blob: 718e573e45f6f9e2696a91327df70d156d81dfaf [file] [log] [blame]
//===--- Module.cpp - Swift Language Module Implementation ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Module class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Module.h"
#include "swift/AST/AccessScope.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTScope.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ReferencedNameTracker.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Compiler.h"
#include "swift/Basic/SourceManager.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Builtin Module Name lookup
//===----------------------------------------------------------------------===//
class BuiltinUnit::LookupCache {
/// The cache of identifiers we've already looked up. We use a
/// single hashtable for both types and values as a minor
/// optimization; this prevents us from having both a builtin type
/// and a builtin value with the same name, but that's okay.
llvm::DenseMap<Identifier, ValueDecl*> Cache;
public:
void lookupValue(Identifier Name, NLKind LookupKind, const BuiltinUnit &M,
SmallVectorImpl<ValueDecl*> &Result);
};
BuiltinUnit::LookupCache &BuiltinUnit::getCache() const {
// FIXME: This leaks. Sticking this into ASTContext isn't enough because then
// the DenseMap will leak.
if (!Cache)
const_cast<BuiltinUnit *>(this)->Cache = llvm::make_unique<LookupCache>();
return *Cache;
}
void BuiltinUnit::LookupCache::lookupValue(
Identifier Name, NLKind LookupKind, const BuiltinUnit &M,
SmallVectorImpl<ValueDecl*> &Result) {
// Only qualified lookup ever finds anything in the builtin module.
if (LookupKind != NLKind::QualifiedLookup) return;
ValueDecl *&Entry = Cache[Name];
ASTContext &Ctx = M.getParentModule()->getASTContext();
if (!Entry) {
if (Type Ty = getBuiltinType(Ctx, Name.str())) {
auto *TAD = new (Ctx) TypeAliasDecl(SourceLoc(), SourceLoc(),
Name, SourceLoc(),
/*genericparams*/nullptr,
const_cast<BuiltinUnit*>(&M));
TAD->setUnderlyingType(Ty);
TAD->setAccess(AccessLevel::Public);
Entry = TAD;
}
}
if (!Entry)
Entry = getBuiltinValueDecl(Ctx, Name);
if (Entry)
Result.push_back(Entry);
}
// Out-of-line because std::unique_ptr wants LookupCache to be complete.
BuiltinUnit::BuiltinUnit(ModuleDecl &M)
: FileUnit(FileUnitKind::Builtin, M) {
M.getASTContext().addDestructorCleanup(*this);
}
//===----------------------------------------------------------------------===//
// Normal Module Name Lookup
//===----------------------------------------------------------------------===//
class SourceFile::LookupCache {
/// A lookup map for value decls. When declarations are added they are added
/// under all variants of the name they can be found under.
class DeclMap {
llvm::DenseMap<DeclName, TinyPtrVector<ValueDecl*>> Members;
public:
void add(ValueDecl *VD) {
if (!VD->hasName()) return;
VD->getFullName().addToLookupTable(Members, VD);
}
void clear() {
Members.shrink_and_clear();
}
decltype(Members)::const_iterator begin() const { return Members.begin(); }
decltype(Members)::const_iterator end() const { return Members.end(); }
decltype(Members)::const_iterator find(DeclName Name) const {
return Members.find(Name);
}
};
DeclMap TopLevelValues;
DeclMap ClassMembers;
bool MemberCachePopulated = false;
template<typename Range>
void doPopulateCache(Range decls, bool onlyOperators);
void addToMemberCache(DeclRange decls);
void populateMemberCache(const SourceFile &SF);
public:
typedef ModuleDecl::AccessPathTy AccessPathTy;
LookupCache(const SourceFile &SF);
/// Throw away as much memory as possible.
void invalidate();
void lookupValue(AccessPathTy AccessPath, DeclName Name,
NLKind LookupKind, SmallVectorImpl<ValueDecl*> &Result);
void lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind);
void lookupClassMembers(AccessPathTy AccessPath,
VisibleDeclConsumer &consumer,
const SourceFile &SF);
void lookupClassMember(AccessPathTy accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results,
const SourceFile &SF);
SmallVector<ValueDecl *, 0> AllVisibleValues;
};
using SourceLookupCache = SourceFile::LookupCache;
SourceLookupCache &SourceFile::getCache() const {
if (!Cache) {
const_cast<SourceFile *>(this)->Cache =
llvm::make_unique<SourceLookupCache>(*this);
}
return *Cache;
}
template<typename Range>
void SourceLookupCache::doPopulateCache(Range decls,
bool onlyOperators) {
for (Decl *D : decls) {
if (auto *VD = dyn_cast<ValueDecl>(D))
if (onlyOperators ? VD->isOperator() : VD->hasName()) {
// Cache the value under both its compound name and its full name.
TopLevelValues.add(VD);
}
if (auto *NTD = dyn_cast<NominalTypeDecl>(D))
doPopulateCache(NTD->getMembers(), true);
if (auto *ED = dyn_cast<ExtensionDecl>(D))
doPopulateCache(ED->getMembers(), true);
}
}
void SourceLookupCache::populateMemberCache(const SourceFile &SF) {
for (const Decl *D : SF.Decls) {
if (const auto *NTD = dyn_cast<NominalTypeDecl>(D)) {
addToMemberCache(NTD->getMembers());
} else if (const auto *ED = dyn_cast<ExtensionDecl>(D)) {
addToMemberCache(ED->getMembers());
}
}
MemberCachePopulated = true;
}
void SourceLookupCache::addToMemberCache(DeclRange decls) {
for (Decl *D : decls) {
auto VD = dyn_cast<ValueDecl>(D);
if (!VD)
continue;
if (auto NTD = dyn_cast<NominalTypeDecl>(VD)) {
assert(!VD->canBeAccessedByDynamicLookup() &&
"inner types cannot be accessed by dynamic lookup");
addToMemberCache(NTD->getMembers());
} else if (VD->canBeAccessedByDynamicLookup()) {
ClassMembers.add(VD);
}
}
}
/// Populate our cache on the first name lookup.
SourceLookupCache::LookupCache(const SourceFile &SF) {
doPopulateCache(llvm::makeArrayRef(SF.Decls), false);
}
void SourceLookupCache::lookupValue(AccessPathTy AccessPath, DeclName Name,
NLKind LookupKind,
SmallVectorImpl<ValueDecl*> &Result) {
// If this import is specific to some named type or decl ("import Swift.int")
// then filter out any lookups that don't match.
if (!ModuleDecl::matchesAccessPath(AccessPath, Name))
return;
auto I = TopLevelValues.find(Name);
if (I == TopLevelValues.end()) return;
Result.reserve(I->second.size());
for (ValueDecl *Elt : I->second)
Result.push_back(Elt);
}
void SourceLookupCache::lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind) {
assert(AccessPath.size() <= 1 && "can only refer to top-level decls");
if (!AccessPath.empty()) {
auto I = TopLevelValues.find(AccessPath.front().first);
if (I == TopLevelValues.end()) return;
for (auto vd : I->second)
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
return;
}
for (auto &tlv : TopLevelValues) {
for (ValueDecl *vd : tlv.second) {
// Declarations are added under their full and simple names. Skip the
// entry for the simple name so that we report each declaration once.
if (tlv.first.isSimpleName() && !vd->getFullName().isSimpleName())
continue;
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
}
}
}
void SourceLookupCache::lookupClassMembers(AccessPathTy accessPath,
VisibleDeclConsumer &consumer,
const SourceFile &SF) {
if (!MemberCachePopulated)
populateMemberCache(SF);
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
if (!accessPath.empty()) {
for (auto &member : ClassMembers) {
// Non-simple names are also stored under their simple name, so make
// sure to only report them once.
if (!member.first.isSimpleName())
continue;
for (ValueDecl *vd : member.second) {
auto *nominal = vd->getDeclContext()
->getAsNominalTypeOrNominalTypeExtensionContext();
if (nominal && nominal->getName() == accessPath.front().first)
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
}
}
return;
}
for (auto &member : ClassMembers) {
// Non-simple names are also stored under their simple name, so make sure to
// only report them once.
if (!member.first.isSimpleName())
continue;
for (ValueDecl *vd : member.second)
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
}
}
void SourceLookupCache::lookupClassMember(AccessPathTy accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results,
const SourceFile &SF) {
if (!MemberCachePopulated)
populateMemberCache(SF);
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
auto iter = ClassMembers.find(name);
if (iter == ClassMembers.end())
return;
if (!accessPath.empty()) {
for (ValueDecl *vd : iter->second) {
auto *nominal = vd->getDeclContext()
->getAsNominalTypeOrNominalTypeExtensionContext();
if (nominal && nominal->getName() == accessPath.front().first)
results.push_back(vd);
}
return;
}
results.append(iter->second.begin(), iter->second.end());
}
void SourceLookupCache::invalidate() {
TopLevelValues.clear();
ClassMembers.clear();
MemberCachePopulated = false;
// std::move AllVisibleValues into a temporary to destroy its contents.
using SameSizeSmallVector = decltype(AllVisibleValues);
(void)SameSizeSmallVector{std::move(AllVisibleValues)};
}
//===----------------------------------------------------------------------===//
// Module Implementation
//===----------------------------------------------------------------------===//
ModuleDecl::ModuleDecl(Identifier name, ASTContext &ctx)
: TypeDecl(DeclKind::Module, &ctx, name, SourceLoc(), { }),
DeclContext(DeclContextKind::Module, nullptr),
Flags({0, 0, 0}) {
ctx.addDestructorCleanup(*this);
setImplicit();
setInterfaceType(ModuleType::get(this));
setAccess(AccessLevel::Public);
}
void ModuleDecl::addFile(FileUnit &newFile) {
// Require Main and REPL files to be the first file added.
assert(Files.empty() ||
!isa<SourceFile>(newFile) ||
cast<SourceFile>(newFile).Kind == SourceFileKind::Library ||
cast<SourceFile>(newFile).Kind == SourceFileKind::SIL);
Files.push_back(&newFile);
}
void ModuleDecl::removeFile(FileUnit &existingFile) {
// Do a reverse search; usually the file to be deleted will be at the end.
std::reverse_iterator<decltype(Files)::iterator> I(Files.end()),
E(Files.begin());
I = std::find(I, E, &existingFile);
assert(I != E);
// Adjust for the std::reverse_iterator offset.
++I;
Files.erase(I.base());
}
#define FORWARD(name, args) \
for (const FileUnit *file : getFiles()) \
file->name args;
void ModuleDecl::lookupValue(AccessPathTy AccessPath, DeclName Name,
NLKind LookupKind,
SmallVectorImpl<ValueDecl*> &Result) const {
FORWARD(lookupValue, (AccessPath, Name, LookupKind, Result));
}
TypeDecl * ModuleDecl::lookupLocalType(StringRef MangledName) const {
for (auto file : getFiles()) {
auto TD = file->lookupLocalType(MangledName);
if (TD)
return TD;
}
return nullptr;
}
void ModuleDecl::lookupMember(SmallVectorImpl<ValueDecl*> &results,
DeclContext *container, DeclName name,
Identifier privateDiscriminator) const {
size_t oldSize = results.size();
bool alreadyInPrivateContext = false;
switch (container->getContextKind()) {
case DeclContextKind::SerializedLocal:
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::Initializer:
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::AbstractFunctionDecl:
case DeclContextKind::SubscriptDecl:
llvm_unreachable("This context does not support lookup.");
case DeclContextKind::FileUnit:
llvm_unreachable("Use FileUnit::lookupValue instead.");
case DeclContextKind::ExtensionDecl:
llvm_unreachable("Use ExtensionDecl::lookupDirect instead.");
case DeclContextKind::Module: {
assert(container == this);
this->lookupValue({}, name, NLKind::QualifiedLookup, results);
break;
}
case DeclContextKind::GenericTypeDecl: {
auto nominal = dyn_cast<NominalTypeDecl>(container);
if (!nominal) break;
auto lookupResults = nominal->lookupDirect(name);
// Filter out declarations from other modules.
std::copy_if(lookupResults.begin(), lookupResults.end(),
std::back_inserter(results),
[this](const ValueDecl *VD) -> bool {
return VD->getModuleContext() == this;
});
auto AS = nominal->getFormalAccessScope();
if (AS.isPrivate() || AS.isFileScope())
alreadyInPrivateContext = true;
break;
}
}
// Filter by private-discriminator, or filter out private decls if there isn't
// one...unless we're already in a private context, in which case everything
// is private and a discriminator is unnecessary.
if (alreadyInPrivateContext) {
assert(privateDiscriminator.empty() && "unnecessary private-discriminator");
// Don't remove anything; everything here is private anyway.
} else if (privateDiscriminator.empty()) {
auto newEnd = std::remove_if(results.begin()+oldSize, results.end(),
[](const ValueDecl *VD) -> bool {
return VD->getFormalAccess() <= AccessLevel::FilePrivate;
});
results.erase(newEnd, results.end());
} else {
auto newEnd = std::remove_if(results.begin()+oldSize, results.end(),
[=](const ValueDecl *VD) -> bool {
if (VD->getFormalAccess() > AccessLevel::FilePrivate)
return true;
auto enclosingFile =
cast<FileUnit>(VD->getDeclContext()->getModuleScopeContext());
auto discriminator = enclosingFile->getDiscriminatorForPrivateValue(VD);
return discriminator != privateDiscriminator;
});
results.erase(newEnd, results.end());
}
}
void ModuleDecl::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
FORWARD(lookupObjCMethods, (selector, results));
}
void BuiltinUnit::lookupValue(ModuleDecl::AccessPathTy accessPath, DeclName name,
NLKind lookupKind,
SmallVectorImpl<ValueDecl*> &result) const {
getCache().lookupValue(name.getBaseIdentifier(), lookupKind, *this, result);
}
void BuiltinUnit::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// No @objc methods in the Builtin module.
}
void SourceFile::lookupValue(ModuleDecl::AccessPathTy accessPath, DeclName name,
NLKind lookupKind,
SmallVectorImpl<ValueDecl*> &result) const {
getCache().lookupValue(accessPath, name, lookupKind, result);
}
void ModuleDecl::lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind) const {
FORWARD(lookupVisibleDecls, (AccessPath, Consumer, LookupKind));
}
void SourceFile::lookupVisibleDecls(ModuleDecl::AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind) const {
getCache().lookupVisibleDecls(AccessPath, Consumer, LookupKind);
}
void ModuleDecl::lookupClassMembers(AccessPathTy accessPath,
VisibleDeclConsumer &consumer) const {
FORWARD(lookupClassMembers, (accessPath, consumer));
}
void SourceFile::lookupClassMembers(ModuleDecl::AccessPathTy accessPath,
VisibleDeclConsumer &consumer) const {
getCache().lookupClassMembers(accessPath, consumer, *this);
}
void ModuleDecl::lookupClassMember(AccessPathTy accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results) const {
FORWARD(lookupClassMember, (accessPath, name, results));
}
void SourceFile::lookupClassMember(ModuleDecl::AccessPathTy accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results) const {
getCache().lookupClassMember(accessPath, name, results, *this);
}
void SourceFile::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// FIXME: Make sure this table is complete, somehow.
auto known = ObjCMethods.find(selector);
if (known == ObjCMethods.end()) return;
results.append(known->second.begin(), known->second.end());
}
void ModuleDecl::getLocalTypeDecls(SmallVectorImpl<TypeDecl*> &Results) const {
FORWARD(getLocalTypeDecls, (Results));
}
void ModuleDecl::getTopLevelDecls(SmallVectorImpl<Decl*> &Results) const {
FORWARD(getTopLevelDecls, (Results));
}
void SourceFile::getTopLevelDecls(SmallVectorImpl<Decl*> &Results) const {
Results.append(Decls.begin(), Decls.end());
}
void SourceFile::getLocalTypeDecls(SmallVectorImpl<TypeDecl*> &Results) const {
Results.append(LocalTypeDecls.begin(), LocalTypeDecls.end());
}
void ModuleDecl::getDisplayDecls(SmallVectorImpl<Decl*> &Results) const {
// FIXME: Should this do extra access control filtering?
FORWARD(getDisplayDecls, (Results));
}
Optional<ProtocolConformanceRef>
ModuleDecl::lookupConformance(Type type, ProtocolDecl *protocol) {
ASTContext &ctx = getASTContext();
// A dynamic Self type conforms to whatever its underlying type
// conforms to.
if (auto selfType = type->getAs<DynamicSelfType>())
type = selfType->getSelfType();
// An archetype conforms to a protocol if the protocol is listed in the
// archetype's list of conformances, or if the archetype has a superclass
// constraint and the superclass conforms to the protocol.
if (auto archetype = type->getAs<ArchetypeType>()) {
// The generic signature builder drops conformance requirements that are made
// redundant by a superclass requirement, so check for a concrete
// conformance first, since an abstract conformance might not be
// able to be resolved by a substitution that makes the archetype
// concrete.
if (auto super = archetype->getSuperclass()) {
if (auto inheritedConformance = lookupConformance(super, protocol)) {
return ProtocolConformanceRef(
ctx.getInheritedConformance(
type,
inheritedConformance->getConcrete()));
}
}
for (auto ap : archetype->getConformsTo()) {
if (ap == protocol || ap->inheritsFrom(protocol))
return ProtocolConformanceRef(protocol);
}
return None;
}
// An existential conforms to a protocol if the protocol is listed in the
// existential's list of conformances and the existential conforms to
// itself.
if (type->isExistentialType()) {
// FIXME: Recursion break.
if (!protocol->hasValidSignature())
return None;
// If the existential type cannot be represented or the protocol does not
// conform to itself, there's no point in looking further.
if (!protocol->existentialConformsToSelf())
return None;
auto layout = type->getExistentialLayout();
// Due to an IRGen limitation, witness tables cannot be passed from an
// existential to an archetype parameter, so for now we restrict this to
// @objc protocols.
if (!layout.isObjC())
return None;
// If the existential is class-constrained, the class might conform
// concretely.
if (layout.superclass) {
if (auto result = lookupConformance(layout.superclass, protocol))
return result;
}
// Otherwise, the existential might conform abstractly.
for (auto proto : layout.getProtocols()) {
auto *protoDecl = proto->getDecl();
if (protoDecl == protocol || protoDecl->inheritsFrom(protocol))
return ProtocolConformanceRef(protocol);
}
// We didn't find our protocol in the existential's list; it doesn't
// conform.
return None;
}
// Type variables have trivial conformances.
if (type->isTypeVariableOrMember())
return ProtocolConformanceRef(protocol);
// UnresolvedType is a placeholder for an unknown type used when generating
// diagnostics. We consider it to conform to all protocols, since the
// intended type might have.
if (type->is<UnresolvedType>())
return ProtocolConformanceRef(protocol);
auto nominal = type->getAnyNominal();
// If we don't have a nominal type, there are no conformances.
if (!nominal) return None;
// Find the (unspecialized) conformance.
SmallVector<ProtocolConformance *, 2> conformances;
if (!nominal->lookupConformance(this, protocol, conformances))
return None;
// FIXME: Ambiguity resolution.
auto conformance = conformances.front();
// Rebuild inherited conformances based on the root normal conformance.
// FIXME: This is a hack to work around our inability to handle multiple
// levels of substitution through inherited conformances elsewhere in the
// compiler.
if (auto inherited = dyn_cast<InheritedProtocolConformance>(conformance)) {
// Dig out the conforming nominal type.
auto rootConformance = inherited->getRootNormalConformance();
auto conformingClass
= rootConformance->getType()->getClassOrBoundGenericClass();
// Map up to our superclass's type.
auto superclassTy = type->getSuperclassForDecl(conformingClass);
// Compute the conformance for the inherited type.
auto inheritedConformance = lookupConformance(superclassTy, protocol);
assert(inheritedConformance &&
"We already found the inherited conformance");
// Create the inherited conformance entry.
conformance
= ctx.getInheritedConformance(type, inheritedConformance->getConcrete());
return ProtocolConformanceRef(conformance);
}
// If the type is specialized, find the conformance for the generic type.
if (type->isSpecialized()) {
// Figure out the type that's explicitly conforming to this protocol.
Type explicitConformanceType = conformance->getType();
DeclContext *explicitConformanceDC = conformance->getDeclContext();
// If the explicit conformance is associated with a type that is different
// from the type we're checking, retrieve generic conformance.
if (!explicitConformanceType->isEqual(type)) {
// Gather the substitutions we need to map the generic conformance to
// the specialized conformance.
auto subMap = type->getContextSubstitutionMap(this, explicitConformanceDC);
// Create the specialized conformance entry.
auto result = ctx.getSpecializedConformance(type, conformance, subMap);
return ProtocolConformanceRef(result);
}
}
// Record and return the simple conformance.
return ProtocolConformanceRef(conformance);
}
namespace {
template <typename T>
using OperatorMap = SourceFile::OperatorMap<T>;
template <typename T>
struct OperatorLookup {
// Don't fold this into the static_assert: this would trigger an MSVC bug
// that causes the assertion to fail.
static constexpr T* ptr = static_cast<T*>(nullptr);
static_assert(ptr, "Only usable with operators");
};
template <>
struct OperatorLookup<PrefixOperatorDecl> {
template <typename T>
static PrefixOperatorDecl *lookup(T &container, Identifier name) {
return cast_or_null<PrefixOperatorDecl>(
container.lookupOperator(name, DeclKind::PrefixOperator));
}
};
template <>
struct OperatorLookup<InfixOperatorDecl> {
template <typename T>
static InfixOperatorDecl *lookup(T &container, Identifier name) {
return cast_or_null<InfixOperatorDecl>(
container.lookupOperator(name, DeclKind::InfixOperator));
}
};
template <>
struct OperatorLookup<PostfixOperatorDecl> {
template <typename T>
static PostfixOperatorDecl *lookup(T &container, Identifier name) {
return cast_or_null<PostfixOperatorDecl>(
container.lookupOperator(name, DeclKind::PostfixOperator));
}
};
template <>
struct OperatorLookup<PrecedenceGroupDecl> {
template <typename T>
static PrecedenceGroupDecl *lookup(T &container, Identifier name) {
return container.lookupPrecedenceGroup(name);
}
};
} // end anonymous namespace
/// A helper class to sneak around C++ access control rules.
class SourceFile::Impl {
public:
/// Only intended for use by lookupOperatorDeclForName.
static ArrayRef<std::pair<ModuleDecl::ImportedModule, SourceFile::ImportOptions>>
getImportsForSourceFile(const SourceFile &SF) {
return SF.Imports;
}
};
template<typename OP_DECL>
static Optional<OP_DECL *>
lookupOperatorDeclForName(ModuleDecl *M, SourceLoc Loc, Identifier Name,
OperatorMap<OP_DECL *> SourceFile::*OP_MAP);
template<typename OP_DECL>
using ImportedOperatorsMap = llvm::SmallDenseMap<OP_DECL*, bool, 16>;
template<typename OP_DECL>
static typename ImportedOperatorsMap<OP_DECL>::iterator
checkOperatorConflicts(const SourceFile &SF, SourceLoc loc,
ImportedOperatorsMap<OP_DECL> &importedOperators) {
// Check for conflicts.
auto i = importedOperators.begin(), end = importedOperators.end();
auto start = i;
for (++i; i != end; ++i) {
if (i->first->conflictsWith(start->first)) {
if (loc.isValid()) {
ASTContext &C = SF.getASTContext();
C.Diags.diagnose(loc, diag::ambiguous_operator_decls);
C.Diags.diagnose(start->first->getLoc(),
diag::found_this_operator_decl);
C.Diags.diagnose(i->first->getLoc(), diag::found_this_operator_decl);
}
return end;
}
}
return start;
}
template<>
typename ImportedOperatorsMap<PrecedenceGroupDecl>::iterator
checkOperatorConflicts(const SourceFile &SF, SourceLoc loc,
ImportedOperatorsMap<PrecedenceGroupDecl> &importedGroups) {
if (importedGroups.size() == 1)
return importedGroups.begin();
// Any sort of ambiguity is an error.
if (loc.isValid()) {
ASTContext &C = SF.getASTContext();
C.Diags.diagnose(loc, diag::ambiguous_precedence_groups);
for (auto &entry : importedGroups) {
C.Diags.diagnose(entry.first->getLoc(),
diag::found_this_precedence_group);
}
}
return importedGroups.end();
}
// Returns None on error, Optional(nullptr) if no operator decl found, or
// Optional(decl) if decl was found.
template<typename OP_DECL>
static Optional<OP_DECL *>
lookupOperatorDeclForName(const FileUnit &File, SourceLoc Loc, Identifier Name,
bool includePrivate,
OperatorMap<OP_DECL *> SourceFile::*OP_MAP)
{
switch (File.getKind()) {
case FileUnitKind::Builtin:
case FileUnitKind::Derived:
// The Builtin module declares no operators, nor do derived units.
return nullptr;
case FileUnitKind::Source:
break;
case FileUnitKind::SerializedAST:
case FileUnitKind::ClangModule:
return OperatorLookup<OP_DECL>::lookup(cast<LoadedFile>(File), Name);
}
auto &SF = cast<SourceFile>(File);
assert(SF.ASTStage >= SourceFile::NameBound);
// Look for an operator declaration in the current module.
auto found = (SF.*OP_MAP).find(Name);
if (found != (SF.*OP_MAP).end() && (includePrivate || found->second.getInt()))
return found->second.getPointer();
// Look for imported operator decls.
// Record whether they come from re-exported modules.
// FIXME: We ought to prefer operators elsewhere in this module before we
// check imports.
auto ownModule = SF.getParentModule();
ImportedOperatorsMap<OP_DECL> importedOperators;
for (auto &imported : SourceFile::Impl::getImportsForSourceFile(SF)) {
// Protect against source files that contrive to import their own modules.
if (imported.first.second == ownModule)
continue;
bool isExported =
imported.second.contains(SourceFile::ImportFlags::Exported);
if (!includePrivate && !isExported)
continue;
Optional<OP_DECL *> maybeOp
= lookupOperatorDeclForName(imported.first.second, Loc, Name, OP_MAP);
if (!maybeOp)
return None;
if (OP_DECL *op = *maybeOp)
importedOperators[op] |= isExported;
}
typename OperatorMap<OP_DECL *>::mapped_type result = { nullptr, true };
if (!importedOperators.empty()) {
auto start = checkOperatorConflicts(SF, Loc, importedOperators);
if (start == importedOperators.end())
return None;
result = { start->first, start->second };
}
if (includePrivate) {
// Cache the mapping so we don't need to troll imports next time.
// It's not safe to cache the non-private results because we didn't search
// private imports there, but in most non-private cases the result will
// be cached in the final lookup.
auto &mutableOpMap = const_cast<OperatorMap<OP_DECL *> &>(SF.*OP_MAP);
mutableOpMap[Name] = result;
}
if (includePrivate || result.getInt())
return result.getPointer();
return nullptr;
}
template<typename OP_DECL>
static Optional<OP_DECL *>
lookupOperatorDeclForName(ModuleDecl *M, SourceLoc Loc, Identifier Name,
OperatorMap<OP_DECL *> SourceFile::*OP_MAP)
{
OP_DECL *result = nullptr;
for (const FileUnit *File : M->getFiles()) {
auto next = lookupOperatorDeclForName(*File, Loc, Name, false, OP_MAP);
if (!next.hasValue())
return next;
// FIXME: Diagnose ambiguity.
if (*next && result)
return None;
if (*next)
result = *next;
}
return result;
}
#define LOOKUP_OPERATOR(Kind) \
Kind##Decl * \
ModuleDecl::lookup##Kind(Identifier name, SourceLoc loc) { \
auto result = lookupOperatorDeclForName(this, loc, name, \
&SourceFile::Kind##s); \
return result ? *result : nullptr; \
} \
Kind##Decl * \
SourceFile::lookup##Kind(Identifier name, bool isCascading, SourceLoc loc) { \
auto result = lookupOperatorDeclForName(*this, loc, name, true, \
&SourceFile::Kind##s); \
if (!result.hasValue()) \
return nullptr; \
if (ReferencedNames) {\
if (!result.getValue() || \
result.getValue()->getDeclContext()->getModuleScopeContext() != this) {\
ReferencedNames->addTopLevelName(name, isCascading); \
} \
} \
if (!result.getValue()) { \
result = lookupOperatorDeclForName(getParentModule(), loc, name, \
&SourceFile::Kind##s); \
} \
return result.hasValue() ? result.getValue() : nullptr; \
}
LOOKUP_OPERATOR(PrefixOperator)
LOOKUP_OPERATOR(InfixOperator)
LOOKUP_OPERATOR(PostfixOperator)
LOOKUP_OPERATOR(PrecedenceGroup)
#undef LOOKUP_OPERATOR
void ModuleDecl::getImportedModules(SmallVectorImpl<ImportedModule> &modules,
ModuleDecl::ImportFilter filter) const {
FORWARD(getImportedModules, (modules, filter));
}
void
SourceFile::getImportedModules(SmallVectorImpl<ModuleDecl::ImportedModule> &modules,
ModuleDecl::ImportFilter filter) const {
assert(ASTStage >= Parsed || Kind == SourceFileKind::SIL);
for (auto importPair : Imports) {
switch (filter) {
case ModuleDecl::ImportFilter::All:
break;
case ModuleDecl::ImportFilter::Public:
if (!importPair.second.contains(ImportFlags::Exported))
continue;
break;
case ModuleDecl::ImportFilter::Private:
if (importPair.second.contains(ImportFlags::Exported))
continue;
break;
}
modules.push_back(importPair.first);
}
}
void ModuleDecl::getImportedModulesForLookup(
SmallVectorImpl<ImportedModule> &modules) const {
FORWARD(getImportedModulesForLookup, (modules));
}
bool ModuleDecl::isSameAccessPath(AccessPathTy lhs, AccessPathTy rhs) {
using AccessPathElem = std::pair<Identifier, SourceLoc>;
if (lhs.size() != rhs.size())
return false;
return std::equal(lhs.begin(), lhs.end(), rhs.begin(),
[](const AccessPathElem &lElem,
const AccessPathElem &rElem) {
return lElem.first == rElem.first;
});
}
StringRef ModuleDecl::getModuleFilename() const {
// FIXME: Audit uses of this function and figure out how to migrate them to
// per-file names. Modules can consist of more than one file.
StringRef Result;
for (auto F : getFiles()) {
if (auto SF = dyn_cast<SourceFile>(F)) {
if (!Result.empty())
return StringRef();
Result = SF->getFilename();
continue;
}
if (auto LF = dyn_cast<LoadedFile>(F)) {
if (!Result.empty())
return StringRef();
Result = LF->getFilename();
continue;
}
return StringRef();
}
return Result;
}
bool ModuleDecl::isStdlibModule() const {
return !getParent() && getName() == getASTContext().StdlibModuleName;
}
bool ModuleDecl::isSwiftShimsModule() const {
return !getParent() && getName() == getASTContext().SwiftShimsModuleName;
}
bool ModuleDecl::isBuiltinModule() const {
return this == getASTContext().TheBuiltinModule;
}
bool SourceFile::registerMainClass(ClassDecl *mainClass, SourceLoc diagLoc) {
if (mainClass == MainClass)
return false;
ArtificialMainKind kind = mainClass->getArtificialMainKind();
if (getParentModule()->registerEntryPointFile(this, diagLoc, kind))
return true;
MainClass = mainClass;
MainClassDiagLoc = diagLoc;
return false;
}
bool ModuleDecl::registerEntryPointFile(FileUnit *file, SourceLoc diagLoc,
Optional<ArtificialMainKind> kind) {
if (!EntryPointInfo.hasEntryPoint()) {
EntryPointInfo.setEntryPointFile(file);
return false;
}
if (diagLoc.isInvalid())
return true;
assert(kind.hasValue() && "multiple entry points without attributes");
// %select indices for UI/NSApplication-related diagnostics.
enum : unsigned {
UIApplicationMainClass = 0,
NSApplicationMainClass = 1,
} mainClassDiagKind;
switch (kind.getValue()) {
case ArtificialMainKind::UIApplicationMain:
mainClassDiagKind = UIApplicationMainClass;
break;
case ArtificialMainKind::NSApplicationMain:
mainClassDiagKind = NSApplicationMainClass;
break;
}
FileUnit *existingFile = EntryPointInfo.getEntryPointFile();
const ClassDecl *existingClass = existingFile->getMainClass();
SourceLoc existingDiagLoc;
if (auto *sourceFile = dyn_cast<SourceFile>(existingFile)) {
if (existingClass) {
existingDiagLoc = sourceFile->getMainClassDiagLoc();
} else {
if (auto bufID = sourceFile->getBufferID())
existingDiagLoc = getASTContext().SourceMgr.getLocForBufferStart(*bufID);
}
}
if (existingClass) {
if (EntryPointInfo.markDiagnosedMultipleMainClasses()) {
// If we already have a main class, and we haven't diagnosed it,
// do so now.
if (existingDiagLoc.isValid()) {
getASTContext().Diags.diagnose(existingDiagLoc, diag::attr_ApplicationMain_multiple,
mainClassDiagKind);
} else {
getASTContext().Diags.diagnose(existingClass, diag::attr_ApplicationMain_multiple,
mainClassDiagKind);
}
}
// Always diagnose the new class.
getASTContext().Diags.diagnose(diagLoc, diag::attr_ApplicationMain_multiple,
mainClassDiagKind);
} else {
// We don't have an existing class, but we /do/ have a file in script mode.
// Diagnose that.
if (EntryPointInfo.markDiagnosedMainClassWithScript()) {
getASTContext().Diags.diagnose(diagLoc, diag::attr_ApplicationMain_with_script,
mainClassDiagKind);
if (existingDiagLoc.isValid()) {
getASTContext().Diags.diagnose(existingDiagLoc,
diag::attr_ApplicationMain_script_here);
}
}
}
return true;
}
bool ModuleDecl::isSystemModule() const {
if (isStdlibModule())
return true;
for (auto F : getFiles()) {
if (auto LF = dyn_cast<LoadedFile>(F))
return LF->isSystemModule();
}
return false;
}
template<bool respectVisibility, typename Callback>
static bool forAllImportedModules(ModuleDecl *topLevel,
ModuleDecl::AccessPathTy thisPath,
bool includePrivateTopLevelImports,
const Callback &fn) {
using ImportedModule = ModuleDecl::ImportedModule;
using AccessPathTy = ModuleDecl::AccessPathTy;
llvm::SmallSet<ImportedModule, 32, ModuleDecl::OrderImportedModules> visited;
SmallVector<ImportedModule, 32> stack;
// Even if we're processing the top-level module like any other, we may
// still want to include non-exported modules.
ModuleDecl::ImportFilter filter = respectVisibility ? ModuleDecl::ImportFilter::Public
: ModuleDecl::ImportFilter::All;
ModuleDecl::ImportFilter topLevelFilter =
includePrivateTopLevelImports ? ModuleDecl::ImportFilter::All : filter;
topLevel->getImportedModules(stack, topLevelFilter);
// Make sure the top-level module is first; we want pre-order-ish traversal.
AccessPathTy overridingPath;
if (respectVisibility)
overridingPath = thisPath;
stack.push_back(ImportedModule(overridingPath, topLevel));
while (!stack.empty()) {
auto next = stack.pop_back_val();
// Filter any whole-module imports, and skip specific-decl imports if the
// import path doesn't match exactly.
if (next.first.empty() || !respectVisibility)
next.first = overridingPath;
else if (!overridingPath.empty() &&
!ModuleDecl::isSameAccessPath(next.first, overridingPath)) {
// If we ever allow importing non-top-level decls, it's possible the rule
// above isn't what we want.
assert(next.first.size() == 1 && "import of non-top-level decl");
continue;
}
if (!visited.insert(next).second)
continue;
if (!fn(next))
return false;
if (respectVisibility)
next.second->getImportedModulesForLookup(stack);
else
next.second->getImportedModules(stack, filter);
}
return true;
}
bool ModuleDecl::forAllVisibleModules(AccessPathTy thisPath,
bool includePrivateTopLevelImports,
llvm::function_ref<bool(ImportedModule)> fn) {
return forAllImportedModules<true>(this, thisPath,
includePrivateTopLevelImports, fn);
}
bool FileUnit::forAllVisibleModules(
llvm::function_ref<bool(ModuleDecl::ImportedModule)> fn) {
if (!getParentModule()->forAllVisibleModules(ModuleDecl::AccessPathTy(), fn))
return false;
if (auto SF = dyn_cast<SourceFile>(this)) {
// Handle privately visible modules as well.
// FIXME: Should this apply to all FileUnits?
SmallVector<ModuleDecl::ImportedModule, 4> imports;
SF->getImportedModules(imports, ModuleDecl::ImportFilter::Private);
for (auto importPair : imports)
if (!importPair.second->forAllVisibleModules(importPair.first, fn))
return false;
}
return true;
}
void ModuleDecl::collectLinkLibraries(LinkLibraryCallback callback) {
// FIXME: The proper way to do this depends on the decls used.
FORWARD(collectLinkLibraries, (callback));
}
void
SourceFile::collectLinkLibraries(ModuleDecl::LinkLibraryCallback callback) const {
for (auto importPair : Imports)
importPair.first.second->collectLinkLibraries(callback);
}
bool ModuleDecl::walk(ASTWalker &Walker) {
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(Walker.Parent, this);
for (auto SF : getFiles())
if (SF->walk(Walker))
return true;
return false;
}
const clang::Module *ModuleDecl::findUnderlyingClangModule() const {
for (auto *FU : getFiles()) {
if (auto *Mod = FU->getUnderlyingClangModule())
return Mod;
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// SourceFile Implementation
//===----------------------------------------------------------------------===//
void SourceFile::print(raw_ostream &OS, const PrintOptions &PO) {
StreamPrinter Printer(OS);
print(Printer, PO);
}
void SourceFile::print(ASTPrinter &Printer, const PrintOptions &PO) {
std::set<DeclKind> MajorDeclKinds = {DeclKind::Class, DeclKind::Enum,
DeclKind::Extension, DeclKind::Protocol, DeclKind::Struct};
for (auto decl : Decls) {
if (!decl->shouldPrintInContext(PO))
continue;
// For a major decl, we print an empty line before it.
if (MajorDeclKinds.find(decl->getKind()) != MajorDeclKinds.end())
Printer << "\n";
if (decl->print(Printer, PO))
Printer << "\n";
}
}
void SourceFile::addImports(
ArrayRef<std::pair<ModuleDecl::ImportedModule, ImportOptions>> IM) {
using ImportPair = std::pair<ModuleDecl::ImportedModule, ImportOptions>;
if (IM.empty())
return;
ASTContext &ctx = getASTContext();
auto newBuf =
ctx.AllocateUninitialized<ImportPair>(Imports.size() + IM.size());
auto iter = newBuf.begin();
iter = std::uninitialized_copy(Imports.begin(), Imports.end(), iter);
iter = std::uninitialized_copy(IM.begin(), IM.end(), iter);
assert(iter == newBuf.end());
Imports = newBuf;
}
bool SourceFile::hasTestableImport(const swift::ModuleDecl *module) const {
using ImportPair = std::pair<ModuleDecl::ImportedModule, ImportOptions>;
return std::any_of(Imports.begin(), Imports.end(),
[module](ImportPair importPair) -> bool {
return importPair.first.second == module &&
importPair.second.contains(ImportFlags::Testable);
});
}
void SourceFile::clearLookupCache() {
if (!Cache)
return;
// Abandon any current cache. We'll rebuild it on demand.
Cache->invalidate();
Cache.reset();
}
void
SourceFile::cacheVisibleDecls(SmallVectorImpl<ValueDecl*> &&globals) const {
SmallVectorImpl<ValueDecl*> &cached = getCache().AllVisibleValues;
cached = std::move(globals);
}
const SmallVectorImpl<ValueDecl *> &
SourceFile::getCachedVisibleDecls() const {
return getCache().AllVisibleValues;
}
static void performAutoImport(SourceFile &SF,
SourceFile::ImplicitModuleImportKind modImpKind) {
if (SF.Kind == SourceFileKind::SIL)
assert(modImpKind == SourceFile::ImplicitModuleImportKind::None);
ASTContext &Ctx = SF.getASTContext();
ModuleDecl *M = nullptr;
switch (modImpKind) {
case SourceFile::ImplicitModuleImportKind::None:
return;
case SourceFile::ImplicitModuleImportKind::Builtin:
M = Ctx.TheBuiltinModule;
break;
case SourceFile::ImplicitModuleImportKind::Stdlib:
M = Ctx.getStdlibModule(true);
break;
}
assert(M && "unable to auto-import module");
// FIXME: These will be the same for most source files, but we copy them
// over and over again.
auto Imports =
std::make_pair(ModuleDecl::ImportedModule({}, M), SourceFile::ImportOptions());
SF.addImports(Imports);
}
SourceFile::SourceFile(ModuleDecl &M, SourceFileKind K,
Optional<unsigned> bufferID,
ImplicitModuleImportKind ModImpKind,
bool KeepTokens)
: FileUnit(FileUnitKind::Source, M),
BufferID(bufferID ? *bufferID : -1),
Kind(K) {
M.getASTContext().addDestructorCleanup(*this);
performAutoImport(*this, ModImpKind);
if (isScriptMode()) {
bool problem = M.registerEntryPointFile(this, SourceLoc(), None);
assert(!problem && "multiple main files?");
(void)problem;
}
if (KeepTokens) {
AllCorrectedTokens = std::vector<Token>();
}
}
SourceFile::~SourceFile() {}
bool FileUnit::walk(ASTWalker &walker) {
SmallVector<Decl *, 64> Decls;
getTopLevelDecls(Decls);
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(walker.Parent,
getParentModule());
for (Decl *D : Decls) {
#ifndef NDEBUG
PrettyStackTraceDecl debugStack("walking into decl", D);
#endif
if (D->walk(walker))
return true;
}
return false;
}
bool SourceFile::walk(ASTWalker &walker) {
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(walker.Parent,
getParentModule());
for (Decl *D : Decls) {
#ifndef NDEBUG
PrettyStackTraceDecl debugStack("walking into decl", D);
#endif
if (D->walk(walker))
return true;
}
return false;
}
StringRef SourceFile::getFilename() const {
if (BufferID == -1)
return "";
SourceManager &SM = getASTContext().SourceMgr;
return SM.getIdentifierForBuffer(BufferID);
}
ASTScope &SourceFile::getScope() {
if (!Scope) Scope = ASTScope::createRoot(this);
return *Scope;
}
Identifier
SourceFile::getDiscriminatorForPrivateValue(const ValueDecl *D) const {
assert(D->getDeclContext()->getModuleScopeContext() == this);
if (!PrivateDiscriminator.empty())
return PrivateDiscriminator;
StringRef name = getFilename();
if (name.empty()) {
assert(1 == count_if(getParentModule()->getFiles(),
[](const FileUnit *FU) -> bool {
return isa<SourceFile>(FU) &&
cast<SourceFile>(FU)->getFilename().empty();
}) &&
"can't promise uniqueness if multiple source files are nameless");
// We still need a discriminator, so keep going.
}
// Use a hash of the basename of the source file as our discriminator.
// This keeps us from leaking information about the original filename
// while still providing uniqueness. Using the basename makes the
// discriminator invariant across source checkout locations.
// FIXME: Use a faster hash here? We don't need security, just uniqueness.
llvm::MD5 hash;
hash.update(getParentModule()->getName().str());
hash.update(llvm::sys::path::filename(name));
llvm::MD5::MD5Result result;
hash.final(result);
// Use the hash as a hex string, prefixed with an underscore to make sure
// it is a valid identifier.
// FIXME: There are more compact ways to encode a 16-byte value.
SmallString<33> buffer{"_"};
SmallString<32> hashString;
llvm::MD5::stringifyResult(result, hashString);
buffer += hashString;
PrivateDiscriminator = getASTContext().getIdentifier(buffer.str().upper());
return PrivateDiscriminator;
}
TypeRefinementContext *SourceFile::getTypeRefinementContext() {
return TRC;
}
void SourceFile::setTypeRefinementContext(TypeRefinementContext *Root) {
TRC = Root;
}
//===----------------------------------------------------------------------===//
// Miscellaneous
//===----------------------------------------------------------------------===//
void FileUnit::anchor() {}
void *FileUnit::operator new(size_t Bytes, ASTContext &C, unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
StringRef LoadedFile::getFilename() const {
return "";
}
static const clang::Module *
getClangModule(llvm::PointerUnion<const ModuleDecl *, const void *> Union) {
return static_cast<const clang::Module *>(Union.get<const void *>());
}
StringRef ModuleEntity::getName() const {
assert(!Mod.isNull());
if (auto SwiftMod = Mod.dyn_cast<const ModuleDecl*>())
return SwiftMod->getName().str();
return getClangModule(Mod)->Name;
}
std::string ModuleEntity::getFullName() const {
assert(!Mod.isNull());
if (auto SwiftMod = Mod.dyn_cast<const ModuleDecl*>())
return SwiftMod->getName().str();
return getClangModule(Mod)->getFullModuleName();
}
bool ModuleEntity::isSystemModule() const {
assert(!Mod.isNull());
if (auto SwiftMod = Mod.dyn_cast<const ModuleDecl*>())
return SwiftMod->isSystemModule();
return getClangModule(Mod)->IsSystem;
}
bool ModuleEntity::isBuiltinModule() const {
assert(!Mod.isNull());
if (auto SwiftMod = Mod.dyn_cast<const ModuleDecl*>())
return SwiftMod->isBuiltinModule();
return false;
}
const ModuleDecl* ModuleEntity::getAsSwiftModule() const {
assert(!Mod.isNull());
if (auto SwiftMod = Mod.dyn_cast<const ModuleDecl*>())
return SwiftMod;
return nullptr;
}