto(*this, origFormalType,
&dest, payloadTL);
}
// The payload is initialized, now apply the tag.
B.createInjectEnumAddr(loc, bufferAddr, element);
});
}
namespace {
/// A structure for conveniently claiming sets of uncurried parameters.
struct ParamLowering {
ArrayRef<SILParameterInfo> Params;
unsigned ClaimedForeignSelf = -1;
SILFunctionTypeRepresentation Rep;
SILFunctionConventions fnConv;
ParamLowering(CanSILFunctionType fnType, SILGenFunction &gen)
: Params(fnType->getParameters()), Rep(fnType->getRepresentation()),
fnConv(fnType, gen.SGM.M) {}
ClaimedParamsRef
claimParams(AbstractionPattern origParamType, CanType substParamType,
const Optional<ForeignErrorConvention> &foreignError,
const ImportAsMemberStatus &foreignSelf) {
unsigned count = getFlattenedValueCount(origParamType, substParamType,
foreignSelf);
if (foreignError) count++;
if (foreignSelf.isImportAsMember()) {
// Claim only the self parameter.
assert(ClaimedForeignSelf == (unsigned)-1
&& "already claimed foreign self?!");
if (foreignSelf.isStatic()) {
// Imported as a static method, no real self param to claim.
return {};
}
ClaimedForeignSelf = foreignSelf.getSelfIndex();
return ClaimedParamsRef(Params[ClaimedForeignSelf],
ClaimedParamsRef::NoSkip);
}
if (ClaimedForeignSelf != (unsigned)-1) {
assert(count + 1 == Params.size()
&& "not claiming all params after foreign self?!");
auto result = Params;
Params = {};
return ClaimedParamsRef(result, ClaimedForeignSelf);
}
assert(count <= Params.size());
auto result = Params.slice(Params.size() - count, count);
Params = Params.slice(0, Params.size() - count);
return ClaimedParamsRef(result, (unsigned)-1);
}
ArrayRef<SILParameterInfo>
claimCaptureParams(ArrayRef<ManagedValue> captures) {
auto firstCapture = Params.size() - captures.size();
#ifndef NDEBUG
assert(Params.size() >= captures.size()
&& "more captures than params?!");
for (unsigned i = 0; i < captures.size(); ++i) {
assert(fnConv.getSILType(Params[i + firstCapture])
== captures[i].getType()
&& "capture doesn't match param type");
}
#endif
auto result = Params.slice(firstCapture, captures.size());
Params = Params.slice(0, firstCapture);
return result;
}
~ParamLowering() {
assert(Params.empty() && "didn't consume all the parameters");
}
};
/// An application of possibly unevaluated arguments in the form of an
/// ArgumentSource to a Callee.
class CallSite {
public:
SILLocation Loc;
CanType SubstResultType;
private:
ArgumentSource ArgValue;
bool Throws;
public:
CallSite(ApplyExpr *apply)
: Loc(apply), SubstResultType(apply->getType()->getCanonicalType()),
ArgValue(apply->getArg()), Throws(apply->throws()) {
}
CallSite(SILLocation loc, ArgumentSource &&value,
CanType resultType, bool throws)
: Loc(loc), SubstResultType(resultType),
ArgValue(std::move(value)), Throws(throws) {
}
CallSite(SILLocation loc, ArgumentSource &&value,
CanAnyFunctionType fnType)
: CallSite(loc, std::move(value), fnType.getResult(), fnType->throws()) {
}
/// Return the substituted, unlowered AST type of the argument.
CanType getSubstArgType() const {
return ArgValue.getSubstType();
}
/// Return the substituted, unlowered AST type of the result of
/// this application.
CanType getSubstResultType() const {
return SubstResultType;
}
bool throws() const { return Throws; }
/// Evaluate arguments and begin any inout formal accesses.
void emit(SILGenFunction &gen, AbstractionPattern origParamType,
ParamLowering &lowering, SmallVectorImpl<ManagedValue> &args,
SmallVectorImpl<InOutArgument> &inoutArgs,
const Optional<ForeignErrorConvention> &foreignError,
const ImportAsMemberStatus &foreignSelf) && {
auto params = lowering.claimParams(origParamType, getSubstArgType(),
foreignError, foreignSelf);
ArgEmitter emitter(gen, lowering.Rep, params, args, inoutArgs,
foreignError, foreignSelf);
emitter.emitTopLevel(std::move(ArgValue), origParamType);
}
/// Take the arguments for special processing, in place of the above.
ArgumentSource &&forward() && {
return std::move(ArgValue);
}
/// Returns true if the argument of this value is a single valued RValue
/// that is passed either at plus zero or is trivial.
bool isArgPlusZeroOrTrivialRValue() {
if (!ArgValue.isRValue())
return false;
return ArgValue.peekRValue().peekIsPlusZeroRValueOrTrivial();
}
/// If callsite has an argument that is a plus zero or trivial rvalue, emit
/// a retain so that the argument is at PlusOne.
void convertToPlusOneFromPlusZero(SILGenFunction &gen) {
assert(isArgPlusZeroOrTrivialRValue() && "Must have a plus zero or "
"trivial rvalue as an argument.");
SILValue ArgSILValue = ArgValue.peekRValue().peekScalarValue();
SILType ArgTy = ArgSILValue->getType();
// If we are trivial, there is no difference in between +1 and +0 since
// a trivial object is not reference counted.
if (ArgTy.isTrivial(gen.SGM.M))
return;
// Grab the SILLocation and the new managed value.
SILLocation ArgLoc = ArgValue.getKnownRValueLocation();
ManagedValue ArgManagedValue;
if (ArgSILValue->getType().isAddress()) {
auto result = gen.emitTemporaryAllocation(ArgLoc,
ArgSILValue->getType());
gen.B.createCopyAddr(ArgLoc, ArgSILValue, result,
IsNotTake, IsInitialization);
ArgManagedValue = gen.emitManagedBufferWithCleanup(result);
} else {
ArgManagedValue = gen.emitManagedRetain(ArgLoc, ArgSILValue);
}
// Ok now we make our transformation. First set ArgValue to a used albeit
// invalid, empty ArgumentSource.
ArgValue = ArgumentSource();
// Reassign ArgValue.
RValue NewRValue = RValue(gen, ArgLoc, ArgTy.getSwiftRValueType(),
ArgManagedValue);
ArgValue = ArgumentSource(ArgLoc, std::move(NewRValue));
}
};
/// Once the Callee and CallSites have been prepared by SILGenApply,
/// generate SIL for a fully-formed call.
///
/// The lowered function type of the callee defines an abstraction pattern
/// for evaluating argument values of tuple type directly into explosions of
/// scalars where possible.
///
/// If there are more call sites than the natural uncurry level, they are
/// have to be applied recursively to each intermediate callee.
///
/// Also inout formal access and parameter and result conventions are
/// handled here, with some special logic required for calls with +0 self.
class CallEmission {
SILGenFunction &gen;
std::vector<CallSite> uncurriedSites;
std::vector<CallSite> extraSites;
Callee callee;
FormalEvaluationScope InitialWritebackScope;
unsigned uncurries;
bool applied;
bool AssumedPlusZeroSelf;
public:
/// Create an emission for a call of the given callee.
CallEmission(SILGenFunction &gen, Callee &&callee,
FormalEvaluationScope &&writebackScope,
bool assumedPlusZeroSelf = false)
: gen(gen), callee(std::move(callee)),
InitialWritebackScope(std::move(writebackScope)),
uncurries(callee.getNaturalUncurryLevel() + 1), applied(false),
AssumedPlusZeroSelf(assumedPlusZeroSelf) {
// Subtract an uncurry level for captures, if any.
// TODO: Encapsulate this better in Callee.
if (this->callee.hasCaptures()) {
assert(uncurries > 0 && "captures w/o uncurry level?");
--uncurries;
}
}
/// Add a level of function application by passing in its possibly
/// unevaluated arguments and their formal type.
void addCallSite(CallSite &&site) {
assert(!applied && "already applied!");
// Append to the main argument list if we have uncurry levels remaining.
if (uncurries > 0) {
--uncurries;
uncurriedSites.push_back(std::move(site));
return;
}
// Otherwise, apply these arguments to the result of the previous call.
extraSites.push_back(std::move(site));
}
/// Add a level of function application by passing in its possibly
/// unevaluated arguments and their formal type
template<typename...T>
void addCallSite(T &&...args) {
addCallSite(CallSite{std::forward<T>(args)...});
}
/// If we assumed that self was being passed at +0 before we knew what the
/// final uncurried level of the callee was, but given the final uncurried
/// level of the callee, we are actually passing self at +1, add in a retain
/// of self.
void convertSelfToPlusOneFromPlusZero() {
// Self is always the first callsite.
if (!uncurriedSites[0].isArgPlusZeroOrTrivialRValue())
return;
// Insert an invalid ArgumentSource into uncurriedSites[0] so it is.
uncurriedSites[0].convertToPlusOneFromPlusZero(gen);
}
/// Is this a fully-applied enum element constructor call?
bool isEnumElementConstructor() {
return (callee.kind == Callee::Kind::EnumElement && uncurries == 0);
}
/// True if this is a completely unapplied super method call
bool isPartiallyAppliedSuperMethod(unsigned uncurryLevel) {
return (callee.kind == Callee::Kind::SuperMethod &&
uncurryLevel == 0);
}
/// Emit the fully-formed call.
RValue apply(SGFContext C = SGFContext()) {
assert(!applied && "already applied!");
applied = true;
// Get the callee value at the needed uncurry level, uncurrying as
// much as possible. If the number of calls is less than the natural
// uncurry level, the callee emission might create a curry thunk.
unsigned uncurryLevel = callee.getNaturalUncurryLevel() - uncurries;
// Get either the specialized emitter for a known function, or the
// function value for a normal callee.
// Check for a specialized emitter.
Optional<SpecializedEmitter> specializedEmitter =
callee.getSpecializedEmitter(gen.SGM, uncurryLevel);
CanSILFunctionType substFnType;
ManagedValue mv;
Optional<ForeignErrorConvention> foreignError;
ImportAsMemberStatus foreignSelf;
ApplyOptions initialOptions = ApplyOptions::None;
AbstractionPattern origFormalType(callee.getOrigFormalType());
CanFunctionType formalType = callee.getSubstFormalType();
// Get the callee type information.
if (specializedEmitter || isPartiallyAppliedSuperMethod(uncurryLevel)) {
// We want to emit the arguments as fully-substituted values
// because that's what the specialized emitters expect.
origFormalType = AbstractionPattern(formalType);
substFnType = gen.getSILFunctionType(origFormalType,
formalType,
uncurryLevel);
} else if (isEnumElementConstructor()) {
// Enum payloads are always stored at the abstraction level
// of the unsubstituted payload type. This means that unlike
// with specialized emitters above, enum constructors use
// the AST-level abstraction pattern, to ensure that function
// types in payloads are re-abstracted correctly.
assert(!AssumedPlusZeroSelf);
substFnType = gen.getSILFunctionType(origFormalType, formalType,
uncurryLevel);
} else {
std::tie(mv, substFnType, foreignError, foreignSelf, initialOptions) =
callee.getAtUncurryLevel(gen, uncurryLevel);
}
// Now that we know the substFnType, check if we assumed that we were
// passing self at +0. If we did and self is not actually passed at +0,
// retain Self.
if (AssumedPlusZeroSelf) {
// If the final emitted function does not have a self param or it does
// have a self param that is consumed, convert what we think is self to
// be plus zero.
if (!substFnType->hasSelfParam() ||
substFnType->getSelfParameter().isConsumed()) {
convertSelfToPlusOneFromPlusZero();
}
}
// Emit the first level of call.
RValue result;
// We use the context emit-into initialization only for the
// outermost call.
SGFContext uncurriedContext =
(extraSites.empty() ? C : SGFContext());
// If we have an early emitter, just let it take over for the
// uncurried call site.
if (specializedEmitter &&
specializedEmitter->isEarlyEmitter()) {
auto emitter = specializedEmitter->getEarlyEmitter();
assert(uncurriedSites.size() == 1);
CanFunctionType formalApplyType = cast<FunctionType>(formalType);
assert(!formalApplyType->getExtInfo().throws());
CanType formalResultType = formalApplyType.getResult();
SILLocation uncurriedLoc = uncurriedSites[0].Loc;
claimNextParamClause(origFormalType);
claimNextParamClause(formalType);
// We should be able to enforce that these arguments are
// always still expressions.
Expr *argument = std::move(uncurriedSites[0]).forward().asKnownExpr();
ManagedValue resultMV = emitter(gen, uncurriedLoc,
callee.getSubstitutions(),
argument,
formalApplyType,
uncurriedContext);
result = RValue(gen, uncurriedLoc, formalResultType, resultMV);
} else if (isEnumElementConstructor()) {
// If we have a fully-applied enum element constructor, open-code
// the construction.
EnumElementDecl *element = callee.getEnumElementDecl();
SILLocation uncurriedLoc = uncurriedSites[0].Loc;
CanType formalResultType = formalType.getResult();
// Ignore metatype argument
claimNextParamClause(origFormalType);
claimNextParamClause(formalType);
std::move(uncurriedSites[0]).forward().getAsSingleValue(gen);
// Get the payload argument.
ArgumentSource payload;
if (element->getArgumentInterfaceType()) {
assert(uncurriedSites.size() == 2);
formalResultType = formalType.getResult();
claimNextParamClause(origFormalType);
claimNextParamClause(formalType);
payload = std::move(uncurriedSites[1]).forward();
} else {
assert(uncurriedSites.size() == 1);
}
assert(substFnType->getNumResults() == 1);
ManagedValue resultMV =
gen.emitInjectEnum(uncurriedLoc, std::move(payload),
gen.getLoweredType(formalResultType),
element, uncurriedContext);
result = RValue(gen, uncurriedLoc, formalResultType, resultMV);
// Otherwise, emit the uncurried arguments now and perform
// the call.
} else {
// Emit the arguments.
Optional<SILLocation> uncurriedLoc;
SmallVector<SmallVector<ManagedValue, 4>, 2> args;
SmallVector<InOutArgument, 2> inoutArgs;
CanFunctionType formalApplyType;
args.reserve(uncurriedSites.size());
{
ParamLowering paramLowering(substFnType, gen);
assert(!foreignError ||
uncurriedSites.size() == 1 ||
(uncurriedSites.size() == 2 &&
substFnType->hasSelfParam()));
if (!uncurriedSites.back().throws()) {
initialOptions |= ApplyOptions::DoesNotThrow;
}
// Collect the captures, if any.
if (callee.hasCaptures()) {
// The captures are represented as a placeholder curry level in the
// formal type.
// TODO: Remove this hack.
(void)paramLowering.claimCaptureParams(callee.getCaptures());
claimNextParamClause(origFormalType);
claimNextParamClause(formalType);
args.push_back({});
args.back().append(callee.getCaptures().begin(),
callee.getCaptures().end());
}
// Collect the arguments to the uncurried call.
for (auto &site : uncurriedSites) {
AbstractionPattern origParamType =
claimNextParamClause(origFormalType);
formalApplyType = cast<FunctionType>(formalType);
claimNextParamClause(formalType);
uncurriedLoc = site.Loc;
args.push_back({});
bool isParamSite = &site == &uncurriedSites.back();
std::move(site).emit(gen, origParamType, paramLowering,
args.back(), inoutArgs,
// Claim the foreign error with the method
// formal params.
isParamSite
? foreignError
: decltype(foreignError)(),
// Claim the foreign "self" with the self
// param.
isParamSite
? decltype(foreignSelf)()
: foreignSelf);
}
}
assert(uncurriedLoc);
assert(formalApplyType);
// Begin the formal accesses to any inout arguments we have.
if (!inoutArgs.empty()) {
beginInOutFormalAccesses(gen, inoutArgs, args);
}
// Uncurry the arguments in calling convention order.
SmallVector<ManagedValue, 4> uncurriedArgs;
for (auto &argSet : reversed(args))
uncurriedArgs.append(argSet.begin(), argSet.end());
args = {};
// Move the foreign "self" argument into position.
if (foreignSelf.isInstance()) {
auto selfArg = uncurriedArgs.back();
std::move_backward(uncurriedArgs.begin() + foreignSelf.getSelfIndex(),
uncurriedArgs.end() - 1,
uncurriedArgs.end());
uncurriedArgs[foreignSelf.getSelfIndex()] = selfArg;
}
// Emit the uncurried call.
// Special case for superclass method calls.
if (isPartiallyAppliedSuperMethod(uncurryLevel)) {
assert(uncurriedArgs.size() == 1 &&
"Can only partially apply the self parameter of a super method call");
auto constant = callee.getMethodName();
auto loc = uncurriedLoc.getValue();
auto subs = callee.getSubstitutions();
auto upcastedSelf = uncurriedArgs.back();
auto self = cast<UpcastInst>(upcastedSelf.getValue())->getOperand();
auto constantInfo = gen.getConstantInfo(callee.getMethodName());
auto functionTy = constantInfo.getSILType();
SILValue superMethodVal = gen.B.createSuperMethod(
loc,
self,
constant,
functionTy,
/*volatile*/
constant.isForeign);
auto closureTy = SILGenBuilder::getPartialApplyResultType(
constantInfo.getSILType(),
1,
gen.B.getModule(),
subs,
ParameterConvention::Direct_Owned);
auto &module = gen.getFunction().getModule();
auto partialApplyTy = functionTy;
if (constantInfo.SILFnType->isPolymorphic() && !subs.empty())
partialApplyTy = partialApplyTy.substGenericArgs(module, subs);
SILValue partialApply = gen.B.createPartialApply(
loc,
superMethodVal,
partialApplyTy,
subs,
{ upcastedSelf.forward(gen) },
closureTy);
result = RValue(gen, loc, formalApplyType.getResult(),
ManagedValue::forUnmanaged(partialApply));
// Handle a regular call.
} else if (!specializedEmitter) {
result = gen.emitApply(uncurriedLoc.getValue(), mv,
callee.getSubstitutions(),
uncurriedArgs,
substFnType,
origFormalType,
uncurriedSites.back().getSubstResultType(),
initialOptions, None,
foreignError,
uncurriedContext);
// Handle a specialized emitter operating on evaluated arguments.
} else if (specializedEmitter->isLateEmitter()) {
auto emitter = specializedEmitter->getLateEmitter();
result = RValue(gen, *uncurriedLoc, formalApplyType.getResult(),
emitter(gen, uncurriedLoc.getValue(),
callee.getSubstitutions(),
uncurriedArgs,
formalApplyType,
uncurriedContext));
// Builtins.
} else {
assert(specializedEmitter->isNamedBuiltin());
auto builtinName = specializedEmitter->getBuiltinName();
SmallVector<SILValue, 4> consumedArgs;
for (auto arg : uncurriedArgs) {
consumedArgs.push_back(arg.forward(gen));
}
SILFunctionConventions substConv(substFnType, gen.SGM.M);
auto resultVal =
gen.B.createBuiltin(uncurriedLoc.getValue(), builtinName,
substConv.getSILResultType(),
callee.getSubstitutions(), consumedArgs);
result = RValue(gen, *uncurriedLoc, formalApplyType.getResult(),
gen.emitManagedRValueWithCleanup(resultVal));
}
}
// End the initial writeback scope.
InitialWritebackScope.pop();
// If there are remaining call sites, apply them to the result function.
// Each chained call gets its own writeback scope.
for (unsigned i = 0, size = extraSites.size(); i < size; ++i) {
FormalEvaluationScope writebackScope(gen);
SILLocation loc = extraSites[i].Loc;
auto functionMV = std::move(result).getAsSingleValue(gen, loc);
auto substFnType = functionMV.getType().castTo<SILFunctionType>();
ParamLowering paramLowering(substFnType, gen);
SmallVector<ManagedValue, 4> siteArgs;
SmallVector<InOutArgument, 2> inoutArgs;
// TODO: foreign errors for block or function pointer values?
assert(substFnType->hasErrorResult() ||
!cast<FunctionType>(formalType)->getExtInfo().throws());
foreignError = None;
// The result function has already been reabstracted to the substituted
// type, so use the substituted formal type as the abstraction pattern
// for argument passing now.
AbstractionPattern origResultType(formalType.getResult());
AbstractionPattern origParamType(claimNextParamClause(formalType));
std::move(extraSites[i]).emit(gen, origParamType, paramLowering,
siteArgs, inoutArgs, foreignError,
foreignSelf);
if (!inoutArgs.empty()) {
beginInOutFormalAccesses(gen, inoutArgs, siteArgs);
}
SGFContext context = i == size - 1 ? C : SGFContext();
ApplyOptions options = ApplyOptions::None;
result = gen.emitApply(loc, functionMV, {}, siteArgs,
substFnType,
origResultType,
extraSites[i].getSubstResultType(),
options, None, foreignError, context);
}
return result;
}
~CallEmission() { assert(applied && "never applied!"); }
// Movable, but not copyable.
CallEmission(CallEmission &&e)
: gen(e.gen),
uncurriedSites(std::move(e.uncurriedSites)),
extraSites(std::move(e.extraSites)),
callee(std::move(e.callee)),
InitialWritebackScope(std::move(e.InitialWritebackScope)),
uncurries(e.uncurries),
applied(e.applied) {
e.applied = true;
}
private:
CallEmission(const CallEmission &) = delete;
CallEmission &operator=(const CallEmission &) = delete;
};
} // end anonymous namespace
static CallEmission prepareApplyExpr(SILGenFunction &gen, Expr *e) {
// Set up writebacks for the call(s).
FormalEvaluationScope writebacks(gen);
SILGenApply apply(gen);
// Decompose the call site.
apply.decompose(e);
// Evaluate and discard the side effect if present.
if (apply.SideEffect)
gen.emitRValue(apply.SideEffect);
// Build the call.
// Pass the writeback scope on to CallEmission so it can thread scopes through
// nested calls.
CallEmission emission(gen, apply.getCallee(), std::move(writebacks),
apply.AssumedPlusZeroSelf);
// Apply 'self' if provided.
if (apply.SelfParam)
emission.addCallSite(RegularLocation(e), std::move(apply.SelfParam),
apply.SelfType->getCanonicalType(), /*throws*/ false);
// Apply arguments from call sites, innermost to outermost.
for (auto site = apply.CallSites.rbegin(), end = apply.CallSites.rend();
site != end;
++site) {
emission.addCallSite(*site);
}
return emission;
}
RValue SILGenFunction::emitApplyExpr(Expr *e, SGFContext c) {
return prepareApplyExpr(*this, e).apply(c);
}
RValue
SILGenFunction::emitApplyOfLibraryIntrinsic(SILLocation loc,
FuncDecl *fn,
SubstitutionList subs,
ArrayRef<ManagedValue> args,
SGFContext ctx) {
auto callee = Callee::forDirect(*this, SILDeclRef(fn), loc);
callee.setSubstitutions(subs);
auto origFormalType =
cast<AnyFunctionType>(fn->getInterfaceType()->getCanonicalType());
auto substFormalType = callee.getSubstFormalType();
ManagedValue mv;
CanSILFunctionType substFnType;
Optional<ForeignErrorConvention> foreignError;
ImportAsMemberStatus foreignSelf;
ApplyOptions options;
std::tie(mv, substFnType, foreignError, foreignSelf, options)
= callee.getAtUncurryLevel(*this, 0);
assert(!foreignError);
assert(!foreignSelf.isImportAsMember());
assert(substFnType->getExtInfo().getLanguage()
== SILFunctionLanguage::Swift);
return emitApply(loc, mv, subs, args, substFnType,
AbstractionPattern(origFormalType).getFunctionResultType(),
substFormalType.getResult(),
options, None, None, ctx);
}
static StringRef
getMagicFunctionString(SILGenFunction &gen) {
assert(gen.MagicFunctionName
&& "asking for #function but we don't have a function name?!");
if (gen.MagicFunctionString.empty()) {
llvm::raw_string_ostream os(gen.MagicFunctionString);
gen.MagicFunctionName.printPretty(os);
}
return gen.MagicFunctionString;
}
/// Emit an application of the given allocating initializer.
static RValue emitApplyAllocatingInitializer(SILGenFunction &SGF,
SILLocation loc,
ConcreteDeclRef init,
RValue &&args,
Type overriddenSelfType,
SGFContext C) {
ConstructorDecl *ctor = cast<ConstructorDecl>(init.getDecl());
// Form the reference to the allocating initializer.
SILDeclRef initRef(ctor,
SILDeclRef::Kind::Allocator,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
requiresForeignEntryPoint(ctor));
auto initConstant = SGF.getConstantInfo(initRef);
auto subs = init.getSubstitutions();
// Scope any further writeback just within this operation.
FormalEvaluationScope writebackScope(SGF);
// Form the metatype argument.
ManagedValue selfMetaVal;
SILType selfMetaTy;
{
// Determine the self metatype type.
CanSILFunctionType substFnType =
initConstant.SILFnType->substGenericArgs(SGF.SGM.M, subs);
SILType selfParamMetaTy = SGF.getSILType(substFnType->getSelfParameter());
if (overriddenSelfType) {
// If the 'self' type has been overridden, form a metatype to the
// overriding 'Self' type.
Type overriddenSelfMetaType =
MetatypeType::get(overriddenSelfType,
selfParamMetaTy.castTo<MetatypeType>()
->getRepresentation());
selfMetaTy =
SGF.getLoweredType(overriddenSelfMetaType->getCanonicalType());
} else {
selfMetaTy = selfParamMetaTy;
}
// Form the metatype value.
SILValue selfMeta = SGF.B.createMetatype(loc, selfMetaTy);
// If the types differ, we need an upcast.
if (selfMetaTy != selfParamMetaTy)
selfMeta = SGF.B.createUpcast(loc, selfMeta, selfParamMetaTy);
selfMetaVal = ManagedValue::forUnmanaged(selfMeta);
}
// Form the callee.
Optional<Callee> callee;
if (isa<ProtocolDecl>(ctor->getDeclContext())) {
ArgumentSource selfSource(loc,
RValue(SGF, loc,
selfMetaVal.getType().getSwiftRValueType(),
selfMetaVal));
callee.emplace(prepareArchetypeCallee(SGF, loc, initRef, selfSource, subs));
} else {
callee.emplace(Callee::forDirect(SGF, initRef, loc));
}
if (!subs.empty())
callee->setSubstitutions(subs);
auto substFormalType = callee->getSubstFormalType();
// For an inheritable initializer, determine whether we'll need to adjust the
// result type.
bool requiresDowncast = false;
if (ctor->isInheritable() && overriddenSelfType) {
CanType substResultType = substFormalType;
for (unsigned i : range(ctor->getNumParameterLists())) {
(void)i;
substResultType = cast<FunctionType>(substResultType).getResult();
}
if (!substResultType->isEqual(overriddenSelfType))
requiresDowncast = true;
}
// Form the call emission.
CallEmission emission(SGF, std::move(*callee), std::move(writebackScope));
// Self metatype.
emission.addCallSite(loc,
ArgumentSource(loc,
RValue(SGF, loc,
selfMetaVal.getType()
.getSwiftRValueType(),
std::move(selfMetaVal))),
substFormalType);
// Arguments
emission.addCallSite(loc, ArgumentSource(loc, std::move(args)),
cast<FunctionType>(substFormalType.getResult()));
// Perform the call.
RValue result = emission.apply(requiresDowncast ? SGFContext() : C);
// If we need a downcast, do it down.
if (requiresDowncast) {
ManagedValue v = std::move(result).getAsSingleValue(SGF, loc);
CanType canOverriddenSelfType = overriddenSelfType->getCanonicalType();
SILType loweredResultTy = SGF.getLoweredType(canOverriddenSelfType);
v = ManagedValue(SGF.B.createUncheckedRefCast(loc,
v.getValue(),
loweredResultTy),
v.getCleanup());
result = RValue(SGF, loc, canOverriddenSelfType, v);
}
return result;
}
/// Emit a literal that applies the various initializers.
RValue SILGenFunction::emitLiteral(LiteralExpr *literal, SGFContext C) {
ConcreteDeclRef builtinInit;
ConcreteDeclRef init;
// Emit the raw, builtin literal arguments.
RValue builtinLiteralArgs;
if (auto stringLiteral = dyn_cast<StringLiteralExpr>(literal)) {
builtinLiteralArgs = emitStringLiteral(*this, literal,
stringLiteral->getValue(), C,
stringLiteral->getEncoding());
builtinInit = stringLiteral->getBuiltinInitializer();
init = stringLiteral->getInitializer();
} else {
ASTContext &ctx = getASTContext();
SourceLoc loc;
// If "overrideLocationForMagicIdentifiers" is set, then we use it as the
// location point for these magic identifiers.
if (overrideLocationForMagicIdentifiers)
loc = overrideLocationForMagicIdentifiers.getValue();
else
loc = literal->getStartLoc();
auto magicLiteral = cast<MagicIdentifierLiteralExpr>(literal);
switch (magicLiteral->getKind()) {
case MagicIdentifierLiteralExpr::File: {
StringRef value = "";
if (loc.isValid())
value = ctx.SourceMgr.getBufferIdentifierForLoc(loc);
builtinLiteralArgs = emitStringLiteral(*this, literal, value, C,
magicLiteral->getStringEncoding());
builtinInit = magicLiteral->getBuiltinInitializer();
init = magicLiteral->getInitializer();
break;
}
case MagicIdentifierLiteralExpr::Function: {
StringRef value = "";
if (loc.isValid())
value = getMagicFunctionString(*this);
builtinLiteralArgs = emitStringLiteral(*this, literal, value, C,
magicLiteral->getStringEncoding());
builtinInit = magicLiteral->getBuiltinInitializer();
init = magicLiteral->getInitializer();
break;
}
case MagicIdentifierLiteralExpr::Line:
case MagicIdentifierLiteralExpr::Column:
case MagicIdentifierLiteralExpr::DSOHandle:
llvm_unreachable("handled elsewhere");
}
}
// Helper routine to add an argument label if we need one.
auto relabelArgument = [&](ConcreteDeclRef callee, RValue &arg) {
auto name = callee.getDecl()->getFullName();
auto argLabels = name.getArgumentNames();
if (argLabels.size() == 1 && !argLabels[0].empty() &&
!isa<TupleType>(arg.getType())) {
Type newType = TupleType::get({TupleTypeElt(arg.getType(), argLabels[0])},
getASTContext());
arg.rewriteType(newType->getCanonicalType());
}
};
// Call the builtin initializer.
relabelArgument(builtinInit, builtinLiteralArgs);
RValue builtinLiteral =
emitApplyAllocatingInitializer(*this, literal, builtinInit,
std::move(builtinLiteralArgs),
Type(),
init ? SGFContext() : C);
// If we were able to directly initialize the literal we wanted, we're done.
if (!init) return builtinLiteral;
// Otherwise, perform the second initialization step.
relabelArgument(init, builtinLiteral);
RValue result = emitApplyAllocatingInitializer(*this, literal, init,
std::move(builtinLiteral),
literal->getType(), C);
return result;
}
/// Allocate an uninitialized array of a given size, returning the array
/// and a pointer to its uninitialized contents, which must be initialized
/// before the array is valid.
std::pair<ManagedValue, SILValue>
SILGenFunction::emitUninitializedArrayAllocation(Type ArrayTy,
SILValue Length,
SILLocation Loc) {
auto &Ctx = getASTContext();
auto allocate = Ctx.getAllocateUninitializedArray(nullptr);
auto arrayElementTy = ArrayTy->castTo<BoundGenericType>()
->getGenericArgs()[0];
// Invoke the intrinsic, which returns a tuple.
Substitution sub{arrayElementTy, {}};
auto result = emitApplyOfLibraryIntrinsic(Loc, allocate,
sub,
ManagedValue::forUnmanaged(Length),
SGFContext());
// Explode the tuple.
SmallVector<ManagedValue, 2> resultElts;
std::move(result).getAll(resultElts);
return {resultElts[0], resultElts[1].getUnmanagedValue()};
}
/// Deallocate an uninitialized array.
void SILGenFunction::emitUninitializedArrayDeallocation(SILLocation loc,
SILValue array) {
auto &Ctx = getASTContext();
auto deallocate = Ctx.getDeallocateUninitializedArray(nullptr);
CanType arrayElementTy =
array->getType().castTo<BoundGenericType>().getGenericArgs()[0];
// Invoke the intrinsic.
Substitution sub{arrayElementTy, {}};
emitApplyOfLibraryIntrinsic(loc, deallocate, sub,
ManagedValue::forUnmanaged(array),
SGFContext());
}
namespace {
/// A cleanup that deallocates an uninitialized array.
class DeallocateUninitializedArray: public Cleanup {
SILValue Array;
public:
DeallocateUninitializedArray(SILValue array)
: Array(array) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.emitUninitializedArrayDeallocation(l, Array);
}
void dump(SILGenFunction &gen) const override {
#ifndef NDEBUG
llvm::errs() << "DeallocateUninitializedArray "
<< "State:" << getState() << " "
<< "Array:" << Array << "\n";
#endif
}
};
} // end anonymous namespace
CleanupHandle
SILGenFunction::enterDeallocateUninitializedArrayCleanup(SILValue array) {
Cleanups.pushCleanup<DeallocateUninitializedArray>(array);
return Cleanups.getTopCleanup();
}
static Callee getBaseAccessorFunctionRef(SILGenFunction &gen,
SILLocation loc,
SILDeclRef constant,
ArgumentSource &selfValue,
bool isSuper,
bool isDirectUse,
SubstitutionList &substitutions){
auto *decl = cast<AbstractFunctionDecl>(constant.getDecl());
// If this is a method in a protocol, generate it as a protocol call.
if (isa<ProtocolDecl>(decl->getDeclContext())) {
assert(!isDirectUse && "direct use of protocol accessor?");
assert(!isSuper && "super call to protocol method?");
return prepareArchetypeCallee(gen, loc, constant, selfValue,
substitutions);
}
bool isClassDispatch = false;
if (!isDirectUse) {
switch (getMethodDispatch(decl)) {
case MethodDispatch::Class:
isClassDispatch = true;
break;
case MethodDispatch::Static:
isClassDispatch = false;
break;
}
}
// Dispatch in a struct/enum or to a final method is always direct.
if (!isClassDispatch || decl->isFinal())
return Callee::forDirect(gen, constant, loc);
// Otherwise, if we have a non-final class dispatch to a normal method,
// perform a dynamic dispatch.
auto self = selfValue.forceAndPeekRValue(gen).peekScalarValue();
if (!isSuper)
return Callee::forClassMethod(gen, self, constant, loc);
// If this is a "super." dispatch, we do a dynamic dispatch for objc methods
// or non-final native Swift methods.
if (!canUseStaticDispatch(gen, constant))
return Callee::forSuperMethod(gen, self, constant, loc);
return Callee::forDirect(gen, constant, loc);
}
static Callee
emitSpecializedAccessorFunctionRef(SILGenFunction &gen,
SILLocation loc,
SILDeclRef constant,
SubstitutionList substitutions,
ArgumentSource &selfValue,
bool isSuper,
bool isDirectUse)
{
// Get the accessor function. The type will be a polymorphic function if
// the Self type is generic.
Callee callee = getBaseAccessorFunctionRef(gen, loc, constant, selfValue,
isSuper, isDirectUse,
substitutions);
// Collect captures if the accessor has them.
auto accessorFn = cast<AbstractFunctionDecl>(constant.getDecl());
if (gen.SGM.M.Types.hasLoweredLocalCaptures(accessorFn)) {
assert(!selfValue && "local property has self param?!");
SmallVector<ManagedValue, 4> captures;
gen.emitCaptures(loc, accessorFn, CaptureEmission::ImmediateApplication,
captures);
callee.setCaptures(std::move(captures));
}
// If there are substitutions, specialize the generic accessor.
if (!substitutions.empty()) {
callee.setSubstitutions(substitutions);
}
return callee;
}
namespace {
/// A builder class that creates the base argument for accessors.
///
/// *NOTE* All cleanups created inside of this builder on base arguments must be
/// formal access to ensure that we do not extend the lifetime of a guaranteed
/// base after the accessor is evaluated.
struct AccessorBaseArgPreparer final {
SILGenFunction &SGF;
SILLocation loc;
ManagedValue base;
CanType baseFormalType;
SILDeclRef accessor;
SILParameterInfo selfParam;
SILType baseLoweredType;
AccessorBaseArgPreparer(SILGenFunction &SGF, SILLocation loc,
ManagedValue base, CanType baseFormalType,
SILDeclRef accessor);
ArgumentSource prepare();
private:
/// Prepare our base if we have an address base.
ArgumentSource prepareAccessorAddressBaseArg();
/// Prepare our base if we have an object base.
ArgumentSource prepareAccessorObjectBaseArg();
/// Returns true if given an address base, we need to load the underlying
/// address. Asserts if baseLoweredType is not an address.
bool shouldLoadBaseAddress() const;
};
} // end anonymous namespace
bool AccessorBaseArgPreparer::shouldLoadBaseAddress() const {
assert(baseLoweredType.isAddress() &&
"Should only call this helper method if the base is an address");
switch (selfParam.getConvention()) {
// If the accessor wants the value 'inout', always pass the
// address we were given. This is semantically required.
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
return false;
// If the accessor wants the value 'in', we have to copy if the
// base isn't a temporary. We aren't allowed to pass aliased
// memory to 'in', and we have pass at +1.
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Guaranteed:
// TODO: We shouldn't be able to get an lvalue here, but the AST
// sometimes produces an inout base for non-mutating accessors.
// rdar://problem/19782170
// assert(!base.isLValue());
return base.isLValue() || base.isPlusZeroRValueOrTrivial();
// If the accessor wants the value directly, we definitely have to
// load.
case ParameterConvention::Direct_Owned:
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed:
return true;
}
llvm_unreachable("bad convention");
}
ArgumentSource AccessorBaseArgPreparer::prepareAccessorAddressBaseArg() {
// If the base is currently an address, we may have to copy it.
if (shouldLoadBaseAddress()) {
if (selfParam.isConsumed() ||
base.getType().isAddressOnly(SGF.getModule())) {
// The load can only be a take if the base is a +1 rvalue.
auto shouldTake = IsTake_t(base.hasCleanup());
base = SGF.emitFormalAccessLoad(loc, base.forward(SGF),
SGF.getTypeLowering(baseLoweredType),
SGFContext(), shouldTake);
return ArgumentSource(loc, RValue(SGF, loc, baseFormalType, base));
}
// If we do not have a consumed base and need to perform a load, perform a
// formal access load borrow.
base = SGF.B.createFormalAccessLoadBorrow(loc, base);
return ArgumentSource(loc, RValue(SGF, loc, baseFormalType, base));
}
// Handle inout bases specially here.
if (selfParam.isIndirectInOut()) {
// It sometimes happens that we get r-value bases here, e.g. when calling a
// mutating setter on a materialized temporary. Just don't claim the value.
if (!base.isLValue()) {
base = ManagedValue::forLValue(base.getValue());
}
// FIXME: this assumes that there's never meaningful reabstraction of self
// arguments.
return ArgumentSource(
loc, LValue::forAddress(base, AbstractionPattern(baseFormalType),
baseFormalType));
}
// Otherwise, we have a value that we can forward without any additional
// handling.
return ArgumentSource(loc, RValue(SGF, loc, baseFormalType, base));
}
ArgumentSource AccessorBaseArgPreparer::prepareAccessorObjectBaseArg() {
// If the base is currently scalar, we may have to drop it in
// memory or copy it.
assert(!base.isLValue());
// We need to produce the value at +1 if it's going to be consumed.
if (selfParam.isConsumed() && !base.hasCleanup()) {
base = base.formalAccessCopyUnmanaged(SGF, loc);
}
// If the parameter is indirect, we need to drop the value into
// temporary memory.
if (SGF.silConv.isSILIndirect(selfParam)) {
// It's usually a really bad idea to materialize when we're
// about to pass a value to an inout argument, because it's a
// really easy way to silently drop modifications (e.g. from a
// mutating getter in a writeback pair). Our caller should
// always take responsibility for that decision (by doing the
// materialization itself).
//
// However, when the base is a reference type and the target is
// a non-class protocol, this is innocuous.
#ifndef NDEBUG
auto isNonClassProtocolMember = [](Decl *d) {
auto p = d->getDeclContext()->getAsProtocolOrProtocolExtensionContext();
return (p && !p->requiresClass());
};
#endif
assert((!selfParam.isIndirectMutating() ||
(baseFormalType->isAnyClassReferenceType() &&
isNonClassProtocolMember(accessor.getDecl()))) &&
"passing unmaterialized r-value as inout argument");
base = emitMaterializeIntoTemporary(SGF, loc, base);
if (selfParam.isIndirectInOut()) {
// Drop the cleanup if we have one.
auto baseLV = ManagedValue::forLValue(base.getValue());
return ArgumentSource(
loc, LValue::forAddress(baseLV, AbstractionPattern(baseFormalType),
baseFormalType));
}
}
return ArgumentSource(loc, RValue(SGF, loc, baseFormalType, base));
}
AccessorBaseArgPreparer::AccessorBaseArgPreparer(SILGenFunction &SGF,
SILLocation loc,
ManagedValue base,
CanType baseFormalType,
SILDeclRef accessor)
: SGF(SGF), loc(loc), base(base), baseFormalType(baseFormalType),
accessor(accessor),
selfParam(SGF.SGM.Types.getConstantSelfParameter(accessor)),
baseLoweredType(base.getType()) {
assert(!base.isInContext());
assert(!base.isLValue() || !base.hasCleanup());
}
ArgumentSource AccessorBaseArgPreparer::prepare() {
// If the base is a boxed existential, we will open it later.
if (baseLoweredType.getPreferredExistentialRepresentation(SGF.SGM.M) ==
ExistentialRepresentation::Boxed) {
assert(!baseLoweredType.isAddress() &&
"boxed existential should not be an address");
return ArgumentSource(loc, RValue(SGF, loc, baseFormalType, base));
}
if (baseLoweredType.isAddress())
return prepareAccessorAddressBaseArg();
// At this point, we know we have an object.
assert(baseLoweredType.isObject());
return prepareAccessorObjectBaseArg();
}
ArgumentSource SILGenFunction::prepareAccessorBaseArg(SILLocation loc,
ManagedValue base,
CanType baseFormalType,
SILDeclRef accessor) {
AccessorBaseArgPreparer Preparer(*this, loc, base, baseFormalType, accessor);
return Preparer.prepare();
}
static bool shouldReferenceForeignAccessor(AbstractStorageDecl *storage,
bool isDirectUse) {
// C functions imported as members should be referenced as C functions.
if (storage->getGetter()->isImportAsMember())
return true;
// Otherwise, favor native entry points for direct accesses.
if (isDirectUse)
return false;
return storage->requiresForeignGetterAndSetter();
}
SILDeclRef SILGenFunction::getGetterDeclRef(AbstractStorageDecl *storage,
bool isDirectUse) {
// Use the ObjC entry point
return SILDeclRef(storage->getGetter(), SILDeclRef::Kind::Func,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
shouldReferenceForeignAccessor(storage, isDirectUse));
}
/// Emit a call to a getter.
RValue SILGenFunction::
emitGetAccessor(SILLocation loc, SILDeclRef get,
SubstitutionList substitutions,
ArgumentSource &&selfValue,
bool isSuper, bool isDirectUse,
RValue &&subscripts, SGFContext c) {
// Scope any further writeback just within this operation.
FormalEvaluationScope writebackScope(*this);
Callee getter = emitSpecializedAccessorFunctionRef(*this, loc, get,
substitutions, selfValue,
isSuper, isDirectUse);
bool hasCaptures = getter.hasCaptures();
bool hasSelf = (bool)selfValue;
CanAnyFunctionType accessType = getter.getSubstFormalType();
CallEmission emission(*this, std::move(getter), std::move(writebackScope));
// Self ->
if (hasSelf) {
emission.addCallSite(loc, std::move(selfValue), accessType);
}
// TODO: Have Callee encapsulate the captures better.
if (hasSelf || hasCaptures) {
accessType = cast<AnyFunctionType>(accessType.getResult());
}
// Index or () if none.
if (!subscripts)
subscripts = emitEmptyTupleRValue(loc, SGFContext());
emission.addCallSite(loc, ArgumentSource(loc, std::move(subscripts)),
accessType);
// T
return emission.apply(c);
}
SILDeclRef SILGenFunction::getSetterDeclRef(AbstractStorageDecl *storage,
bool isDirectUse) {
return SILDeclRef(storage->getSetter(), SILDeclRef::Kind::Func,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
shouldReferenceForeignAccessor(storage, isDirectUse));
}
void SILGenFunction::emitSetAccessor(SILLocation loc, SILDeclRef set,
SubstitutionList substitutions,
ArgumentSource &&selfValue,
bool isSuper, bool isDirectUse,
RValue &&subscripts, RValue &&setValue) {
// Scope any further writeback just within this operation.
FormalEvaluationScope writebackScope(*this);
Callee setter = emitSpecializedAccessorFunctionRef(*this, loc, set,
substitutions, selfValue,
isSuper, isDirectUse);
bool hasCaptures = setter.hasCaptures();
bool hasSelf = (bool)selfValue;
CanAnyFunctionType accessType = setter.getSubstFormalType();
CallEmission emission(*this, std::move(setter), std::move(writebackScope));
// Self ->
if (hasSelf) {
emission.addCallSite(loc, std::move(selfValue), accessType);
}
// TODO: Have Callee encapsulate the captures better.
if (hasSelf || hasCaptures) {
accessType = cast<AnyFunctionType>(accessType.getResult());
}
// (value) or (value, indices)
if (subscripts) {
// If we have a value and index list, create a new rvalue to represent the
// both of them together. The value goes first.
SmallVector<ManagedValue, 4> Elts;
std::move(setValue).getAll(Elts);
std::move(subscripts).getAll(Elts);
setValue = RValue::withPreExplodedElements(Elts, accessType.getInput());
} else {
setValue.rewriteType(accessType.getInput());
}
emission.addCallSite(loc, ArgumentSource(loc, std::move(setValue)),
accessType);
// ()
emission.apply();
}
SILDeclRef
SILGenFunction::getMaterializeForSetDeclRef(AbstractStorageDecl *storage,
bool isDirectUse) {
return SILDeclRef(storage->getMaterializeForSetFunc(),
SILDeclRef::Kind::Func,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
/*foreign*/ false);
}
MaterializedLValue SILGenFunction::
emitMaterializeForSetAccessor(SILLocation loc, SILDeclRef materializeForSet,
SubstitutionList substitutions,
ArgumentSource &&selfValue,
bool isSuper, bool isDirectUse,
RValue &&subscripts, SILValue buffer,
SILValue callbackStorage) {
// Scope any further writeback just within this operation.
FormalEvaluationScope writebackScope(*this);
Callee callee = emitSpecializedAccessorFunctionRef(*this, loc,
materializeForSet,
substitutions, selfValue,
isSuper, isDirectUse);
bool hasCaptures = callee.hasCaptures();
bool hasSelf = (bool)selfValue;
CanAnyFunctionType accessType = callee.getSubstFormalType();
CanAnyFunctionType origAccessType = callee.getOrigFormalType();
CallEmission emission(*this, std::move(callee), std::move(writebackScope));
// Self ->
if (hasSelf) {
emission.addCallSite(loc, std::move(selfValue), accessType);
}
// TODO: Have Callee encapsulate the captures better.
if (hasSelf || hasCaptures) {
accessType = cast<AnyFunctionType>(accessType.getResult());
}
// (buffer, callbackStorage) or (buffer, callbackStorage, indices) ->
// Note that this "RValue" stores a mixed LValue/RValue tuple.
RValue args = [&] {
SmallVector<ManagedValue, 4> elts;
auto bufferPtr =
B.createAddressToPointer(loc, buffer,
SILType::getRawPointerType(getASTContext()));
elts.push_back(ManagedValue::forUnmanaged(bufferPtr));
elts.push_back(ManagedValue::forLValue(callbackStorage));
if (subscripts) {
std::move(subscripts).getAll(elts);
}
return RValue::withPreExplodedElements(elts, accessType.getInput());
}();
emission.addCallSite(loc, ArgumentSource(loc, std::move(args)), accessType);
// (buffer, optionalCallback)
SmallVector<ManagedValue, 2> results;
emission.apply().getAll(results);
// Project out the materialized address. The address directly returned by
// materialize for set is strictly typed, whether it is the local buffer or
// stored property.
SILValue address = results[0].getUnmanagedValue();
address = B.createPointerToAddress(loc, address, buffer->getType(), /*isStrict*/ true);
// Project out the optional callback.
SILValue optionalCallback = results[1].getUnmanagedValue();
CanType origSelfType = origAccessType->getInput()
->getInOutObjectType()
->getCanonicalType();
CanGenericSignature genericSig;
if (auto genericFnType = dyn_cast<GenericFunctionType>(origAccessType))
genericSig = genericFnType.getGenericSignature();
return MaterializedLValue(ManagedValue::forUnmanaged(address),
origSelfType, genericSig,
optionalCallback, callbackStorage);
}
SILDeclRef SILGenFunction::getAddressorDeclRef(AbstractStorageDecl *storage,
AccessKind accessKind,
bool isDirectUse) {
FuncDecl *addressorFunc = storage->getAddressorForAccess(accessKind);
return SILDeclRef(addressorFunc, SILDeclRef::Kind::Func,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
/*foreign*/ false);
}
/// Emit a call to an addressor.
///
/// The first return value is the address, which will always be an
/// l-value managed value. The second return value is the owner
/// pointer, if applicable.
std::pair<ManagedValue, ManagedValue> SILGenFunction::
emitAddressorAccessor(SILLocation loc, SILDeclRef addressor,
SubstitutionList substitutions,
ArgumentSource &&selfValue,
bool isSuper, bool isDirectUse,
RValue &&subscripts, SILType addressType) {
// Scope any further writeback just within this operation.
FormalEvaluationScope writebackScope(*this);
Callee callee =
emitSpecializedAccessorFunctionRef(*this, loc, addressor,
substitutions, selfValue,
isSuper, isDirectUse);
bool hasCaptures = callee.hasCaptures();
bool hasSelf = (bool)selfValue;
CanAnyFunctionType accessType = callee.getSubstFormalType();
CallEmission emission(*this, std::move(callee), std::move(writebackScope));
// Self ->
if (hasSelf) {
emission.addCallSite(loc, std::move(selfValue), accessType);
}
// TODO: Have Callee encapsulate the captures better.
if (hasSelf || hasCaptures) {
accessType = cast<AnyFunctionType>(accessType.getResult());
}
// Index or () if none.
if (!subscripts)
subscripts = emitEmptyTupleRValue(loc, SGFContext());
emission.addCallSite(loc, ArgumentSource(loc, std::move(subscripts)),
accessType);
// Unsafe{Mutable}Pointer<T> or
// (Unsafe{Mutable}Pointer<T>, Builtin.UnknownPointer) or
// (Unsafe{Mutable}Pointer<T>, Builtin.NativePointer) or
// (Unsafe{Mutable}Pointer<T>, Builtin.NativePointer?) or
SmallVector<ManagedValue, 2> results;
emission.apply().getAll(results);
SILValue pointer;
ManagedValue owner;
switch (cast<FuncDecl>(addressor.getDecl())->getAddressorKind()) {
case AddressorKind::NotAddressor:
llvm_unreachable("not an addressor!");
case AddressorKind::Unsafe:
assert(results.size() == 1);
pointer = results[0].getUnmanagedValue();
owner = ManagedValue();
break;
case AddressorKind::Owning:
case AddressorKind::NativeOwning:
case AddressorKind::NativePinning:
assert(results.size() == 2);
pointer = results[0].getUnmanagedValue();
owner = results[1];
break;
}
// Drill down to the raw pointer using intrinsic knowledge of those types.
auto pointerType =
pointer->getType().castTo<BoundGenericStructType>()->getDecl();
auto props = pointerType->getStoredProperties();
assert(props.begin() != props.end());
assert(std::next(props.begin()) == props.end());
VarDecl *rawPointerField = *props.begin();
pointer = B.createStructExtract(loc, pointer, rawPointerField,
SILType::getRawPointerType(getASTContext()));
// Convert to the appropriate address type and return.
SILValue address = B.createPointerToAddress(loc, pointer, addressType, /*isStrict*/ true);
// Mark dependence as necessary.
switch (cast<FuncDecl>(addressor.getDecl())->getAddressorKind()) {
case AddressorKind::NotAddressor:
llvm_unreachable("not an addressor!");
case AddressorKind::Unsafe:
// TODO: we should probably mark dependence on the base.
break;
case AddressorKind::Owning:
case AddressorKind::NativeOwning:
case AddressorKind::NativePinning:
address = B.createMarkDependence(loc, address, owner.getValue());
break;
}
return { ManagedValue::forLValue(address), owner };
}
RValue SILGenFunction::emitApplyConversionFunction(SILLocation loc,
Expr *funcExpr,
Type resultType,
RValue &&operand) {
// Walk the function expression, which should produce a reference to the
// callee, leaving the final curry level unapplied.
CallEmission emission = prepareApplyExpr(*this, funcExpr);
// Rewrite the operand type to the expected argument type, to handle tuple
// conversions etc.
auto funcTy = cast<FunctionType>(funcExpr->getType()->getCanonicalType());
operand.rewriteType(funcTy.getInput());
// Add the operand as the final callsite.
emission.addCallSite(loc, ArgumentSource(loc, std::move(operand)),
resultType->getCanonicalType(), funcTy->throws());
return emission.apply();
}
// Create a partial application of a dynamic method, applying bridging thunks
// if necessary.
static SILValue emitDynamicPartialApply(SILGenFunction &gen,
SILLocation loc,
SILValue method,
SILValue self,
CanFunctionType methodTy) {
auto partialApplyTy = SILBuilder::getPartialApplyResultType(method->getType(),
/*argCount*/1,
gen.SGM.M,
/*subs*/{},
ParameterConvention::Direct_Owned);
// Retain 'self' because the partial apply will take ownership.
// We can't simply forward 'self' because the partial apply is conditional.
if (!self->getType().isAddress())
self = gen.B.emitCopyValueOperation(loc, self);
SILValue result = gen.B.createPartialApply(loc, method, method->getType(), {},
self, partialApplyTy);
// If necessary, thunk to the native ownership conventions and bridged types.
auto nativeTy = gen.getLoweredLoadableType(methodTy).castTo<SILFunctionType>();
if (nativeTy != partialApplyTy.getSwiftRValueType()) {
result = gen.emitBlockToFunc(loc, ManagedValue::forUnmanaged(result),
nativeTy).forward(gen);
}
return result;
}
RValue SILGenFunction::emitDynamicMemberRefExpr(DynamicMemberRefExpr *e,
SGFContext c) {
// Emit the operand.
ManagedValue base = emitRValueAsSingleValue(e->getBase());
SILValue operand = base.getValue();
if (!e->getMember().getDecl()->isInstanceMember()) {
auto metatype = operand->getType().castTo<MetatypeType>();
assert(metatype->getRepresentation() == MetatypeRepresentation::Thick);
metatype = CanMetatypeType::get(metatype.getInstanceType(),
MetatypeRepresentation::ObjC);
operand = B.createThickToObjCMetatype(e, operand,
SILType::getPrimitiveObjectType(metatype));
}
// Create the continuation block.
SILBasicBlock *contBB = createBasicBlock();
// Create the no-member block.
SILBasicBlock *noMemberBB = createBasicBlock();
// Create the has-member block.
SILBasicBlock *hasMemberBB = createBasicBlock();
// The continuation block
auto memberMethodTy = e->getType()->getAnyOptionalObjectType();
const TypeLowering &optTL = getTypeLowering(e->getType());
auto loweredOptTy = optTL.getLoweredType();
SILValue optTemp = emitTemporaryAllocation(e, loweredOptTy);
// Create the branch.
FuncDecl *memberFunc;
if (auto *VD = dyn_cast<VarDecl>(e->getMember().getDecl())) {
memberFunc = VD->getGetter();
memberMethodTy = FunctionType::get(getASTContext().TheEmptyTupleType,
memberMethodTy);
} else
memberFunc = cast<FuncDecl>(e->getMember().getDecl());
SILDeclRef member(memberFunc, SILDeclRef::Kind::Func,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
/*isObjC=*/true);
B.createDynamicMethodBranch(e, operand, member, hasMemberBB, noMemberBB);
// Create the has-member branch.
{
B.emitBlock(hasMemberBB);
FullExpr hasMemberScope(Cleanups, CleanupLocation(e));
// The argument to the has-member block is the uncurried method.
auto valueTy = e->getType()->getCanonicalType().getAnyOptionalObjectType();
auto methodTy = valueTy;
// For a computed variable, we want the getter.
if (isa<VarDecl>(e->getMember().getDecl()))
methodTy = CanFunctionType::get(TupleType::getEmpty(getASTContext()),
methodTy);
auto memberFnTy = CanFunctionType::get(
operand->getType().getSwiftRValueType(),
memberMethodTy->getCanonicalType());
auto dynamicMethodTy = getDynamicMethodLoweredType(*this, operand, member,
memberFnTy);
auto loweredMethodTy = SILType::getPrimitiveObjectType(dynamicMethodTy);
SILValue memberArg = hasMemberBB->createPHIArgument(
loweredMethodTy, ValueOwnershipKind::Owned);
// Create the result value.
SILValue result = emitDynamicPartialApply(*this, e, memberArg, operand,
cast<FunctionType>(methodTy));
Scope applyScope(Cleanups, CleanupLocation(e));
RValue resultRV;
if (isa<VarDecl>(e->getMember().getDecl())) {
resultRV = emitMonomorphicApply(e, ManagedValue::forUnmanaged(result),
{}, valueTy,
ApplyOptions::DoesNotThrow,
None, None);
} else {
resultRV = RValue(*this, e, valueTy,
emitManagedRValueWithCleanup(result));
}
// Package up the result in an optional.
emitInjectOptionalValueInto(e, {e, std::move(resultRV)}, optTemp, optTL);
applyScope.pop();
// Branch to the continuation block.
B.createBranch(e, contBB);
}
// Create the no-member branch.
{
B.emitBlock(noMemberBB);
emitInjectOptionalNothingInto(e, optTemp, optTL);
// Branch to the continuation block.
B.createBranch(e, contBB);
}
// Emit the continuation block.
B.emitBlock(contBB);
// Package up the result.
auto optResult = optTemp;
if (optTL.isLoadable())
optResult = optTL.emitLoad(B, e, optResult, LoadOwnershipQualifier::Take);
return RValue(*this, e, emitManagedRValueWithCleanup(optResult, optTL));
}
RValue SILGenFunction::emitDynamicSubscriptExpr(DynamicSubscriptExpr *e,
SGFContext c) {
// Emit the base operand.
ManagedValue managedBase = emitRValueAsSingleValue(e->getBase());
SILValue base = managedBase.getValue();
// Emit the index.
RValue index = emitRValue(e->getIndex());
// Create the continuation block.
SILBasicBlock *contBB = createBasicBlock();
// Create the no-member block.
SILBasicBlock *noMemberBB = createBasicBlock();
// Create the has-member block.
SILBasicBlock *hasMemberBB = createBasicBlock();
const TypeLowering &optTL = getTypeLowering(e->getType());
auto loweredOptTy = optTL.getLoweredType();
SILValue optTemp = emitTemporaryAllocation(e, loweredOptTy);
// Create the branch.
auto subscriptDecl = cast<SubscriptDecl>(e->getMember().getDecl());
SILDeclRef member(subscriptDecl->getGetter(),
SILDeclRef::Kind::Func,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
/*isObjC=*/true);
B.createDynamicMethodBranch(e, base, member, hasMemberBB, noMemberBB);
// Create the has-member branch.
{
B.emitBlock(hasMemberBB);
FullExpr hasMemberScope(Cleanups, CleanupLocation(e));
// The argument to the has-member block is the uncurried method.
// Build the substituted getter type from the AST nodes.
auto valueTy = e->getType()->getCanonicalType().getAnyOptionalObjectType();
auto indexTy = e->getIndex()->getType()->getCanonicalType();
auto methodTy = CanFunctionType::get(indexTy,
valueTy);
auto functionTy = CanFunctionType::get(base->getType().getSwiftRValueType(),
methodTy);
auto dynamicMethodTy = getDynamicMethodLoweredType(*this, base, member,
functionTy);
auto loweredMethodTy = SILType::getPrimitiveObjectType(dynamicMethodTy);
SILValue memberArg = hasMemberBB->createPHIArgument(
loweredMethodTy, ValueOwnershipKind::Owned);
// Emit the application of 'self'.
SILValue result = emitDynamicPartialApply(*this, e, memberArg, base,
cast<FunctionType>(methodTy));
// Emit the index.
llvm::SmallVector<ManagedValue, 2> indexArgs;
std::move(index).getAll(indexArgs);
Scope applyScope(Cleanups, CleanupLocation(e));
auto resultRV = emitMonomorphicApply(e, ManagedValue::forUnmanaged(result),
indexArgs, valueTy,
ApplyOptions::DoesNotThrow,
None, None);
// Package up the result in an optional.
emitInjectOptionalValueInto(e, {e, std::move(resultRV)}, optTemp, optTL);
applyScope.pop();
// Branch to the continuation block.
B.createBranch(e, contBB);
}
// Create the no-member branch.
{
B.emitBlock(noMemberBB);
emitInjectOptionalNothingInto(e, optTemp, optTL);
// Branch to the continuation block.
B.createBranch(e, contBB);
}
// Emit the continuation block.
B.emitBlock(contBB);
// Package up the result.
auto optResult = optTemp;
if (optTL.isLoadable())
optResult = optTL.emitLoad(B, e, optResult, LoadOwnershipQualifier::Take);
return RValue(*this, e, emitManagedRValueWithCleanup(optResult, optTL));
}