blob: 69341f07868e839c0811fce72ecf691ce882cded [file] [log] [blame]
//===--- ASTMangler.cpp - Swift AST symbol mangling -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements declaration name mangling in Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/Module.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Demangling/ManglingUtils.h"
#include "swift/Demangling/Demangler.h"
#include "swift/Strings.h"
#include "clang/Basic/CharInfo.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
using namespace swift::Mangle;
static StringRef getCodeForAccessorKind(AccessorKind kind,
AddressorKind addressorKind) {
switch (kind) {
case AccessorKind::NotAccessor:
llvm_unreachable("bad accessor kind!");
case AccessorKind::IsGetter:
return "g";
case AccessorKind::IsSetter:
return "s";
case AccessorKind::IsWillSet:
return "w";
case AccessorKind::IsDidSet:
return "W";
case AccessorKind::IsAddressor:
// 'l' is for location. 'A' was taken.
switch (addressorKind) {
case AddressorKind::NotAddressor:
llvm_unreachable("bad combo");
case AddressorKind::Unsafe:
return "lu";
case AddressorKind::Owning:
return "lO";
case AddressorKind::NativeOwning:
return "lo";
case AddressorKind::NativePinning:
return "lp";
}
llvm_unreachable("bad addressor kind");
case AccessorKind::IsMutableAddressor:
switch (addressorKind) {
case AddressorKind::NotAddressor:
llvm_unreachable("bad combo");
case AddressorKind::Unsafe:
return "au";
case AddressorKind::Owning:
return "aO";
case AddressorKind::NativeOwning:
return "ao";
case AddressorKind::NativePinning:
return "aP";
}
llvm_unreachable("bad addressor kind");
case AccessorKind::IsMaterializeForSet:
return "m";
}
llvm_unreachable("bad accessor kind");
}
std::string ASTMangler::mangleClosureEntity(const AbstractClosureExpr *closure,
SymbolKind SKind) {
beginMangling();
appendClosureEntity(closure);
appendSymbolKind(SKind);
return finalize();
}
std::string ASTMangler::mangleEntity(const ValueDecl *decl, bool isCurried,
SymbolKind SKind) {
beginMangling();
appendEntity(decl);
if (isCurried)
appendOperator("Tc");
appendSymbolKind(SKind);
return finalize();
}
std::string ASTMangler::mangleDestructorEntity(const DestructorDecl *decl,
bool isDeallocating,
SymbolKind SKind) {
beginMangling();
appendDestructorEntity(decl, isDeallocating);
appendSymbolKind(SKind);
return finalize();
}
std::string ASTMangler::mangleConstructorEntity(const ConstructorDecl *ctor,
bool isAllocating,
bool isCurried,
SymbolKind SKind) {
beginMangling();
appendConstructorEntity(ctor, isAllocating);
if (isCurried)
appendOperator("Tc");
appendSymbolKind(SKind);
return finalize();
}
std::string ASTMangler::mangleIVarInitDestroyEntity(const ClassDecl *decl,
bool isDestroyer,
SymbolKind SKind) {
beginMangling();
appendContext(decl);
appendOperator(isDestroyer ? "fE" : "fe");
appendSymbolKind(SKind);
return finalize();
}
std::string ASTMangler::mangleAccessorEntity(AccessorKind kind,
AddressorKind addressorKind,
const AbstractStorageDecl *decl,
bool isStatic,
SymbolKind SKind) {
beginMangling();
appendAccessorEntity(getCodeForAccessorKind(kind, addressorKind), decl,
isStatic);
appendSymbolKind(SKind);
return finalize();
}
std::string ASTMangler::mangleGlobalGetterEntity(const ValueDecl *decl,
SymbolKind SKind) {
assert(isa<VarDecl>(decl) && "Only variables can have global getters");
beginMangling();
appendEntity(decl, "vG", /*isStatic*/false);
appendSymbolKind(SKind);
return finalize();
}
std::string ASTMangler::mangleDefaultArgumentEntity(const DeclContext *func,
unsigned index,
SymbolKind SKind) {
beginMangling();
appendDefaultArgumentEntity(func, index);
appendSymbolKind(SKind);
return finalize();
}
std::string ASTMangler::mangleInitializerEntity(const VarDecl *var,
SymbolKind SKind) {
beginMangling();
appendInitializerEntity(var);
appendSymbolKind(SKind);
return finalize();
}
std::string ASTMangler::mangleNominalType(const NominalTypeDecl *decl) {
beginMangling();
appendAnyGenericType(decl);
return finalize();
}
std::string ASTMangler::mangleVTableThunk(const FuncDecl *Base,
const FuncDecl *Derived) {
beginMangling();
appendEntity(Derived);
appendEntity(Base);
appendOperator("TV");
return finalize();
}
std::string ASTMangler::mangleConstructorVTableThunk(
const ConstructorDecl *Base,
const ConstructorDecl *Derived,
bool isAllocating) {
beginMangling();
appendConstructorEntity(Derived, isAllocating);
appendConstructorEntity(Base, isAllocating);
appendOperator("TV");
return finalize();
}
std::string ASTMangler::mangleWitnessTable(const NormalProtocolConformance *C) {
beginMangling();
appendProtocolConformance(C);
appendOperator("WP");
return finalize();
}
std::string ASTMangler::mangleWitnessThunk(const ProtocolConformance *Conformance,
const ValueDecl *Requirement) {
beginMangling();
// Concrete witness thunks get a special mangling.
if (Conformance)
appendProtocolConformance(Conformance);
if (auto ctor = dyn_cast<ConstructorDecl>(Requirement)) {
appendConstructorEntity(ctor, /*isAllocating=*/true);
} else {
assert(isa<FuncDecl>(Requirement) && "expected function");
appendEntity(cast<FuncDecl>(Requirement));
}
if (Conformance)
appendOperator("TW");
return finalize();
}
std::string ASTMangler::mangleClosureWitnessThunk(
const ProtocolConformance *Conformance,
const AbstractClosureExpr *Closure) {
beginMangling();
appendProtocolConformance(Conformance);
appendClosureEntity(Closure);
appendOperator("TW");
return finalize();
}
std::string ASTMangler::mangleBehaviorInitThunk(const VarDecl *decl) {
auto topLevelContext = decl->getDeclContext()->getModuleScopeContext();
auto fileUnit = cast<FileUnit>(topLevelContext);
Identifier discriminator = fileUnit->getDiscriminatorForPrivateValue(decl);
assert(!discriminator.empty());
assert(!isNonAscii(discriminator.str()) &&
"discriminator contains non-ASCII characters");
assert(!clang::isDigit(discriminator.str().front()) &&
"not a valid identifier");
appendContextOf(decl);
appendIdentifier(decl->getName().str());
appendIdentifier(discriminator.str());
appendOperator("TB");
return finalize();
}
std::string ASTMangler::mangleGlobalVariableFull(const VarDecl *decl) {
// As a special case, Clang functions and globals don't get mangled at all.
// FIXME: When we can import C++, use Clang's mangler.
if (auto clangDecl =
dyn_cast_or_null<clang::DeclaratorDecl>(decl->getClangDecl())) {
if (auto asmLabel = clangDecl->getAttr<clang::AsmLabelAttr>()) {
Buffer << '\01' << asmLabel->getLabel();
} else {
Buffer << clangDecl->getName();
}
return finalize();
}
beginMangling();
appendEntity(decl);
return finalize();
}
std::string ASTMangler::mangleKeyPathGetterThunkHelper(
const AbstractStorageDecl *property,
GenericSignature *signature,
CanType baseType,
ArrayRef<CanType> subs) {
beginMangling();
appendEntity(property);
if (signature)
appendGenericSignature(signature);
appendType(baseType);
if (isa<SubscriptDecl>(property)) {
// Subscripts can be generic, and different key paths could capture the same
// subscript at different generic arguments.
for (auto &sub : subs) {
appendType(sub);
}
}
appendOperator("TK");
return finalize();
}
std::string ASTMangler::mangleKeyPathSetterThunkHelper(
const AbstractStorageDecl *property,
GenericSignature *signature,
CanType baseType,
ArrayRef<CanType> subs) {
beginMangling();
appendEntity(property);
if (signature)
appendGenericSignature(signature);
appendType(baseType);
if (isa<SubscriptDecl>(property)) {
// Subscripts can be generic, and different key paths could capture the same
// subscript at different generic arguments.
for (auto &sub : subs) {
appendType(sub);
}
}
appendOperator("Tk");
return finalize();
}
std::string ASTMangler::mangleKeyPathEqualsHelper(ArrayRef<CanType> indices,
GenericSignature *signature) {
beginMangling();
for (auto &index : indices)
appendType(index);
if (signature)
appendGenericSignature(signature);
appendOperator("TH");
return finalize();
}
std::string ASTMangler::mangleKeyPathHashHelper(ArrayRef<CanType> indices,
GenericSignature *signature) {
beginMangling();
for (auto &index : indices)
appendType(index);
if (signature)
appendGenericSignature(signature);
appendOperator("Th");
return finalize();
}
std::string ASTMangler::mangleGlobalInit(const VarDecl *decl, int counter,
bool isInitFunc) {
auto topLevelContext = decl->getDeclContext()->getModuleScopeContext();
auto fileUnit = cast<FileUnit>(topLevelContext);
Identifier discriminator = fileUnit->getDiscriminatorForPrivateValue(decl);
assert(!discriminator.empty());
assert(!isNonAscii(discriminator.str()) &&
"discriminator contains non-ASCII characters");
assert(!clang::isDigit(discriminator.str().front()) &&
"not a valid identifier");
Buffer << "globalinit_";
appendIdentifier(discriminator.str());
Buffer << (isInitFunc ? "_func" : "_token");
Buffer << counter;
return finalize();
}
std::string ASTMangler::mangleReabstractionThunkHelper(
CanSILFunctionType ThunkType,
Type FromType,
Type ToType,
ModuleDecl *Module) {
Mod = Module;
GenericSignature *GenSig = ThunkType->getGenericSignature();
if (GenSig)
CurGenericSignature = GenSig->getCanonicalSignature();
beginMangling();
appendType(FromType);
appendType(ToType);
if (GenSig)
appendGenericSignature(GenSig);
// TODO: mangle ThunkType->isPseudogeneric()
appendOperator("TR");
return finalize();
}
std::string ASTMangler::mangleTypeForDebugger(Type Ty, const DeclContext *DC,
GenericEnvironment *GE) {
GenericEnv = GE;
DWARFMangling = true;
beginMangling();
if (DC)
bindGenericParameters(DC);
DeclCtx = DC;
appendType(Ty);
appendOperator("D");
return finalize();
}
std::string ASTMangler::mangleDeclType(const ValueDecl *decl) {
DWARFMangling = true;
beginMangling();
appendDeclType(decl);
appendOperator("D");
return finalize();
}
#ifdef USE_NEW_MANGLING_FOR_OBJC_RUNTIME_NAMES
static bool isPrivate(const NominalTypeDecl *Nominal) {
return Nominal->hasAccess() &&
Nominal->getFormalAccess() <= AccessLevel::FilePrivate;
}
#endif
std::string ASTMangler::mangleObjCRuntimeName(const NominalTypeDecl *Nominal) {
#ifdef USE_NEW_MANGLING_FOR_OBJC_RUNTIME_NAMES
// Using the new mangling for ObjC runtime names (except for top-level
// classes). This is currently disabled to support old archives.
// TODO: re-enable this as we switch to the new mangling for ObjC names.
DeclContext *Ctx = Nominal->getDeclContext();
if (Ctx->isModuleScopeContext() && !isPrivate(Nominal)) {
// Use the old mangling for non-private top-level classes and protocols.
// This is what the ObjC runtime needs to demangle.
// TODO: Use new mangling scheme as soon as the ObjC runtime
// can demangle it.
//
// Don't use word-substitutions and punycode encoding.
MaxNumWords = 0;
UsePunycode = false;
UseSubstitutions = false;
Buffer << "_Tt";
bool isProto = false;
if (isa<ClassDecl>(Nominal)) {
Buffer << 'C';
} else {
isProto = true;
assert(isa<ProtocolDecl>(Nominal));
Buffer << 'P';
}
appendModule(Ctx->getParentModule());
appendIdentifier(Nominal->getName().str());
if (isProto)
Buffer << '_';
return finalize();
}
// For all other cases, we can use the new mangling.
beginMangling();
appendAnyGenericType(Nominal);
return finalize();
#else
// Use the old mangling for ObjC runtime names.
beginMangling();
appendAnyGenericType(Nominal);
std::string NewName = finalize();
Demangle::Demangler Dem;
Demangle::Node *Root = Dem.demangleSymbol(NewName);
assert(Root->getKind() == Node::Kind::Global);
Node *NomTy = Root->getFirstChild();
if (NomTy->getKind() == Node::Kind::Protocol) {
// Protocols are actually mangled as protocol lists.
Node *PTy = Dem.createNode(Node::Kind::Type);
PTy->addChild(NomTy, Dem);
Node *TList = Dem.createNode(Node::Kind::TypeList);
TList->addChild(PTy, Dem);
NomTy = Dem.createNode(Node::Kind::ProtocolList);
NomTy->addChild(TList, Dem);
}
// Add a TypeMangling node at the top
Node *Ty = Dem.createNode(Node::Kind::Type);
Ty->addChild(NomTy, Dem);
Node *TyMangling = Dem.createNode(Node::Kind::TypeMangling);
TyMangling->addChild(Ty, Dem);
Node *NewGlobal = Dem.createNode(Node::Kind::Global);
NewGlobal->addChild(TyMangling, Dem);
std::string OldName = mangleNodeOld(NewGlobal);
verifyOld(OldName);
return OldName;
#endif
}
std::string ASTMangler::mangleTypeAsContextUSR(const NominalTypeDecl *type) {
beginManglingWithoutPrefix();
llvm::SaveAndRestore<bool> allowUnnamedRAII(AllowNamelessEntities, true);
appendContext(type);
return finalize();
}
std::string ASTMangler::mangleDeclAsUSR(const ValueDecl *Decl,
StringRef USRPrefix) {
beginManglingWithoutPrefix();
llvm::SaveAndRestore<bool> allowUnnamedRAII(AllowNamelessEntities, true);
Buffer << USRPrefix;
bindGenericParameters(Decl->getDeclContext());
if (auto Ctor = dyn_cast<ConstructorDecl>(Decl)) {
appendConstructorEntity(Ctor, /*isAllocating=*/false);
} else if (auto Dtor = dyn_cast<DestructorDecl>(Decl)) {
appendDestructorEntity(Dtor, /*isDeallocating=*/false);
} else if (auto GTD = dyn_cast<GenericTypeDecl>(Decl)) {
appendAnyGenericType(GTD);
} else if (isa<AssociatedTypeDecl>(Decl)) {
appendContextOf(Decl);
appendDeclName(Decl);
} else {
appendEntity(Decl);
}
// We have a custom prefix, so finalize() won't verify for us. Do it manually.
verify(Storage.str().drop_front(USRPrefix.size()));
return finalize();
}
std::string ASTMangler::mangleAccessorEntityAsUSR(AccessorKind kind,
AddressorKind addressorKind,
const AbstractStorageDecl *decl,
StringRef USRPrefix) {
beginManglingWithoutPrefix();
llvm::SaveAndRestore<bool> allowUnnamedRAII(AllowNamelessEntities, true);
Buffer << USRPrefix;
appendAccessorEntity(getCodeForAccessorKind(kind, addressorKind), decl,
/*isStatic*/ false);
// We have a custom prefix, so finalize() won't verify for us. Do it manually.
verify(Storage.str().drop_front(USRPrefix.size()));
return finalize();
}
void ASTMangler::appendSymbolKind(SymbolKind SKind) {
switch (SKind) {
case SymbolKind::Default: return;
case SymbolKind::DynamicThunk: return appendOperator("TD");
case SymbolKind::SwiftAsObjCThunk: return appendOperator("To");
case SymbolKind::ObjCAsSwiftThunk: return appendOperator("TO");
case SymbolKind::DirectMethodReferenceThunk: return appendOperator("Td");
}
}
/// Returns true if one of the ancestor DeclContexts of \p D is either marked
/// private or is a local context.
static bool isInPrivateOrLocalContext(const ValueDecl *D) {
const DeclContext *DC = D->getDeclContext();
if (!DC->isTypeContext()) {
assert((DC->isModuleScopeContext() || DC->isLocalContext()) &&
"unexpected context kind");
return DC->isLocalContext();
}
auto *nominal = DC->getAsNominalTypeOrNominalTypeExtensionContext();
if (nominal == nullptr)
return false;
if (nominal->getFormalAccess() <= AccessLevel::FilePrivate)
return true;
return isInPrivateOrLocalContext(nominal);
}
static bool getUnnamedParamIndex(const ParameterList *ParamList,
const ParamDecl *D,
unsigned &UnnamedIndex) {
for (auto Param : *ParamList) {
if (!Param->hasName()) {
if (Param == D)
return true;
++UnnamedIndex;
}
}
return false;
}
static unsigned getUnnamedParamIndex(const ParamDecl *D) {
if (auto SD = dyn_cast<SubscriptDecl>(D->getDeclContext())) {
unsigned UnnamedIndex = 0;
auto *ParamList = SD->getIndices();
if (getUnnamedParamIndex(ParamList, D, UnnamedIndex))
return UnnamedIndex;
llvm_unreachable("param not found");
}
ArrayRef<ParameterList *> ParamLists;
if (auto AFD = dyn_cast<AbstractFunctionDecl>(D->getDeclContext())) {
ParamLists = AFD->getParameterLists();
} else {
auto ACE = cast<AbstractClosureExpr>(D->getDeclContext());
ParamLists = ACE->getParameterLists();
}
unsigned UnnamedIndex = 0;
for (auto ParamList : ParamLists) {
if (getUnnamedParamIndex(ParamList, D, UnnamedIndex))
return UnnamedIndex;
}
llvm_unreachable("param not found");
}
static StringRef getPrivateDiscriminatorIfNecessary(const ValueDecl *decl) {
if (!decl->hasAccess() ||
decl->getFormalAccess() > AccessLevel::FilePrivate ||
isInPrivateOrLocalContext(decl)) {
return StringRef();
}
// Mangle non-local private declarations with a textual discriminator
// based on their enclosing file.
auto topLevelContext = decl->getDeclContext()->getModuleScopeContext();
auto fileUnit = cast<FileUnit>(topLevelContext);
Identifier discriminator =
fileUnit->getDiscriminatorForPrivateValue(decl);
assert(!discriminator.empty());
assert(!isNonAscii(discriminator.str()) &&
"discriminator contains non-ASCII characters");
(void)&isNonAscii;
assert(!clang::isDigit(discriminator.str().front()) &&
"not a valid identifier");
return discriminator.str();
}
void ASTMangler::appendDeclName(const ValueDecl *decl) {
if (decl->isOperator()) {
auto name = decl->getBaseName().getIdentifier().str();
appendIdentifier(translateOperator(name));
switch (decl->getAttrs().getUnaryOperatorKind()) {
case UnaryOperatorKind::Prefix:
appendOperator("op");
break;
case UnaryOperatorKind::Postfix:
appendOperator("oP");
break;
case UnaryOperatorKind::None:
appendOperator("oi");
break;
}
} else if (decl->hasName()) {
assert(!decl->getBaseName().isSpecial() && "Cannot print special names");
appendIdentifier(decl->getBaseName().getIdentifier().str());
} else {
assert(AllowNamelessEntities && "attempt to mangle unnamed decl");
// Fall back to an unlikely name, so that we still generate a valid
// mangled name.
appendIdentifier("_");
}
if (decl->getDeclContext()->isLocalContext()) {
if (auto *paramDecl = dyn_cast<ParamDecl>(decl)) {
if (!decl->hasName()) {
// Mangle unnamed params with their ordering.
return appendOperator("L", Index(getUnnamedParamIndex(paramDecl)));
}
}
// Mangle local declarations with a numeric discriminator.
return appendOperator("L", Index(decl->getLocalDiscriminator()));
}
StringRef privateDiscriminator = getPrivateDiscriminatorIfNecessary(decl);
if (!privateDiscriminator.empty()) {
appendIdentifier(privateDiscriminator.str());
return appendOperator("LL");
}
}
static const char *getMetatypeRepresentationOp(MetatypeRepresentation Rep) {
switch (Rep) {
case MetatypeRepresentation::Thin:
return "t";
case MetatypeRepresentation::Thick:
return "T";
case MetatypeRepresentation::ObjC:
return "o";
}
llvm_unreachable("Unhandled MetatypeRepresentation in switch.");
}
static bool isStdlibType(const TypeDecl *decl) {
DeclContext *dc = decl->getDeclContext();
return dc->isModuleScopeContext() && dc->getParentModule()->isStdlibModule();
}
/// Mangle a type into the buffer.
///
void ASTMangler::appendType(Type type) {
assert((DWARFMangling || type->isCanonical()) &&
"expecting canonical types when not mangling for the debugger");
TypeBase *tybase = type.getPointer();
switch (type->getKind()) {
case TypeKind::TypeVariable:
llvm_unreachable("mangling type variable");
case TypeKind::Module:
llvm_unreachable("Cannot mangle module type yet");
case TypeKind::Error:
case TypeKind::Unresolved:
appendOperator("Xe");
return;
// We don't care about these types being a bit verbose because we
// don't expect them to come up that often in API names.
case TypeKind::BuiltinFloat:
switch (cast<BuiltinFloatType>(tybase)->getFPKind()) {
case BuiltinFloatType::IEEE16: appendOperator("Bf16_"); return;
case BuiltinFloatType::IEEE32: appendOperator("Bf32_"); return;
case BuiltinFloatType::IEEE64: appendOperator("Bf64_"); return;
case BuiltinFloatType::IEEE80: appendOperator("Bf80_"); return;
case BuiltinFloatType::IEEE128: appendOperator("Bf128_"); return;
case BuiltinFloatType::PPC128: llvm_unreachable("ppc128 not supported");
}
llvm_unreachable("bad floating-point kind");
case TypeKind::BuiltinInteger: {
auto width = cast<BuiltinIntegerType>(tybase)->getWidth();
if (width.isFixedWidth())
appendOperator("Bi", Index(width.getFixedWidth() + 1));
else if (width.isPointerWidth())
appendOperator("Bw");
else
llvm_unreachable("impossible width value");
return;
}
case TypeKind::BuiltinRawPointer:
return appendOperator("Bp");
case TypeKind::BuiltinNativeObject:
return appendOperator("Bo");
case TypeKind::BuiltinBridgeObject:
return appendOperator("Bb");
case TypeKind::BuiltinUnknownObject:
return appendOperator("BO");
case TypeKind::BuiltinUnsafeValueBuffer:
return appendOperator("BB");
case TypeKind::BuiltinVector:
appendType(cast<BuiltinVectorType>(tybase)->getElementType());
return appendOperator("Bv",
cast<BuiltinVectorType>(tybase)->getNumElements());
case TypeKind::NameAlias: {
assert(DWARFMangling && "sugared types are only legal for the debugger");
auto NameAliasTy = cast<NameAliasType>(tybase);
TypeAliasDecl *decl = NameAliasTy->getDecl();
if (decl->getModuleContext() == decl->getASTContext().TheBuiltinModule) {
// It's not possible to mangle the context of the builtin module.
return appendType(NameAliasTy->getSinglyDesugaredType());
}
// For the DWARF output we want to mangle the type alias + context,
// unless the type alias references a builtin type.
return appendAnyGenericType(decl);
}
case TypeKind::Paren:
return appendSugaredType<ParenType>(type);
case TypeKind::ArraySlice: /* fallthrough */
case TypeKind::Optional:
return appendSugaredType<SyntaxSugarType>(type);
case TypeKind::Dictionary:
return appendSugaredType<DictionaryType>(type);
case TypeKind::ImplicitlyUnwrappedOptional: {
assert(DWARFMangling && "sugared types are only legal for the debugger");
auto *IUO = cast<ImplicitlyUnwrappedOptionalType>(tybase);
auto implDecl = tybase->getASTContext().getImplicitlyUnwrappedOptionalDecl();
auto GenTy = BoundGenericType::get(implDecl, Type(), IUO->getBaseType());
return appendType(GenTy);
}
case TypeKind::ExistentialMetatype: {
ExistentialMetatypeType *EMT = cast<ExistentialMetatypeType>(tybase);
appendType(EMT->getInstanceType());
if (EMT->hasRepresentation()) {
appendOperator("Xm",
getMetatypeRepresentationOp(EMT->getRepresentation()));
} else {
appendOperator("Xp");
}
return;
}
case TypeKind::Metatype: {
MetatypeType *MT = cast<MetatypeType>(tybase);
appendType(MT->getInstanceType());
if (MT->hasRepresentation()) {
appendOperator("XM",
getMetatypeRepresentationOp(MT->getRepresentation()));
} else {
appendOperator("m");
}
return;
}
case TypeKind::LValue:
llvm_unreachable("@lvalue types should not occur in function interfaces");
case TypeKind::InOut:
appendType(cast<InOutType>(tybase)->getObjectType());
return appendOperator("z");
case TypeKind::UnmanagedStorage:
appendType(cast<UnmanagedStorageType>(tybase)->getReferentType());
return appendOperator("Xu");
case TypeKind::UnownedStorage:
appendType(cast<UnownedStorageType>(tybase)->getReferentType());
return appendOperator("Xo");
case TypeKind::WeakStorage:
appendType(cast<WeakStorageType>(tybase)->getReferentType());
return appendOperator("Xw");
case TypeKind::Tuple:
appendTypeList(type);
return appendOperator("t");
case TypeKind::Protocol: {
bool First = true;
appendProtocolName(cast<ProtocolType>(tybase)->getDecl());
appendListSeparator(First);
return appendOperator("p");
}
case TypeKind::ProtocolComposition: {
// We mangle ProtocolType and ProtocolCompositionType using the
// same production:
bool First = true;
auto layout = type->getExistentialLayout();
for (Type protoTy : layout.getProtocols()) {
appendProtocolName(protoTy->castTo<ProtocolType>()->getDecl());
appendListSeparator(First);
}
if (First)
appendOperator("y");
if (layout.superclass) {
appendType(layout.superclass);
return appendOperator("Xc");
} else if (layout.hasExplicitAnyObject) {
return appendOperator("Xl");
}
return appendOperator("p");
}
case TypeKind::UnboundGeneric:
case TypeKind::Class:
case TypeKind::Enum:
case TypeKind::Struct:
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericEnum:
case TypeKind::BoundGenericStruct:
if (type->isSpecialized()) {
// Try to mangle the entire name as a substitution.
if (tryMangleSubstitution(type.getPointer()))
return;
NominalTypeDecl *NDecl = type->getAnyNominal();
if (isStdlibType(NDecl) && NDecl->getName().str() == "Optional") {
auto GenArgs = type->castTo<BoundGenericType>()->getGenericArgs();
assert(GenArgs.size() == 1);
appendType(GenArgs[0]);
appendOperator("Sg");
} else {
appendAnyGenericType(NDecl);
bool isFirstArgList = true;
appendBoundGenericArgs(type, isFirstArgList);
appendOperator("G");
}
addSubstitution(type.getPointer());
return;
}
appendAnyGenericType(tybase->getAnyNominal());
return;
case TypeKind::SILFunction:
return appendImplFunctionType(cast<SILFunctionType>(tybase));
// type ::= archetype
case TypeKind::Archetype: {
auto *archetype = cast<ArchetypeType>(tybase);
assert(DWARFMangling && "Cannot mangle free-standing archetypes");
// Mangle the associated type of a parent archetype.
if (auto parent = archetype->getParent()) {
assert(archetype->getAssocType()
&& "child archetype has no associated type?!");
if (tryMangleSubstitution(archetype))
return;
appendType(parent);
appendIdentifier(archetype->getName().str());
appendOperator("Qa");
addSubstitution(archetype);
return;
}
// archetype ::= 'Q' <index> # archetype with depth=0, index=N
// archetype ::= 'Qd' <index> <index> # archetype with depth=M+1, index=N
// Mangle generic parameter archetypes.
// Find the archetype information.
const DeclContext *DC = DeclCtx;
auto GTPT = GenericEnvironment::mapTypeOutOfContext(GenericEnv, archetype)
->castTo<GenericTypeParamType>();
// The DWARF output created by Swift is intentionally flat,
// therefore archetypes are emitted with their DeclContext if
// they appear at the top level of a type.
DWARFMangling = false;
while (DC && DC->isGenericContext()) {
if (DC->isInnermostContextGeneric() &&
DC->getGenericParamsOfContext()->getDepth() == GTPT->getDepth())
break;
DC = DC->getParent();
}
assert(DC && "no decl context for archetype found");
if (!DC) return;
appendContext(DC);
DWARFMangling = true;
return appendOperator("Qq", Index(GTPT->getIndex()));
}
case TypeKind::DynamicSelf: {
auto dynamicSelf = cast<DynamicSelfType>(tybase);
if (dynamicSelf->getSelfType()->getAnyNominal()) {
appendType(dynamicSelf->getSelfType());
return appendOperator("XD");
}
return appendType(dynamicSelf->getSelfType());
}
case TypeKind::GenericFunction: {
auto genFunc = cast<GenericFunctionType>(tybase);
appendFunctionType(genFunc, /*forceSingleParam*/ false);
appendGenericSignature(genFunc->getGenericSignature());
appendOperator("u");
return;
}
case TypeKind::GenericTypeParam: {
auto paramTy = cast<GenericTypeParamType>(tybase);
// A special mangling for the very first generic parameter. This shows up
// frequently because it corresponds to 'Self' in protocol requirement
// generic signatures.
if (paramTy->getDepth() == 0 && paramTy->getIndex() == 0)
return appendOperator("x");
return appendOpWithGenericParamIndex("q", paramTy);
}
case TypeKind::DependentMember: {
auto *DepTy = cast<DependentMemberType>(tybase);
if (tryMangleSubstitution(DepTy))
return;
bool isAssocTypeAtDepth = false;
if (GenericTypeParamType *gpBase = appendAssocType(DepTy,
isAssocTypeAtDepth)) {
if (gpBase->getDepth() == 0 && gpBase->getIndex() == 0) {
appendOperator(isAssocTypeAtDepth ? "QZ" : "Qz");
} else {
appendOpWithGenericParamIndex(isAssocTypeAtDepth ? "QY" : "Qy",
gpBase);
}
} else {
// Dependent members of non-generic-param types are not canonical, but
// we may still want to mangle them for debugging or indexing purposes.
appendType(DepTy->getBase());
appendAssociatedTypeName(DepTy);
appendOperator("qa");
}
addSubstitution(DepTy);
return;
}
case TypeKind::Function:
appendFunctionType(cast<FunctionType>(tybase), /*forceSingleParam*/ false);
return;
case TypeKind::SILBox: {
auto box = cast<SILBoxType>(tybase);
auto layout = box->getLayout();
SmallVector<TupleTypeElt, 4> fieldsList;
for (auto &field : layout->getFields()) {
auto fieldTy = field.getLoweredType();
// Use the `inout` mangling to represent a mutable field.
auto fieldFlag = ParameterTypeFlags().withInOut(field.isMutable());
fieldsList.push_back(TupleTypeElt(fieldTy, Identifier(), fieldFlag));
}
appendTypeList(TupleType::get(fieldsList, tybase->getASTContext())
->getCanonicalType());
if (auto sig = layout->getGenericSignature()) {
fieldsList.clear();
for (auto &arg : box->getGenericArgs()) {
fieldsList.push_back(TupleTypeElt(arg.getReplacement()));
}
appendTypeList(TupleType::get(fieldsList, tybase->getASTContext())
->getCanonicalType());
appendGenericSignature(sig);
appendOperator("XX");
} else {
appendOperator("Xx");
}
return;
}
case TypeKind::SILBlockStorage:
llvm_unreachable("should never be mangled");
}
llvm_unreachable("bad type kind");
}
GenericTypeParamType *ASTMangler::appendAssocType(DependentMemberType *DepTy,
bool &isAssocTypeAtDepth) {
auto base = DepTy->getBase()->getCanonicalType();
// 't_0_0.Member'
if (auto gpBase = dyn_cast<GenericTypeParamType>(base)) {
appendAssociatedTypeName(DepTy);
isAssocTypeAtDepth = false;
return gpBase;
}
// 't_0_0.Member.Member...'
SmallVector<DependentMemberType*, 2> path;
path.push_back(DepTy);
while (auto dmBase = dyn_cast<DependentMemberType>(base)) {
path.push_back(dmBase);
base = dmBase.getBase();
}
if (auto gpRoot = dyn_cast<GenericTypeParamType>(base)) {
bool first = true;
for (auto *member : reversed(path)) {
appendAssociatedTypeName(member);
appendListSeparator(first);
}
isAssocTypeAtDepth = true;
return gpRoot;
}
return nullptr;
}
void ASTMangler::appendOpWithGenericParamIndex(StringRef Op,
const GenericTypeParamType *paramTy) {
llvm::SmallVector<char, 8> OpBuf(Op.begin(), Op.end());
if (paramTy->getDepth() > 0) {
OpBuf.push_back('d');
return appendOperator(StringRef(OpBuf.data(), OpBuf.size()),
Index(paramTy->getDepth() - 1),
Index(paramTy->getIndex()));
}
if (paramTy->getIndex() == 0) {
OpBuf.push_back('z');
return appendOperator(StringRef(OpBuf.data(), OpBuf.size()));
}
appendOperator(Op, Index(paramTy->getIndex() - 1));
}
/// Bind the generic parameters from the given signature.
void ASTMangler::bindGenericParameters(CanGenericSignature sig) {
if (sig)
CurGenericSignature = sig;
}
/// Bind the generic parameters from the given context and its parents.
void ASTMangler::bindGenericParameters(const DeclContext *DC) {
if (auto sig = DC->getGenericSignatureOfContext())
bindGenericParameters(sig->getCanonicalSignature());
}
void ASTMangler::appendBoundGenericArgs(Type type, bool &isFirstArgList) {
BoundGenericType *boundType = nullptr;
if (auto *unboundType = type->getAs<UnboundGenericType>()) {
if (Type parent = unboundType->getParent())
appendBoundGenericArgs(parent, isFirstArgList);
} else if (auto *nominalType = type->getAs<NominalType>()) {
if (Type parent = nominalType->getParent())
appendBoundGenericArgs(parent, isFirstArgList);
} else {
boundType = type->castTo<BoundGenericType>();
if (Type parent = boundType->getParent())
appendBoundGenericArgs(parent, isFirstArgList);
}
if (isFirstArgList) {
appendOperator("y");
isFirstArgList = false;
} else {
appendOperator("_");
}
if (boundType) {
for (Type arg : boundType->getGenericArgs()) {
appendType(arg);
}
}
}
static char getParamConvention(ParameterConvention conv) {
// @in and @out are mangled the same because they're put in
// different places.
switch (conv) {
case ParameterConvention::Indirect_In: return 'i';
case ParameterConvention::Indirect_In_Constant:
return 'c';
case ParameterConvention::Indirect_Inout: return 'l';
case ParameterConvention::Indirect_InoutAliasable: return 'b';
case ParameterConvention::Indirect_In_Guaranteed: return 'n';
case ParameterConvention::Direct_Owned: return 'x';
case ParameterConvention::Direct_Unowned: return 'y';
case ParameterConvention::Direct_Guaranteed: return 'g';
}
llvm_unreachable("bad parameter convention");
};
static char getResultConvention(ResultConvention conv) {
switch (conv) {
case ResultConvention::Indirect: return 'r';
case ResultConvention::Owned: return 'o';
case ResultConvention::Unowned: return 'd';
case ResultConvention::UnownedInnerPointer: return 'u';
case ResultConvention::Autoreleased: return 'a';
}
llvm_unreachable("bad result convention");
};
void ASTMangler::appendImplFunctionType(SILFunctionType *fn) {
llvm::SmallVector<char, 32> OpArgs;
if (fn->isPolymorphic() && fn->isPseudogeneric())
OpArgs.push_back('P');
// <impl-callee-convention>
if (fn->getExtInfo().hasContext()) {
OpArgs.push_back(getParamConvention(fn->getCalleeConvention()));
} else {
OpArgs.push_back('t');
}
switch (fn->getRepresentation()) {
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::Thin:
break;
case SILFunctionTypeRepresentation::Block:
OpArgs.push_back('B');
break;
case SILFunctionTypeRepresentation::CFunctionPointer:
OpArgs.push_back('C');
break;
case SILFunctionTypeRepresentation::ObjCMethod:
OpArgs.push_back('O');
break;
case SILFunctionTypeRepresentation::Method:
OpArgs.push_back('M');
break;
case SILFunctionTypeRepresentation::Closure:
OpArgs.push_back('K');
break;
case SILFunctionTypeRepresentation::WitnessMethod:
OpArgs.push_back('W');
break;
}
// Mangle the parameters.
for (auto param : fn->getParameters()) {
OpArgs.push_back(getParamConvention(param.getConvention()));
appendType(param.getType());
}
// Mangle the results.
for (auto result : fn->getResults()) {
OpArgs.push_back(getResultConvention(result.getConvention()));
appendType(result.getType());
}
// Mangle the error result if present.
if (fn->hasErrorResult()) {
auto error = fn->getErrorResult();
OpArgs.push_back('z');
OpArgs.push_back(getResultConvention(error.getConvention()));
appendType(error.getType());
}
if (fn->isPolymorphic())
appendGenericSignature(fn->getGenericSignature());
OpArgs.push_back('_');
appendOperator("I", StringRef(OpArgs.data(), OpArgs.size()));
}
/// Mangle the context of the given declaration as a <context.
/// This is the top-level entrypoint for mangling <context>.
void ASTMangler::appendContextOf(const ValueDecl *decl) {
auto clangDecl = decl->getClangDecl();
// Classes and protocols implemented in Objective-C have a special context
// mangling.
// known-context ::= 'So'
if (isa<ClassDecl>(decl) && clangDecl) {
assert(isa<clang::ObjCInterfaceDecl>(clangDecl) ||
isa<clang::TypedefDecl>(clangDecl));
return appendOperator("So");
}
if (isa<ProtocolDecl>(decl) && clangDecl) {
assert(isa<clang::ObjCProtocolDecl>(clangDecl));
return appendOperator("So");
}
// Declarations provided by a C module have a special context mangling.
// known-context ::= 'SC'
// Do a dance to avoid a layering dependency.
if (auto file = dyn_cast<FileUnit>(decl->getDeclContext())) {
if (file->getKind() == FileUnitKind::ClangModule)
return appendOperator("SC");
}
// Just mangle the decl's DC.
appendContext(decl->getDeclContext());
}
namespace {
class FindFirstVariable :
public PatternVisitor<FindFirstVariable, VarDecl *> {
public:
VarDecl *visitNamedPattern(NamedPattern *P) {
return P->getDecl();
}
VarDecl *visitTuplePattern(TuplePattern *P) {
for (auto &elt : P->getElements()) {
VarDecl *var = visit(elt.getPattern());
if (var) return var;
}
return nullptr;
}
VarDecl *visitParenPattern(ParenPattern *P) {
return visit(P->getSubPattern());
}
VarDecl *visitVarPattern(VarPattern *P) {
return visit(P->getSubPattern());
}
VarDecl *visitTypedPattern(TypedPattern *P) {
return visit(P->getSubPattern());
}
VarDecl *visitAnyPattern(AnyPattern *P) {
return nullptr;
}
// Refutable patterns shouldn't ever come up.
#define REFUTABLE_PATTERN(ID, BASE) \
VarDecl *visit##ID##Pattern(ID##Pattern *P) { \
llvm_unreachable("shouldn't be visiting a refutable pattern here!"); \
}
#define PATTERN(ID, BASE)
#include "swift/AST/PatternNodes.def"
};
} // end anonymous namespace
/// Find the first identifier bound by the given binding. This
/// assumes that field and global-variable bindings always bind at
/// least one name, which is probably a reasonable assumption but may
/// not be adequately enforced.
static Optional<VarDecl*> findFirstVariable(PatternBindingDecl *binding) {
for (auto entry : binding->getPatternList()) {
auto var = FindFirstVariable().visit(entry.getPattern());
if (var) return var;
}
// Pattern-binding bound without variables exists in erroneous code, e.g.
// during code completion.
return None;
}
void ASTMangler::appendContext(const DeclContext *ctx) {
switch (ctx->getContextKind()) {
case DeclContextKind::Module:
return appendModule(cast<ModuleDecl>(ctx));
case DeclContextKind::FileUnit:
assert(!isa<BuiltinUnit>(ctx) && "mangling member of builtin module!");
appendContext(ctx->getParent());
return;
case DeclContextKind::SerializedLocal: {
auto local = cast<SerializedLocalDeclContext>(ctx);
switch (local->getLocalDeclContextKind()) {
case LocalDeclContextKind::AbstractClosure:
appendClosureEntity(cast<SerializedAbstractClosureExpr>(local));
return;
case LocalDeclContextKind::DefaultArgumentInitializer: {
auto argInit = cast<SerializedDefaultArgumentInitializer>(local);
appendDefaultArgumentEntity(ctx->getParent(), argInit->getIndex());
return;
}
case LocalDeclContextKind::PatternBindingInitializer: {
auto patternInit = cast<SerializedPatternBindingInitializer>(local);
if (auto var = findFirstVariable(patternInit->getBinding())) {
appendInitializerEntity(var.getValue());
} else {
// This is incorrect in that it does not produce a /unique/ mangling,
// but it will at least produce a /valid/ mangling.
appendContext(ctx->getParent());
}
return;
}
case LocalDeclContextKind::TopLevelCodeDecl:
return appendContext(local->getParent());
}
}
case DeclContextKind::GenericTypeDecl:
appendAnyGenericType(cast<GenericTypeDecl>(ctx));
return;
case DeclContextKind::ExtensionDecl: {
auto ExtD = cast<ExtensionDecl>(ctx);
auto ExtTy = ExtD->getExtendedType();
// Recover from erroneous extension.
if (ExtTy.isNull() || ExtTy->hasError())
return appendContext(ExtD->getDeclContext());
auto decl = ExtTy->getAnyNominal();
assert(decl && "extension of non-nominal type?");
// Mangle the module name if:
// - the extension is defined in a different module from the actual nominal
// type decl,
// - the extension is constrained, or
// - the extension is to a protocol.
// FIXME: In a world where protocol extensions are dynamically dispatched,
// "extension is to a protocol" would no longer be a reason to use the
// extension mangling, because an extension method implementation could be
// resiliently moved into the original protocol itself.
if (ExtD->getParentModule() != decl->getParentModule()
|| ExtD->isConstrainedExtension()
|| ExtD->getDeclaredInterfaceType()->isExistentialType()) {
auto sig = ExtD->getGenericSignature();
// If the extension is constrained, mangle the generic signature that
// constrains it.
appendAnyGenericType(decl);
appendModule(ExtD->getParentModule());
if (sig && ExtD->isConstrainedExtension()) {
Mod = ExtD->getModuleContext();
appendGenericSignature(sig);
}
return appendOperator("E");
}
return appendAnyGenericType(decl);
}
case DeclContextKind::AbstractClosureExpr:
return appendClosureEntity(cast<AbstractClosureExpr>(ctx));
case DeclContextKind::AbstractFunctionDecl: {
auto fn = cast<AbstractFunctionDecl>(ctx);
// Constructors and destructors as contexts are always mangled
// using the non-(de)allocating variants.
if (auto ctor = dyn_cast<ConstructorDecl>(fn)) {
return appendConstructorEntity(ctor, /*allocating*/ false);
}
if (auto dtor = dyn_cast<DestructorDecl>(fn))
return appendDestructorEntity(dtor, /*deallocating*/ false);
return appendEntity(fn);
}
case DeclContextKind::SubscriptDecl:
// FIXME: We may need to do something here if subscripts contain any symbols
// exposed with linkage names, or if/when they get generic parameters.
return appendContext(ctx->getParent());
case DeclContextKind::Initializer:
switch (cast<Initializer>(ctx)->getInitializerKind()) {
case InitializerKind::DefaultArgument: {
auto argInit = cast<DefaultArgumentInitializer>(ctx);
return appendDefaultArgumentEntity(ctx->getParent(), argInit->getIndex());
}
case InitializerKind::PatternBinding: {
auto patternInit = cast<PatternBindingInitializer>(ctx);
if (auto var = findFirstVariable(patternInit->getBinding())) {
appendInitializerEntity(var.getValue());
} else {
// This is incorrect in that it does not produce a /unique/ mangling,
// but it will at least produce a /valid/ mangling.
appendContext(ctx->getParent());
}
return;
}
}
llvm_unreachable("bad initializer kind");
case DeclContextKind::TopLevelCodeDecl:
// Mangle the containing module context.
return appendContext(ctx->getParent());
}
llvm_unreachable("bad decl context");
}
void ASTMangler::appendModule(const ModuleDecl *module) {
assert(!module->getParent() && "cannot mangle nested modules!");
// Try the special 'swift' substitution.
if (module->isStdlibModule())
return appendOperator("s");
StringRef ModName = module->getName().str();
if (ModName == MANGLING_MODULE_OBJC)
return appendOperator("So");
if (ModName == MANGLING_MODULE_C)
return appendOperator("SC");
appendIdentifier(ModName);
}
/// Mangle the name of a protocol as a substitution candidate.
void ASTMangler::appendProtocolName(const ProtocolDecl *protocol) {
appendContextOf(protocol);
appendDeclName(protocol);
}
void ASTMangler::appendAnyGenericType(const GenericTypeDecl *decl) {
// Check for certain standard types.
if (tryAppendStandardSubstitution(decl))
return;
// For generic types, this uses the unbound type.
Type key;
if (auto *alias = dyn_cast<TypeAliasDecl>(decl)) {
if (alias->isGeneric())
key = alias->getUnboundGenericType();
else
key = alias->getDeclaredInterfaceType();
} else {
key = cast<NominalTypeDecl>(decl)->getDeclaredType();
}
// Try to mangle the entire name as a substitution.
if (tryMangleSubstitution(key.getPointer()))
return;
appendContextOf(decl);
appendDeclName(decl);
switch (decl->getKind()) {
default:
llvm_unreachable("not a nominal type");
case DeclKind::TypeAlias:
appendOperator("a");
break;
case DeclKind::Protocol:
appendOperator("P");
break;
case DeclKind::Class:
appendOperator("C");
break;
case DeclKind::Enum:
appendOperator("O");
break;
case DeclKind::Struct:
appendOperator("V");
break;
}
addSubstitution(key.getPointer());
}
void ASTMangler::appendFunctionType(AnyFunctionType *fn,
bool forceSingleParam) {
assert((DWARFMangling || fn->isCanonical()) &&
"expecting canonical types when not mangling for the debugger");
appendFunctionSignature(fn, forceSingleParam);
// Note that we do not currently use thin representations in the AST
// for the types of function decls. This may need to change at some
// point, in which case the uncurry logic can probably migrate to that
// case.
//
// It would have been cleverer if we'd used 'f' for thin functions
// and something else for uncurried functions, but oh well.
//
// Or maybe we can change the mangling at the same time we make
// changes to better support thin functions.
switch (fn->getRepresentation()) {
case AnyFunctionType::Representation::Block:
return appendOperator("XB");
case AnyFunctionType::Representation::Thin:
return appendOperator("Xf");
case AnyFunctionType::Representation::Swift:
if (fn->isAutoClosure())
return appendOperator("XK");
return appendOperator("c");
case AnyFunctionType::Representation::CFunctionPointer:
return appendOperator("XC");
}
}
void ASTMangler::appendFunctionSignature(AnyFunctionType *fn,
bool forceSingleParam) {
appendParams(fn->getResult(), /*forceSingleParam*/ false);
appendParams(fn->getInput(), forceSingleParam);
if (fn->throws())
appendOperator("K");
}
void ASTMangler::appendParams(Type ParamsTy, bool forceSingleParam) {
if (TupleType *Tuple = ParamsTy->getAs<TupleType>()) {
if (Tuple->getNumElements() == 0) {
if (forceSingleParam) {
// A tuple containing a single empty tuple.
appendOperator("y");
appendOperator("t");
appendListSeparator();
appendOperator("t");
} else {
appendOperator("y");
}
return;
}
if (forceSingleParam && Tuple->getNumElements() > 1) {
auto flags = ParameterTypeFlags();
if (ParenType *Paren = dyn_cast<ParenType>(ParamsTy.getPointer())) {
ParamsTy = Paren->getUnderlyingType();
flags = Paren->getParameterFlags();
}
appendType(ParamsTy);
if (flags.isShared())
appendOperator("h");
appendListSeparator();
appendOperator("t");
return;
}
}
if (ParenType *Paren = dyn_cast<ParenType>(ParamsTy.getPointer()))
ParamsTy = Paren->getUnderlyingType();
appendType(ParamsTy);
}
void ASTMangler::appendTypeList(Type listTy) {
if (TupleType *tuple = listTy->getAs<TupleType>()) {
if (tuple->getNumElements() == 0)
return appendOperator("y");
bool firstField = true;
for (auto &field : tuple->getElements()) {
appendType(field.getType()->getInOutObjectType());
if (field.isInOut())
appendOperator("z");
if (field.getParameterFlags().isShared())
appendOperator("h");
if (field.hasName())
appendIdentifier(field.getName().str());
if (field.isVararg())
appendOperator("d");
appendListSeparator(firstField);
}
} else {
appendType(listTy);
appendListSeparator();
}
}
void ASTMangler::appendGenericSignature(const GenericSignature *sig) {
auto canSig = sig->getCanonicalSignature();
CurGenericSignature = canSig;
appendGenericSignatureParts(canSig->getGenericParams(), 0,
canSig->getRequirements());
}
void ASTMangler::appendRequirement(const Requirement &reqt) {
Type FirstTy = reqt.getFirstType()->getCanonicalType();
switch (reqt.getKind()) {
case RequirementKind::Layout: {
} break;
case RequirementKind::Conformance: {
Type SecondTy = reqt.getSecondType();
appendProtocolName(SecondTy->castTo<ProtocolType>()->getDecl());
} break;
case RequirementKind::Superclass:
case RequirementKind::SameType: {
Type SecondTy = reqt.getSecondType();
appendType(SecondTy->getCanonicalType());
} break;
}
if (auto *DT = FirstTy->getAs<DependentMemberType>()) {
bool isAssocTypeAtDepth = false;
if (tryMangleSubstitution(DT)) {
switch (reqt.getKind()) {
case RequirementKind::Conformance:
return appendOperator("RQ");
case RequirementKind::Layout:
appendOperator("RL");
appendOpParamForLayoutConstraint(reqt.getLayoutConstraint());
return;
case RequirementKind::Superclass:
return appendOperator("RB");
case RequirementKind::SameType:
return appendOperator("RS");
}
llvm_unreachable("bad requirement type");
}
GenericTypeParamType *gpBase = appendAssocType(DT, isAssocTypeAtDepth);
addSubstitution(DT);
assert(gpBase);
switch (reqt.getKind()) {
case RequirementKind::Conformance:
return appendOpWithGenericParamIndex(isAssocTypeAtDepth ? "RP" : "Rp",
gpBase);
case RequirementKind::Layout:
appendOpWithGenericParamIndex(isAssocTypeAtDepth ? "RM" : "Rm", gpBase);
appendOpParamForLayoutConstraint(reqt.getLayoutConstraint());
return;
case RequirementKind::Superclass:
return appendOpWithGenericParamIndex(isAssocTypeAtDepth ? "RC" : "Rc",
gpBase);
case RequirementKind::SameType:
return appendOpWithGenericParamIndex(isAssocTypeAtDepth ? "RT" : "Rt",
gpBase);
}
llvm_unreachable("bad requirement type");
}
GenericTypeParamType *gpBase = FirstTy->castTo<GenericTypeParamType>();
switch (reqt.getKind()) {
case RequirementKind::Conformance:
return appendOpWithGenericParamIndex("R", gpBase);
case RequirementKind::Layout:
appendOpWithGenericParamIndex("Rl", gpBase);
appendOpParamForLayoutConstraint(reqt.getLayoutConstraint());
return;
case RequirementKind::Superclass:
return appendOpWithGenericParamIndex("Rb", gpBase);
case RequirementKind::SameType:
return appendOpWithGenericParamIndex("Rs", gpBase);
}
llvm_unreachable("bad requirement type");
}
void ASTMangler::appendGenericSignatureParts(
ArrayRef<GenericTypeParamType*> params,
unsigned initialParamDepth,
ArrayRef<Requirement> requirements) {
// Mangle the requirements.
for (const Requirement &reqt : requirements) {
appendRequirement(reqt);
}
if (params.size() == 1 && params[0]->getDepth() == initialParamDepth)
return appendOperator("l");
llvm::SmallVector<char, 16> OpStorage;
llvm::raw_svector_ostream OpBuffer(OpStorage);
// Mangle the number of parameters.
unsigned depth = 0;
unsigned count = 0;
// Since it's unlikely (but not impossible) to have zero generic parameters
// at a depth, encode indexes starting from 1, and use a special mangling
// for zero.
auto mangleGenericParamCount = [&](unsigned depth, unsigned count) {
if (depth < initialParamDepth)
return;
if (count == 0)
OpBuffer << 'z';
else
OpBuffer << Index(count - 1);
};
// As a special case, mangle nothing if there's a single generic parameter
// at the initial depth.
for (auto param : params) {
if (param->getDepth() != depth) {
assert(param->getDepth() > depth && "generic params not ordered");
while (depth < param->getDepth()) {
mangleGenericParamCount(depth, count);
++depth;
count = 0;
}
}
assert(param->getIndex() == count && "generic params not ordered");
++count;
}
mangleGenericParamCount(depth, count);
OpBuffer << 'l';
appendOperator("r", StringRef(OpStorage.data(), OpStorage.size()));
}
void ASTMangler::appendAssociatedTypeName(DependentMemberType *dmt) {
auto assocTy = dmt->getAssocType();
// If the base type is known to have a single protocol conformance
// in the current generic context, then we don't need to disambiguate the
// associated type name by protocol.
// This can result in getting the same mangled string for different
// DependentMemberTypes. This is not a problem but re-mangling might do more
// aggressive substitutions, which means that the re-mangled name may differ
// from the original mangled name.
// FIXME: We ought to be able to get to the generic signature from a
// dependent type, but can't yet. Shouldn't need this side channel.
appendIdentifier(assocTy->getName().str());
if (!OptimizeProtocolNames || !CurGenericSignature || !Mod
|| CurGenericSignature->getConformsTo(dmt->getBase(), *Mod).size() > 1) {
appendAnyGenericType(assocTy->getProtocol());
}
}
void ASTMangler::appendClosureEntity(
const SerializedAbstractClosureExpr *closure) {
appendClosureComponents(closure->getType(), closure->getDiscriminator(),
closure->isImplicit(), closure->getParent(),
closure->getLocalContext());
}
void ASTMangler::appendClosureEntity(const AbstractClosureExpr *closure) {
appendClosureComponents(closure->getType(), closure->getDiscriminator(),
isa<AutoClosureExpr>(closure), closure->getParent(),
closure->getLocalContext());
}
void ASTMangler::appendClosureComponents(Type Ty, unsigned discriminator,
bool isImplicit,
const DeclContext *parentContext,
const DeclContext *localContext) {
if (!DeclCtx) DeclCtx = localContext;
assert(discriminator != AbstractClosureExpr::InvalidDiscriminator
&& "closure must be marked correctly with discriminator");
appendContext(parentContext);
if (!Ty)
Ty = ErrorType::get(localContext->getASTContext());
Ty = parentContext->mapTypeOutOfContext(Ty);
appendType(Ty->getCanonicalType());
appendOperator(isImplicit ? "fu" : "fU", Index(discriminator));
}
void ASTMangler::appendDefaultArgumentEntity(const DeclContext *func,
unsigned index) {
appendContext(func);
appendOperator("fA", Index(index));
}
void ASTMangler::appendInitializerEntity(const VarDecl *var) {
appendEntity(var, "vp", var->isStatic());
appendOperator("fi");
}
/// Is this declaration a method for mangling purposes? If so, we'll leave the
/// Self type out of its mangling.
static bool isMethodDecl(const Decl *decl) {
return isa<AbstractFunctionDecl>(decl)
&& decl->getDeclContext()->isTypeContext();
}
static bool genericParamIsBelowDepth(Type type, unsigned methodDepth) {
if (!type->hasTypeParameter())
return true;
return !type.findIf([methodDepth](Type t) -> bool {
if (auto *gp = t->getAs<GenericTypeParamType>())
return gp->getDepth() >= methodDepth;
return false;
});
}
CanType ASTMangler::getDeclTypeForMangling(
const ValueDecl *decl,
ArrayRef<GenericTypeParamType *> &genericParams,
unsigned &initialParamDepth,
ArrayRef<Requirement> &requirements,
SmallVectorImpl<Requirement> &requirementsBuf) {
auto &C = decl->getASTContext();
if (!decl->hasInterfaceType() || decl->getInterfaceType()->is<ErrorType>()) {
if (isa<AbstractFunctionDecl>(decl))
return CanFunctionType::get({AnyFunctionType::Param(C.TheErrorType)},
C.TheErrorType, AnyFunctionType::ExtInfo());
return C.TheErrorType;
}
auto type = decl->getInterfaceType()->getCanonicalType();
initialParamDepth = 0;
CanGenericSignature sig;
if (auto gft = dyn_cast<GenericFunctionType>(type)) {
sig = gft.getGenericSignature();
CurGenericSignature = sig;
genericParams = sig->getGenericParams();
requirements = sig->getRequirements();
type = CanFunctionType::get(gft->getParams(), gft.getResult(),
gft->getExtInfo());
} else {
genericParams = {};
requirements = {};
}
if (!type->hasError()) {
// Shed the 'self' type and generic requirements from method manglings.
if (isMethodDecl(decl)) {
// Drop the Self argument clause from the type.
type = cast<AnyFunctionType>(type).getResult();
}
if (isMethodDecl(decl) || isa<SubscriptDecl>(decl)) {
// Drop generic parameters and requirements from the method's context.
auto parentGenericSig =
decl->getDeclContext()->getGenericSignatureOfContext();
if (parentGenericSig && sig) {
// The method's depth starts above the depth of the context.
if (!parentGenericSig->getGenericParams().empty())
initialParamDepth =
parentGenericSig->getGenericParams().back()->getDepth() + 1;
while (!genericParams.empty()) {
if (genericParams.front()->getDepth() >= initialParamDepth)
break;
genericParams = genericParams.slice(1);
}
requirementsBuf.clear();
for (auto &reqt : sig->getRequirements()) {
switch (reqt.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Layout:
case RequirementKind::Superclass:
// We don't need the requirement if the constrained type is below the
// method depth.
if (genericParamIsBelowDepth(reqt.getFirstType(), initialParamDepth))
continue;
break;
case RequirementKind::SameType:
// We don't need the requirement if both types are below the method
// depth, or non-dependent.
if (genericParamIsBelowDepth(reqt.getFirstType(), initialParamDepth) &&
genericParamIsBelowDepth(reqt.getSecondType(), initialParamDepth))
continue;
break;
}
// If we fell through the switch, mangle the requirement.
requirementsBuf.push_back(reqt);
}
requirements = requirementsBuf;
}
}
}
return type->getCanonicalType();
}
void ASTMangler::appendDeclType(const ValueDecl *decl, bool isFunctionMangling) {
ArrayRef<GenericTypeParamType *> genericParams;
unsigned initialParamDepth;
ArrayRef<Requirement> requirements;
SmallVector<Requirement, 4> requirementsBuf;
Mod = decl->getModuleContext();
auto type = getDeclTypeForMangling(decl,
genericParams, initialParamDepth,
requirements, requirementsBuf);
if (AnyFunctionType *FuncTy = type->getAs<AnyFunctionType>()) {
const ParameterList *Params = nullptr;
if (const auto *FDecl = dyn_cast<AbstractFunctionDecl>(decl)) {
unsigned PListIdx = isMethodDecl(decl) ? 1 : 0;
if (PListIdx < FDecl->getNumParameterLists()) {
Params = FDecl->getParameterList(PListIdx);
}
} else if (const auto *SDecl = dyn_cast<SubscriptDecl>(decl)) {
Params = SDecl->getIndices();
}
bool forceSingleParam = Params && (Params->size() == 1);
if (isFunctionMangling) {
appendFunctionSignature(FuncTy, forceSingleParam);
} else {
appendFunctionType(FuncTy, forceSingleParam);
}
} else {
appendType(type);
}
// Mangle the generic signature, if any.
if (!genericParams.empty() || !requirements.empty()) {
appendGenericSignatureParts(genericParams, initialParamDepth,
requirements);
// The 'F' function mangling doesn't need a 'u' for its generic signature.
if (!isFunctionMangling)
appendOperator("u");
}
}
bool ASTMangler::tryAppendStandardSubstitution(const GenericTypeDecl *decl) {
// Bail out if our parent isn't the swift standard library.
if (!isStdlibType(decl))
return false;
if (char Subst = getStandardTypeSubst(decl->getName().str())) {
if (!SubstMerging.tryMergeSubst(*this, Subst, /*isStandardSubst*/ true)) {
appendOperator("S", StringRef(&Subst, 1));
}
return true;
}
return false;
}
void ASTMangler::appendConstructorEntity(const ConstructorDecl *ctor,
bool isAllocating) {
appendContextOf(ctor);
appendDeclType(ctor);
StringRef privateDiscriminator = getPrivateDiscriminatorIfNecessary(ctor);
if (!privateDiscriminator.empty()) {
appendIdentifier(privateDiscriminator);
appendOperator("Ll");
}
appendOperator(isAllocating ? "fC" : "fc");
}
void ASTMangler::appendDestructorEntity(const DestructorDecl *dtor,
bool isDeallocating) {
appendContextOf(dtor);
appendOperator(isDeallocating ? "fD" : "fd");
}
void ASTMangler::appendAccessorEntity(StringRef accessorKindCode,
const AbstractStorageDecl *decl,
bool isStatic) {
appendContextOf(decl);
bindGenericParameters(decl->getDeclContext());
if (isa<VarDecl>(decl)) {
appendDeclName(decl);
appendDeclType(decl);
appendOperator("v", accessorKindCode);
} else if (isa<SubscriptDecl>(decl)) {
appendDeclType(decl);
StringRef privateDiscriminator = getPrivateDiscriminatorIfNecessary(decl);
if (!privateDiscriminator.empty()) {
appendIdentifier(privateDiscriminator);
appendOperator("Ll");
}
appendOperator("i", accessorKindCode);
} else {
llvm_unreachable("Unknown type of AbstractStorageDecl");
}
if (isStatic)
appendOperator("Z");
}
void ASTMangler::appendEntity(const ValueDecl *decl, StringRef EntityOp,
bool isStatic) {
if (!DeclCtx) DeclCtx = decl->getInnermostDeclContext();
appendContextOf(decl);
appendDeclName(decl);
appendDeclType(decl);
appendOperator(EntityOp);
if (isStatic)
appendOperator("Z");
}
void ASTMangler::appendEntity(const ValueDecl *decl) {
if (!DeclCtx) DeclCtx = decl->getInnermostDeclContext();
assert(!isa<ConstructorDecl>(decl));
assert(!isa<DestructorDecl>(decl));
// Handle accessors specially, they are mangled as modifiers on the accessed
// declaration.
if (auto func = dyn_cast<FuncDecl>(decl)) {
auto accessorKind = func->getAccessorKind();
if (accessorKind != AccessorKind::NotAccessor)
return appendAccessorEntity(
getCodeForAccessorKind(accessorKind, func->getAddressorKind()),
func->getAccessorStorageDecl(), decl->isStatic());
}
if (auto storageDecl = dyn_cast<AbstractStorageDecl>(decl))
return appendAccessorEntity("p", storageDecl, decl->isStatic());
if (isa<GenericTypeParamDecl>(decl))
return appendEntity(decl, "fp", decl->isStatic());
assert(isa<AbstractFunctionDecl>(decl) || isa<EnumElementDecl>(decl));
appendContextOf(decl);
appendDeclName(decl);
appendDeclType(decl, /*isFunctionMangling*/ true);
appendOperator("F");
if (decl->isStatic())
appendOperator("Z");
}
void ASTMangler::appendProtocolConformance(const ProtocolConformance *conformance){
Mod = conformance->getDeclContext()->getParentModule();
if (auto behaviorStorage = conformance->getBehaviorDecl()) {
auto topLevelContext =
conformance->getDeclContext()->getModuleScopeContext();
appendContextOf(behaviorStorage);
FileUnit *fileUnit = cast<FileUnit>(topLevelContext);
appendIdentifier(
fileUnit->getDiscriminatorForPrivateValue(behaviorStorage).str());
appendProtocolName(conformance->getProtocol());
appendIdentifier(behaviorStorage->getBaseName().getIdentifier().str());
} else {
auto conformanceDC = conformance->getDeclContext();
auto conformingType =
conformanceDC->mapTypeOutOfContext(conformance->getType());
appendType(conformingType->getCanonicalType());
appendProtocolName(conformance->getProtocol());
appendModule(conformance->getDeclContext()->getParentModule());
}
if (GenericSignature *Sig = conformance->getGenericSignature()) {
appendGenericSignature(Sig);
}
}
void ASTMangler::appendOpParamForLayoutConstraint(LayoutConstraint layout) {
assert(layout);
switch (layout->getKind()) {
case LayoutConstraintKind::UnknownLayout:
appendOperatorParam("U");
break;
case LayoutConstraintKind::RefCountedObject:
appendOperatorParam("R");
break;
case LayoutConstraintKind::NativeRefCountedObject:
appendOperatorParam("N");
break;
case LayoutConstraintKind::Class:
appendOperatorParam("C");
break;
case LayoutConstraintKind::NativeClass:
appendOperatorParam("D");
break;
case LayoutConstraintKind::Trivial:
appendOperatorParam("T");
break;
case LayoutConstraintKind::TrivialOfExactSize:
if (!layout->getAlignmentInBits())
appendOperatorParam("e", Index(layout->getTrivialSizeInBits()));
else
appendOperatorParam("E", Index(layout->getTrivialSizeInBits()),
Index(layout->getAlignmentInBits()));
break;
case LayoutConstraintKind::TrivialOfAtMostSize:
if (!layout->getAlignmentInBits())
appendOperatorParam("m", Index(layout->getTrivialSizeInBits()));
else
appendOperatorParam("M", Index(layout->getTrivialSizeInBits()),
Index(layout->getAlignmentInBits()));
break;
}
}