blob: 14a443ac13fe8a4abddea2b74e7a9e90e03d0170 [file] [log] [blame]
//===--- Driver.cpp - Swift compiler driver -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file contains implementations of parts of the compiler driver.
//
//===----------------------------------------------------------------------===//
#include "swift/Driver/Driver.h"
#include "ToolChains.h"
#include "swift/Strings.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsDriver.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/Basic/LLVM.h"
#include "swift/Basic/TaskQueue.h"
#include "swift/Basic/Version.h"
#include "swift/Basic/Range.h"
#include "swift/Driver/Action.h"
#include "swift/Driver/Compilation.h"
#include "swift/Driver/Job.h"
#include "swift/Driver/OutputFileMap.h"
#include "swift/Driver/ToolChain.h"
#include "swift/Option/Options.h"
#include "swift/Option/SanitizerOptions.h"
#include "swift/Parse/Lexer.h"
#include "swift/Config.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Config/config.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
using namespace swift;
using namespace swift::driver;
using namespace llvm::opt;
Driver::Driver(StringRef DriverExecutable,
StringRef Name,
ArrayRef<const char *> Args,
DiagnosticEngine &Diags)
: Opts(createSwiftOptTable()), Diags(Diags),
Name(Name), DriverExecutable(DriverExecutable),
DefaultTargetTriple(llvm::sys::getDefaultTargetTriple()) {
// The driver kind must be parsed prior to parsing arguments, since that
// affects how arguments are parsed.
parseDriverKind(Args.slice(1));
}
Driver::~Driver() {
llvm::DeleteContainerSeconds(ToolChains);
}
void Driver::parseDriverKind(ArrayRef<const char *> Args) {
// The default driver kind is determined by Name.
StringRef DriverName = Name;
std::string OptName;
// However, the driver kind may be overridden if the first argument is
// --driver-mode.
if (Args.size() > 0) {
OptName = getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
StringRef FirstArg(Args[0]);
if (FirstArg.startswith(OptName))
DriverName = FirstArg.drop_front(OptName.size());
}
Optional<DriverKind> Kind =
llvm::StringSwitch<Optional<DriverKind>>(DriverName)
.Case("swift", DriverKind::Interactive)
.Case("swiftc", DriverKind::Batch)
.Case("swift-autolink-extract", DriverKind::AutolinkExtract)
.Default(None);
if (Kind.hasValue())
driverKind = Kind.getValue();
else if (!OptName.empty())
Diags.diagnose({}, diag::error_invalid_arg_value, OptName, DriverName);
}
ArrayRef<const char *> Driver::getArgsWithoutProgramNameAndDriverMode(
ArrayRef<const char *> Args) const {
Args = Args.slice(1);
if (Args.empty())
return Args;
const std::string OptName =
getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
if (StringRef(Args[0]).startswith(OptName))
Args = Args.slice(1);
return Args;
}
static void validateArgs(DiagnosticEngine &diags, const ArgList &Args) {
if (Args.hasArgNoClaim(options::OPT_import_underlying_module) &&
Args.hasArgNoClaim(options::OPT_import_objc_header)) {
diags.diagnose({}, diag::error_framework_bridging_header);
}
// Check minimum supported OS versions.
if (const Arg *A = Args.getLastArg(options::OPT_target)) {
llvm::Triple triple(llvm::Triple::normalize(A->getValue()));
if (triple.isMacOSX()) {
if (triple.isMacOSXVersionLT(10, 9))
diags.diagnose(SourceLoc(), diag::error_os_minimum_deployment,
"OS X 10.9");
} else if (triple.isiOS()) {
if (triple.isTvOS()) {
if (triple.isOSVersionLT(9, 0)) {
diags.diagnose(SourceLoc(), diag::error_os_minimum_deployment,
"tvOS 9.0");
return;
}
}
if (triple.isOSVersionLT(7))
diags.diagnose(SourceLoc(), diag::error_os_minimum_deployment,
"iOS 7");
} else if (triple.isWatchOS()) {
if (triple.isOSVersionLT(2, 0)) {
diags.diagnose(SourceLoc(), diag::error_os_minimum_deployment,
"watchOS 2.0");
return;
}
}
}
// Check for conflicting warning control flags
if (Args.hasArg(options::OPT_suppress_warnings) &&
Args.hasArg(options::OPT_warnings_as_errors)) {
diags.diagnose(SourceLoc(), diag::error_conflicting_options,
"-warnings-as-errors", "-suppress-warnings");
}
}
static void computeArgsHash(SmallString<32> &out, const DerivedArgList &args) {
SmallVector<const Arg *, 32> interestingArgs;
interestingArgs.reserve(args.size());
std::copy_if(args.begin(), args.end(), std::back_inserter(interestingArgs),
[](const Arg *arg) {
return !arg->getOption().hasFlag(options::DoesNotAffectIncrementalBuild) &&
arg->getOption().getKind() != Option::InputClass;
});
llvm::array_pod_sort(interestingArgs.begin(), interestingArgs.end(),
[](const Arg * const *lhs, const Arg * const *rhs)->int {
auto cmpID = (*lhs)->getOption().getID() - (*rhs)->getOption().getID();
if (cmpID != 0)
return cmpID;
return (*lhs)->getIndex() - (*rhs)->getIndex();
});
llvm::MD5 hash;
for (const Arg *arg : interestingArgs) {
hash.update(arg->getOption().getID());
for (const char *value : const_cast<Arg *>(arg)->getValues())
hash.update(value);
}
llvm::MD5::MD5Result hashBuf;
hash.final(hashBuf);
llvm::MD5::stringifyResult(hashBuf, out);
}
class Driver::InputInfoMap
: public llvm::SmallDenseMap<const Arg *, CompileJobAction::InputInfo, 16> {
};
using InputInfoMap = Driver::InputInfoMap;
static bool populateOutOfDateMap(InputInfoMap &map, StringRef argsHashStr,
const InputFileList &inputs,
StringRef buildRecordPath) {
// Treat a missing file as "no previous build".
auto buffer = llvm::MemoryBuffer::getFile(buildRecordPath);
if (!buffer)
return false;
namespace yaml = llvm::yaml;
using InputInfo = CompileJobAction::InputInfo;
llvm::SourceMgr SM;
yaml::Stream stream(buffer.get()->getMemBufferRef(), SM);
auto I = stream.begin();
if (I == stream.end() || !I->getRoot())
return true;
auto *topLevelMap = dyn_cast<yaml::MappingNode>(I->getRoot());
if (!topLevelMap)
return true;
SmallString<64> scratch;
llvm::StringMap<InputInfo> previousInputs;
bool versionValid = false;
bool optionsMatch = true;
auto readTimeValue = [&scratch](yaml::Node *node,
llvm::sys::TimeValue &timeValue) -> bool {
auto *seq = dyn_cast<yaml::SequenceNode>(node);
if (!seq)
return true;
auto seqI = seq->begin(), seqE = seq->end();
if (seqI == seqE)
return true;
auto *secondsRaw = dyn_cast<yaml::ScalarNode>(&*seqI);
if (!secondsRaw)
return true;
llvm::sys::TimeValue::SecondsType parsedSeconds;
if (secondsRaw->getValue(scratch).getAsInteger(10, parsedSeconds))
return true;
++seqI;
if (seqI == seqE)
return true;
auto *nanosecondsRaw = dyn_cast<yaml::ScalarNode>(&*seqI);
if (!nanosecondsRaw)
return true;
llvm::sys::TimeValue::NanoSecondsType parsedNanoseconds;
if (nanosecondsRaw->getValue(scratch).getAsInteger(10, parsedNanoseconds))
return true;
++seqI;
if (seqI != seqE)
return true;
timeValue.seconds(parsedSeconds);
timeValue.nanoseconds(parsedNanoseconds);
return false;
};
// FIXME: LLVM's YAML support does incremental parsing in such a way that
// for-range loops break.
for (auto i = topLevelMap->begin(), e = topLevelMap->end(); i != e; ++i) {
auto *key = cast<yaml::ScalarNode>(i->getKey());
StringRef keyStr = key->getValue(scratch);
if (keyStr == "version") {
auto *value = dyn_cast<yaml::ScalarNode>(i->getValue());
if (!value)
return true;
versionValid =
(value->getValue(scratch) == version::getSwiftFullVersion());
} else if (keyStr == "options") {
auto *value = dyn_cast<yaml::ScalarNode>(i->getValue());
if (!value)
return true;
optionsMatch = (argsHashStr == value->getValue(scratch));
} else if (keyStr == "build_time") {
auto *value = dyn_cast<yaml::SequenceNode>(i->getValue());
if (!value)
return true;
llvm::sys::TimeValue timeVal;
if (readTimeValue(i->getValue(), timeVal))
return true;
map[nullptr] = { InputInfo::NeedsCascadingBuild, timeVal };
} else if (keyStr == "inputs") {
auto *inputMap = dyn_cast<yaml::MappingNode>(i->getValue());
if (!inputMap)
return true;
// FIXME: LLVM's YAML support does incremental parsing in such a way that
// for-range loops break.
for (auto i = inputMap->begin(), e = inputMap->end(); i != e; ++i) {
auto *key = dyn_cast<yaml::ScalarNode>(i->getKey());
if (!key)
return true;
auto *value = dyn_cast<yaml::SequenceNode>(i->getValue());
if (!value)
return true;
auto previousBuildState =
llvm::StringSwitch<Optional<InputInfo::Status>>(value->getRawTag())
.Case("", InputInfo::UpToDate)
.Case("!dirty", InputInfo::NeedsCascadingBuild)
.Case("!private", InputInfo::NeedsNonCascadingBuild)
.Default(None);
if (!previousBuildState)
return true;
llvm::sys::TimeValue timeValue;
if (readTimeValue(value, timeValue))
return true;
auto inputName = key->getValue(scratch);
previousInputs[inputName] = { *previousBuildState, timeValue };
}
}
}
if (!versionValid || !optionsMatch)
return true;
size_t numInputsFromPrevious = 0;
for (auto &inputPair : inputs) {
auto iter = previousInputs.find(inputPair.second->getValue());
if (iter == previousInputs.end()) {
map[inputPair.second] = InputInfo::makeNewlyAdded();
continue;
}
++numInputsFromPrevious;
map[inputPair.second] = iter->getValue();
}
// If a file was removed, we've lost its dependency info. Rebuild everything.
// FIXME: Can we do better?
return numInputsFromPrevious != previousInputs.size();
}
std::unique_ptr<Compilation> Driver::buildCompilation(
ArrayRef<const char *> Args) {
llvm::PrettyStackTraceString CrashInfo("Compilation construction");
llvm::sys::TimeValue StartTime = llvm::sys::TimeValue::now();
std::unique_ptr<InputArgList> ArgList(parseArgStrings(Args.slice(1)));
if (Diags.hadAnyError())
return nullptr;
// Claim --driver-mode here, since it's already been handled.
(void) ArgList->hasArg(options::OPT_driver_mode);
bool DriverPrintActions = ArgList->hasArg(options::OPT_driver_print_actions);
bool DriverPrintOutputFileMap =
ArgList->hasArg(options::OPT_driver_print_output_file_map);
DriverPrintBindings = ArgList->hasArg(options::OPT_driver_print_bindings);
bool DriverPrintJobs = ArgList->hasArg(options::OPT_driver_print_jobs);
bool DriverSkipExecution =
ArgList->hasArg(options::OPT_driver_skip_execution);
bool ShowIncrementalBuildDecisions =
ArgList->hasArg(options::OPT_driver_show_incremental);
bool Incremental = ArgList->hasArg(options::OPT_incremental) &&
!ArgList->hasArg(options::OPT_whole_module_optimization) &&
!ArgList->hasArg(options::OPT_embed_bitcode);
bool SaveTemps = ArgList->hasArg(options::OPT_save_temps);
std::unique_ptr<DerivedArgList> TranslatedArgList(
translateInputArgs(*ArgList));
if (const Arg *A = ArgList->getLastArg(options::OPT_target))
DefaultTargetTriple = llvm::Triple::normalize(A->getValue());
validateArgs(Diags, *TranslatedArgList);
if (Diags.hadAnyError())
return nullptr;
const ToolChain *TC = getToolChain(*ArgList);
if (!TC) {
Diags.diagnose(SourceLoc(), diag::error_unknown_target,
ArgList->getLastArg(options::OPT_target)->getValue());
return nullptr;
}
if (!handleImmediateArgs(*TranslatedArgList, *TC)) {
return nullptr;
}
// Construct the list of inputs.
InputFileList Inputs;
buildInputs(*TC, *TranslatedArgList, Inputs);
if (Diags.hadAnyError())
return nullptr;
// Determine the OutputInfo for the driver.
OutputInfo OI;
buildOutputInfo(*TC, *TranslatedArgList, Inputs, OI);
if (Diags.hadAnyError())
return nullptr;
assert(OI.CompilerOutputType != types::ID::TY_INVALID &&
"buildOutputInfo() must set a valid output type!");
if (OI.CompilerMode == OutputInfo::Mode::REPL)
// REPL mode expects no input files, so suppress the error.
SuppressNoInputFilesError = true;
std::unique_ptr<OutputFileMap> OFM = buildOutputFileMap(*TranslatedArgList);
if (Diags.hadAnyError())
return nullptr;
if (DriverPrintOutputFileMap) {
if (OFM)
OFM->dump(llvm::errs(), true);
else
Diags.diagnose(SourceLoc(), diag::error_no_output_file_map_specified);
return nullptr;
}
SmallString<32> ArgsHash;
computeArgsHash(ArgsHash, *TranslatedArgList);
InputInfoMap outOfDateMap;
bool rebuildEverything = true;
if (Incremental) {
if (!OFM) {
// FIXME: This should work without an output file map. We should have
// another way to specify a build record and where to put intermediates.
Diags.diagnose(SourceLoc(), diag::incremental_requires_output_file_map);
} else {
StringRef buildRecordPath;
if (auto *masterOutputMap = OFM->getOutputMapForSingleOutput()) {
auto iter = masterOutputMap->find(types::TY_SwiftDeps);
if (iter != masterOutputMap->end())
buildRecordPath = iter->second;
}
if (buildRecordPath.empty()) {
Diags.diagnose(SourceLoc(),
diag::incremental_requires_build_record_entry,
types::getTypeName(types::TY_SwiftDeps));
rebuildEverything = true;
} else {
if (populateOutOfDateMap(outOfDateMap, ArgsHash, Inputs,
buildRecordPath)) {
// FIXME: Distinguish errors from "file removed", which is benign.
} else {
rebuildEverything = false;
}
}
}
}
// Construct the graph of Actions.
ActionList Actions;
buildActions(*TC, *TranslatedArgList, Inputs, OI, OFM.get(),
rebuildEverything ? nullptr : &outOfDateMap, Actions);
if (Diags.hadAnyError())
return nullptr;
if (DriverPrintActions) {
printActions(Actions);
return nullptr;
}
unsigned NumberOfParallelCommands = 1;
if (const Arg *A = ArgList->getLastArg(options::OPT_j)) {
if (StringRef(A->getValue()).getAsInteger(10, NumberOfParallelCommands)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(*ArgList), A->getValue());
return nullptr;
}
}
OutputLevel Level = OutputLevel::Normal;
if (const Arg *A = ArgList->getLastArg(options::OPT_v,
options::OPT_parseable_output)) {
if (A->getOption().matches(options::OPT_v))
Level = OutputLevel::Verbose;
else if (A->getOption().matches(options::OPT_parseable_output))
Level = OutputLevel::Parseable;
else
llvm_unreachable("Unknown OutputLevel argument!");
}
std::unique_ptr<Compilation> C(new Compilation(Diags, Level,
std::move(ArgList),
std::move(TranslatedArgList),
std::move(Inputs),
ArgsHash, StartTime,
NumberOfParallelCommands,
Incremental,
DriverSkipExecution,
SaveTemps));
buildJobs(Actions, OI, OFM.get(), *TC, *C);
// For updating code we need to go through all the files and pick up changes,
// even if they have compiler errors.
// Also for getting bulk fixits.
if (OI.CompilerMode == OutputInfo::Mode::UpdateCode ||
OI.ShouldGenerateFixitEdits)
C->setContinueBuildingAfterErrors();
if (ShowIncrementalBuildDecisions)
C->setShowsIncrementalBuildDecisions();
// This has to happen after building jobs, because otherwise we won't even
// emit .swiftdeps files for the next build.
if (rebuildEverything)
C->disableIncrementalBuild();
if (OFM) {
if (auto *masterOutputMap = OFM->getOutputMapForSingleOutput()) {
C->setCompilationRecordPath(masterOutputMap->lookup(types::TY_SwiftDeps));
auto buildEntry = outOfDateMap.find(nullptr);
if (buildEntry != outOfDateMap.end())
C->setLastBuildTime(buildEntry->second.previousModTime);
}
}
if (Diags.hadAnyError())
return nullptr;
if (DriverPrintBindings)
return nullptr;
if (DriverPrintJobs) {
printJobs(*C);
return nullptr;
}
return C;
}
static Arg *makeInputArg(const DerivedArgList &Args, OptTable &Opts,
StringRef Value) {
Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
Args.getBaseArgs().MakeIndex(Value), Value.data());
A->claim();
return A;
}
typedef std::function<void(InputArgList &, unsigned)> RemainingArgsHandler;
std::unique_ptr<InputArgList>
parseArgsUntil(const llvm::opt::OptTable& Opts,
const char *const *ArgBegin,
const char *const *ArgEnd,
unsigned &MissingArgIndex,
unsigned &MissingArgCount,
unsigned FlagsToInclude,
unsigned FlagsToExclude,
llvm::opt::OptSpecifier UntilOption,
RemainingArgsHandler RemainingHandler) {
auto Args = llvm::make_unique<InputArgList>(ArgBegin, ArgEnd);
// FIXME: Handle '@' args (or at least error on them).
bool CheckUntil = UntilOption != options::OPT_INVALID;
MissingArgIndex = MissingArgCount = 0;
unsigned Index = 0, End = ArgEnd - ArgBegin;
while (Index < End) {
// Ignore empty arguments (other things may still take them as arguments).
StringRef Str = Args->getArgString(Index);
if (Str == "") {
++Index;
continue;
}
unsigned Prev = Index;
Arg *A = Opts.ParseOneArg(*Args, Index, FlagsToInclude, FlagsToExclude);
assert(Index > Prev && "Parser failed to consume argument.");
// Check for missing argument error.
if (!A) {
assert(Index >= End && "Unexpected parser error.");
assert(Index - Prev - 1 && "No missing arguments!");
MissingArgIndex = Prev;
MissingArgCount = Index - Prev - 1;
break;
}
Args->append(A);
if (CheckUntil && A->getOption().matches(UntilOption)) {
if (Index < End)
RemainingHandler(*Args, Index);
return Args;
}
}
return Args;
}
// Parse all args until we see an input, and then collect the remaining
// arguments into a synthesized "--" option.
static std::unique_ptr<InputArgList>
parseArgStringsForInteractiveDriver(const llvm::opt::OptTable& Opts,
ArrayRef<const char *> Args,
unsigned &MissingArgIndex,
unsigned &MissingArgCount,
unsigned FlagsToInclude,
unsigned FlagsToExclude) {
return parseArgsUntil(Opts, Args.begin(), Args.end(), MissingArgIndex,
MissingArgCount, FlagsToInclude, FlagsToExclude,
options::OPT_INPUT,
[&](InputArgList &Args, unsigned NextIndex) {
assert(NextIndex < Args.getNumInputArgStrings());
// Synthesize -- remaining args...
Arg *Remaining =
new Arg(Opts.getOption(options::OPT__DASH_DASH), "--", NextIndex);
for (unsigned N = Args.getNumInputArgStrings(); NextIndex != N;
++NextIndex) {
Remaining->getValues().push_back(Args.getArgString(NextIndex));
}
Args.append(Remaining);
});
}
std::unique_ptr<InputArgList>
Driver::parseArgStrings(ArrayRef<const char *> Args) {
unsigned IncludedFlagsBitmask = 0;
unsigned ExcludedFlagsBitmask = options::NoDriverOption;
unsigned MissingArgIndex, MissingArgCount;
std::unique_ptr<InputArgList> ArgList;
if (driverKind == DriverKind::Interactive) {
ArgList = parseArgStringsForInteractiveDriver(getOpts(), Args,
MissingArgIndex, MissingArgCount, IncludedFlagsBitmask,
ExcludedFlagsBitmask);
} else {
ArgList = llvm::make_unique<InputArgList>(
getOpts().ParseArgs(Args, MissingArgIndex, MissingArgCount,
IncludedFlagsBitmask, ExcludedFlagsBitmask));
}
assert(ArgList && "no argument list");
// Check for missing argument error.
if (MissingArgCount) {
Diags.diagnose(SourceLoc(), diag::error_missing_arg_value,
ArgList->getArgString(MissingArgIndex), MissingArgCount);
return nullptr;
}
// Check for unknown arguments.
for (const Arg *A : make_range(ArgList->filtered_begin(options::OPT_UNKNOWN),
ArgList->filtered_end())) {
Diags.diagnose(SourceLoc(), diag::error_unknown_arg,
A->getAsString(*ArgList));
}
// Check for unsupported options
unsigned UnsupportedFlag = 0;
if (driverKind == DriverKind::Interactive)
UnsupportedFlag = options::NoInteractiveOption;
else if (driverKind == DriverKind::Batch)
UnsupportedFlag = options::NoBatchOption;
if (UnsupportedFlag)
for (const Arg *A : *ArgList)
if (A->getOption().hasFlag(UnsupportedFlag))
Diags.diagnose(SourceLoc(), diag::error_unsupported_option,
ArgList->getArgString(A->getIndex()), Name,
UnsupportedFlag == options::NoBatchOption ? "swift" : "swiftc");
return ArgList;
}
DerivedArgList *Driver::translateInputArgs(const InputArgList &ArgList) const {
DerivedArgList *DAL = new DerivedArgList(ArgList);
for (Arg *A : ArgList) {
// If we're not in immediate mode, pick up inputs via the -- option.
if (driverKind != DriverKind::Interactive && A->getOption().matches(options::OPT__DASH_DASH)) {
A->claim();
for (unsigned i = 0, e = A->getNumValues(); i != e; ++i) {
DAL->append(makeInputArg(*DAL, *Opts, A->getValue(i)));
}
continue;
}
DAL->append(A);
}
return DAL;
}
/// \brief Check that the file referenced by \p Input exists. If it doesn't,
/// issue a diagnostic and return false.
static bool checkInputExistence(const Driver &D, const DerivedArgList &Args,
DiagnosticEngine &Diags, StringRef Input) {
if (!D.getCheckInputFilesExist())
return true;
// stdin always exists.
if (Input == "-")
return true;
if (llvm::sys::fs::exists(Input))
return true;
Diags.diagnose(SourceLoc(), diag::error_no_such_file_or_directory, Input);
return false;
}
void Driver::buildInputs(const ToolChain &TC,
const DerivedArgList &Args,
InputFileList &Inputs) const {
types::ID InputType = types::TY_Nothing;
Arg *InputTypeArg = nullptr;
llvm::StringMap<StringRef> SourceFileNames;
for (Arg *A : Args) {
if (A->getOption().getKind() == Option::InputClass) {
StringRef Value = A->getValue();
types::ID Ty = types::TY_INVALID;
if (InputType == types::TY_Nothing) {
// If there was an explicit arg for this, claim it.
if (InputTypeArg)
InputTypeArg->claim();
// stdin must be handled specially.
if (Value.equals("-")) {
// By default, treat stdin as Swift input.
// FIXME: should we limit this inference to specific modes?
Ty = types::TY_Swift;
} else {
// Otherwise lookup by extension.
Ty = TC.lookupTypeForExtension(llvm::sys::path::extension(Value));
if (Ty == types::TY_INVALID) {
// FIXME: should we adjust this inference in certain modes?
Ty = types::TY_Object;
}
}
} else {
assert(InputTypeArg && "InputType set w/o InputTypeArg");
InputTypeArg->claim();
Ty = InputType;
}
if (checkInputExistence(*this, Args, Diags, Value))
Inputs.push_back(std::make_pair(Ty, A));
if (Ty == types::TY_Swift) {
StringRef Basename = llvm::sys::path::filename(Value);
if (!SourceFileNames.insert({Basename, Value}).second) {
Diags.diagnose(SourceLoc(), diag::error_two_files_same_name,
Basename, SourceFileNames[Basename], Value);
Diags.diagnose(SourceLoc(), diag::note_explain_two_files_same_name);
}
}
}
// FIXME: add -x support (or equivalent)
}
}
static bool maybeBuildingExecutable(const OutputInfo &OI,
const DerivedArgList &Args,
const InputFileList &Inputs) {
switch (OI.LinkAction) {
case LinkKind::Executable:
return true;
case LinkKind::DynamicLibrary:
return false;
case LinkKind::None:
break;
}
if (Args.hasArg(options::OPT_parse_as_library, options::OPT_parse_stdlib))
return false;
return Inputs.size() == 1;
}
static void diagnoseOutputModeArg(DiagnosticEngine &diags, const Arg *arg,
bool hasInputs, const DerivedArgList &args,
bool isInteractiveDriver,
StringRef driverName) {
switch (arg->getOption().getID()) {
case options::OPT_i:
diags.diagnose(SourceLoc(), diag::error_i_mode,
isInteractiveDriver ? driverName : "swift");
break;
case options::OPT_repl:
if (isInteractiveDriver && !hasInputs)
diags.diagnose(SourceLoc(), diag::warning_unnecessary_repl_mode,
args.getArgString(arg->getIndex()), driverName);
break;
default:
break;
}
}
static bool isSDKTooOld(StringRef sdkPath, clang::VersionTuple minVersion,
StringRef firstPrefix, StringRef secondPrefix = {}) {
// FIXME: This is a hack.
// We should be looking at the SDKSettings.plist.
StringRef sdkDirName = llvm::sys::path::filename(sdkPath);
size_t versionStart = sdkDirName.rfind(firstPrefix);
if (versionStart != StringRef::npos) {
versionStart += firstPrefix.size();
} else if (!secondPrefix.empty()) {
versionStart = sdkDirName.rfind(secondPrefix);
if (versionStart != StringRef::npos)
versionStart += secondPrefix.size();
}
if (versionStart == StringRef::npos)
return false;
size_t versionEnd = sdkDirName.rfind(".Internal");
if (versionEnd == StringRef::npos)
versionEnd = sdkDirName.rfind(".sdk");
if (versionEnd == StringRef::npos)
return false;
clang::VersionTuple version;
if (version.tryParse(sdkDirName.slice(versionStart, versionEnd)))
return false;
return version < minVersion;
}
/// Returns true if the given SDK path points to an SDK that is too old for
/// the given target.
static bool isSDKTooOld(StringRef sdkPath, const llvm::Triple &target) {
if (target.isMacOSX()) {
return isSDKTooOld(sdkPath, clang::VersionTuple(10, 12), "OSX");
} else if (target.isiOS()) {
// Includes both iOS and TVOS.
return isSDKTooOld(sdkPath, clang::VersionTuple(10, 0), "Simulator", "OS");
} else if (target.isWatchOS()) {
return isSDKTooOld(sdkPath, clang::VersionTuple(3, 0), "Simulator", "OS");
} else {
return false;
}
}
void Driver::buildOutputInfo(const ToolChain &TC, const DerivedArgList &Args,
const InputFileList &Inputs,
OutputInfo &OI) const {
// By default, the driver does not link its output; this will be updated
// appropriately below if linking is required.
if (driverKind == DriverKind::Interactive) {
OI.CompilerMode = OutputInfo::Mode::Immediate;
if (Inputs.empty())
OI.CompilerMode = OutputInfo::Mode::REPL;
OI.CompilerOutputType = types::TY_Nothing;
} else { // DriverKind::Batch
OI.CompilerMode = OutputInfo::Mode::StandardCompile;
if (Args.hasArg(options::OPT_whole_module_optimization))
OI.CompilerMode = OutputInfo::Mode::SingleCompile;
OI.CompilerOutputType = types::TY_Object;
}
if (const Arg *A = Args.getLastArg(options::OPT_num_threads)) {
if (StringRef(A->getValue()).getAsInteger(10, OI.numThreads)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
}
}
const Arg *const OutputModeArg = Args.getLastArg(options::OPT_modes_Group);
if (!OutputModeArg) {
if (Args.hasArg(options::OPT_emit_module, options::OPT_emit_module_path)) {
OI.CompilerOutputType = types::TY_SwiftModuleFile;
} else if (driverKind != DriverKind::Interactive) {
OI.LinkAction = LinkKind::Executable;
}
} else if (Args.hasArg(options::OPT_update_code)) {
OI.CompilerMode = OutputInfo::Mode::UpdateCode;
OI.CompilerOutputType = types::TY_Remapping;
OI.LinkAction = LinkKind::None;
} else {
diagnoseOutputModeArg(Diags, OutputModeArg, !Inputs.empty(), Args,
driverKind == DriverKind::Interactive, Name);
switch (OutputModeArg->getOption().getID()) {
case options::OPT_emit_executable:
OI.LinkAction = LinkKind::Executable;
OI.CompilerOutputType = types::TY_Object;
break;
case options::OPT_emit_library:
OI.LinkAction = LinkKind::DynamicLibrary;
OI.CompilerOutputType = types::TY_Object;
break;
case options::OPT_emit_object:
OI.CompilerOutputType = types::TY_Object;
break;
case options::OPT_emit_assembly:
OI.CompilerOutputType = types::TY_Assembly;
break;
case options::OPT_emit_sil:
OI.CompilerOutputType = types::TY_SIL;
break;
case options::OPT_emit_silgen:
OI.CompilerOutputType = types::TY_RawSIL;
break;
case options::OPT_emit_sib:
OI.CompilerOutputType = types::TY_SIB;
break;
case options::OPT_emit_sibgen:
OI.CompilerOutputType = types::TY_RawSIB;
break;
case options::OPT_emit_ir:
OI.CompilerOutputType = types::TY_LLVM_IR;
break;
case options::OPT_emit_bc:
OI.CompilerOutputType = types::TY_LLVM_BC;
break;
case options::OPT_parse:
case options::OPT_dump_parse:
case options::OPT_dump_ast:
case options::OPT_print_ast:
case options::OPT_dump_type_refinement_contexts:
case options::OPT_dump_interface_hash:
OI.CompilerOutputType = types::TY_Nothing;
break;
case options::OPT_i:
// Keep the default output/mode; this flag was removed and should already
// have been diagnosed above.
assert(Diags.hadAnyError() && "-i flag was removed");
break;
case options::OPT_repl:
case options::OPT_deprecated_integrated_repl:
case options::OPT_lldb_repl:
OI.CompilerOutputType = types::TY_Nothing;
OI.CompilerMode = OutputInfo::Mode::REPL;
break;
default:
llvm_unreachable("unknown mode");
}
}
assert(OI.CompilerOutputType != types::ID::TY_INVALID);
if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) {
if (A->getOption().matches(options::OPT_g))
OI.DebugInfoKind = IRGenDebugInfoKind::Normal;
else if (A->getOption().matches(options::OPT_gline_tables_only))
OI.DebugInfoKind = IRGenDebugInfoKind::LineTables;
else if (A->getOption().matches(options::OPT_gdwarf_types))
OI.DebugInfoKind = IRGenDebugInfoKind::DwarfTypes;
else
assert(A->getOption().matches(options::OPT_gnone) &&
"unknown -g<kind> option");
}
if (Args.hasArg(options::OPT_emit_module, options::OPT_emit_module_path)) {
// The user has requested a module, so generate one and treat it as
// top-level output.
OI.ShouldGenerateModule = true;
OI.ShouldTreatModuleAsTopLevelOutput = true;
} else if ((OI.DebugInfoKind > IRGenDebugInfoKind::LineTables &&
OI.shouldLink()) ||
Args.hasArg(options::OPT_emit_objc_header,
options::OPT_emit_objc_header_path)) {
// An option has been passed which requires a module, but the user hasn't
// requested one. Generate a module, but treat it as an intermediate output.
OI.ShouldGenerateModule = true;
OI.ShouldTreatModuleAsTopLevelOutput = false;
} else {
// No options require a module, so don't generate one.
OI.ShouldGenerateModule = false;
OI.ShouldTreatModuleAsTopLevelOutput = false;
}
if (OI.ShouldGenerateModule &&
(OI.CompilerMode == OutputInfo::Mode::REPL ||
OI.CompilerMode == OutputInfo::Mode::Immediate)) {
Diags.diagnose(SourceLoc(), diag::error_mode_cannot_emit_module);
return;
}
if (const Arg *A = Args.getLastArg(options::OPT_module_name)) {
OI.ModuleName = A->getValue();
} else if (OI.CompilerMode == OutputInfo::Mode::REPL) {
// REPL mode should always use the REPL module.
OI.ModuleName = "REPL";
} else if (const Arg *A = Args.getLastArg(options::OPT_o)) {
OI.ModuleName = llvm::sys::path::stem(A->getValue());
if (OI.LinkAction == LinkKind::DynamicLibrary &&
!llvm::sys::path::extension(A->getValue()).empty() &&
StringRef(OI.ModuleName).startswith("lib")) {
// Chop off a "lib" prefix if we're building a library.
OI.ModuleName.erase(0, strlen("lib"));
}
} else if (Inputs.size() == 1) {
OI.ModuleName = llvm::sys::path::stem(Inputs.front().second->getValue());
}
if (!Lexer::isIdentifier(OI.ModuleName) ||
(OI.ModuleName == STDLIB_NAME &&
!Args.hasArg(options::OPT_parse_stdlib))) {
OI.ModuleNameIsFallback = true;
if (OI.CompilerOutputType == types::TY_Nothing ||
maybeBuildingExecutable(OI, Args, Inputs))
OI.ModuleName = "main";
else if (!Inputs.empty() || OI.CompilerMode == OutputInfo::Mode::REPL) {
// Having an improper module name is only bad if we have inputs or if
// we're in REPL mode.
auto DID = (OI.ModuleName == STDLIB_NAME) ? diag::error_stdlib_module_name
: diag::error_bad_module_name;
Diags.diagnose(SourceLoc(), DID,
OI.ModuleName, !Args.hasArg(options::OPT_module_name));
OI.ModuleName = "__bad__";
}
}
if (Args.hasArg(options::OPT_fixit_code)) {
OI.ShouldGenerateFixitEdits = true;
}
{
if (const Arg *A = Args.getLastArg(options::OPT_sdk)) {
OI.SDKPath = A->getValue();
} else if (const char *SDKROOT = getenv("SDKROOT")) {
OI.SDKPath = SDKROOT;
} else if (OI.CompilerMode == OutputInfo::Mode::Immediate ||
OI.CompilerMode == OutputInfo::Mode::REPL) {
if (TC.getTriple().isMacOSX()) {
// In immediate modes, use the SDK provided by xcrun.
// This will prefer the SDK alongside the Swift found by "xcrun swift".
// We don't do this in compilation modes because defaulting to the
// latest SDK may not be intended.
auto xcrunPath = llvm::sys::findProgramByName("xcrun");
if (!xcrunPath.getError()) {
const char *args[] = {
"--show-sdk-path", "--sdk", "macosx", nullptr
};
sys::TaskQueue queue;
queue.addTask(xcrunPath->c_str(), args);
queue.execute(nullptr,
[&OI](sys::ProcessId PID,
int returnCode,
StringRef output,
void *unused) -> sys::TaskFinishedResponse {
if (returnCode == 0) {
output = output.rtrim();
auto lastLineStart = output.find_last_of("\n\r");
if (lastLineStart != StringRef::npos)
output = output.substr(lastLineStart+1);
if (output.empty())
OI.SDKPath = "/";
else
OI.SDKPath = output.str();
}
return sys::TaskFinishedResponse::ContinueExecution;
});
}
}
}
if (!OI.SDKPath.empty()) {
// Delete a trailing /.
if (OI.SDKPath.size() > 1 &&
llvm::sys::path::is_separator(OI.SDKPath.back())) {
OI.SDKPath.erase(OI.SDKPath.end()-1);
}
if (!llvm::sys::fs::exists(OI.SDKPath)) {
Diags.diagnose(SourceLoc(), diag::warning_no_such_sdk, OI.SDKPath);
} else if (isSDKTooOld(OI.SDKPath, TC.getTriple())) {
Diags.diagnose(SourceLoc(), diag::error_sdk_too_old,
llvm::sys::path::filename(OI.SDKPath));
}
}
}
OI.SelectedSanitizer = SanitizerKind::None;
if (const Arg *A = Args.getLastArg(options::OPT_sanitize_EQ))
OI.SelectedSanitizer = parseSanitizerArgValues(A, TC.getTriple(), Diags);
// Check that the sanitizer coverage flags are supported if supplied.
if (const Arg *A = Args.getLastArg(options::OPT_sanitize_coverage_EQ))
(void)parseSanitizerCoverageArgValue(A, TC.getTriple(), Diags,
OI.SelectedSanitizer);
}
void Driver::buildActions(const ToolChain &TC,
const DerivedArgList &Args,
const InputFileList &Inputs,
const OutputInfo &OI,
const OutputFileMap *OFM,
const InputInfoMap *OutOfDateMap,
ActionList &Actions) const {
if (!SuppressNoInputFilesError && Inputs.empty()) {
Diags.diagnose(SourceLoc(), diag::error_no_input_files);
return;
}
ActionList AllModuleInputs;
ActionList AllLinkerInputs;
switch (OI.CompilerMode) {
case OutputInfo::Mode::StandardCompile:
case OutputInfo::Mode::UpdateCode: {
for (const InputPair &Input : Inputs) {
types::ID InputType = Input.first;
const Arg *InputArg = Input.second;
std::unique_ptr<Action> Current(new InputAction(*InputArg, InputType));
switch (InputType) {
case types::TY_Swift:
case types::TY_SIL:
case types::TY_SIB: {
// Source inputs always need to be compiled.
assert(types::isPartOfSwiftCompilation(InputType));
CompileJobAction::InputInfo previousBuildState = {
CompileJobAction::InputInfo::NeedsCascadingBuild,
llvm::sys::TimeValue::MinTime()
};
if (OutOfDateMap)
previousBuildState = OutOfDateMap->lookup(InputArg);
if (Args.hasArg(options::OPT_embed_bitcode)) {
Current.reset(new CompileJobAction(Current.release(),
types::TY_LLVM_BC,
previousBuildState));
AllModuleInputs.push_back(Current.get());
Current.reset(new BackendJobAction(Current.release(),
OI.CompilerOutputType, 0));
} else {
Current.reset(new CompileJobAction(Current.release(),
OI.CompilerOutputType,
previousBuildState));
AllModuleInputs.push_back(Current.get());
}
AllLinkerInputs.push_back(Current.release());
break;
}
case types::TY_SwiftModuleFile:
case types::TY_SwiftModuleDocFile:
// Module inputs are okay if generating a module.
if (OI.ShouldGenerateModule) {
AllModuleInputs.push_back(Current.release());
break;
}
Diags.diagnose(SourceLoc(), diag::error_unexpected_input_file,
InputArg->getValue());
continue;
case types::TY_AutolinkFile:
case types::TY_Object:
// Object inputs are only okay if linking.
if (OI.shouldLink()) {
AllLinkerInputs.push_back(Current.release());
break;
}
SWIFT_FALLTHROUGH;
case types::TY_Image:
case types::TY_dSYM:
case types::TY_Dependencies:
case types::TY_Assembly:
case types::TY_LLVM_IR:
case types::TY_LLVM_BC:
case types::TY_SerializedDiagnostics:
case types::TY_ObjCHeader:
case types::TY_ClangModuleFile:
case types::TY_SwiftDeps:
case types::TY_Remapping:
// We could in theory handle assembly or LLVM input, but let's not.
// FIXME: What about LTO?
Diags.diagnose(SourceLoc(), diag::error_unexpected_input_file,
InputArg->getValue());
continue;
case types::TY_RawSIB:
case types::TY_RawSIL:
case types::TY_Nothing:
case types::TY_INVALID:
llvm_unreachable("these types should never be inferred");
}
}
break;
}
case OutputInfo::Mode::SingleCompile: {
if (Inputs.empty()) break;
if (Args.hasArg(options::OPT_embed_bitcode)) {
// Make sure we can handle the inputs.
bool HandledHere = true;
for (const InputPair &Input : Inputs) {
types::ID InputType = Input.first;
if (!types::isPartOfSwiftCompilation(InputType)) {
HandledHere = false;
break;
}
}
if (HandledHere) {
// Create a single CompileJobAction and a single BackendJobAction.
std::unique_ptr<JobAction> CA(new CompileJobAction(types::TY_LLVM_BC));
AllModuleInputs.push_back(CA.get());
int InputIndex = 0;
for (const InputPair &Input : Inputs) {
types::ID InputType = Input.first;
const Arg *InputArg = Input.second;
CA->addInput(new InputAction(*InputArg, InputType));
if (OI.isMultiThreading()) {
// With multi-threading we need a backend job for each output file
// of the compilation.
auto *BJA = new BackendJobAction(CA.get(), OI.CompilerOutputType,
InputIndex);
// Only the first backend job owns the compilation job (to prevent
// multiple de-allocations of the compilation job).
BJA->setOwnsInputs(InputIndex == 0);
AllLinkerInputs.push_back(BJA);
}
InputIndex++;
}
Action *CAReleased = CA.release();
if (!OI.isMultiThreading()) {
// No multi-threading: the compilation only produces a single output
// file.
CA.reset(new BackendJobAction(CAReleased,
OI.CompilerOutputType, 0));
AllLinkerInputs.push_back(CA.release());
}
break;
}
}
// Create a single CompileJobAction for all of the driver's inputs.
std::unique_ptr<JobAction> CA(new CompileJobAction(OI.CompilerOutputType));
for (const InputPair &Input : Inputs) {
types::ID InputType = Input.first;
const Arg *InputArg = Input.second;
CA->addInput(new InputAction(*InputArg, InputType));
}
AllModuleInputs.push_back(CA.get());
AllLinkerInputs.push_back(CA.release());
break;
}
case OutputInfo::Mode::Immediate: {
if (Inputs.empty())
return;
assert(OI.CompilerOutputType == types::TY_Nothing);
std::unique_ptr<JobAction> CA(new InterpretJobAction());
for (const InputPair &Input : Inputs) {
types::ID InputType = Input.first;
const Arg *InputArg = Input.second;
CA->addInput(new InputAction(*InputArg, InputType));
}
Actions.push_back(CA.release());
return;
}
case OutputInfo::Mode::REPL: {
if (!Inputs.empty()) {
// REPL mode requires no inputs.
Diags.diagnose(SourceLoc(), diag::error_repl_requires_no_input_files);
return;
}
REPLJobAction::Mode Mode = REPLJobAction::Mode::PreferLLDB;
if (const Arg *A = Args.getLastArg(options::OPT_lldb_repl,
options::OPT_deprecated_integrated_repl)) {
if (A->getOption().matches(options::OPT_lldb_repl))
Mode = REPLJobAction::Mode::RequireLLDB;
else
Mode = REPLJobAction::Mode::Integrated;
}
Actions.push_back(new REPLJobAction(Mode));
return;
}
}
std::unique_ptr<JobAction> MergeModuleAction;
if (OI.ShouldGenerateModule &&
OI.CompilerMode != OutputInfo::Mode::SingleCompile &&
!AllModuleInputs.empty()) {
// We're performing multiple compilations; set up a merge module step
// so we generate a single swiftmodule as output.
MergeModuleAction.reset(new MergeModuleJobAction(AllModuleInputs));
MergeModuleAction->setOwnsInputs(false);
}
if (OI.shouldLink() && !AllLinkerInputs.empty()) {
auto *LinkAction = new LinkJobAction(AllLinkerInputs, OI.LinkAction);
if (TC.getTriple().getObjectFormat() == llvm::Triple::ELF ||
TC.getTriple().isOSCygMing()) {
// On ELF platforms there's no built in autolinking mechanism, so we
// pull the info we need from the .o files directly and pass them as an
// argument input file to the linker.
auto *AutolinkExtractAction =
new AutolinkExtractJobAction(AllLinkerInputs);
// Takes the same inputs as the linker, but doesn't own them.
AutolinkExtractAction->setOwnsInputs(false);
// And gives its output to the linker.
LinkAction->addInput(AutolinkExtractAction);
}
if (MergeModuleAction) {
if (OI.DebugInfoKind == IRGenDebugInfoKind::Normal) {
if (TC.getTriple().getObjectFormat() == llvm::Triple::ELF) {
auto *ModuleWrapAction =
new ModuleWrapJobAction(MergeModuleAction.release());
LinkAction->addInput(ModuleWrapAction);
} else
LinkAction->addInput(MergeModuleAction.release());
} else
Actions.push_back(MergeModuleAction.release());
}
Actions.push_back(LinkAction);
if (TC.getTriple().isOSDarwin() &&
OI.DebugInfoKind > IRGenDebugInfoKind::None) {
auto *dSYMAction = new GenerateDSYMJobAction(LinkAction);
dSYMAction->setOwnsInputs(false);
Actions.push_back(dSYMAction);
}
} else {
// The merge module action needs to be first to force the right outputs
// for the other actions. However, we can't rely on it being the only
// action because there may be other actions (e.g. BackenJobActions) that
// are not merge-module inputs but nonetheless should be run.
if (MergeModuleAction)
Actions.push_back(MergeModuleAction.release());
Actions.append(AllLinkerInputs.begin(), AllLinkerInputs.end());
}
}
bool Driver::handleImmediateArgs(const ArgList &Args, const ToolChain &TC) {
if (Args.hasArg(options::OPT_help)) {
printHelp(false);
return false;
}
if (Args.hasArg(options::OPT_help_hidden)) {
printHelp(true);
return false;
}
if (Args.hasArg(options::OPT_version)) {
// Follow gcc/clang behavior and use stdout for --version and stderr for -v.
printVersion(TC, llvm::outs());
return false;
}
if (Args.hasArg(options::OPT_v)) {
printVersion(TC, llvm::errs());
SuppressNoInputFilesError = true;
}
if (const Arg *A = Args.getLastArg(options::OPT_driver_use_frontend_path))
DriverExecutable = A->getValue();
return true;
}
std::unique_ptr<OutputFileMap>
Driver::buildOutputFileMap(const llvm::opt::DerivedArgList &Args) const {
const Arg *A = Args.getLastArg(options::OPT_output_file_map);
if (!A)
return nullptr;
// TODO: perform some preflight checks to ensure the file exists.
auto OFM = OutputFileMap::loadFromPath(A->getValue());
if (!OFM) {
// TODO: emit diagnostic with error string
Diags.diagnose(SourceLoc(), diag::error_unable_to_load_output_file_map);
}
return OFM;
}
void Driver::buildJobs(const ActionList &Actions, const OutputInfo &OI,
const OutputFileMap *OFM, const ToolChain &TC,
Compilation &C) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
const DerivedArgList &Args = C.getArgs();
JobCacheMap JobCache;
Arg *FinalOutput = Args.getLastArg(options::OPT_o);
if (FinalOutput) {
unsigned NumOutputs = 0;
for (const Action *A : Actions) {
types::ID Type = A->getType();
// Only increment NumOutputs if this is an output which must have its
// path specified using -o.
// (Module outputs can be specified using -module-output-path, or will
// be inferred if there are other top-level outputs. dSYM outputs are
// based on the image.)
if (Type != types::TY_Nothing && Type != types::TY_SwiftModuleFile &&
Type != types::TY_dSYM) {
// Multi-threading compilation has multiple outputs, except those
// outputs which are produced before the llvm passes (e.g. emit-sil).
if (OI.isMultiThreading() && isa<CompileJobAction>(A) &&
types::isAfterLLVM(A->getType())) {
NumOutputs += cast<CompileJobAction>(A)->size();
} else {
++NumOutputs;
}
}
}
if (NumOutputs > 1) {
Diags.diagnose(SourceLoc(),
diag::error_cannot_specify__o_for_multiple_outputs);
FinalOutput = nullptr;
}
}
for (const Action *A : Actions) {
(void)buildJobsForAction(C, cast<JobAction>(A), OI, OFM, TC,
/*TopLevel*/true, JobCache);
}
}
static StringRef getOutputFilename(Compilation &C,
const JobAction *JA,
const OutputInfo &OI,
const TypeToPathMap *OutputMap,
const llvm::opt::DerivedArgList &Args,
bool AtTopLevel,
StringRef BaseInput,
ArrayRef<const Job *> InputJobs,
DiagnosticEngine &Diags,
llvm::SmallString<128> &Buffer) {
if (JA->getType() == types::TY_Nothing)
return {};
// If available, check the OutputMap first.
if (OutputMap) {
auto iter = OutputMap->find(JA->getType());
if (iter != OutputMap->end())
return iter->second;
}
// Process Action-specific output-specifying options next,
// since we didn't find anything applicable in the OutputMap.
if (isa<MergeModuleJobAction>(JA)) {
if (const Arg *A = Args.getLastArg(options::OPT_emit_module_path))
return A->getValue();
if (OI.ShouldTreatModuleAsTopLevelOutput) {
if (const Arg *A = Args.getLastArg(options::OPT_o)) {
if (OI.CompilerOutputType == types::TY_SwiftModuleFile)
return A->getValue();
// Otherwise, put the module next to the top-level output.
Buffer = A->getValue();
llvm::sys::path::remove_filename(Buffer);
llvm::sys::path::append(Buffer, OI.ModuleName);
llvm::sys::path::replace_extension(Buffer, SERIALIZED_MODULE_EXTENSION);
return Buffer.str();
}
// A top-level output wasn't specified, so just output to
// <ModuleName>.swiftmodule.
Buffer = OI.ModuleName;
llvm::sys::path::replace_extension(Buffer, SERIALIZED_MODULE_EXTENSION);
return Buffer.str();
}
}
// dSYM actions are never treated as top-level.
if (isa<GenerateDSYMJobAction>(JA)) {
Buffer = InputJobs.front()->getOutput().getPrimaryOutputFilename();
Buffer.push_back('.');
Buffer.append(types::getTypeTempSuffix(JA->getType()));
return Buffer.str();
}
// We don't have an output from an Action-specific command line option,
// so figure one out using the defaults.
if (AtTopLevel) {
if (Arg *FinalOutput = Args.getLastArg(options::OPT_o))
return FinalOutput->getValue();
if (types::isTextual(JA->getType()))
return "-";
}
assert(!BaseInput.empty() &&
"A Job which produces output must have a BaseInput!");
StringRef BaseName(BaseInput);
if (isa<MergeModuleJobAction>(JA) ||
(OI.CompilerMode == OutputInfo::Mode::SingleCompile &&
!OI.isMultiThreading()) ||
JA->getType() == types::TY_Image)
BaseName = OI.ModuleName;
// We don't yet have a name, assign one.
if (!AtTopLevel) {
// We should output to a temporary file, since we're not at
// the top level.
StringRef Stem = llvm::sys::path::stem(BaseName);
StringRef Suffix = types::getTypeTempSuffix(JA->getType());
std::error_code EC =
llvm::sys::fs::createTemporaryFile(Stem, Suffix, Buffer);
if (EC) {
Diags.diagnose(SourceLoc(),
diag::error_unable_to_make_temporary_file,
EC.message());
return {};
}
C.addTemporaryFile(Buffer.str());
return Buffer.str();
}
if (JA->getType() == types::TY_Image) {
if (JA->size() == 1 && OI.ModuleNameIsFallback && BaseInput != "-")
BaseName = llvm::sys::path::stem(BaseInput);
if (auto link = dyn_cast<LinkJobAction>(JA)) {
if (link->getKind() == LinkKind::DynamicLibrary) {
// FIXME: This should be target-specific.
Buffer = "lib";
Buffer.append(BaseName);
Buffer.append(LTDL_SHLIB_EXT);
return Buffer.str();
}
}
return BaseName;
}
StringRef Suffix = types::getTypeTempSuffix(JA->getType());
assert(Suffix.data() &&
"All types used for output should have a suffix.");
Buffer = llvm::sys::path::filename(BaseName);
llvm::sys::path::replace_extension(Buffer, Suffix);
return Buffer.str();
}
static void addAuxiliaryOutput(Compilation &C, CommandOutput &output,
types::ID outputType, const OutputInfo &OI,
const TypeToPathMap *outputMap) {
StringRef outputMapPath;
if (outputMap) {
auto iter = outputMap->find(outputType);
if (iter != outputMap->end())
outputMapPath = iter->second;
}
if (!outputMapPath.empty()) {
// Prefer a path from the OutputMap.
output.setAdditionalOutputForType(outputType, outputMapPath);
} else {
// Put the auxiliary output file next to the primary output file.
llvm::SmallString<128> path;
if (output.getPrimaryOutputType() != types::TY_Nothing)
path = output.getPrimaryOutputFilenames()[0];
else if (!output.getBaseInput(0).empty())
path = llvm::sys::path::stem(output.getBaseInput(0));
else
path = OI.ModuleName;
bool isTempFile = C.isTemporaryFile(path);
llvm::sys::path::replace_extension(path,
types::getTypeTempSuffix(outputType));
output.setAdditionalOutputForType(outputType, path);
if (isTempFile)
C.addTemporaryFile(path);
}
}
/// If the file at \p input has not been modified since the last build (i.e. its
/// mtime has not changed), adjust the Job's condition accordingly.
static void
handleCompileJobCondition(Job *J, CompileJobAction::InputInfo inputInfo,
StringRef input, bool alwaysRebuildDependents) {
if (inputInfo.status == CompileJobAction::InputInfo::NewlyAdded) {
J->setCondition(Job::Condition::NewlyAdded);
return;
}
bool hasValidModTime = false;
llvm::sys::fs::file_status inputStatus;
if (!llvm::sys::fs::status(input, inputStatus)) {
J->setInputModTime(inputStatus.getLastModificationTime());
hasValidModTime = true;
}
Job::Condition condition;
if (hasValidModTime && J->getInputModTime() == inputInfo.previousModTime) {
switch (inputInfo.status) {
case CompileJobAction::InputInfo::UpToDate:
if (llvm::sys::fs::exists(J->getOutput().getPrimaryOutputFilename()))
condition = Job::Condition::CheckDependencies;
else
condition = Job::Condition::RunWithoutCascading;
break;
case CompileJobAction::InputInfo::NeedsCascadingBuild:
condition = Job::Condition::Always;
break;
case CompileJobAction::InputInfo::NeedsNonCascadingBuild:
condition = Job::Condition::RunWithoutCascading;
break;
case CompileJobAction::InputInfo::NewlyAdded:
llvm_unreachable("handled above");
}
} else {
if (alwaysRebuildDependents ||
inputInfo.status == CompileJobAction::InputInfo::NeedsCascadingBuild) {
condition = Job::Condition::Always;
} else {
condition = Job::Condition::RunWithoutCascading;
}
}
J->setCondition(condition);
}
Job *Driver::buildJobsForAction(Compilation &C, const JobAction *JA,
const OutputInfo &OI,
const OutputFileMap *OFM,
const ToolChain &TC, bool AtTopLevel,
JobCacheMap &JobCache) const {
// 1. See if we've already got this cached.
std::pair<const Action *, const ToolChain *> Key(JA, &TC);
{
auto CacheIter = JobCache.find(Key);
if (CacheIter != JobCache.end()) {
return CacheIter->second;
}
}
// 2. Build up the list of input jobs.
ActionList InputActions;
SmallVector<const Job *, 4> InputJobs;
for (Action *Input : *JA) {
if (auto *InputJobAction = dyn_cast<JobAction>(Input)) {
InputJobs.push_back(buildJobsForAction(C, InputJobAction, OI, OFM,
TC, false, JobCache));
} else {
InputActions.push_back(Input);
}
}
// 3. Determine the CommandOutput for the job.
StringRef BaseInput;
if (!InputActions.empty()) {
// Use the first InputAction as our BaseInput.
InputAction *IA = cast<InputAction>(InputActions[0]);
BaseInput = IA->getInputArg().getValue();
} else if (!InputJobs.empty()) {
// Use the first Job's BaseInput as our BaseInput.
BaseInput = InputJobs.front()->getOutput().getBaseInput(JA->getInputIndex());
}
const TypeToPathMap *OutputMap = nullptr;
if (OFM) {
if (isa<CompileJobAction>(JA)) {
if (OI.CompilerMode == OutputInfo::Mode::SingleCompile) {
OutputMap = OFM->getOutputMapForSingleOutput();
} else {
OutputMap = OFM->getOutputMapForInput(BaseInput);
}
} else if (isa<BackendJobAction>(JA)) {
OutputMap = OFM->getOutputMapForInput(BaseInput);
}
}
std::unique_ptr<CommandOutput> Output(new CommandOutput(JA->getType()));
llvm::SmallString<128> Buf;
StringRef OutputFile;
if (OI.isMultiThreading() && isa<CompileJobAction>(JA) &&
types::isAfterLLVM(JA->getType())) {
// Multi-threaded compilation: A single frontend command produces multiple
// output file: one for each input files.
auto OutputFunc = [&](StringRef Input) {
const TypeToPathMap *OMForInput = nullptr;
if (OFM)
OMForInput = OFM->getOutputMapForInput(Input);
OutputFile = getOutputFilename(C, JA, OI, OMForInput, C.getArgs(),
AtTopLevel, Input, InputJobs,
Diags, Buf);
Output->addPrimaryOutput(OutputFile, Input);
};
// Add an output file for each input action.
for (Action *A : InputActions) {
InputAction *IA = cast<InputAction>(A);
OutputFunc(IA->getInputArg().getValue());
}
// Add an output file for each input job.
for (const Job *job : InputJobs) {
OutputFunc(job->getOutput().getBaseInput(0));
}
} else {
// The common case: there is a single output file.
OutputFile = getOutputFilename(C, JA, OI, OutputMap, C.getArgs(),
AtTopLevel, BaseInput, InputJobs,
Diags, Buf);
Output->addPrimaryOutput(OutputFile, BaseInput);
}
// Choose the swiftmodule output path.
if (OI.ShouldGenerateModule && isa<CompileJobAction>(JA) &&
Output->getPrimaryOutputType() != types::TY_SwiftModuleFile) {
StringRef OFMModuleOutputPath;
if (OutputMap) {
auto iter = OutputMap->find(types::TY_SwiftModuleFile);
if (iter != OutputMap->end())
OFMModuleOutputPath = iter->second;
}
const Arg *A = C.getArgs().getLastArg(options::OPT_emit_module_path);
if (!OFMModuleOutputPath.empty()) {
// Prefer a path from the OutputMap.
Output->setAdditionalOutputForType(types::TY_SwiftModuleFile,
OFMModuleOutputPath);
} else if (A && OI.CompilerMode == OutputInfo::Mode::SingleCompile) {
// We're performing a single compilation (and thus no merge module step),
// so prefer to use -emit-module-path, if present.
Output->setAdditionalOutputForType(types::TY_SwiftModuleFile,
A->getValue());
} else if (OI.CompilerMode == OutputInfo::Mode::SingleCompile &&
OI.ShouldTreatModuleAsTopLevelOutput) {
// We're performing a single compile and don't have -emit-module-path,
// but have been told to treat the module as a top-level output.
// Determine an appropriate path.
if (const Arg *A = C.getArgs().getLastArg(options::OPT_o)) {
// Put the module next to the top-level output.
llvm::SmallString<128> Path(A->getValue());
llvm::sys::path::remove_filename(Path);
llvm::sys::path::append(Path, OI.ModuleName);
llvm::sys::path::replace_extension(Path, SERIALIZED_MODULE_EXTENSION);
Output->setAdditionalOutputForType(types::TY_SwiftModuleFile, Path);
} else {
// A top-level output wasn't specified, so just output to
// <ModuleName>.swiftmodule.
llvm::SmallString<128> Path(OI.ModuleName);
llvm::sys::path::replace_extension(Path, SERIALIZED_MODULE_EXTENSION);
Output->setAdditionalOutputForType(types::TY_SwiftModuleFile, Path);
}
} else {
// We're only generating the module as an intermediate, so put it next
// to the primary output of the compile command.
llvm::SmallString<128> Path(Output->getPrimaryOutputFilenames()[0]);
bool isTempFile = C.isTemporaryFile(Path);
llvm::sys::path::replace_extension(Path, SERIALIZED_MODULE_EXTENSION);
Output->setAdditionalOutputForType(types::ID::TY_SwiftModuleFile, Path);
if (isTempFile)
C.addTemporaryFile(Path);
}
}
// Choose the swiftdoc output path.
if (OI.ShouldGenerateModule &&
(isa<CompileJobAction>(JA) || isa<MergeModuleJobAction>(JA))) {
StringRef OFMModuleDocOutputPath;
if (OutputMap) {
auto iter = OutputMap->find(types::TY_SwiftModuleDocFile);
if (iter != OutputMap->end())
OFMModuleDocOutputPath = iter->second;
}
if (!OFMModuleDocOutputPath.empty()) {
// Prefer a path from the OutputMap.
Output->setAdditionalOutputForType(types::TY_SwiftModuleDocFile,
OFMModuleDocOutputPath);
} else {
// Otherwise, put it next to the swiftmodule file.
llvm::SmallString<128> Path(
Output->getAnyOutputForType(types::TY_SwiftModuleFile));
bool isTempFile = C.isTemporaryFile(Path);
llvm::sys::path::replace_extension(Path,
SERIALIZED_MODULE_DOC_EXTENSION);
Output->setAdditionalOutputForType(types::TY_SwiftModuleDocFile, Path);
if (isTempFile)
C.addTemporaryFile(Path);
}
}
if (OI.ShouldGenerateFixitEdits && isa<CompileJobAction>(JA)) {
StringRef OFMFixitsOutputPath;
if (OutputMap) {
auto iter = OutputMap->find(types::TY_Remapping);
if (iter != OutputMap->end())
OFMFixitsOutputPath = iter->second;
}
if (!OFMFixitsOutputPath.empty()) {
Output->setAdditionalOutputForType(types::ID::TY_Remapping,
OFMFixitsOutputPath);
} else {
llvm::SmallString<128> Path(Output->getPrimaryOutputFilenames()[0]);
bool isTempFile = C.isTemporaryFile(Path);
llvm::sys::path::replace_extension(Path, "remap");
Output->setAdditionalOutputForType(types::ID::TY_Remapping, Path);
if (isTempFile)
C.addTemporaryFile(Path);
}
}
if (isa<CompileJobAction>(JA)) {
// Choose the serialized diagnostics output path.
if (C.getArgs().hasArg(options::OPT_serialize_diagnostics)) {
addAuxiliaryOutput(C, *Output, types::TY_SerializedDiagnostics, OI,
OutputMap);
// Remove any existing diagnostics files so that clients can detect their
// presence to determine if a command was run.
StringRef OutputPath =
Output->getAnyOutputForType(types::TY_SerializedDiagnostics);
if (llvm::sys::fs::is_regular_file(OutputPath))
llvm::sys::fs::remove(OutputPath);
}
// Choose the dependencies file output path.
if (C.getArgs().hasArg(options::OPT_emit_dependencies)) {
addAuxiliaryOutput(C, *Output, types::TY_Dependencies, OI, OutputMap);
}
if (C.getIncrementalBuildEnabled()) {
addAuxiliaryOutput(C, *Output, types::TY_SwiftDeps, OI, OutputMap);
}
}
// Choose the Objective-C header output path.
if ((isa<MergeModuleJobAction>(JA) ||
(isa<CompileJobAction>(JA) &&
OI.CompilerMode == OutputInfo::Mode::SingleCompile)) &&
C.getArgs().hasArg(options::OPT_emit_objc_header,
options::OPT_emit_objc_header_path)) {
StringRef ObjCHeaderPath;
if (OutputMap) {
auto iter = OutputMap->find(types::TY_ObjCHeader);
if (iter != OutputMap->end())
ObjCHeaderPath = iter->second;
}
if (ObjCHeaderPath.empty())
if (auto A = C.getArgs().getLastArg(options::OPT_emit_objc_header_path))
ObjCHeaderPath = A->getValue();
if (!ObjCHeaderPath.empty()) {
Output->setAdditionalOutputForType(types::TY_ObjCHeader, ObjCHeaderPath);
} else {
// Put the header next to the primary output file.
// FIXME: That's not correct if the user /just/ passed -emit-header
// and not -emit-module.
addAuxiliaryOutput(C, *Output, types::TY_ObjCHeader, OI,
/*output file map*/nullptr);
}
}
// 4. Construct a Job which produces the right CommandOutput.
std::unique_ptr<Job> ownedJob = TC.constructJob(*JA, C, std::move(InputJobs),
InputActions,
std::move(Output), OI);
Job *J = C.addJob(std::move(ownedJob));
// If we track dependencies for this job, we may be able to avoid running it.
if (!J->getOutput().getAdditionalOutputForType(types::TY_SwiftDeps).empty()) {
if (InputActions.size() == 1) {
auto compileJob = cast<CompileJobAction>(JA);
bool alwaysRebuildDependents =
C.getArgs().hasArg(options::OPT_driver_always_rebuild_dependents);
handleCompileJobCondition(J, compileJob->getInputInfo(), BaseInput,
alwaysRebuildDependents);
}
}
// 5. Add it to the JobCache, so we don't construct the same Job multiple
// times.
JobCache[Key] = J;
if (DriverPrintBindings) {
llvm::outs() << "# \"" << TC.getTriple().str()
<< "\" - \"" << llvm::sys::path::filename(J->getExecutable())
<< "\", inputs: [";
interleave(InputActions.begin(), InputActions.end(),
[](const Action *A) {
auto Input = cast<InputAction>(A);
llvm::outs() << '"' << Input->getInputArg().getValue() << '"';
},
[] { llvm::outs() << ", "; });
if (!InputActions.empty() && !J->getInputs().empty())
llvm::outs() << ", ";
interleave(J->getInputs().begin(), J->getInputs().end(),
[](const Job *Input) {
auto FileNames = Input->getOutput().getPrimaryOutputFilenames();
interleave(FileNames.begin(), FileNames.end(),
[](const std::string &FileName) {
llvm::outs() << '"' << FileName << '"';
},
[] { llvm::outs() << ", "; });
},
[] { llvm::outs() << ", "; });
llvm::outs() << "], output: {";
auto OutputFileNames = J->getOutput().getPrimaryOutputFilenames();
StringRef TypeName = types::getTypeName(J->getOutput().getPrimaryOutputType());
interleave(OutputFileNames.begin(), OutputFileNames.end(),
[TypeName](const std::string &FileName) {
llvm::outs() << TypeName << ": \"" << FileName << '"';
},
[] { llvm::outs() << ", "; });
types::forAllTypes([&J](types::ID Ty) {
StringRef AdditionalOutput =
J->getOutput().getAdditionalOutputForType(Ty);
if (!AdditionalOutput.empty()) {
llvm::outs() << ", " << types::getTypeName(Ty) << ": \""
<< AdditionalOutput << '"';
}
});
llvm::outs() << '}';
switch (J->getCondition()) {
case Job::Condition::Always:
break;
case Job::Condition::RunWithoutCascading:
llvm::outs() << ", condition: run-without-cascading";
break;
case Job::Condition::CheckDependencies:
llvm::outs() << ", condition: check-dependencies";
break;
case Job::Condition::NewlyAdded:
llvm::outs() << ", condition: newly-added";
break;
}
llvm::outs() << '\n';
}
return J;
}
static unsigned printActions(const Action *A,
llvm::DenseMap<const Action *, unsigned> &Ids) {
if (Ids.count(A))
return Ids[A];
std::string str;
llvm::raw_string_ostream os(str);
os << Action::getClassName(A->getKind()) << ", ";
if (const InputAction *IA = dyn_cast<InputAction>(A)) {
os << "\"" << IA->getInputArg().getValue() << "\"";
} else {
os << "{";
interleave(*cast<JobAction>(A),
[&](const Action *Input) { os << printActions(Input, Ids); },
[&] { os << ", "; });
os << "}";
}
unsigned Id = Ids.size();
Ids[A] = Id;
llvm::errs() << Id << ": " << os.str() << ", "
<< types::getTypeName(A->getType()) << "\n";
return Id;
}
void Driver::printActions(const ActionList &Actions) const {
llvm::DenseMap<const Action *, unsigned> Ids;
for (const Action *A : Actions) {
::printActions(A, Ids);
}
}
void Driver::printJobs(const Compilation &C) const {
for (const Job *J : C.getJobs())
J->printCommandLineAndEnvironment(llvm::outs());
}
void Driver::printVersion(const ToolChain &TC, raw_ostream &OS) const {
OS << version::getSwiftFullVersion() << '\n';
OS << "Target: " << TC.getTriple().str() << '\n';
}
void Driver::printHelp(bool ShowHidden) const {
unsigned IncludedFlagsBitmask = 0;
unsigned ExcludedFlagsBitmask = options::NoDriverOption;
switch (driverKind) {
case DriverKind::Interactive:
ExcludedFlagsBitmask |= options::NoInteractiveOption;
break;
case DriverKind::Batch:
case DriverKind::AutolinkExtract:
ExcludedFlagsBitmask |= options::NoBatchOption;
break;
}
if (!ShowHidden)
ExcludedFlagsBitmask |= HelpHidden;
getOpts().PrintHelp(llvm::outs(), Name.c_str(), "Swift compiler",
IncludedFlagsBitmask, ExcludedFlagsBitmask);
}
static llvm::Triple computeTargetTriple(StringRef DefaultTargetTriple) {
return llvm::Triple(DefaultTargetTriple);
}
const ToolChain *Driver::getToolChain(const ArgList &Args) const {
llvm::Triple Target = computeTargetTriple(DefaultTargetTriple);
ToolChain *&TC = ToolChains[Target.str()];
if (!TC) {
switch (Target.getOS()) {
case llvm::Triple::Darwin:
case llvm::Triple::MacOSX:
case llvm::Triple::IOS:
case llvm::Triple::TvOS:
case llvm::Triple::WatchOS:
TC = new toolchains::Darwin(*this, Target);
break;
case llvm::Triple::Linux:
if (Target.isAndroid()) {
TC = new toolchains::Android(*this, Target);
} else {
TC = new toolchains::GenericUnix(*this, Target);
}
break;
case llvm::Triple::FreeBSD:
TC = new toolchains::GenericUnix(*this, Target);
break;
case llvm::Triple::Win32:
TC = new toolchains::Cygwin(*this, Target);
break;
default:
TC = nullptr;
}
}
return TC;
}