blob: 52d83eb3c5897ae7e20f7ae8a8d83b11f4fcc322 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A single extended grapheme cluster, which approximates a user-perceived
/// character.
///
/// The `Character` type represents a character made up of one or more Unicode
/// scalar values, grouped by a Unicode boundary algorithm. Generally, a
/// `Character` instance matches what the reader of a string will perceive as
/// a single character. The number of visible characters is generally the most
/// natural way to count the length of a string.
///
/// let greeting = "Hello! 🐥"
/// print("Character count: \(greeting.characters.count)")
/// // Prints "Character count: 8"
///
/// Because each character in a string can be made up of one or more Unicode
/// code points, the number of characters in a string may not match the length
/// of the Unicode code point representation or the length of the string in a
/// particular binary representation.
///
/// print("Unicode code point count: \(greeting.unicodeScalars.count)")
/// // Prints "Unicode code point count: 15"
///
/// print("UTF-8 representation count: \(greeting.utf8.count)")
/// // Prints "UTF-8 representation count: 18"
///
/// Every `Character` instance is composed of one or more Unicode code points
/// that are grouped together as an *extended grapheme cluster*. The way these
/// code points are grouped is defined by a canonical, localized, or otherwise
/// tailored Unicode segmentation algorithm.
///
/// For example, a country's Unicode flag character is made up of two regional
/// indicator code points that correspond to that country's ISO 3166-1 alpha-2
/// code. The alpha-2 code for The United States is "US", so its flag
/// character is made up of the Unicode code points `"\u{1F1FA}"` (REGIONAL
/// INDICATOR SYMBOL LETTER U) and `"\u{1F1F8}"` (REGIONAL INDICATOR SYMBOL
/// LETTER S). When placed next to each other in a Swift string literal, these
/// two code points are combined into a single grapheme cluster, represented
/// by a `Character` instance in Swift.
///
/// let usFlag: Character = "\u{1F1FA}\u{1F1F8}"
/// print(usFlag)
/// // Prints "🇺🇸"
///
/// For more information about the Unicode terms used in this discussion, see
/// the [Unicode.org glossary][glossary]. In particular, this discussion
/// mentions [extended grapheme clusters][clusters] and [Unicode scalar
/// values][scalars].
///
/// [glossary]: http://www.unicode.org/glossary/
/// [clusters]: http://www.unicode.org/glossary/#extended_grapheme_cluster
/// [scalars]: http://www.unicode.org/glossary/#unicode_scalar_value
public struct Character :
_ExpressibleByBuiltinExtendedGraphemeClusterLiteral,
ExpressibleByExtendedGraphemeClusterLiteral, Hashable {
// Fundamentally, it is just a String, but it is optimized for the
// common case where the UTF-8 representation fits in 63 bits. The
// remaining bit is used to discriminate between small and large
// representations. In the small representation, the unused bytes
// are filled with 0xFF.
//
// If the grapheme cluster can be represented as `.small`, it
// should be represented as such.
@_versioned
internal enum Representation {
// A _StringBuffer whose first grapheme cluster is self.
// NOTE: may be more than 1 Character long.
case large(_StringBuffer._Storage)
case small(Builtin.Int63)
}
/// Creates a character containing the given Unicode scalar value.
///
/// - Parameter scalar: The Unicode scalar value to convert into a character.
public init(_ scalar: UnicodeScalar) {
var asInt: UInt64 = 0
var shift: UInt64 = 0
let output: (UTF8.CodeUnit) -> Void = {
asInt |= UInt64($0) << shift
shift += 8
}
UTF8.encode(scalar, into: output)
asInt |= (~0) << shift
_representation = .small(Builtin.trunc_Int64_Int63(asInt._value))
}
@effects(readonly)
public init(_builtinUnicodeScalarLiteral value: Builtin.Int32) {
self = Character(
String._fromWellFormedCodeUnitSequence(
UTF32.self, input: CollectionOfOne(UInt32(value))))
}
/// Creates a character with the specified value.
///
/// Don't call this initializer directly. It is used by the compiler when you
/// use a string literal to initialize a `Character` instance. For example:
///
/// let snowflake: Character = "❄︎"
/// print(snowflake)
/// // Prints "❄︎"
///
/// The assignment to the `snowflake` constant calls this initializer behind
/// the scenes.
public init(unicodeScalarLiteral value: Character) {
self = value
}
@effects(readonly)
public init(
_builtinExtendedGraphemeClusterLiteral start: Builtin.RawPointer,
utf8CodeUnitCount: Builtin.Word,
isASCII: Builtin.Int1
) {
self = Character(
String(
_builtinExtendedGraphemeClusterLiteral: start,
utf8CodeUnitCount: utf8CodeUnitCount,
isASCII: isASCII))
}
/// Creates a character with the specified value.
///
/// Don't call this initializer directly. It is used by the compiler when you
/// use a string literal to initialize a `Character` instance. For example:
///
/// let oBreve: Character = "o\u{306}"
/// print(oBreve)
/// // Prints "ŏ"
///
/// The assignment to the `oBreve` constant calls this initializer behind the
/// scenes.
public init(extendedGraphemeClusterLiteral value: Character) {
self = value
}
/// Creates a character from a single-character string.
///
/// The following example creates a new character from the uppercase version
/// of a string that only holds one character.
///
/// let a = "a"
/// let capitalA = Character(a.uppercased())
///
/// - Parameter s: The single-character string to convert to a `Character`
/// instance. `s` must contain exactly one extended grapheme cluster.
public init(_ s: String) {
// The small representation can accept up to 8 code units as long
// as the last one is a continuation. Since the high bit of the
// last byte is used for the enum's discriminator, we have to
// reconstruct it. As a result, we can't store 0x7f in the final
// byte, because we wouldn't be able to distinguish it from an
// unused 0xFF byte. Rather than trying to squeeze in other
// one-byte code points there, we simplify decoding by banning
// starting a code point in the last byte, and assuming that its
// high bit is 1.
_precondition(
s._core.count != 0, "Can't form a Character from an empty String")
_precondition(
s.index(after: s.startIndex) == s.endIndex,
"Can't form a Character from a String containing more than one extended grapheme cluster")
let (count, initialUTF8) = s._core._encodeSomeUTF8(from: 0)
// Notice that the result of sizeof() is a small non-zero number and can't
// overflow when multiplied by 8.
let bits = MemoryLayout.size(ofValue: initialUTF8) &* 8 &- 1
if _fastPath(
count == s._core.count && (initialUTF8 & (1 << numericCast(bits))) != 0) {
_representation = .small(Builtin.trunc_Int64_Int63(initialUTF8._value))
}
else {
if let native = s._core.nativeBuffer,
native.start == s._core._baseAddress! {
_representation = .large(native._storage)
return
}
var nativeString = ""
nativeString.append(s)
_representation = .large(nativeString._core.nativeBuffer!._storage)
}
}
/// Returns the index of the lowest byte that is 0xFF, or 8 if
/// there is none.
static func _smallSize(_ value: UInt64) -> Int {
var mask: UInt64 = 0xFF
for i in 0..<8 {
if (value & mask) == mask {
return i
}
mask <<= 8
}
return 8
}
static func _smallValue(_ value: Builtin.Int63) -> UInt64 {
return UInt64(Builtin.zext_Int63_Int64(value)) | (1<<63)
}
internal struct _SmallUTF8 : RandomAccessCollection {
typealias Indices = CountableRange<Int>
var indices: CountableRange<Int> {
return startIndex..<endIndex
}
init(_ u8: UInt64) {
let utf8Count = Character._smallSize(u8)
_sanityCheck(utf8Count <= 8, "Character with more than 8 UTF-8 code units")
self.count = UInt16(utf8Count)
self.data = u8
}
/// The position of the first element in a non-empty collection.
///
/// In an empty collection, `startIndex == endIndex`.
var startIndex: Int {
return 0
}
/// The collection's "past the end" position.
///
/// `endIndex` is not a valid argument to `subscript`, and is always
/// reachable from `startIndex` by zero or more applications of
/// `index(after:)`.
var endIndex: Int {
return Int(count)
}
/// Access the code unit at `position`.
///
/// - Precondition: `position` is a valid position in `self` and
/// `position != endIndex`.
subscript(position: Int) -> UTF8.CodeUnit {
_sanityCheck(position >= 0)
_sanityCheck(position < Int(count))
// Note: using unchecked arithmetic because overflow cannot happen if the
// above sanity checks hold.
return UTF8.CodeUnit(
truncatingBitPattern: data >> (UInt64(position) &* 8))
}
internal struct Iterator : IteratorProtocol {
init(_ data: UInt64) {
self._data = data
}
internal mutating func next() -> UInt8? {
let result = UInt8(truncatingBitPattern: _data)
if result == 0xFF {
return nil
}
_data = (_data >> 8) | 0xFF00_0000_0000_0000
return result
}
internal var _data: UInt64
}
internal func makeIterator() -> Iterator {
return Iterator(data)
}
var count: UInt16
var data: UInt64
}
struct _SmallUTF16 : RandomAccessCollection {
typealias Indices = CountableRange<Int>
init(_ u8: UInt64) {
let count = UTF16.transcodedLength(
of: _SmallUTF8(u8).makeIterator(),
decodedAs: UTF8.self,
repairingIllFormedSequences: true)!.0
_sanityCheck(count <= 4, "Character with more than 4 UTF-16 code units")
self.count = UInt16(count)
var u16: UInt64 = 0
let output: (UTF16.CodeUnit) -> Void = {
u16 = u16 << 16
u16 = u16 | UInt64($0)
}
_ = transcode(
_SmallUTF8(u8).makeIterator(),
from: UTF8.self, to: UTF16.self,
stoppingOnError: false,
into: output)
self.data = u16
}
/// The position of the first element in a non-empty collection.
///
/// In an empty collection, `startIndex == endIndex`.
var startIndex: Int {
return 0
}
/// The collection's "past the end" position.
///
/// `endIndex` is not a valid argument to `subscript`, and is always
/// reachable from `startIndex` by zero or more applications of
/// `successor()`.
var endIndex: Int {
return Int(count)
}
/// Access the code unit at `position`.
///
/// - Precondition: `position` is a valid position in `self` and
/// `position != endIndex`.
subscript(position: Int) -> UTF16.CodeUnit {
_sanityCheck(position >= 0)
_sanityCheck(position < Int(count))
// Note: using unchecked arithmetic because overflow cannot happen if the
// above sanity checks hold.
return UTF16.CodeUnit(truncatingBitPattern:
data >> ((UInt64(count) &- UInt64(position) &- 1) &* 16))
}
var count: UInt16
var data: UInt64
}
/// The character's hash value.
///
/// Hash values are not guaranteed to be equal across different executions of
/// your program. Do not save hash values to use during a future execution.
public var hashValue: Int {
// FIXME(performance): constructing a temporary string is extremely
// wasteful and inefficient.
return String(self).hashValue
}
typealias UTF16View = String.UTF16View
var utf16: UTF16View {
return String(self).utf16
}
@_versioned
internal var _representation: Representation
}
extension Character : CustomStringConvertible {
public var description: String {
return String(describing: self)
}
}
extension Character : LosslessStringConvertible {}
extension Character : CustomDebugStringConvertible {
/// A textual representation of the character, suitable for debugging.
public var debugDescription: String {
return String(self).debugDescription
}
}
extension String {
/// Creates a string containing the given character.
///
/// - Parameter c: The character to convert to a string.
public init(_ c: Character) {
switch c._representation {
case let .small(_63bits):
let value = Character._smallValue(_63bits)
let smallUTF8 = Character._SmallUTF8(value)
self = String._fromWellFormedCodeUnitSequence(
UTF8.self, input: smallUTF8)
case let .large(value):
let buf = String(_StringCore(_StringBuffer(value)))
self = buf[buf.startIndex..<buf.index(after: buf.startIndex)]
}
}
}
/// `.small` characters are stored in an Int63 with their UTF-8 representation,
/// with any unused bytes set to 0xFF. ASCII characters will have all bytes set
/// to 0xFF except for the lowest byte, which will store the ASCII value. Since
/// 0x7FFFFFFFFFFFFF80 or greater is an invalid UTF-8 sequence, we know if a
/// value is ASCII by checking if it is greater than or equal to
/// 0x7FFFFFFFFFFFFF00.
internal var _minASCIICharReprBuiltin: Builtin.Int63 {
@inline(__always) get {
let x: Int64 = 0x7FFFFFFFFFFFFF00
return Builtin.truncOrBitCast_Int64_Int63(x._value)
}
}
extension Character : Equatable {
public static func == (lhs: Character, rhs: Character) -> Bool {
switch (lhs._representation, rhs._representation) {
case let (.small(lbits), .small(rbits)) where
Bool(Builtin.cmp_uge_Int63(lbits, _minASCIICharReprBuiltin))
&& Bool(Builtin.cmp_uge_Int63(rbits, _minASCIICharReprBuiltin)):
return Bool(Builtin.cmp_eq_Int63(lbits, rbits))
default:
// FIXME(performance): constructing two temporary strings is extremely
// wasteful and inefficient.
return String(lhs) == String(rhs)
}
}
}
extension Character : Comparable {
public static func < (lhs: Character, rhs: Character) -> Bool {
switch (lhs._representation, rhs._representation) {
case let (.small(lbits), .small(rbits)) where
// Note: This is consistent with Foundation but unicode incorrect.
// See String._compareASCII.
Bool(Builtin.cmp_uge_Int63(lbits, _minASCIICharReprBuiltin))
&& Bool(Builtin.cmp_uge_Int63(rbits, _minASCIICharReprBuiltin)):
return Bool(Builtin.cmp_ult_Int63(lbits, rbits))
default:
// FIXME(performance): constructing two temporary strings is extremely
// wasteful and inefficient.
return String(lhs) < String(rhs)
}
}
}