blob: 6b5982dcd9b0bf9ffdb60143a410404f2a287d35 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
//===--- APIs unique to Set<Element> --------------------------------------===//
/// An unordered collection of unique elements.
///
/// You use a set instead of an array when you need to test efficiently for
/// membership and you aren't concerned with the order of the elements in the
/// collection, or when you need to ensure that each element appears only once
/// in a collection.
///
/// You can create a set with any element type that conforms to the `Hashable`
/// protocol. By default, most types in the standard library are hashable,
/// including strings, numeric and Boolean types, enumeration cases without
/// associated values, and even sets themselves.
///
/// Swift makes it as easy to create a new set as to create a new array. Simply
/// assign an array literal to a variable or constant with the `Set` type
/// specified.
///
/// let ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
/// if ingredients.contains("sugar") {
/// print("No thanks, too sweet.")
/// }
/// // Prints "No thanks, too sweet."
///
/// Set Operations
/// ==============
///
/// Sets provide a suite of mathematical set operations. For example, you can
/// efficiently test a set for membership of an element or check its
/// intersection with another set:
///
/// - Use the `contains(_:)` method to test whether a set contains a specific
/// element.
/// - Use the "equal to" operator (`==`) to test whether two sets contain the
/// same elements.
/// - Use the `isSubset(of:)` method to test whether a set contains all the
/// elements of another set or sequence.
/// - Use the `isSuperset(of:)` method to test whether all elements of a set
/// are contained in another set or sequence.
/// - Use the `isStrictSubset(of:)` and `isStrictSuperset(of:)` methods to test
/// whether a set is a subset or superset of, but not equal to, another set.
/// - Use the `isDisjoint(with:)` method to test whether a set has any elements
/// in common with another set.
///
/// You can also combine, exclude, or subtract the elements of two sets:
///
/// - Use the `union(_:)` method to create a new set with the elements of a set
/// and another set or sequence.
/// - Use the `intersection(_:)` method to create a new set with only the
/// elements common to a set and another set or sequence.
/// - Use the `symmetricDifference(_:)` method to create a new set with the
/// elements that are in either a set or another set or sequence, but not in
/// both.
/// - Use the `subtracting(_:)` method to create a new set with the elements of
/// a set that are not also in another set or sequence.
///
/// You can modify a set in place by using these methods' mutating
/// counterparts: `formUnion(_:)`, `formIntersection(_:)`,
/// `formSymmetricDifference(_:)`, and `subtract(_:)`.
///
/// Set operations are not limited to use with other sets. Instead, you can
/// perform set operations with another set, an array, or any other sequence
/// type.
///
/// var primes: Set = [2, 3, 5, 7]
///
/// // Tests whether primes is a subset of a Range<Int>
/// print(primes.isSubset(of: 0..<10))
/// // Prints "true"
///
/// // Performs an intersection with an Array<Int>
/// let favoriteNumbers = [5, 7, 15, 21]
/// print(primes.intersection(favoriteNumbers))
/// // Prints "[5, 7]"
///
/// Sequence and Collection Operations
/// ==================================
///
/// In addition to the `Set` type's set operations, you can use any nonmutating
/// sequence or collection methods with a set.
///
/// if primes.isEmpty {
/// print("No primes!")
/// } else {
/// print("We have \(primes.count) primes.")
/// }
/// // Prints "We have 4 primes."
///
/// let primesSum = primes.reduce(0, +)
/// // 'primesSum' == 17
///
/// let primeStrings = primes.sorted().map(String.init)
/// // 'primeStrings' == ["2", "3", "5", "7"]
///
/// You can iterate through a set's unordered elements with a `for`-`in` loop.
///
/// for number in primes {
/// print(number)
/// }
/// // Prints "5"
/// // Prints "7"
/// // Prints "2"
/// // Prints "3"
///
/// Many sequence and collection operations return an array or a type-erasing
/// collection wrapper instead of a set. To restore efficient set operations,
/// create a new set from the result.
///
/// let morePrimes = primes.union([11, 13, 17, 19])
///
/// let laterPrimes = morePrimes.filter { $0 > 10 }
/// // 'laterPrimes' is of type Array<Int>
///
/// let laterPrimesSet = Set(morePrimes.filter { $0 > 10 })
/// // 'laterPrimesSet' is of type Set<Int>
///
/// Bridging Between Set and NSSet
/// ==============================
///
/// You can bridge between `Set` and `NSSet` using the `as` operator. For
/// bridging to be possible, the `Element` type of a set must be a class, an
/// `@objc` protocol (a protocol imported from Objective-C or marked with the
/// `@objc` attribute), or a type that bridges to a Foundation type.
///
/// Bridging from `Set` to `NSSet` always takes O(1) time and space. When the
/// set's `Element` type is neither a class nor an `@objc` protocol, any
/// required bridging of elements occurs at the first access of each element,
/// so the first operation that uses the contents of the set (for example, a
/// membership test) can take O(*n*).
///
/// Bridging from `NSSet` to `Set` first calls the `copy(with:)` method
/// (`- copyWithZone:` in Objective-C) on the set to get an immutable copy and
/// then performs additional Swift bookkeeping work that takes O(1) time. For
/// instances of `NSSet` that are already immutable, `copy(with:)` returns the
/// same set in constant time; otherwise, the copying performance is
/// unspecified. The instances of `NSSet` and `Set` share buffer using the
/// same copy-on-write optimization that is used when two instances of `Set`
/// share buffer.
@_fixed_layout
public struct Set<Element: Hashable> {
@usableFromInline
internal typealias _VariantBuffer = _VariantSetBuffer<Element>
@usableFromInline
internal typealias _NativeBuffer = _NativeSetBuffer<Element>
@usableFromInline
internal var _variantBuffer: _VariantBuffer
}
extension Set {
/// Creates an empty set with preallocated space for at least the specified
/// number of elements.
///
/// Use this initializer to avoid intermediate reallocations of a set's
/// storage buffer when you know how many elements you'll insert into the set
/// after creation.
///
/// - Parameter minimumCapacity: The minimum number of elements that the
/// newly created set should be able to store without reallocating its
/// storage buffer.
@inlinable // FIXME(sil-serialize-all)
public init(minimumCapacity: Int) {
_variantBuffer =
_VariantBuffer.native(
_NativeBuffer(minimumCapacity: minimumCapacity))
}
/// Private initializer.
@inlinable // FIXME(sil-serialize-all)
internal init(_nativeBuffer: _NativeSetBuffer<Element>) {
_variantBuffer = _VariantBuffer.native(_nativeBuffer)
}
//
// All APIs below should dispatch to `_variantBuffer`, without doing any
// additional processing.
//
#if _runtime(_ObjC)
/// Private initializer used for bridging.
///
/// Only use this initializer when both conditions are true:
///
/// * it is statically known that the given `NSSet` is immutable;
/// * `Element` is bridged verbatim to Objective-C (i.e.,
/// is a reference type).
@inlinable // FIXME(sil-serialize-all)
public init(_immutableCocoaSet: _NSSet) {
_sanityCheck(_isBridgedVerbatimToObjectiveC(Element.self),
"Set can be backed by NSSet _variantBuffer only when the member type can be bridged verbatim to Objective-C")
_variantBuffer = _VariantSetBuffer.cocoa(
_CocoaSetBuffer(cocoaSet: _immutableCocoaSet))
}
#endif
}
extension Set: ExpressibleByArrayLiteral {
//
// `ExpressibleByArrayLiteral` conformance
//
/// Creates a set containing the elements of the given array literal.
///
/// Do not call this initializer directly. It is used by the compiler when
/// you use an array literal. Instead, create a new set using an array
/// literal as its value by enclosing a comma-separated list of values in
/// square brackets. You can use an array literal anywhere a set is expected
/// by the type context.
///
/// Here, a set of strings is created from an array literal holding only
/// strings.
///
/// let ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
/// if ingredients.isSuperset(of: ["sugar", "salt"]) {
/// print("Whatever it is, it's bound to be delicious!")
/// }
/// // Prints "Whatever it is, it's bound to be delicious!"
///
/// - Parameter elements: A variadic list of elements of the new set.
@inlinable // FIXME(sil-serialize-all)
public init(arrayLiteral elements: Element...) {
self.init(_nativeBuffer: _NativeSetBuffer.fromArray(elements))
}
}
extension Set: Sequence {
/// Returns an iterator over the members of the set.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
public func makeIterator() -> SetIterator<Element> {
return _variantBuffer.makeIterator()
}
/// Returns a Boolean value that indicates whether the given element exists
/// in the set.
///
/// This example uses the `contains(_:)` method to test whether an integer is
/// a member of a set of prime numbers.
///
/// let primes: Set = [2, 3, 5, 7]
/// let x = 5
/// if primes.contains(x) {
/// print("\(x) is prime!")
/// } else {
/// print("\(x). Not prime.")
/// }
/// // Prints "5 is prime!"
///
/// - Parameter member: An element to look for in the set.
/// - Returns: `true` if `member` exists in the set; otherwise, `false`.
///
/// - Complexity: O(1)
@inlinable // FIXME(sil-serialize-all)
public func contains(_ member: Element) -> Bool {
return _variantBuffer.maybeGet(member) != nil
}
@inlinable // FIXME(sil-serialize-all)
public func _customContainsEquatableElement(_ member: Element) -> Bool? {
return contains(member)
}
}
// This is not quite Sequence.filter, because that returns [Element], not Self
// (RangeReplaceableCollection.filter returns Self, but Set isn't an RRC)
extension Set {
/// Returns a new set containing the elements of the set that satisfy the
/// given predicate.
///
/// In this example, `filter(_:)` is used to include only names shorter than
/// five characters.
///
/// let cast: Set = ["Vivien", "Marlon", "Kim", "Karl"]
/// let shortNames = cast.filter { $0.count < 5 }
///
/// shortNames.isSubset(of: cast)
/// // true
/// shortNames.contains("Vivien")
/// // false
///
/// - Parameter isIncluded: A closure that takes an element as its argument
/// and returns a Boolean value indicating whether the element should be
/// included in the returned set.
/// - Returns: A set of the elements that `isIncluded` allows.
@inlinable
@available(swift, introduced: 4.0)
public func filter(
_ isIncluded: (Element) throws -> Bool
) rethrows -> Set {
var result = Set()
for element in self {
if try isIncluded(element) {
result.insert(element)
}
}
return result
}
}
extension Set: Collection {
/// The starting position for iterating members of the set.
///
/// If the set is empty, `startIndex` is equal to `endIndex`.
@inlinable // FIXME(sil-serialize-all)
public var startIndex: Index {
return _variantBuffer.startIndex
}
/// The "past the end" position for the set---that is, the position one
/// greater than the last valid subscript argument.
///
/// If the set is empty, `endIndex` is equal to `startIndex`.
@inlinable // FIXME(sil-serialize-all)
public var endIndex: Index {
return _variantBuffer.endIndex
}
/// Accesses the member at the given position.
@inlinable // FIXME(sil-serialize-all)
public subscript(position: Index) -> Element {
return _variantBuffer.assertingGet(position)
}
@inlinable // FIXME(sil-serialize-all)
public func index(after i: Index) -> Index {
return _variantBuffer.index(after: i)
}
// APINAMING: complexity docs are broadly missing in this file.
/// Returns the index of the given element in the set, or `nil` if the
/// element is not a member of the set.
///
/// - Parameter member: An element to search for in the set.
/// - Returns: The index of `member` if it exists in the set; otherwise,
/// `nil`.
///
/// - Complexity: O(1)
@inlinable // FIXME(sil-serialize-all)
public func firstIndex(of member: Element) -> Index? {
return _variantBuffer.index(forKey: member)
}
@inlinable // FIXME(sil-serialize-all)
public func _customIndexOfEquatableElement(
_ member: Element
) -> Index?? {
return Optional(firstIndex(of: member))
}
@inlinable // FIXME(sil-serialize-all)
public func _customLastIndexOfEquatableElement(
_ member: Element
) -> Index?? {
// The first and last elements are the same because each element is unique.
return _customIndexOfEquatableElement(member)
}
/// The number of elements in the set.
///
/// - Complexity: O(1).
@inlinable // FIXME(sil-serialize-all)
public var count: Int {
return _variantBuffer.count
}
/// A Boolean value that indicates whether the set is empty.
@inlinable // FIXME(sil-serialize-all)
public var isEmpty: Bool {
return count == 0
}
/// The first element of the set.
///
/// The first element of the set is not necessarily the first element added
/// to the set. Don't expect any particular ordering of set elements.
///
/// If the set is empty, the value of this property is `nil`.
@inlinable // FIXME(sil-serialize-all)
public var first: Element? {
return count > 0 ? self[startIndex] : nil
}
}
/// Check for both subset and equality relationship between
/// a set and some sequence (which may itself be a `Set`).
///
/// (isSubset: lhs ⊂ rhs, isEqual: lhs ⊂ rhs and |lhs| = |rhs|)
@inlinable
internal func _compareSets<Element>(_ lhs: Set<Element>, _ rhs: Set<Element>)
-> (isSubset: Bool, isEqual: Bool) {
// FIXME(performance): performance could be better if we start by comparing
// counts.
for member in lhs {
if !rhs.contains(member) {
return (false, false)
}
}
return (true, lhs.count == rhs.count)
}
// FIXME: rdar://problem/23549059 (Optimize == for Set)
// Look into initially trying to compare the two sets by directly comparing the
// contents of both buffers in order. If they happen to have the exact same
// ordering we can get the `true` response without ever hashing. If the two
// buffers' contents differ at all then we have to fall back to hashing the
// rest of the elements (but we don't need to hash any prefix that did match).
extension Set: Equatable {
/// Returns a Boolean value indicating whether two sets have equal elements.
///
/// - Parameters:
/// - lhs: A set.
/// - rhs: Another set.
/// - Returns: `true` if the `lhs` and `rhs` have the same elements; otherwise,
/// `false`.
@inlinable // FIXME(sil-serialize-all)
public static func == (lhs: Set<Element>, rhs: Set<Element>) -> Bool {
switch (lhs._variantBuffer, rhs._variantBuffer) {
case (.native(let lhsNative), .native(let rhsNative)):
if lhsNative._storage === rhsNative._storage {
return true
}
if lhsNative.count != rhsNative.count {
return false
}
for member in lhs {
let (_, found) =
rhsNative._find(member, startBucket: rhsNative._bucket(member))
if !found {
return false
}
}
return true
#if _runtime(_ObjC)
case (_VariantSetBuffer.cocoa(let lhsCocoa),
_VariantSetBuffer.cocoa(let rhsCocoa)):
return _stdlib_NSObject_isEqual(lhsCocoa.cocoaSet, rhsCocoa.cocoaSet)
case (_VariantSetBuffer.native(let lhsNative),
_VariantSetBuffer.cocoa(let rhsCocoa)):
if lhsNative.count != rhsCocoa.count {
return false
}
let endIndex = lhsNative.endIndex
var i = lhsNative.startIndex
while i != endIndex {
let key = lhsNative.assertingGet(i)
let bridgedKey: AnyObject = _bridgeAnythingToObjectiveC(key)
let optRhsValue: AnyObject? = rhsCocoa.maybeGet(bridgedKey)
if let rhsValue = optRhsValue {
if key == _forceBridgeFromObjectiveC(rhsValue, Element.self) {
i = lhsNative.index(after: i)
continue
}
}
i = lhsNative.index(after: i)
return false
}
return true
case (_VariantSetBuffer.cocoa, _VariantSetBuffer.native):
return rhs == lhs
#endif
}
}
}
extension Set: Hashable {
/// Hashes the essential components of this value by feeding them into the
/// given hasher.
///
/// - Parameter hasher: The hasher to use when combining the components
/// of this instance.
@inlinable
public func hash(into hasher: inout Hasher) {
// FIXME(ABI)#177: <rdar://problem/18915294> Cache Set<T> hashValue
var hash = 0
let seed = hasher._generateSeed()
for member in self {
hash ^= member._rawHashValue(seed: seed)
}
hasher.combine(hash)
}
}
extension Set: _HasCustomAnyHashableRepresentation {
public func _toCustomAnyHashable() -> AnyHashable? {
return AnyHashable(_box: _SetAnyHashableBox(self))
}
}
internal struct _SetAnyHashableBox<Element: Hashable>: _AnyHashableBox {
internal let _value: Set<Element>
internal let _canonical: Set<AnyHashable>
internal init(_ value: Set<Element>) {
self._value = value
self._canonical = value as Set<AnyHashable>
}
internal var _base: Any {
return _value
}
internal var _canonicalBox: _AnyHashableBox {
return _SetAnyHashableBox<AnyHashable>(_canonical)
}
internal func _isEqual(to other: _AnyHashableBox) -> Bool? {
guard let other = other as? _SetAnyHashableBox<AnyHashable> else {
return nil
}
return _canonical == other._value
}
internal var _hashValue: Int {
return _canonical.hashValue
}
internal func _hash(into hasher: inout Hasher) {
_canonical.hash(into: &hasher)
}
func _rawHashValue(_seed: (UInt64, UInt64)) -> Int {
return _canonical._rawHashValue(seed: _seed)
}
internal func _unbox<T: Hashable>() -> T? {
return _value as? T
}
internal func _downCastConditional<T>(
into result: UnsafeMutablePointer<T>
) -> Bool {
guard let value = _value as? T else { return false }
result.initialize(to: value)
return true
}
}
extension Set: SetAlgebra {
/// Inserts the given element in the set if it is not already present.
///
/// If an element equal to `newMember` is already contained in the set, this
/// method has no effect. In the following example, a new element is
/// inserted into `classDays`, a set of days of the week. When an existing
/// element is inserted, the `classDays` set does not change.
///
/// enum DayOfTheWeek: Int {
/// case sunday, monday, tuesday, wednesday, thursday,
/// friday, saturday
/// }
///
/// var classDays: Set<DayOfTheWeek> = [.wednesday, .friday]
/// print(classDays.insert(.monday))
/// // Prints "(true, .monday)"
/// print(classDays)
/// // Prints "[.friday, .wednesday, .monday]"
///
/// print(classDays.insert(.friday))
/// // Prints "(false, .friday)"
/// print(classDays)
/// // Prints "[.friday, .wednesday, .monday]"
///
/// - Parameter newMember: An element to insert into the set.
/// - Returns: `(true, newMember)` if `newMember` was not contained in the
/// set. If an element equal to `newMember` was already contained in the
/// set, the method returns `(false, oldMember)`, where `oldMember` is the
/// element that was equal to `newMember`. In some cases, `oldMember` may
/// be distinguishable from `newMember` by identity comparison or some
/// other means.
@inlinable // FIXME(sil-serialize-all)
@discardableResult
public mutating func insert(
_ newMember: Element
) -> (inserted: Bool, memberAfterInsert: Element) {
return _variantBuffer.insert(newMember, forKey: newMember)
}
/// Inserts the given element into the set unconditionally.
///
/// If an element equal to `newMember` is already contained in the set,
/// `newMember` replaces the existing element. In this example, an existing
/// element is inserted into `classDays`, a set of days of the week.
///
/// enum DayOfTheWeek: Int {
/// case sunday, monday, tuesday, wednesday, thursday,
/// friday, saturday
/// }
///
/// var classDays: Set<DayOfTheWeek> = [.monday, .wednesday, .friday]
/// print(classDays.update(with: .monday))
/// // Prints "Optional(.monday)"
///
/// - Parameter newMember: An element to insert into the set.
/// - Returns: An element equal to `newMember` if the set already contained
/// such a member; otherwise, `nil`. In some cases, the returned element
/// may be distinguishable from `newMember` by identity comparison or some
/// other means.
@inlinable // FIXME(sil-serialize-all)
@discardableResult
public mutating func update(with newMember: Element) -> Element? {
return _variantBuffer.updateValue(newMember, forKey: newMember)
}
/// Removes the specified element from the set.
///
/// This example removes the element `"sugar"` from a set of ingredients.
///
/// var ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
/// let toRemove = "sugar"
/// if let removed = ingredients.remove(toRemove) {
/// print("The recipe is now \(removed)-free.")
/// }
/// // Prints "The recipe is now sugar-free."
///
/// - Parameter member: The element to remove from the set.
/// - Returns: The value of the `member` parameter if it was a member of the
/// set; otherwise, `nil`.
@inlinable // FIXME(sil-serialize-all)
@discardableResult
public mutating func remove(_ member: Element) -> Element? {
return _variantBuffer.removeValue(forKey: member)
}
/// Removes the element at the given index of the set.
///
/// - Parameter position: The index of the member to remove. `position` must
/// be a valid index of the set, and must not be equal to the set's end
/// index.
/// - Returns: The element that was removed from the set.
@inlinable // FIXME(sil-serialize-all)
@discardableResult
public mutating func remove(at position: Index) -> Element {
return _variantBuffer.remove(at: position)
}
/// Removes all members from the set.
///
/// - Parameter keepingCapacity: If `true`, the set's buffer capacity is
/// preserved; if `false`, the underlying buffer is released. The
/// default is `false`.
@inlinable // FIXME(sil-serialize-all)
public mutating func removeAll(keepingCapacity keepCapacity: Bool = false) {
_variantBuffer.removeAll(keepingCapacity: keepCapacity)
}
/// Removes the first element of the set.
///
/// Because a set is not an ordered collection, the "first" element may not
/// be the first element that was added to the set. The set must not be
/// empty.
///
/// - Complexity: Amortized O(1) if the set does not wrap a bridged `NSSet`.
/// If the set wraps a bridged `NSSet`, the performance is unspecified.
///
/// - Returns: A member of the set.
@inlinable // FIXME(sil-serialize-all)
@discardableResult
public mutating func removeFirst() -> Element {
_precondition(!isEmpty, "Can't removeFirst from an empty Set")
return remove(at: startIndex)
}
//
// APIs below this comment should be implemented strictly in terms of
// *public* APIs above. `_variantBuffer` should not be accessed directly.
//
// This separates concerns for testing. Tests for the following APIs need
// not to concern themselves with testing correctness of behavior of
// underlying buffer (and different variants of it), only correctness of the
// API itself.
//
/// Creates an empty set.
///
/// This is equivalent to initializing with an empty array literal. For
/// example:
///
/// var emptySet = Set<Int>()
/// print(emptySet.isEmpty)
/// // Prints "true"
///
/// emptySet = []
/// print(emptySet.isEmpty)
/// // Prints "true"
@inlinable // FIXME(sil-serialize-all)
public init() {
self = Set<Element>(_nativeBuffer: _NativeBuffer())
}
/// Creates a new set from a finite sequence of items.
///
/// Use this initializer to create a new set from an existing sequence, for
/// example, an array or a range.
///
/// let validIndices = Set(0..<7).subtracting([2, 4, 5])
/// print(validIndices)
/// // Prints "[6, 0, 1, 3]"
///
/// This initializer can also be used to restore set methods after performing
/// sequence operations such as `filter(_:)` or `map(_:)` on a set. For
/// example, after filtering a set of prime numbers to remove any below 10,
/// you can create a new set by using this initializer.
///
/// let primes: Set = [2, 3, 5, 7, 11, 13, 17, 19, 23]
/// let laterPrimes = Set(primes.lazy.filter { $0 > 10 })
/// print(laterPrimes)
/// // Prints "[17, 19, 23, 11, 13]"
///
/// - Parameter sequence: The elements to use as members of the new set.
@inlinable // FIXME(sil-serialize-all)
public init<Source: Sequence>(_ sequence: Source)
where Source.Element == Element {
self.init(minimumCapacity: sequence.underestimatedCount)
if let s = sequence as? Set<Element> {
// If this sequence is actually a native `Set`, then we can quickly
// adopt its native buffer and let COW handle uniquing only
// if necessary.
switch s._variantBuffer {
case .native(let buffer):
_variantBuffer = .native(buffer)
#if _runtime(_ObjC)
case .cocoa(let owner):
_variantBuffer = .cocoa(owner)
#endif
}
} else {
for item in sequence {
insert(item)
}
}
}
/// Returns a Boolean value that indicates whether the set is a subset of the
/// given sequence.
///
/// Set *A* is a subset of another set *B* if every member of *A* is also a
/// member of *B*.
///
/// let employees = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isSubset(of: employees))
/// // Prints "true"
///
/// - Parameter possibleSuperset: A sequence of elements. `possibleSuperset`
/// must be finite.
/// - Returns: `true` if the set is a subset of `possibleSuperset`;
/// otherwise, `false`.
@inlinable
public func isSubset<S: Sequence>(of possibleSuperset: S) -> Bool
where S.Element == Element {
// FIXME(performance): isEmpty fast path, here and elsewhere.
let other = Set(possibleSuperset)
return isSubset(of: other)
}
/// Returns a Boolean value that indicates whether the set is a strict subset
/// of the given sequence.
///
/// Set *A* is a strict subset of another set *B* if every member of *A* is
/// also a member of *B* and *B* contains at least one element that is not a
/// member of *A*.
///
/// let employees = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isStrictSubset(of: employees))
/// // Prints "true"
///
/// // A set is never a strict subset of itself:
/// print(attendees.isStrictSubset(of: attendees))
/// // Prints "false"
///
/// - Parameter possibleStrictSuperset: A sequence of elements.
/// `possibleStrictSuperset` must be finite.
/// - Returns: `true` is the set is strict subset of
/// `possibleStrictSuperset`; otherwise, `false`.
@inlinable
public func isStrictSubset<S: Sequence>(of possibleStrictSuperset: S) -> Bool
where S.Element == Element {
// FIXME: code duplication.
let other = Set(possibleStrictSuperset)
return isStrictSubset(of: other)
}
/// Returns a Boolean value that indicates whether the set is a superset of
/// the given sequence.
///
/// Set *A* is a superset of another set *B* if every member of *B* is also a
/// member of *A*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees = ["Alicia", "Bethany", "Diana"]
/// print(employees.isSuperset(of: attendees))
/// // Prints "true"
///
/// - Parameter possibleSubset: A sequence of elements. `possibleSubset` must
/// be finite.
/// - Returns: `true` if the set is a superset of `possibleSubset`;
/// otherwise, `false`.
@inlinable
public func isSuperset<S: Sequence>(of possibleSubset: S) -> Bool
where S.Element == Element {
// FIXME(performance): Don't build a set; just ask if every element is in
// `self`.
let other = Set(possibleSubset)
return other.isSubset(of: self)
}
/// Returns a Boolean value that indicates whether the set is a strict
/// superset of the given sequence.
///
/// Set *A* is a strict superset of another set *B* if every member of *B* is
/// also a member of *A* and *A* contains at least one element that is *not*
/// a member of *B*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees = ["Alicia", "Bethany", "Diana"]
/// print(employees.isStrictSuperset(of: attendees))
/// // Prints "true"
/// print(employees.isStrictSuperset(of: employees))
/// // Prints "false"
///
/// - Parameter possibleStrictSubset: A sequence of elements.
/// `possibleStrictSubset` must be finite.
/// - Returns: `true` if the set is a strict superset of
/// `possibleStrictSubset`; otherwise, `false`.
@inlinable // FIXME(sil-serialize-all)
public func isStrictSuperset<S: Sequence>(of possibleStrictSubset: S) -> Bool
where S.Element == Element {
let other = Set(possibleStrictSubset)
return other.isStrictSubset(of: self)
}
/// Returns a Boolean value that indicates whether the set has no members in
/// common with the given sequence.
///
/// In the following example, the `employees` set is disjoint with the
/// elements of the `visitors` array because no name appears in both.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let visitors = ["Marcia", "Nathaniel", "Olivia"]
/// print(employees.isDisjoint(with: visitors))
/// // Prints "true"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: `true` if the set has no elements in common with `other`;
/// otherwise, `false`.
@inlinable // FIXME(sil-serialize-all)
public func isDisjoint<S: Sequence>(with other: S) -> Bool
where S.Element == Element {
// FIXME(performance): Don't need to build a set.
let otherSet = Set(other)
return isDisjoint(with: otherSet)
}
/// Returns a new set with the elements of both this set and the given
/// sequence.
///
/// In the following example, the `attendeesAndVisitors` set is made up
/// of the elements of the `attendees` set and the `visitors` array:
///
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// let visitors = ["Marcia", "Nathaniel"]
/// let attendeesAndVisitors = attendees.union(visitors)
/// print(attendeesAndVisitors)
/// // Prints "["Diana", "Nathaniel", "Bethany", "Alicia", "Marcia"]"
///
/// If the set already contains one or more elements that are also in
/// `other`, the existing members are kept. If `other` contains multiple
/// instances of equivalent elements, only the first instance is kept.
///
/// let initialIndices = Set(0..<5)
/// let expandedIndices = initialIndices.union([2, 3, 6, 6, 7, 7])
/// print(expandedIndices)
/// // Prints "[2, 4, 6, 7, 0, 1, 3]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set with the unique elements of this set and `other`.
@inlinable
public func union<S: Sequence>(_ other: S) -> Set<Element>
where S.Element == Element {
var newSet = self
newSet.formUnion(other)
return newSet
}
/// Inserts the elements of the given sequence into the set.
///
/// If the set already contains one or more elements that are also in
/// `other`, the existing members are kept. If `other` contains multiple
/// instances of equivalent elements, only the first instance is kept.
///
/// var attendees: Set = ["Alicia", "Bethany", "Diana"]
/// let visitors = ["Diana", "Marcia", "Nathaniel"]
/// attendees.formUnion(visitors)
/// print(attendees)
/// // Prints "["Diana", "Nathaniel", "Bethany", "Alicia", "Marcia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func formUnion<S: Sequence>(_ other: S)
where S.Element == Element {
for item in other {
insert(item)
}
}
/// Returns a new set containing the elements of this set that do not occur
/// in the given sequence.
///
/// In the following example, the `nonNeighbors` set is made up of the
/// elements of the `employees` set that are not elements of `neighbors`:
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// let nonNeighbors = employees.subtracting(neighbors)
/// print(nonNeighbors)
/// // Prints "["Chris", "Diana", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set.
@inlinable
public func subtracting<S: Sequence>(_ other: S) -> Set<Element>
where S.Element == Element {
return self._subtracting(other)
}
@inlinable // FIXME(sil-serialize-all)
internal func _subtracting<S: Sequence>(_ other: S) -> Set<Element>
where S.Element == Element {
var newSet = self
newSet.subtract(other)
return newSet
}
/// Removes the elements of the given sequence from the set.
///
/// In the following example, the elements of the `employees` set that are
/// also elements of the `neighbors` array are removed. In particular, the
/// names `"Bethany"` and `"Eric"` are removed from `employees`.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.subtract(neighbors)
/// print(employees)
/// // Prints "["Chris", "Diana", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable // FIXME(sil-serialize-all)
public mutating func subtract<S: Sequence>(_ other: S)
where S.Element == Element {
_subtract(other)
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func _subtract<S: Sequence>(_ other: S)
where S.Element == Element {
for item in other {
remove(item)
}
}
/// Returns a new set with the elements that are common to both this set and
/// the given sequence.
///
/// In the following example, the `bothNeighborsAndEmployees` set is made up
/// of the elements that are in *both* the `employees` and `neighbors` sets.
/// Elements that are in only one or the other are left out of the result of
/// the intersection.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// let bothNeighborsAndEmployees = employees.intersection(neighbors)
/// print(bothNeighborsAndEmployees)
/// // Prints "["Bethany", "Eric"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set.
@inlinable
public func intersection<S: Sequence>(_ other: S) -> Set<Element>
where S.Element == Element {
let otherSet = Set(other)
return intersection(otherSet)
}
/// Removes the elements of the set that aren't also in the given sequence.
///
/// In the following example, the elements of the `employees` set that are
/// not also members of the `neighbors` set are removed. In particular, the
/// names `"Alicia"`, `"Chris"`, and `"Diana"` are removed.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.formIntersection(neighbors)
/// print(employees)
/// // Prints "["Bethany", "Eric"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func formIntersection<S: Sequence>(_ other: S)
where S.Element == Element {
// Because `intersect` needs to both modify and iterate over
// the left-hand side, the index may become invalidated during
// traversal so an intermediate set must be created.
//
// FIXME(performance): perform this operation at a lower level
// to avoid invalidating the index and avoiding a copy.
let result = self.intersection(other)
// The result can only have fewer or the same number of elements.
// If no elements were removed, don't perform a reassignment
// as this may cause an unnecessary uniquing COW.
if result.count != count {
self = result
}
}
/// Returns a new set with the elements that are either in this set or in the
/// given sequence, but not in both.
///
/// In the following example, the `eitherNeighborsOrEmployees` set is made up
/// of the elements of the `employees` and `neighbors` sets that are not in
/// both `employees` *and* `neighbors`. In particular, the names `"Bethany"`
/// and `"Eric"` do not appear in `eitherNeighborsOrEmployees`.
///
/// let employees: Set = ["Alicia", "Bethany", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani"]
/// let eitherNeighborsOrEmployees = employees.symmetricDifference(neighbors)
/// print(eitherNeighborsOrEmployees)
/// // Prints "["Diana", "Forlani", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set.
@inlinable
public func symmetricDifference<S: Sequence>(_ other: S) -> Set<Element>
where S.Element == Element {
var newSet = self
newSet.formSymmetricDifference(other)
return newSet
}
/// Replace this set with the elements contained in this set or the given
/// set, but not both.
///
/// In the following example, the elements of the `employees` set that are
/// also members of `neighbors` are removed from `employees`, while the
/// elements of `neighbors` that are not members of `employees` are added to
/// `employees`. In particular, the names `"Bethany"` and `"Eric"` are
/// removed from `employees` while the name `"Forlani"` is added.
///
/// var employees: Set = ["Alicia", "Bethany", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani"]
/// employees.formSymmetricDifference(neighbors)
/// print(employees)
/// // Prints "["Diana", "Forlani", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func formSymmetricDifference<S: Sequence>(_ other: S)
where S.Element == Element {
let otherSet = Set(other)
formSymmetricDifference(otherSet)
}
}
extension Set: CustomStringConvertible, CustomDebugStringConvertible {
/// A string that represents the contents of the set.
@inlinable // FIXME(sil-serialize-all)
public var description: String {
return _makeCollectionDescription(for: self, withTypeName: nil)
}
/// A string that represents the contents of the set, suitable for debugging.
public var debugDescription: String {
return _makeCollectionDescription(for: self, withTypeName: "Set")
}
}
#if _runtime(_ObjC)
@_silgen_name("swift_stdlib_CFSetGetValues")
@usableFromInline // FIXME(sil-serialize-all)
internal
func _stdlib_CFSetGetValues(_ nss: _NSSet, _: UnsafeMutablePointer<AnyObject>)
/// Equivalent to `NSSet.allObjects`, but does not leave objects on the
/// autorelease pool.
@inlinable // FIXME(sil-serialize-all)
internal func _stdlib_NSSet_allObjects(_ nss: _NSSet) ->
_HeapBuffer<Int, AnyObject> {
let count = nss.count
let storage = _HeapBuffer<Int, AnyObject>(
_HeapBufferStorage<Int, AnyObject>.self, count, count)
_stdlib_CFSetGetValues(nss, storage.baseAddress)
return storage
}
#endif
//===--- Compiler conversion/casting entry points for Set<Element> --------===//
/// Perform a non-bridged upcast that always succeeds.
///
/// - Precondition: `BaseValue` is a base class or base `@objc`
/// protocol (such as `AnyObject`) of `DerivedValue`.
@inlinable // FIXME(sil-serialize-all)
public func _setUpCast<DerivedValue, BaseValue>(_ source: Set<DerivedValue>)
-> Set<BaseValue> {
var builder = _SetBuilder<BaseValue>(count: source.count)
for x in source {
builder.add(member: x as! BaseValue)
}
return builder.take()
}
#if _runtime(_ObjC)
/// Implements an unconditional upcast that involves bridging.
///
/// The cast can fail if bridging fails.
///
/// - Precondition: `SwiftValue` is bridged to Objective-C
/// and requires non-trivial bridging.
@inlinable // FIXME(sil-serialize-all)
public func _setBridgeToObjectiveC<SwiftValue, ObjCValue>(
_ source: Set<SwiftValue>
) -> Set<ObjCValue> {
_sanityCheck(_isClassOrObjCExistential(ObjCValue.self))
_sanityCheck(!_isBridgedVerbatimToObjectiveC(SwiftValue.self))
var result = Set<ObjCValue>(minimumCapacity: source.count)
let valueBridgesDirectly =
_isBridgedVerbatimToObjectiveC(SwiftValue.self) ==
_isBridgedVerbatimToObjectiveC(ObjCValue.self)
for member in source {
var bridgedMember: ObjCValue
if valueBridgesDirectly {
bridgedMember = unsafeBitCast(member, to: ObjCValue.self)
} else {
let bridged: AnyObject = _bridgeAnythingToObjectiveC(member)
bridgedMember = unsafeBitCast(bridged, to: ObjCValue.self)
}
result.insert(bridgedMember)
}
return result
}
#endif
/// Called by the casting machinery.
@_silgen_name("_swift_setDownCastIndirect")
internal func _setDownCastIndirect<SourceValue, TargetValue>(
_ source: UnsafePointer<Set<SourceValue>>,
_ target: UnsafeMutablePointer<Set<TargetValue>>) {
target.initialize(to: _setDownCast(source.pointee))
}
/// Implements a forced downcast. This operation should have O(1) complexity.
///
/// The cast can fail if bridging fails. The actual checks and bridging can be
/// deferred.
///
/// - Precondition: `DerivedValue` is a subtype of `BaseValue` and both
/// are reference types.
@inlinable // FIXME(sil-serialize-all)
public func _setDownCast<BaseValue, DerivedValue>(_ source: Set<BaseValue>)
-> Set<DerivedValue> {
#if _runtime(_ObjC)
if _isClassOrObjCExistential(BaseValue.self)
&& _isClassOrObjCExistential(DerivedValue.self) {
switch source._variantBuffer {
case _VariantSetBuffer.native(let buffer):
return Set(_immutableCocoaSet: buffer.bridged())
case _VariantSetBuffer.cocoa(let cocoaBuffer):
return Set(_immutableCocoaSet: cocoaBuffer.cocoaSet)
}
}
#endif
return _setDownCastConditional(source)!
}
/// Called by the casting machinery.
@_silgen_name("_swift_setDownCastConditionalIndirect")
internal func _setDownCastConditionalIndirect<SourceValue, TargetValue>(
_ source: UnsafePointer<Set<SourceValue>>,
_ target: UnsafeMutablePointer<Set<TargetValue>>
) -> Bool {
if let result: Set<TargetValue> = _setDownCastConditional(source.pointee) {
target.initialize(to: result)
return true
}
return false
}
/// Implements a conditional downcast.
///
/// If the cast fails, the function returns `nil`. All checks should be
/// performed eagerly.
///
/// - Precondition: `DerivedValue` is a subtype of `BaseValue` and both
/// are reference types.
@inlinable // FIXME(sil-serialize-all)
public func _setDownCastConditional<BaseValue, DerivedValue>(
_ source: Set<BaseValue>
) -> Set<DerivedValue>? {
var result = Set<DerivedValue>(minimumCapacity: source.count)
for member in source {
if let derivedMember = member as? DerivedValue {
result.insert(derivedMember)
continue
}
return nil
}
return result
}
#if _runtime(_ObjC)
/// Implements an unconditional downcast that involves bridging.
///
/// - Precondition: At least one of `SwiftValue` is a bridged value
/// type, and the corresponding `ObjCValue` is a reference type.
@inlinable // FIXME(sil-serialize-all)
public func _setBridgeFromObjectiveC<ObjCValue, SwiftValue>(
_ source: Set<ObjCValue>
) -> Set<SwiftValue> {
let result: Set<SwiftValue>? = _setBridgeFromObjectiveCConditional(source)
_precondition(result != nil, "This set cannot be bridged from Objective-C")
return result!
}
/// Implements a conditional downcast that involves bridging.
///
/// If the cast fails, the function returns `nil`. All checks should be
/// performed eagerly.
///
/// - Precondition: At least one of `SwiftValue` is a bridged value
/// type, and the corresponding `ObjCValue` is a reference type.
@inlinable // FIXME(sil-serialize-all)
public func _setBridgeFromObjectiveCConditional<
ObjCValue, SwiftValue
>(
_ source: Set<ObjCValue>
) -> Set<SwiftValue>? {
_sanityCheck(_isClassOrObjCExistential(ObjCValue.self))
_sanityCheck(!_isBridgedVerbatimToObjectiveC(SwiftValue.self))
let valueBridgesDirectly =
_isBridgedVerbatimToObjectiveC(SwiftValue.self) ==
_isBridgedVerbatimToObjectiveC(ObjCValue.self)
var result = Set<SwiftValue>(minimumCapacity: source.count)
for value in source {
// Downcast the value.
var resultValue: SwiftValue
if valueBridgesDirectly {
if let bridgedValue = value as? SwiftValue {
resultValue = bridgedValue
} else {
return nil
}
} else {
if let bridgedValue = _conditionallyBridgeFromObjectiveC(
_reinterpretCastToAnyObject(value), SwiftValue.self) {
resultValue = bridgedValue
} else {
return nil
}
}
result.insert(resultValue)
}
return result
}
#endif
extension Set {
/// Removes the elements of the given set from this set.
///
/// In the following example, the elements of the `employees` set that are
/// also members of the `neighbors` set are removed. In particular, the
/// names `"Bethany"` and `"Eric"` are removed from `employees`.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.subtract(neighbors)
/// print(employees)
/// // Prints "["Diana", "Chris", "Alicia"]"
///
/// - Parameter other: Another set.
@inlinable // FIXME(sil-serialize-all)
public mutating func subtract(_ other: Set<Element>) {
_subtract(other)
}
/// Returns a Boolean value that indicates whether this set is a subset of
/// the given set.
///
/// Set *A* is a subset of another set *B* if every member of *A* is also a
/// member of *B*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isSubset(of: employees))
/// // Prints "true"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a subset of `other`; otherwise, `false`.
@inlinable
public func isSubset(of other: Set<Element>) -> Bool {
let (isSubset, isEqual) = _compareSets(self, other)
return isSubset || isEqual
}
/// Returns a Boolean value that indicates whether this set is a superset of
/// the given set.
///
/// Set *A* is a superset of another set *B* if every member of *B* is also a
/// member of *A*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(employees.isSuperset(of: attendees))
/// // Prints "true"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a superset of `other`; otherwise,
/// `false`.
@inlinable
public func isSuperset(of other: Set<Element>) -> Bool {
return other.isSubset(of: self)
}
/// Returns a Boolean value that indicates whether this set has no members in
/// common with the given set.
///
/// In the following example, the `employees` set is disjoint with the
/// `visitors` set because no name appears in both sets.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let visitors: Set = ["Marcia", "Nathaniel", "Olivia"]
/// print(employees.isDisjoint(with: visitors))
/// // Prints "true"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set has no elements in common with `other`;
/// otherwise, `false`.
@inlinable
public func isDisjoint(with other: Set<Element>) -> Bool {
for member in self {
if other.contains(member) {
return false
}
}
return true
}
/// Returns a new set containing the elements of this set that do not occur
/// in the given set.
///
/// In the following example, the `nonNeighbors` set is made up of the
/// elements of the `employees` set that are not elements of `neighbors`:
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// let nonNeighbors = employees.subtracting(neighbors)
/// print(nonNeighbors)
/// // Prints "["Diana", "Chris", "Alicia"]"
///
/// - Parameter other: Another set.
/// - Returns: A new set.
@inlinable
public func subtracting(_ other: Set<Element>) -> Set<Element> {
return self._subtracting(other)
}
/// Returns a Boolean value that indicates whether the set is a strict
/// superset of the given sequence.
///
/// Set *A* is a strict superset of another set *B* if every member of *B* is
/// also a member of *A* and *A* contains at least one element that is *not*
/// a member of *B*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(employees.isStrictSuperset(of: attendees))
/// // Prints "true"
/// print(employees.isStrictSuperset(of: employees))
/// // Prints "false"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a strict superset of
/// `other`; otherwise, `false`.
@inlinable
public func isStrictSuperset(of other: Set<Element>) -> Bool {
return self.isSuperset(of: other) && self != other
}
/// Returns a Boolean value that indicates whether the set is a strict subset
/// of the given sequence.
///
/// Set *A* is a strict subset of another set *B* if every member of *A* is
/// also a member of *B* and *B* contains at least one element that is not a
/// member of *A*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isStrictSubset(of: employees))
/// // Prints "true"
///
/// // A set is never a strict subset of itself:
/// print(attendees.isStrictSubset(of: attendees))
/// // Prints "false"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a strict subset of
/// `other`; otherwise, `false`.
@inlinable
public func isStrictSubset(of other: Set<Element>) -> Bool {
return other.isStrictSuperset(of: self)
}
/// Returns a new set with the elements that are common to both this set and
/// the given sequence.
///
/// In the following example, the `bothNeighborsAndEmployees` set is made up
/// of the elements that are in *both* the `employees` and `neighbors` sets.
/// Elements that are in only one or the other are left out of the result of
/// the intersection.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// let bothNeighborsAndEmployees = employees.intersection(neighbors)
/// print(bothNeighborsAndEmployees)
/// // Prints "["Bethany", "Eric"]"
///
/// - Parameter other: Another set.
/// - Returns: A new set.
@inlinable
public func intersection(_ other: Set<Element>) -> Set<Element> {
var newSet = Set<Element>()
for member in self {
if other.contains(member) {
newSet.insert(member)
}
}
return newSet
}
/// Removes the elements of the set that are also in the given sequence and
/// adds the members of the sequence that are not already in the set.
///
/// In the following example, the elements of the `employees` set that are
/// also members of `neighbors` are removed from `employees`, while the
/// elements of `neighbors` that are not members of `employees` are added to
/// `employees`. In particular, the names `"Alicia"`, `"Chris"`, and
/// `"Diana"` are removed from `employees` while the names `"Forlani"` and
/// `"Greta"` are added.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.formSymmetricDifference(neighbors)
/// print(employees)
/// // Prints "["Diana", "Chris", "Forlani", "Alicia", "Greta"]"
///
/// - Parameter other: Another set.
@inlinable
public mutating func formSymmetricDifference(_ other: Set<Element>) {
for member in other {
if contains(member) {
remove(member)
} else {
insert(member)
}
}
}
}
//===--- APIs templated for Dictionary and Set ----------------------------===//
/// An instance of this class has all `Set` data tail-allocated.
/// Enough bytes are allocated to hold the bitmap for marking valid entries,
/// keys, and values. The data layout starts with the bitmap, followed by the
/// keys, followed by the values.
//
// See the docs at the top of the file for more details on this type
//
// NOTE: The precise layout of this type is relied on in the runtime
// to provide a statically allocated empty singleton.
// See stdlib/public/stubs/GlobalObjects.cpp for details.
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline // FIXME(sil-serialize-all)
@_objc_non_lazy_realization
internal class _RawNativeSetStorage:
_SwiftNativeNSSet, _NSSetCore
{
@usableFromInline
internal typealias RawStorage = _RawNativeSetStorage
@usableFromInline // FIXME(sil-serialize-all)
@nonobjc
internal final var bucketCount: Int
@usableFromInline // FIXME(sil-serialize-all)
internal final var count: Int
@usableFromInline // FIXME(sil-serialize-all)
internal final var initializedEntries: _UnsafeBitMap
@usableFromInline // FIXME(sil-serialize-all)
@nonobjc
internal final var keys: UnsafeMutableRawPointer
@usableFromInline // FIXME(sil-serialize-all)
internal final var seed: (UInt64, UInt64)
// This API is unsafe and needs a `_fixLifetime` in the caller.
@inlinable // FIXME(sil-serialize-all)
@nonobjc
internal final
var _initializedHashtableEntriesBitMapBuffer: UnsafeMutablePointer<UInt> {
return UnsafeMutablePointer(Builtin.projectTailElems(self, UInt.self))
}
/// The empty singleton that is used for every single Dictionary that is
/// created without any elements. The contents of the storage should never
/// be mutated.
@inlinable // FIXME(sil-serialize-all)
@nonobjc
internal static var empty: RawStorage {
return Builtin.bridgeFromRawPointer(
Builtin.addressof(&_swiftEmptySetStorage))
}
// This type is made with allocWithTailElems, so no init is ever called.
// But we still need to have an init to satisfy the compiler.
@inlinable // FIXME(sil-serialize-all)
@nonobjc
internal init(_doNotCallMe: ()) {
_sanityCheckFailure("Only create this by using the `empty` singleton")
}
#if _runtime(_ObjC)
//
// NSSet implementation, assuming Self is the empty singleton
//
/// Get the NSEnumerator implementation for self.
/// _HashableTypedNativeSetStorage overloads this to give
/// _NativeSelfNSEnumerator proper type parameters.
@inlinable // FIXME(sil-serialize-all)
@objc
internal func enumerator() -> _NSEnumerator {
return _NativeSetNSEnumerator<AnyObject>(
_NativeSetBuffer(_storage: self))
}
@inlinable // FIXME(sil-serialize-all)
@objc(copyWithZone:)
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
return self
}
@inlinable // FIXME(sil-serialize-all)
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>?, count: Int
) -> Int {
// Even though we never do anything in here, we need to update the
// state so that callers know we actually ran.
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
}
state.pointee = theState
return 0
}
@inlinable // FIXME(sil-serialize-all)
@objc
internal required init(objects: UnsafePointer<AnyObject?>, count: Int) {
_sanityCheckFailure("don't call this designated initializer")
}
@inlinable // FIXME(sil-serialize-all)
@objc
internal func member(_ object: AnyObject) -> AnyObject? {
return nil
}
@inlinable // FIXME(sil-serialize-all)
@objc
internal func objectEnumerator() -> _NSEnumerator {
return enumerator()
}
#endif
}
// See the docs at the top of this file for a description of this type
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
internal class _TypedNativeSetStorage<Element>: _RawNativeSetStorage {
@usableFromInline
internal typealias Key = Element
@usableFromInline
internal typealias Value = Element
deinit {
let keys = self.keys.assumingMemoryBound(to: Key.self)
if !_isPOD(Key.self) {
for i in 0 ..< bucketCount {
if initializedEntries[i] {
(keys+i).deinitialize(count: 1)
}
}
}
_fixLifetime(self)
}
// This type is made with allocWithTailElems, so no init is ever called.
// But we still need to have an init to satisfy the compiler.
@inlinable // FIXME(sil-serialize-all)
@nonobjc
override internal init(_doNotCallMe: ()) {
_sanityCheckFailure("Only create this by calling Buffer's inits")
}
#if _runtime(_ObjC)
@inlinable // FIXME(sil-serialize-all)
@objc
internal required init(objects: UnsafePointer<AnyObject?>, count: Int) {
_sanityCheckFailure("don't call this designated initializer")
}
#endif
}
// See the docs at the top of this file for a description of this type
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
final internal class _HashableTypedNativeSetStorage<Element: Hashable>
: _TypedNativeSetStorage<Element> {
@usableFromInline
internal typealias FullContainer = Set<Element>
@usableFromInline
internal typealias Buffer = _NativeSetBuffer<Element>
// This type is made with allocWithTailElems, so no init is ever called.
// But we still need to have an init to satisfy the compiler.
@inlinable // FIXME(sil-serialize-all)
@nonobjc
override internal init(_doNotCallMe: ()) {
_sanityCheckFailure("Only create this by calling Buffer's inits'")
}
#if _runtime(_ObjC)
// NSSet bridging:
// All actual functionality comes from buffer/full, which are
// just wrappers around a RawNativeSetStorage.
@inlinable // FIXME(sil-serialize-all)
internal var buffer: Buffer {
return Buffer(_storage: self)
}
@inlinable // FIXME(sil-serialize-all)
internal var full: FullContainer {
return FullContainer(_nativeBuffer: buffer)
}
@inlinable // FIXME(sil-serialize-all)
internal override func enumerator() -> _NSEnumerator {
return _NativeSetNSEnumerator<Element>(
Buffer(_storage: self))
}
@inlinable // FIXME(sil-serialize-all)
@objc(countByEnumeratingWithState:objects:count:)
internal override func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>?, count: Int
) -> Int {
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
theState.extra.0 = CUnsignedLong(full.startIndex._nativeIndex.offset)
}
// Test 'objects' rather than 'count' because (a) this is very rare anyway,
// and (b) the optimizer should then be able to optimize away the
// unwrapping check below.
if _slowPath(objects == nil) {
return 0
}
let unmanagedObjects = _UnmanagedAnyObjectArray(objects!)
var currIndex = _NativeSetIndex<Element>(
offset: Int(theState.extra.0))
let endIndex = buffer.endIndex
var stored = 0
for i in 0..<count {
if (currIndex == endIndex) {
break
}
unmanagedObjects[i] = buffer.bridgedKey(at: currIndex)
stored += 1
buffer.formIndex(after: &currIndex)
}
theState.extra.0 = CUnsignedLong(currIndex.offset)
state.pointee = theState
return stored
}
@inlinable // FIXME(sil-serialize-all)
@nonobjc
internal func getObjectFor(_ aKey: AnyObject) -> AnyObject? {
guard let nativeKey = _conditionallyBridgeFromObjectiveC(aKey, Key.self)
else { return nil }
let (i, found) = buffer._find(nativeKey,
startBucket: buffer._bucket(nativeKey))
if found {
return buffer.bridgedValue(at: i)
}
return nil
}
@inlinable // FIXME(sil-serialize-all)
@objc
internal required init(objects: UnsafePointer<AnyObject?>, count: Int) {
_sanityCheckFailure("don't call this designated initializer")
}
@inlinable // FIXME(sil-serialize-all)
@objc
override internal func member(_ object: AnyObject) -> AnyObject? {
return getObjectFor(object)
}
#endif
}
/// A wrapper around _RawNativeSetStorage that provides most of the
/// implementation of Set.
///
/// This type and most of its functionality doesn't require Hashable at all.
/// The reason for this is to support storing AnyObject for bridging
/// with _SwiftDeferredNSSet. What functionality actually relies on
/// Hashable can be found in an extension.
@usableFromInline
@_fixed_layout
internal struct _NativeSetBuffer<Element> {
@usableFromInline
internal typealias RawStorage = _RawNativeSetStorage
@usableFromInline
internal typealias TypedStorage = _TypedNativeSetStorage<Element>
@usableFromInline
internal typealias Buffer = _NativeSetBuffer<Element>
@usableFromInline
internal typealias Index = _NativeSetIndex<Element>
@usableFromInline
internal typealias Key = Element
@usableFromInline
internal typealias Value = Element
@usableFromInline
internal typealias SequenceElementWithoutLabels = Element
/// See this comments on _RawNativeSetStorage and its subclasses to
/// understand why we store an untyped storage here.
@usableFromInline // FIXME(sil-serialize-all)
internal var _storage: RawStorage
/// Creates a Buffer with a storage that is typed, but doesn't understand
/// Hashing. Mostly for bridging; prefer `init(minimumCapacity:)`.
@inlinable // FIXME(sil-serialize-all)
internal init(_exactBucketCount bucketCount: Int, unhashable: ()) {
let bitmapWordCount = _UnsafeBitMap.sizeInWords(forSizeInBits: bucketCount)
let storage = Builtin.allocWithTailElems_2(TypedStorage.self,
bitmapWordCount._builtinWordValue, UInt.self,
bucketCount._builtinWordValue, Key.self)
self.init(_exactBucketCount: bucketCount, storage: storage)
}
/// Given a bucket count and uninitialized RawStorage, completes the
/// initialization and returns a Buffer.
@inlinable // FIXME(sil-serialize-all)
internal init(_exactBucketCount bucketCount: Int, storage: RawStorage) {
storage.bucketCount = bucketCount
storage.count = 0
self.init(_storage: storage)
let initializedEntries = _UnsafeBitMap(
storage: _initializedHashtableEntriesBitMapBuffer,
bitCount: bucketCount)
initializedEntries.initializeToZero()
// Compute all the array offsets now, so we don't have to later
let bitmapAddr = Builtin.projectTailElems(_storage, UInt.self)
let bitmapWordCount = _UnsafeBitMap.sizeInWords(forSizeInBits: bucketCount)
let keysAddr = Builtin.getTailAddr_Word(bitmapAddr,
bitmapWordCount._builtinWordValue, UInt.self, Key.self)
// Initialize header
_storage.initializedEntries = initializedEntries
_storage.keys = UnsafeMutableRawPointer(keysAddr)
// We assign a unique hash seed to each distinct hash table size, so that we
// avoid certain copy operations becoming quadratic, without breaking value
// semantics. (See https://bugs.swift.org/browse/SR-3268)
//
// We don't need to generate a brand new seed for each table size: it's
// enough to change a single bit in the global seed by XORing the bucket
// count to it. (The bucket count is always a power of two.)
//
// FIXME: Use an approximation of true per-instance seeding. We can't just
// use the base address, because COW copies need to share the same seed.
let seed = Hasher._seed
let perturbation = bucketCount
_storage.seed = (seed.0 ^ UInt64(truncatingIfNeeded: perturbation), seed.1)
}
// Forwarding the individual fields of the storage in various forms
@inlinable // FIXME(sil-serialize-all)
internal var bucketCount: Int {
return _assumeNonNegative(_storage.bucketCount)
}
@inlinable // FIXME(sil-serialize-all)
internal var count: Int {
set {
_storage.count = newValue
}
get {
return _assumeNonNegative(_storage.count)
}
}
@inlinable // FIXME(sil-serialize-all)
internal
var _initializedHashtableEntriesBitMapBuffer: UnsafeMutablePointer<UInt> {
return _storage._initializedHashtableEntriesBitMapBuffer
}
// This API is unsafe and needs a `_fixLifetime` in the caller.
@inlinable // FIXME(sil-serialize-all)
internal var keys: UnsafeMutablePointer<Key> {
return _storage.keys.assumingMemoryBound(to: Key.self)
}
/// Constructs a buffer adopting the given storage.
@inlinable // FIXME(sil-serialize-all)
internal init(_storage: RawStorage) {
self._storage = _storage
}
/// Constructs an instance from the empty singleton.
@inlinable // FIXME(sil-serialize-all)
internal init() {
self._storage = RawStorage.empty
}
// Most of the implementation of the _HashBuffer protocol,
// but only the parts that don't actually rely on hashing.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func key(at i: Int) -> Key {
_sanityCheck(i >= 0 && i < bucketCount)
_sanityCheck(isInitializedEntry(at: i))
defer { _fixLifetime(self) }
let res = (keys + i).pointee
return res
}
#if _runtime(_ObjC)
/// Returns the key at the given Index, bridged.
///
/// Intended for use with verbatim bridgeable keys.
@inlinable // FIXME(sil-serialize-all)
internal func bridgedKey(at index: Index) -> AnyObject {
let k = key(at: index.offset)
return _bridgeAnythingToObjectiveC(k)
}
/// Returns the value at the given Index, bridged.
///
/// Intended for use with verbatim bridgeable keys.
@inlinable // FIXME(sil-serialize-all)
internal func bridgedValue(at index: Index) -> AnyObject {
let v = value(at: index.offset)
return _bridgeAnythingToObjectiveC(v)
}
#endif
@inlinable // FIXME(sil-serialize-all)
internal func isInitializedEntry(at i: Int) -> Bool {
_sanityCheck(i >= 0 && i < bucketCount)
defer { _fixLifetime(self) }
return _storage.initializedEntries[i]
}
@usableFromInline @_transparent
internal func destroyEntry(at i: Int) {
_sanityCheck(isInitializedEntry(at: i))
defer { _fixLifetime(self) }
(keys + i).deinitialize(count: 1)
_storage.initializedEntries[i] = false
}
@usableFromInline @_transparent
internal func initializeKey(_ k: Key, at i: Int) {
_sanityCheck(!isInitializedEntry(at: i))
defer { _fixLifetime(self) }
(keys + i).initialize(to: k)
_storage.initializedEntries[i] = true
}
@usableFromInline @_transparent
internal func moveInitializeEntry(from: Buffer, at: Int, toEntryAt: Int) {
_sanityCheck(!isInitializedEntry(at: toEntryAt))
defer { _fixLifetime(self) }
(keys + toEntryAt).initialize(to: (from.keys + at).move())
from._storage.initializedEntries[at] = false
_storage.initializedEntries[toEntryAt] = true
}
/// Alias for key(at:) in Sets for better code reuse
@usableFromInline @_transparent
internal func value(at i: Int) -> Value {
return key(at: i)
}
@inlinable // FIXME(sil-serialize-all)
internal func setKey(_ key: Key, at i: Int) {
_sanityCheck(i >= 0 && i < bucketCount)
_sanityCheck(isInitializedEntry(at: i))
defer { _fixLifetime(self) }
(keys + i).pointee = key
}
@inlinable // FIXME(sil-serialize-all)
internal var startIndex: Index {
// We start at "index after -1" instead of "0" because we need to find the
// first occupied slot.
return index(after: Index(offset: -1))
}
@inlinable // FIXME(sil-serialize-all)
internal var endIndex: Index {
return Index(offset: bucketCount)
}
@inlinable // FIXME(sil-serialize-all)
internal func index(after i: Index) -> Index {
_precondition(i != endIndex)
var idx = i.offset + 1
while idx < bucketCount && !isInitializedEntry(at: idx) {
idx += 1
}
return Index(offset: idx)
}
@inlinable // FIXME(sil-serialize-all)
internal func formIndex(after i: inout Index) {
i = index(after: i)
}
@inlinable // FIXME(sil-serialize-all)
internal func assertingGet(_ i: Index) -> SequenceElement {
_precondition(i.offset >= 0 && i.offset < bucketCount)
_precondition(
isInitializedEntry(at: i.offset),
"Attempting to access Set elements using an invalid Index")
let key = self.key(at: i.offset)
return key
}
}
extension _NativeSetBuffer where Element: Hashable
{
@usableFromInline
internal typealias HashTypedStorage =
_HashableTypedNativeSetStorage<Element>
@usableFromInline
internal typealias SequenceElement = Element
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal init(minimumCapacity: Int) {
let bucketCount = _NativeSetBuffer.bucketCount(
forCapacity: minimumCapacity,
maxLoadFactorInverse: _hashContainerDefaultMaxLoadFactorInverse)
self.init(bucketCount: bucketCount)
}
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal init(bucketCount: Int) {
// Actual bucket count is the next power of 2 greater than or equal to
// bucketCount. Make sure that is representable.
_sanityCheck(bucketCount <= (Int.max >> 1) + 1)
let buckets = 1 &<< ((Swift.max(bucketCount, 2) - 1)._binaryLogarithm() + 1)
self.init(_exactBucketCount: buckets)
}
/// Create a buffer instance with room for at least 'bucketCount' entries,
/// marking all entries invalid.
@inlinable // FIXME(sil-serialize-all)
internal init(_exactBucketCount bucketCount: Int) {
let bitmapWordCount = _UnsafeBitMap.sizeInWords(forSizeInBits: bucketCount)
let storage = Builtin.allocWithTailElems_2(HashTypedStorage.self,
bitmapWordCount._builtinWordValue, UInt.self,
bucketCount._builtinWordValue, Key.self)
self.init(_exactBucketCount: bucketCount, storage: storage)
}
#if _runtime(_ObjC)
@inlinable // FIXME(sil-serialize-all)
internal func bridged() -> _NSSet {
// We can zero-cost bridge if our keys are verbatim
// or if we're the empty singleton.
// Temporary var for SOME type safety before a cast.
let nsSet: _NSSetCore
if (_isBridgedVerbatimToObjectiveC(Key.self) &&
_isBridgedVerbatimToObjectiveC(Value.self)) ||
self._storage === RawStorage.empty {
nsSet = self._storage
} else {
nsSet = _SwiftDeferredNSSet(nativeBuffer: self)
}
// Cast from "minimal NSSet" to "NSSet"
// Note that if you actually ask Swift for this cast, it will fail.
// Never trust a shadow protocol!
return unsafeBitCast(nsSet, to: _NSSet.self)
}
#endif
/// A textual representation of `self`.
@inlinable // FIXME(sil-serialize-all)
internal var description: String {
var result = ""
#if INTERNAL_CHECKS_ENABLED
for i in 0..<bucketCount {
if isInitializedEntry(at: i) {
let key = self.key(at: i)
result += "bucket \(i), ideal bucket = \(_bucket(key)), key = \(key)\n"
} else {
result += "bucket \(i), empty\n"
}
}
#endif
return result
}
@inlinable // FIXME(sil-serialize-all)
internal var _bucketMask: Int {
// The bucket count is not negative, therefore subtracting 1 will not
// overflow.
return bucketCount &- 1
}
@inlinable // FIXME(sil-serialize-all)
@inline(__always) // For performance reasons.
internal func _bucket(_ k: Key) -> Int {
return k._rawHashValue(seed: _storage.seed) & _bucketMask
}
@inlinable // FIXME(sil-serialize-all)
internal func _index(after bucket: Int) -> Int {
// Bucket is within 0 and bucketCount. Therefore adding 1 does not overflow.
return (bucket &+ 1) & _bucketMask
}
@inlinable // FIXME(sil-serialize-all)
internal func _prev(_ bucket: Int) -> Int {
// Bucket is not negative. Therefore subtracting 1 does not overflow.
return (bucket &- 1) & _bucketMask
}
/// Search for a given key starting from the specified bucket.
///
/// If the key is not present, returns the position where it could be
/// inserted.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _find(_ key: Key, startBucket: Int)
-> (pos: Index, found: Bool) {
var bucket = startBucket
// The invariant guarantees there's always a hole, so we just loop
// until we find one
while true {
let isHole = !isInitializedEntry(at: bucket)
if isHole {
return (Index(offset: bucket), false)
}
if self.key(at: bucket) == key {
return (Index(offset: bucket), true)
}
bucket = _index(after: bucket)
}
}
@usableFromInline @_transparent
internal static func bucketCount(
forCapacity capacity: Int,
maxLoadFactorInverse: Double
) -> Int {
// `capacity + 1` below ensures that we don't fill in the last hole
return max(Int((Double(capacity) * maxLoadFactorInverse).rounded(.up)),
capacity + 1)
}
/// Buffer should be uniquely referenced.
/// The `key` should not be present in the Set.
/// This function does *not* update `count`.
@inlinable // FIXME(sil-serialize-all)
internal func unsafeAddNew(key newKey: Element) {
let (i, found) = _find(newKey, startBucket: _bucket(newKey))
_precondition(
!found, "Duplicate element found in Set. Elements may have been mutated after insertion")
initializeKey(newKey, at: i.offset)
}
//
// _HashBuffer conformance
//
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func index(forKey key: Key) -> Index? {
if count == 0 {
// Fast path that avoids computing the hash of the key.
return nil
}
let (i, found) = _find(key, startBucket: _bucket(key))
return found ? i : nil
}
@inlinable // FIXME(sil-serialize-all)
internal func assertingGet(_ key: Key) -> Value {
let (i, found) = _find(key, startBucket: _bucket(key))
_precondition(found, "Key not found")
return self.key(at: i.offset)
}
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func maybeGet(_ key: Key) -> Value? {
if count == 0 {
// Fast path that avoids computing the hash of the key.
return nil
}
let (i, found) = _find(key, startBucket: _bucket(key))
if found {
return self.key(at: i.offset)
}
return nil
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal func updateValue(_ value: Value, forKey key: Key) -> Value? {
_sanityCheckFailure(
"don't call mutating methods on _NativeSetBuffer")
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal func insert(
_ value: Value, forKey key: Key
) -> (inserted: Bool, memberAfterInsert: Value) {
_sanityCheckFailure(
"don't call mutating methods on _NativeSetBuffer")
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal func remove(at index: Index) -> SequenceElement {
_sanityCheckFailure(
"don't call mutating methods on _NativeSetBuffer")
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal func removeValue(forKey key: Key) -> Value? {
_sanityCheckFailure(
"don't call mutating methods on _NativeSetBuffer")
}
@inlinable // FIXME(sil-serialize-all)
internal func removeAll(keepingCapacity keepCapacity: Bool) {
_sanityCheckFailure(
"don't call mutating methods on _NativeSetBuffer")
}
@inlinable // FIXME(sil-serialize-all)
internal static func fromArray(_ elements: [SequenceElementWithoutLabels])
-> Buffer
{
if elements.isEmpty {
return Buffer()
}
var nativeBuffer = Buffer(minimumCapacity: elements.count)
var count = 0
for key in elements {
let (i, found) =
nativeBuffer._find(key, startBucket: nativeBuffer._bucket(key))
if found {
continue
}
nativeBuffer.initializeKey(key, at: i.offset)
count += 1
}
nativeBuffer.count = count
return nativeBuffer
}
}
#if _runtime(_ObjC)
/// An NSEnumerator that works with any NativeSetBuffer of
/// verbatim bridgeable elements. Used by the various NSSet impls.
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline // FIXME(sil-serialize-all)
final internal class _NativeSetNSEnumerator<Element>
: _SwiftNativeNSEnumerator, _NSEnumerator {
@usableFromInline
internal typealias Buffer = _NativeSetBuffer<Element>
@usableFromInline
internal typealias Index = _NativeSetIndex<Element>
@inlinable // FIXME(sil-serialize-all)
internal override required init() {
_sanityCheckFailure("don't call this designated initializer")
}
@inlinable // FIXME(sil-serialize-all)
internal init(_ buffer: Buffer) {
self.buffer = buffer
nextIndex = buffer.startIndex
endIndex = buffer.endIndex
}
@usableFromInline // FIXME(sil-serialize-all)
internal var buffer: Buffer
@usableFromInline // FIXME(sil-serialize-all)
internal var nextIndex: Index
@usableFromInline // FIXME(sil-serialize-all)
internal var endIndex: Index
//
// NSEnumerator implementation.
//
// Do not call any of these methods from the standard library!
//
@inlinable // FIXME(sil-serialize-all)
@objc
internal func nextObject() -> AnyObject? {
if nextIndex == endIndex {
return nil
}
let key = buffer.bridgedKey(at: nextIndex)
buffer.formIndex(after: &nextIndex)
return key
}
@inlinable // FIXME(sil-serialize-all)
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>,
count: Int
) -> Int {
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
}
if nextIndex == endIndex {
state.pointee = theState
return 0
}
// Return only a single element so that code can start iterating via fast
// enumeration, terminate it, and continue via NSEnumerator.
let key = buffer.bridgedKey(at: nextIndex)
buffer.formIndex(after: &nextIndex)
let unmanagedObjects = _UnmanagedAnyObjectArray(objects)
unmanagedObjects[0] = key
state.pointee = theState
return 1
}
}
#endif
#if _runtime(_ObjC)
/// This class exists for Objective-C bridging. It holds a reference to a
/// NativeSetBuffer, and can be upcast to NSSelf when bridging is necessary.
/// This is the fallback implementation for situations where toll-free bridging
/// isn't possible. On first access, a NativeSetBuffer of AnyObject will be
/// constructed containing all the bridged elements.
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline // FIXME(sil-serialize-all)
final internal class _SwiftDeferredNSSet<Element: Hashable>
: _SwiftNativeNSSet, _NSSetCore {
@usableFromInline
internal typealias NativeBuffer = _NativeSetBuffer<Element>
@usableFromInline
internal typealias BridgedBuffer = _NativeSetBuffer<AnyObject>
@usableFromInline
internal typealias NativeIndex = _NativeSetIndex<Element>
@usableFromInline
internal typealias BridgedIndex = _NativeSetIndex<AnyObject>
@usableFromInline
internal typealias Key = Element
@usableFromInline
internal typealias Value = Element
@inlinable // FIXME(sil-serialize-all)
@nonobjc
internal init(bucketCount: Int = 2) {
nativeBuffer = NativeBuffer(bucketCount: bucketCount)
super.init()
}
@inlinable // FIXME(sil-serialize-all)
internal init(nativeBuffer: NativeBuffer) {
self.nativeBuffer = nativeBuffer
super.init()
}
// This stored property should be stored at offset zero. We perform atomic
// operations on it.
//
// Do not access this property directly.
@usableFromInline // FIXME(sil-serialize-all)
@nonobjc
internal var _heapStorageBridged_DoNotUse: AnyObject?
/// The unbridged elements.
@usableFromInline // FIXME(sil-serialize-all)
internal var nativeBuffer: NativeBuffer
@inlinable // FIXME(sil-serialize-all)
@objc(copyWithZone:)
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
// Instances of this class should be visible outside of standard library as
// having `NSSet` type, which is immutable.
return self
}
//
// NSSet implementation.
//
// Do not call any of these methods from the standard library! Use only
// `nativeBuffer`.
//
@inlinable // FIXME(sil-serialize-all)
@objc
internal required init(objects: UnsafePointer<AnyObject?>, count: Int) {
_sanityCheckFailure("don't call this designated initializer")
}
@inlinable // FIXME(sil-serialize-all)
@objc
internal func member(_ object: AnyObject) -> AnyObject? {
return bridgingObjectForKey(object)
}
@inlinable // FIXME(sil-serialize-all)
@objc
internal func objectEnumerator() -> _NSEnumerator {
return enumerator()
}
/// Returns the pointer to the stored property, which contains bridged
/// Set elements.
@inlinable // FIXME(sil-serialize-all)
@nonobjc
internal var _heapStorageBridgedPtr: UnsafeMutablePointer<AnyObject?> {
return _getUnsafePointerToStoredProperties(self).assumingMemoryBound(
to: Optional<AnyObject>.self)
}
/// The buffer for bridged Set elements, if present.
@inlinable // FIXME(sil-serialize-all)
@nonobjc
internal var _bridgedStorage:
BridgedBuffer.RawStorage? {
get {
if let ref = _stdlib_atomicLoadARCRef(object: _heapStorageBridgedPtr) {
return unsafeDowncast(ref, to: BridgedBuffer.RawStorage.self)
}
return nil
}
}
/// Attach a buffer for bridged Set elements.
@inlinable // FIXME(sil-serialize-all)
@nonobjc
internal func _initializeHeapStorageBridged(_ newStorage: AnyObject) {
_stdlib_atomicInitializeARCRef(
object: _heapStorageBridgedPtr, desired: newStorage)
}
/// Returns the bridged Set values.
@inlinable // FIXME(sil-serialize-all)
internal var bridgedBuffer: BridgedBuffer {
return BridgedBuffer(_storage: _bridgedStorage!)
}
@inlinable // FIXME(sil-serialize-all)
@nonobjc
internal func bridgeEverything() {
if _fastPath(_bridgedStorage != nil) {
return
}
// FIXME: rdar://problem/19486139 (split bridged buffers for keys and values)
// We bridge keys and values unconditionally here, even if one of them
// actually is verbatim bridgeable (e.g. Dictionary<Int, AnyObject>).
// Investigate only allocating the buffer for a Set in this case.
// Create buffer for bridged data.
let bridged = BridgedBuffer(
_exactBucketCount: nativeBuffer.bucketCount,
unhashable: ())
// Bridge everything.
for i in 0..<nativeBuffer.bucketCount {
if nativeBuffer.isInitializedEntry(at: i) {
let key = _bridgeAnythingToObjectiveC(nativeBuffer.key(at: i))
bridged.initializeKey(key, at: i)
}
}
// Atomically put the bridged elements in place.
_initializeHeapStorageBridged(bridged._storage)
}
@inlinable // FIXME(sil-serialize-all)
@objc
internal var count: Int {
return nativeBuffer.count
}
@inlinable // FIXME(sil-serialize-all)
@nonobjc
internal func bridgingObjectForKey(_ aKey: AnyObject)
-> AnyObject? {
guard let nativeKey = _conditionallyBridgeFromObjectiveC(aKey, Key.self)
else { return nil }
let (i, found) = nativeBuffer._find(
nativeKey, startBucket: nativeBuffer._bucket(nativeKey))
if found {
bridgeEverything()
return bridgedBuffer.value(at: i.offset)
}
return nil
}
@inlinable // FIXME(sil-serialize-all)
@objc
internal func enumerator() -> _NSEnumerator {
bridgeEverything()
return _NativeSetNSEnumerator<AnyObject>(bridgedBuffer)
}
@inlinable // FIXME(sil-serialize-all)
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>?,
count: Int
) -> Int {
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
theState.extra.0 = CUnsignedLong(nativeBuffer.startIndex.offset)
}
// Test 'objects' rather than 'count' because (a) this is very rare anyway,
// and (b) the optimizer should then be able to optimize away the
// unwrapping check below.
if _slowPath(objects == nil) {
return 0
}
let unmanagedObjects = _UnmanagedAnyObjectArray(objects!)
var currIndex = _NativeSetIndex<Element>(
offset: Int(theState.extra.0))
let endIndex = nativeBuffer.endIndex
var stored = 0
// Only need to bridge once, so we can hoist it out of the loop.
if (currIndex != endIndex) {
bridgeEverything()
}
for i in 0..<count {
if (currIndex == endIndex) {
break
}
let bridgedKey = bridgedBuffer.key(at: currIndex.offset)
unmanagedObjects[i] = bridgedKey
stored += 1
nativeBuffer.formIndex(after: &currIndex)
}
theState.extra.0 = CUnsignedLong(currIndex.offset)
state.pointee = theState
return stored
}
}
#else
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline // FIXME(sil-serialize-all)
final internal class _SwiftDeferredNSSet<Element: Hashable> { }
#endif
#if _runtime(_ObjC)
@usableFromInline
@_fixed_layout
internal struct _CocoaSetBuffer: _HashBuffer {
@usableFromInline
internal var cocoaSet: _NSSet
@inlinable // FIXME(sil-serialize-all)
internal init(cocoaSet: _NSSet) {
self.cocoaSet = cocoaSet
}
@usableFromInline
internal typealias Index = _CocoaSetIndex
@usableFromInline
internal typealias SequenceElement = AnyObject
@usableFromInline
internal typealias SequenceElementWithoutLabels = AnyObject
@usableFromInline
internal typealias Key = AnyObject
@usableFromInline
internal typealias Value = AnyObject
@inlinable // FIXME(sil-serialize-all)
internal var startIndex: Index {
return Index(cocoaSet, startIndex: ())
}
@inlinable // FIXME(sil-serialize-all)
internal var endIndex: Index {
return Index(cocoaSet, endIndex: ())
}
@inlinable // FIXME(sil-serialize-all)
internal func index(after i: Index) -> Index {
return i.successor()
}
@inlinable // FIXME(sil-serialize-all)
internal func formIndex(after i: inout Index) {
// FIXME: swift-3-indexing-model: optimize if possible.
i = i.successor()
}
@inlinable // FIXME(sil-serialize-all)
internal func index(forKey key: Key) -> Index? {
// Fast path that does not involve creating an array of all keys. In case
// the key is present, this lookup is a penalty for the slow path, but the
// potential savings are significant: we could skip a memory allocation and
// a linear search.
if maybeGet(key) == nil {
return nil
}
let allKeys = _stdlib_NSSet_allObjects(cocoaSet)
var keyIndex = -1
for i in 0..<allKeys.value {
if _stdlib_NSObject_isEqual(key, allKeys[i]) {
keyIndex = i
break
}
}
_sanityCheck(keyIndex >= 0,
"Key was found in fast path, but not found later?")
return Index(cocoaSet, allKeys, keyIndex)
}
@inlinable // FIXME(sil-serialize-all)
internal func assertingGet(_ i: Index) -> SequenceElement {
let value: Value? = i.allKeys[i.currentKeyIndex]
_sanityCheck(value != nil, "Item not found in underlying NSSet")
return value!
}
@inlinable // FIXME(sil-serialize-all)
internal func assertingGet(_ key: Key) -> Value {
let value: Value? = cocoaSet.member(key)
_precondition(value != nil, "Member not found in underlying NSSet")
return value!
}
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func maybeGet(_ key: Key) -> Value? {
return cocoaSet.member(key)
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal mutating func updateValue(_ value: Value, forKey key: Key) -> Value? {
_sanityCheckFailure("cannot mutate NSSet")
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal mutating func insert(
_ value: Value, forKey key: Key
) -> (inserted: Bool, memberAfterInsert: Value) {
_sanityCheckFailure("cannot mutate NSSet")
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal mutating func remove(at index: Index) -> SequenceElement {
_sanityCheckFailure("cannot mutate NSSet")
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal mutating func removeValue(forKey key: Key) -> Value? {
_sanityCheckFailure("cannot mutate NSSet")
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func removeAll(keepingCapacity keepCapacity: Bool) {
_sanityCheckFailure("cannot mutate NSSet")
}
@inlinable // FIXME(sil-serialize-all)
internal var count: Int {
return cocoaSet.count
}
@inlinable // FIXME(sil-serialize-all)
internal static func fromArray(_ elements: [SequenceElementWithoutLabels])
-> _CocoaSetBuffer {
_sanityCheckFailure("this function should never be called")
}
}
#endif
@usableFromInline
@_frozen
internal enum _VariantSetBuffer<Element: Hashable>: _HashBuffer {
@usableFromInline
internal typealias NativeBuffer = _NativeSetBuffer<Element>
@usableFromInline
internal typealias NativeIndex = _NativeSetIndex<Element>
#if _runtime(_ObjC)
@usableFromInline
internal typealias CocoaBuffer = _CocoaSetBuffer
#endif
@usableFromInline
internal typealias SequenceElement = Element
@usableFromInline
internal typealias SequenceElementWithoutLabels = Element
@usableFromInline
internal typealias SelfType = _VariantSetBuffer
@usableFromInline
internal typealias Key = Element
@usableFromInline
internal typealias Value = Element
case native(NativeBuffer)
#if _runtime(_ObjC)
case cocoa(CocoaBuffer)
#endif
@usableFromInline @_transparent
internal var guaranteedNative: Bool {
return _canBeClass(Key.self) == 0 || _canBeClass(Value.self) == 0
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func isUniquelyReferenced() -> Bool {
// Note that &self drills down through .native(NativeBuffer) to the first
// property in NativeBuffer, which is the reference to the storage.
if _fastPath(guaranteedNative) {
return _isUnique_native(&self)
}
switch self {
case .native:
return _isUnique_native(&self)
#if _runtime(_ObjC)
case .cocoa:
// Don't consider Cocoa buffer mutable, even if it is mutable and is
// uniquely referenced.
return false
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal var asNative: NativeBuffer {
get {
switch self {
case .native(let buffer):
return buffer
#if _runtime(_ObjC)
case .cocoa:
_sanityCheckFailure("internal error: not backed by native buffer")
#endif
}
}
set {
self = .native(newValue)
}
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func ensureNativeBuffer() {
#if _runtime(_ObjC)
if _fastPath(guaranteedNative) { return }
if case .cocoa(let cocoaBuffer) = self {
migrateDataToNativeBuffer(cocoaBuffer)
}
#endif
}
#if _runtime(_ObjC)
@inlinable // FIXME(sil-serialize-all)
internal var asCocoa: CocoaBuffer {
switch self {
case .native:
_sanityCheckFailure("internal error: not backed by NSSet")
case .cocoa(let cocoaBuffer):
return cocoaBuffer
}
}
#endif
/// Return true if self is native.
@inlinable // FIXME(sil-serialize-all)
internal var _isNative: Bool {
#if _runtime(_ObjC)
switch self {
case .native:
return true
case .cocoa:
return false
}
#else
return true
#endif
}
@inline(__always)
@inlinable // FIXME(sil-serialize-all)
internal mutating func ensureUniqueNativeBufferNative(
withBucketCount desiredBucketCount: Int
) -> (reallocated: Bool, capacityChanged: Bool) {
let oldBucketCount = asNative.bucketCount
if oldBucketCount >= desiredBucketCount && isUniquelyReferenced() {
return (reallocated: false, capacityChanged: false)
}
let oldNativeBuffer = asNative
var newNativeBuffer = NativeBuffer(bucketCount: desiredBucketCount)
let newBucketCount = newNativeBuffer.bucketCount
for i in 0..<oldBucketCount {
if oldNativeBuffer.isInitializedEntry(at: i) {
if oldBucketCount == newBucketCount {
let key = oldNativeBuffer.key(at: i)
newNativeBuffer.initializeKey(key, at: i)
} else {
let key = oldNativeBuffer.key(at: i)
newNativeBuffer.unsafeAddNew(key: key)
}
}
}
newNativeBuffer.count = oldNativeBuffer.count
self = .native(newNativeBuffer)
return (reallocated: true,
capacityChanged: oldBucketCount != newBucketCount)
}
@inline(__always)
@inlinable // FIXME(sil-serialize-all)
internal mutating func ensureUniqueNativeBuffer(
withCapacity minimumCapacity: Int
) -> (reallocated: Bool, capacityChanged: Bool) {
let bucketCount = NativeBuffer.bucketCount(
forCapacity: minimumCapacity,
maxLoadFactorInverse: _hashContainerDefaultMaxLoadFactorInverse)
return ensureUniqueNativeBuffer(withBucketCount: bucketCount)
}
/// Ensure this we hold a unique reference to a native buffer
/// having at least `minimumCapacity` elements.
@inlinable // FIXME(sil-serialize-all)
internal mutating func ensureUniqueNativeBuffer(
withBucketCount desiredBucketCount: Int
) -> (reallocated: Bool, capacityChanged: Bool) {
#if _runtime(_ObjC)
// This is a performance optimization that was put in to ensure that we did
// not make a copy of self to call _isNative over the entire if region
// causing at -Onone the uniqueness check to fail. This code used to be:
//
// if _isNative {
// return ensureUniqueNativeBufferNative(
// withBucketCount: desiredBucketCount)
// }
//
// SR-6437
let n = _isNative
if n {
return ensureUniqueNativeBufferNative(withBucketCount: desiredBucketCount)
}
switch self {
case .native:
fatalError("This should have been handled earlier")
case .cocoa(let cocoaBuffer):
let cocoaSet = cocoaBuffer.cocoaSet
var newNativeBuffer = NativeBuffer(bucketCount: desiredBucketCount)
let oldCocoaIterator = _CocoaSetIterator(cocoaSet)
while let key = oldCocoaIterator.next() {
newNativeBuffer.unsafeAddNew(
key: _forceBridgeFromObjectiveC(key, Value.self))
}
newNativeBuffer.count = cocoaSet.count
self = .native(newNativeBuffer)
return (reallocated: true, capacityChanged: true)
}
#else
return ensureUniqueNativeBufferNative(withBucketCount: desiredBucketCount)
#endif
}
#if _runtime(_ObjC)
@inline(never)
@usableFromInline
internal mutating func migrateDataToNativeBuffer(
_ cocoaBuffer: _CocoaSetBuffer
) {
let allocated = ensureUniqueNativeBuffer(
withCapacity: cocoaBuffer.count).reallocated
_sanityCheck(allocated, "failed to allocate native Set buffer")
}
#endif
/// Reserves enough space for the specified number of elements to be stored
/// without reallocating additional storage.
@inlinable // FIXME(sil-serialize-all)
internal mutating func reserveCapacity(_ capacity: Int) {
_ = ensureUniqueNativeBuffer(withCapacity: capacity)
}
/// The number of elements that can be stored without expanding the current
/// storage.
///
/// For bridged storage, this is equal to the current count of the
/// collection, since any addition will trigger a copy of the elements into
/// newly allocated storage. For native storage, this is the element count
/// at which adding any more elements will exceed the load factor.
@inlinable // FIXME(sil-serialize-all)
internal var capacity: Int {
switch self {
case .native:
return Int(Double(asNative.bucketCount) /
_hashContainerDefaultMaxLoadFactorInverse)
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
return cocoaBuffer.count
#endif
}
}
//
// _HashBuffer conformance
//
@usableFromInline
internal typealias Index = SetIndex<Element>
@inlinable // FIXME(sil-serialize-all)
internal var startIndex: Index {
if _fastPath(guaranteedNative) {
return ._native(asNative.startIndex)
}
switch self {
case .native:
return ._native(asNative.startIndex)
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
return ._cocoa(cocoaBuffer.startIndex)
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal var endIndex: Index {
if _fastPath(guaranteedNative) {
return ._native(asNative.endIndex)
}
switch self {
case .native:
return ._native(asNative.endIndex)
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
return ._cocoa(cocoaBuffer.endIndex)
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal func index(after i: Index) -> Index {
if _fastPath(guaranteedNative) {
return ._native(asNative.index(after: i._nativeIndex))
}
switch self {
case .native:
return ._native(asNative.index(after: i._nativeIndex))
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
return ._cocoa(cocoaBuffer.index(after: i._cocoaIndex))
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal func formIndex(after i: inout Index) {
// FIXME: swift-3-indexing-model: optimize if possible.
i = index(after: i)
}
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func index(forKey key: Key) -> Index? {
if _fastPath(guaranteedNative) {
if let nativeIndex = asNative.index(forKey: key) {
return ._native(nativeIndex)
}
return nil
}
switch self {
case .native:
if let nativeIndex = asNative.index(forKey: key) {
return ._native(nativeIndex)
}
return nil
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
let anyObjectKey: AnyObject = _bridgeAnythingToObjectiveC(key)
if let cocoaIndex = cocoaBuffer.index(forKey: anyObjectKey) {
return ._cocoa(cocoaIndex)
}
return nil
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal func assertingGet(_ i: Index) -> SequenceElement {
if _fastPath(guaranteedNative) {
return asNative.assertingGet(i._nativeIndex)
}
switch self {
case .native:
return asNative.assertingGet(i._nativeIndex)
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
let anyObjectValue: AnyObject = cocoaBuffer.assertingGet(i._cocoaIndex)
let nativeValue = _forceBridgeFromObjectiveC(anyObjectValue, Value.self)
return nativeValue
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal func assertingGet(_ key: Key) -> Value {
if _fastPath(guaranteedNative) {
return asNative.assertingGet(key)
}
switch self {
case .native:
return asNative.assertingGet(key)
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
// FIXME: This assumes that Key and Value are bridged verbatim.
let anyObjectKey: AnyObject = _bridgeAnythingToObjectiveC(key)
let anyObjectValue: AnyObject = cocoaBuffer.assertingGet(anyObjectKey)
return _forceBridgeFromObjectiveC(anyObjectValue, Value.self)
#endif
}
}
#if _runtime(_ObjC)
@inline(never)
@usableFromInline
internal static func maybeGetFromCocoaBuffer(
_ cocoaBuffer: CocoaBuffer, forKey key: Key
) -> Value? {
let anyObjectKey: AnyObject = _bridgeAnythingToObjectiveC(key)
if let anyObjectValue = cocoaBuffer.maybeGet(anyObjectKey) {
return _forceBridgeFromObjectiveC(anyObjectValue, Value.self)
}
return nil
}
#endif
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func maybeGet(_ key: Key) -> Value? {
if _fastPath(guaranteedNative) {
return asNative.maybeGet(key)
}
switch self {
case .native:
return asNative.maybeGet(key)
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
return SelfType.maybeGetFromCocoaBuffer(cocoaBuffer, forKey: key)
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func nativeUpdateValue(
_ value: Value, forKey key: Key
) -> Value? {
var (i, found) = asNative._find(key, startBucket: asNative._bucket(key))
let minBuckets = found
? asNative.bucketCount
: NativeBuffer.bucketCount(
forCapacity: asNative.count + 1,
maxLoadFactorInverse: _hashContainerDefaultMaxLoadFactorInverse)
let (_, capacityChanged) = ensureUniqueNativeBuffer(
withBucketCount: minBuckets)
if capacityChanged {
i = asNative._find(key, startBucket: asNative._bucket(key)).pos
}
let oldValue: Value? = found ? asNative.key(at: i.offset) : nil
if found {
asNative.setKey(key, at: i.offset)
} else {
asNative.initializeKey(key, at: i.offset)
asNative.count += 1
}
return oldValue
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal mutating func updateValue(
_ value: Value, forKey key: Key
) -> Value? {
if _fastPath(guaranteedNative) {
return nativeUpdateValue(value, forKey: key)
}
switch self {
case .native:
return nativeUpdateValue(value, forKey: key)
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
migrateDataToNativeBuffer(cocoaBuffer)
return nativeUpdateValue(value, forKey: key)
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func nativeInsert(
_ value: Value, forKey key: Key
) -> (inserted: Bool, memberAfterInsert: Value) {
var (i, found) = asNative._find(key, startBucket: asNative._bucket(key))
if found {
return (inserted: false, memberAfterInsert: asNative.key(at: i.offset))
}
let minCapacity = asNative.count + 1
let (_, capacityChanged) = ensureUniqueNativeBuffer(
withCapacity: minCapacity)
if capacityChanged {
i = asNative._find(key, startBucket: asNative._bucket(key)).pos
}
asNative.initializeKey(key, at: i.offset)
asNative.count += 1
return (inserted: true, memberAfterInsert: value)
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal mutating func insert(
_ value: Value, forKey key: Key
) -> (inserted: Bool, memberAfterInsert: Value) {
ensureNativeBuffer()
return nativeInsert(value, forKey: key)
}
/// - parameter idealBucket: The ideal bucket for the element being deleted.
/// - parameter offset: The offset of the element that will be deleted.
/// Precondition: there should be an initialized entry at offset.
@inlinable // FIXME(sil-serialize-all)
internal mutating func nativeDelete(
_ nativeBuffer: NativeBuffer, idealBucket: Int, offset: Int
) {
_sanityCheck(
nativeBuffer.isInitializedEntry(at: offset), "expected initialized entry")
var nativeBuffer = nativeBuffer
// remove the element
nativeBuffer.destroyEntry(at: offset)
nativeBuffer.count -= 1
// If we've put a hole in a chain of contiguous elements, some
// element after the hole may belong where the new hole is.
var hole = offset
// Find the first bucket in the contiguous chain
var start = idealBucket
while nativeBuffer.isInitializedEntry(at: nativeBuffer._prev(start)) {
start = nativeBuffer._prev(start)
}
// Find the last bucket in the contiguous chain
var lastInChain = hole
var b = nativeBuffer._index(after: lastInChain)
while nativeBuffer.isInitializedEntry(at: b) {
lastInChain = b
b = nativeBuffer._index(after: b)
}
// Relocate out-of-place elements in the chain, repeating until
// none are found.
while hole != lastInChain {
// Walk backwards from the end of the chain looking for
// something out-of-place.
var b = lastInChain
while b != hole {
let idealBucket = nativeBuffer._bucket(nativeBuffer.key(at: b))
// Does this element belong between start and hole? We need
// two separate tests depending on whether [start, hole] wraps
// around the end of the storage
let c0 = idealBucket >= start
let c1 = idealBucket <= hole
if start <= hole ? (c0 && c1) : (c0 || c1) {
break // Found it
}
b = nativeBuffer._prev(b)
}
if b == hole { // No out-of-place elements found; we're done adjusting
break
}
// Move the found element into the hole
nativeBuffer.moveInitializeEntry(
from: nativeBuffer,
at: b,
toEntryAt: hole)
hole = b
}
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func nativeRemoveObject(forKey key: Key) -> Value? {
var idealBucket = asNative._bucket(key)
var (index, found) = asNative._find(key, startBucket: idealBucket)
// Fast path: if the key is not present, we will not mutate the set,
// so don't force unique buffer.
if !found {
return nil
}
// This is a performance optimization that was put in to ensure that we
// did not make a copy of self to call asNative.bucketCount over
// ensureUniqueNativeBefore causing at -Onone the uniqueness check to
// fail. This code used to be:
//
// ... = ensureUniqueNativeBuffer(withBucketCount: asNative.bucketCount)
//
// SR-6437
let bucketCount = asNative.bucketCount
let (_, capacityChanged) = ensureUniqueNativeBuffer(
withBucketCount: bucketCount)
let nativeBuffer = asNative
if capacityChanged {
idealBucket = nativeBuffer._bucket(key)
(index, found) = nativeBuffer._find(key, startBucket: idealBucket)
_sanityCheck(found, "key was lost during buffer migration")
}
let oldValue = nativeBuffer.key(at: index.offset)
nativeDelete(nativeBuffer, idealBucket: idealBucket,
offset: index.offset)
return oldValue
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func nativeRemove(
at nativeIndex: NativeIndex
) -> SequenceElement {
// This is a performance optimization that was put in to ensure that we did
// not make a copy of self to call asNative.bucketCount over
// ensureUniqueNativeBefore causing at -Onone the uniqueness check to
// fail. This code used to be:
//
// _ = ensureUniqueNativeBuffer(withBucketCount: asNative.bucketCount)
//
// SR-6437
let bucketCount = asNative.bucketCount
// The provided index should be valid, so we will always mutating the
// set buffer. Request unique buffer.
_ = ensureUniqueNativeBuffer(withBucketCount: bucketCount)
let nativeBuffer = asNative
let result = nativeBuffer.assertingGet(nativeIndex)
let key = result
nativeDelete(nativeBuffer, idealBucket: nativeBuffer._bucket(key),
offset: nativeIndex.offset)
return result
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal mutating func remove(at index: Index) -> SequenceElement {
if _fastPath(guaranteedNative) {
return nativeRemove(at: index._nativeIndex)
}
switch self {
case .native:
return nativeRemove(at: index._nativeIndex)
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
// We have to migrate the data first. But after we do so, the Cocoa
// index becomes useless, so get the key first.
//
// FIXME(performance): fuse data migration and element deletion into one
// operation.
let index = index._cocoaIndex
let anyObjectKey: AnyObject = index.allKeys[index.currentKeyIndex]
migrateDataToNativeBuffer(cocoaBuffer)
let key = _forceBridgeFromObjectiveC(anyObjectKey, Key.self)
let value = nativeRemoveObject(forKey: key)
_sanityCheck(key == value, "bridging did not preserve equality")
return key
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
@discardableResult
internal mutating func removeValue(forKey key: Key) -> Value? {
if _fastPath(guaranteedNative) {
return nativeRemoveObject(forKey: key)
}
switch self {
case .native:
return nativeRemoveObject(forKey: key)
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
let anyObjectKey: AnyObject = _bridgeAnythingToObjectiveC(key)
if cocoaBuffer.maybeGet(anyObjectKey) == nil {
return nil
}
migrateDataToNativeBuffer(cocoaBuffer)
return nativeRemoveObject(forKey: key)
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func nativeRemoveAll() {
if !isUniquelyReferenced() {
asNative = NativeBuffer(_exactBucketCount: asNative.bucketCount)
return
}
// We have already checked for the empty dictionary case and unique
// reference, so we will always mutate the dictionary buffer.
var nativeBuffer = asNative
for b in 0..<nativeBuffer.bucketCount {
if nativeBuffer.isInitializedEntry(at: b) {
nativeBuffer.destroyEntry(at: b)
}
}
nativeBuffer.count = 0
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func removeAll(keepingCapacity keepCapacity: Bool) {
if count == 0 {
return
}
if !keepCapacity {
self = .native(NativeBuffer(bucketCount: 2))
return
}
if _fastPath(guaranteedNative) {
nativeRemoveAll()
return
}
switch self {
case .native:
nativeRemoveAll()
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
self = .native(NativeBuffer(minimumCapacity: cocoaBuffer.count))
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal var count: Int {
if _fastPath(guaranteedNative) {
return asNative.count
}
switch self {
case .native:
return asNative.count
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
return cocoaBuffer.count
#endif
}
}
/// Returns an iterator over the `(Key, Value)` pairs.
///
/// - Complexity: O(1).
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func makeIterator() -> SetIterator<Element> {
switch self {
case .native(let buffer):
return ._native(
start: asNative.startIndex, end: asNative.endIndex, buffer: buffer)
#if _runtime(_ObjC)
case .cocoa(let cocoaBuffer):
return ._cocoa(_CocoaSetIterator(cocoaBuffer.cocoaSet))
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
internal static func fromArray(_ elements: [SequenceElement])
-> _VariantSetBuffer<Element> {
_sanityCheckFailure("this function should never be called")
}
}
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
internal struct _NativeSetIndex<Element>: Comparable {
@usableFromInline
internal var offset: Int
@inlinable // FIXME(sil-serialize-all)
internal init(offset: Int) {
self.offset = offset
}
}
extension _NativeSetIndex {
@inlinable // FIXME(sil-serialize-all)
internal static func < (
lhs: _NativeSetIndex<Element>,
rhs: _NativeSetIndex<Element>
) -> Bool {
return lhs.offset < rhs.offset
}
@inlinable // FIXME(sil-serialize-all)
internal static func <= (
lhs: _NativeSetIndex<Element>,
rhs: _NativeSetIndex<Element>
) -> Bool {
return lhs.offset <= rhs.offset
}
@inlinable // FIXME(sil-serialize-all)
internal static func > (
lhs: _NativeSetIndex<Element>,
rhs: _NativeSetIndex<Element>
) -> Bool {
return lhs.offset > rhs.offset
}
@inlinable // FIXME(sil-serialize-all)
internal static func >= (
lhs: _NativeSetIndex<Element>,
rhs: _NativeSetIndex<Element>
) -> Bool {
return lhs.offset >= rhs.offset
}
@inlinable // FIXME(sil-serialize-all)
internal static func == (
lhs: _NativeSetIndex<Element>,
rhs: _NativeSetIndex<Element>
) -> Bool {
return lhs.offset == rhs.offset
}
}
#if _runtime(_ObjC)
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
internal struct _CocoaSetIndex: Comparable {
// Assumption: we rely on NSDictionary.getObjects when being
// repeatedly called on the same NSDictionary, returning items in the same
// order every time.
// Similarly, the same assumption holds for NSSet.allObjects.
/// A reference to the NSSet, which owns members in `allObjects`,
/// or `allKeys`, for NSSet and NSDictionary respectively.
@usableFromInline // FIXME(sil-serialize-all)
internal let cocoaSet: _NSSet
// FIXME: swift-3-indexing-model: try to remove the cocoa reference, but make
// sure that we have a safety check for accessing `allKeys`. Maybe move both
// into the dictionary/set itself.
/// An unowned array of keys.
@usableFromInline // FIXME(sil-serialize-all)
internal var allKeys: _HeapBuffer<Int, AnyObject>
/// Index into `allKeys`
@usableFromInline // FIXME(sil-serialize-all)
internal var currentKeyIndex: Int
@inlinable // FIXME(sil-serialize-all)
internal init(_ cocoaSet: _NSSet, startIndex: ()) {
self.cocoaSet = cocoaSet
self.allKeys = _stdlib_NSSet_allObjects(cocoaSet)
self.currentKeyIndex = 0
}
@inlinable // FIXME(sil-serialize-all)
internal init(_ cocoaSet: _NSSet, endIndex: ()) {
self.cocoaSet = cocoaSet
self.allKeys = _stdlib_NSSet_allObjects(cocoaSet)
self.currentKeyIndex = allKeys.value
}
@inlinable // FIXME(sil-serialize-all)
internal init(_ cocoaSet: _NSSet,
_ allKeys: _HeapBuffer<Int, AnyObject>,
_ currentKeyIndex: Int
) {
self.cocoaSet = cocoaSet
self.allKeys = allKeys
self.currentKeyIndex = currentKeyIndex
}
/// Returns the next consecutive value after `self`.
///
/// - Precondition: The next value is representable.
@inlinable // FIXME(sil-serialize-all)
internal func successor() -> _CocoaSetIndex {
// FIXME: swift-3-indexing-model: remove this method.
_precondition(
currentKeyIndex < allKeys.value, "Cannot increment endIndex")
return _CocoaSetIndex(cocoaSet, allKeys, currentKeyIndex + 1)
}
}
extension _CocoaSetIndex {
@inlinable // FIXME(sil-serialize-all)
internal static func < (
lhs: _CocoaSetIndex,
rhs: _CocoaSetIndex
) -> Bool {
return lhs.currentKeyIndex < rhs.currentKeyIndex
}
@inlinable // FIXME(sil-serialize-all)
internal static func <= (
lhs: _CocoaSetIndex,
rhs: _CocoaSetIndex
) -> Bool {
return lhs.currentKeyIndex <= rhs.currentKeyIndex
}
@inlinable // FIXME(sil-serialize-all)
internal static func > (
lhs: _CocoaSetIndex,
rhs: _CocoaSetIndex
) -> Bool {
return lhs.currentKeyIndex > rhs.currentKeyIndex
}
@inlinable // FIXME(sil-serialize-all)
internal static func >= (
lhs: _CocoaSetIndex,
rhs: _CocoaSetIndex
) -> Bool {
return lhs.currentKeyIndex >= rhs.currentKeyIndex
}
@inlinable // FIXME(sil-serialize-all)
internal static func == (
lhs: _CocoaSetIndex,
rhs: _CocoaSetIndex
) -> Bool {
return lhs.currentKeyIndex == rhs.currentKeyIndex
}
}
#endif
@_frozen // FIXME(sil-serialize-all)
@usableFromInline // FIXME(sil-serialize-all)
internal enum SetIndexRepresentation<Element: Hashable> {
@usableFromInline
typealias _Index = SetIndex<Element>
@usableFromInline
typealias _NativeIndex = _Index._NativeIndex
#if _runtime(_ObjC)
@usableFromInline
typealias _CocoaIndex = _Index._CocoaIndex
#endif
case _native(_NativeIndex)
#if _runtime(_ObjC)
case _cocoa(_CocoaIndex)
#endif
}
extension Set {
/// The position of an element in a set.
@_fixed_layout // FIXME(sil-serialize-all)
public struct Index: Comparable, Hashable {
// Index for native buffer is efficient. Index for bridged NSSet is
// not, because neither NSEnumerator nor fast enumeration support moving
// backwards. Even if they did, there is another issue: NSEnumerator does
// not support NSCopying, and fast enumeration does not document that it is
// safe to copy the state. So, we cannot implement Index that is a value
// type for bridged NSSet in terms of Cocoa enumeration facilities.
@usableFromInline
internal typealias _NativeIndex = _NativeSetIndex<Element>
#if _runtime(_ObjC)
@usableFromInline
internal typealias _CocoaIndex = _CocoaSetIndex
#endif
@usableFromInline
internal typealias Key = Element
@usableFromInline
internal typealias Value = Element
@inlinable // FIXME(sil-serialize-all)
internal init(_value: SetIndexRepresentation<Element>) {
self._value = _value
}
@usableFromInline // FIXME(sil-serialize-all)
internal var _value: SetIndexRepresentation<Element>
@inlinable // FIXME(sil-serialize-all)
internal static func _native(_ index: _NativeIndex) -> Index {
return SetIndex(_value: ._native(index))
}
#if _runtime(_ObjC)
@inlinable // FIXME(sil-serialize-all)
internal static func _cocoa(_ index: _CocoaIndex) -> Index {
return SetIndex(_value: ._cocoa(index))
}
#endif
@usableFromInline @_transparent
internal var _guaranteedNative: Bool {
return _canBeClass(Key.self) == 0 && _canBeClass(Value.self) == 0
}
@usableFromInline @_transparent
internal var _nativeIndex: _NativeIndex {
switch _value {
case ._native(let nativeIndex):
return nativeIndex
#if _runtime(_ObjC)
case ._cocoa:
_sanityCheckFailure("internal error: does not contain a native index")
#endif
}
}
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _cocoaIndex: _CocoaIndex {
switch _value {
case ._native:
_sanityCheckFailure("internal error: does not contain a Cocoa index")
case ._cocoa(let cocoaIndex):
return cocoaIndex
}
}
#endif
}
}
public typealias SetIndex<Element: Hashable> = Set<Element>.Index
extension Set.Index {
@inlinable // FIXME(sil-serialize-all)
public static func == (
lhs: Set<Element>.Index,
rhs: Set<Element>.Index
) -> Bool {
if _fastPath(lhs._guaranteedNative) {
return lhs._nativeIndex == rhs._nativeIndex
}
switch (lhs._value, rhs._value) {
case (._native(let lhsNative), ._native(let rhsNative)):
return lhsNative == rhsNative
#if _runtime(_ObjC)
case (._cocoa(let lhsCocoa), ._cocoa(let rhsCocoa)):
return lhsCocoa == rhsCocoa
default:
_preconditionFailure("Comparing indexes from different sets")
#endif
}
}
@inlinable // FIXME(sil-serialize-all)
public static func < (
lhs: Set<Element>.Index,
rhs: Set<Element>.Index
) -> Bool {
if _fastPath(lhs._guaranteedNative) {
return lhs._nativeIndex < rhs._nativeIndex
}
switch (lhs._value, rhs._value) {
case (._native(let lhsNative), ._native(let rhsNative)):
return lhsNative < rhsNative
#if _runtime(_ObjC)
case (._cocoa(let lhsCocoa), ._cocoa(let rhsCocoa)):
return lhsCocoa < rhsCocoa
default:
_preconditionFailure("Comparing indexes from different sets")
#endif
}
}
/// Hashes the essential components of this value by feeding them into the
/// given hasher.
///
/// - Parameter hasher: The hasher to use when combining the components
/// of this instance.
@inlinable
public func hash(into hasher: inout Hasher) {
#if _runtime(_ObjC)
if _fastPath(_guaranteedNative) {
hasher.combine(0 as UInt8)
hasher.combine(_nativeIndex.offset)
return
}
switch _value {
case ._native(let nativeIndex):
hasher.combine(0 as UInt8)
hasher.combine(nativeIndex.offset)
case ._cocoa(let cocoaIndex):
hasher.combine(1 as UInt8)
hasher.combine(cocoaIndex.currentKeyIndex)
}
#else
hasher.combine(_nativeIndex.offset)
#endif
}
}
#if _runtime(_ObjC)
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
final internal class _CocoaSetIterator: IteratorProtocol {
@usableFromInline
internal typealias Element = AnyObject
// Cocoa Set iterator has to be a class, otherwise we cannot
// guarantee that the fast enumeration struct is pinned to a certain memory
// location.
// This stored property should be stored at offset zero. There's code below
// relying on this.
@usableFromInline // FIXME(sil-serialize-all)
internal var _fastEnumerationState: _SwiftNSFastEnumerationState =
_makeSwiftNSFastEnumerationState()
// This stored property should be stored right after `_fastEnumerationState`.
// There's code below relying on this.
@usableFromInline // FIXME(sil-serialize-all)
internal var _fastEnumerationStackBuf = _CocoaFastEnumerationStackBuf()
@usableFromInline // FIXME(sil-serialize-all)
internal let cocoaSet: _NSSet
@inlinable // FIXME(sil-serialize-all)
internal var _fastEnumerationStatePtr:
UnsafeMutablePointer<_SwiftNSFastEnumerationState> {
return _getUnsafePointerToStoredProperties(self).assumingMemoryBound(
to: _SwiftNSFastEnumerationState.self)
}
@inlinable // FIXME(sil-serialize-all)
internal var _fastEnumerationStackBufPtr:
UnsafeMutablePointer<_CocoaFastEnumerationStackBuf> {
return UnsafeMutableRawPointer(_fastEnumerationStatePtr + 1)
.assumingMemoryBound(to: _CocoaFastEnumerationStackBuf.self)
}
// These members have to be word-sized integers, they cannot be limited to
// Int8 just because our storage holds 16 elements: fast enumeration is
// allowed to return inner pointers to the container, which can be much
// larger.
@usableFromInline // FIXME(sil-serialize-all)
internal var itemIndex: Int = 0
@usableFromInline // FIXME(sil-serialize-all)
internal var itemCount: Int = 0
@inlinable // FIXME(sil-serialize-all)
internal init(_ cocoaSet: _NSSet) {
self.cocoaSet = cocoaSet
}
@inlinable // FIXME(sil-serialize-all)
internal func next() -> Element? {
if itemIndex < 0 {
return nil
}
let cocoaSet = self.cocoaSet
if itemIndex == itemCount {
let stackBufCount = _fastEnumerationStackBuf.count
// We can't use `withUnsafeMutablePointer` here to get pointers to
// properties, because doing so might introduce a writeback storage, but
// fast enumeration relies on the pointer identity of the enumeration
// state struct.
itemCount = cocoaSet.countByEnumerating(
with: _fastEnumerationStatePtr,
objects: UnsafeMutableRawPointer(_fastEnumerationStackBufPtr)
.assumingMemoryBound(to: AnyObject.self),
count: stackBufCount)
if itemCount == 0 {
itemIndex = -1
return nil
}
itemIndex = 0
}
let itemsPtrUP =
UnsafeMutableRawPointer(_fastEnumerationState.itemsPtr!)
.assumingMemoryBound(to: AnyObject.self)
let itemsPtr = _UnmanagedAnyObjectArray(itemsPtrUP)
let key: AnyObject = itemsPtr[itemIndex]
itemIndex += 1
return key
}
}
#endif
@usableFromInline
@_frozen // FIXME(sil-serialize-all)
internal enum SetIteratorRepresentation<Element: Hashable> {
@usableFromInline
internal typealias _Iterator = SetIterator<Element>
@usableFromInline
internal typealias _NativeBuffer = _NativeSetBuffer<Element>
@usableFromInline
internal typealias _NativeIndex = _Iterator._NativeIndex
// For native buffer, we keep two indices to keep track of the iteration
// progress and the buffer owner to make the buffer non-uniquely
// referenced.
//
// Iterator is iterating over a frozen view of the collection
// state, so it should keep its own reference to the buffer.
case _native(
start: _NativeIndex, end: _NativeIndex, buffer: _NativeBuffer)
#if _runtime(_ObjC)
case _cocoa(_CocoaSetIterator)
#endif
}
/// An iterator over the members of a `Set<Element>`.
@_fixed_layout // FIXME(sil-serialize-all)
public struct SetIterator<Element: Hashable>: IteratorProtocol {
// Set has a separate IteratorProtocol and Index because of efficiency
// and implementability reasons.
//
// Index for native buffer is efficient. Index for bridged NSSet is
// not.
//
// Even though fast enumeration is not suitable for implementing
// Index, which is multi-pass, it is suitable for implementing a
// IteratorProtocol, which is being consumed as iteration proceeds.
@usableFromInline
internal typealias _NativeBuffer = _NativeSetBuffer<Element>
@usableFromInline
internal typealias _NativeIndex = _NativeSetIndex<Element>
@usableFromInline
internal var _state: SetIteratorRepresentation<Element>
@inlinable // FIXME(sil-serialize-all)
internal init(_state: SetIteratorRepresentation<Element>) {
self._state = _state
}
@inlinable // FIXME(sil-serialize-all)
internal static func _native(
start: _NativeIndex, end: _NativeIndex, buffer: _NativeBuffer
) -> SetIterator {
return SetIterator(
_state: ._native(start: start, end: end, buffer: buffer))
}
#if _runtime(_ObjC)
@inlinable // FIXME(sil-serialize-all)
internal static func _cocoa(
_ iterator: _CocoaSetIterator
) -> SetIterator{
return SetIterator(_state: ._cocoa(iterator))
}
#endif
@usableFromInline @_transparent
internal var _guaranteedNative: Bool {
return _canBeClass(Element.self) == 0
}
@inlinable // FIXME(sil-serialize-all)
internal mutating func _nativeNext() -> Element? {
switch _state {
case ._native(let startIndex, let endIndex, let buffer):
if startIndex == endIndex {
return nil
}
let result = buffer.assertingGet(startIndex)
_state =
._native(start: buffer.index(after: startIndex), end: endIndex, buffer: buffer)
return result
#if _runtime(_ObjC)
case ._cocoa:
_sanityCheckFailure("internal error: not backed by NSSet")
#endif
}
}
/// Advances to the next element and returns it, or `nil` if no next element
/// exists.
///
/// Once `nil` has been returned, all subsequent calls return `nil`.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
public mutating func next() -> Element? {
if _fastPath(_guaranteedNative) {
return _nativeNext()
}
switch _state {
case ._native:
return _nativeNext()
#if _runtime(_ObjC)
case ._cocoa(let cocoaIterator):
if let anyObjectElement = cocoaIterator.next() {
return _forceBridgeFromObjectiveC(anyObjectElement, Element.self)
}
return nil
#endif
}
}
}
extension SetIterator: CustomReflectable {
/// A mirror that reflects the iterator.
public var customMirror: Mirror {
return Mirror(
self,
children: EmptyCollection<(label: String?, value: Any)>())
}
}
extension Set: CustomReflectable {
/// A mirror that reflects the set.
public var customMirror: Mirror {
let style = Mirror.DisplayStyle.`set`
return Mirror(self, unlabeledChildren: self, displayStyle: style)
}
}
/// Initializes a `Set` from unique members.
///
/// Using a builder can be faster than inserting members into an empty
/// `Set`.
@_fixed_layout // FIXME(sil-serialize-all)
public struct _SetBuilder<Element: Hashable> {
public typealias Key = Element
public typealias Value = Element
@usableFromInline // FIXME(sil-serialize-all)
internal var _result: Set<Element>
@usableFromInline // FIXME(sil-serialize-all)
internal var _nativeBuffer: _NativeSetBuffer<Element>
@usableFromInline // FIXME(sil-serialize-all)
internal let _requestedCount: Int
@usableFromInline // FIXME(sil-serialize-all)
internal var _actualCount: Int
@inlinable // FIXME(sil-serialize-all)
public init(count: Int) {
_result = Set<Element>(minimumCapacity: count)
_nativeBuffer = _result._variantBuffer.asNative
_requestedCount = count
_actualCount = 0
}
@inlinable // FIXME(sil-serialize-all)
public mutating func add(member newKey: Key) {
_nativeBuffer.unsafeAddNew(key: newKey)
_actualCount += 1
}
@inlinable // FIXME(sil-serialize-all)
public mutating func take() -> Set<Element> {
_precondition(_actualCount >= 0,
"Cannot take the result twice")
_precondition(_actualCount == _requestedCount,
"The number of members added does not match the promised count")
// Finish building the `Set`.
_nativeBuffer.count = _requestedCount
// Prevent taking the result twice.
_actualCount = -1
return _result
}
}
extension Set {
/// Removes and returns the first element of the set.
///
/// Because a set is not an ordered collection, the "first" element may not
/// be the first element that was added to the set.
///
/// - Returns: A member of the set. If the set is empty, returns `nil`.
@inlinable
public mutating func popFirst() -> Element? {
guard !isEmpty else { return nil }
return remove(at: startIndex)
}
/// The total number of elements that the set can contain without
/// allocating new storage.
@inlinable // FIXME(sil-serialize-all)
public var capacity: Int {
return _variantBuffer.capacity
}
/// Reserves enough space to store the specified number of elements.
///
/// If you are adding a known number of elements to a set, use this
/// method to avoid multiple reallocations. This method ensures that the
/// set has unique, mutable, contiguous storage, with space allocated
/// for at least the requested number of elements.
///
/// Calling the `reserveCapacity(_:)` method on a set with bridged
/// storage triggers a copy to contiguous storage even if the existing
/// storage has room to store `minimumCapacity` elements.
///
/// - Parameter minimumCapacity: The requested number of elements to
/// store.
@inlinable // FIXME(sil-serialize-all)
public mutating func reserveCapacity(_ minimumCapacity: Int) {
_variantBuffer.reserveCapacity(minimumCapacity)
_sanityCheck(self.capacity >= minimumCapacity)
}
}
//===--- Bridging ---------------------------------------------------------===//
#if _runtime(_ObjC)
extension Set {
@inlinable // FIXME(sil-serialize-all)
public func _bridgeToObjectiveCImpl() -> _NSSetCore {
switch _variantBuffer {
case _VariantSetBuffer.native(let buffer):
return buffer.bridged()
case _VariantSetBuffer.cocoa(let cocoaBuffer):
return cocoaBuffer.cocoaSet
}
}
/// Returns the native Dictionary hidden inside this NSDictionary;
/// returns nil otherwise.
@inlinable // FIXME(sil-serialize-all)
public static func _bridgeFromObjectiveCAdoptingNativeStorageOf(
_ s: AnyObject
) -> Set<Element>? {
// Try all three NSSet impls that we currently provide.
if let deferredBuffer = s as? _SwiftDeferredNSSet<Element> {
return Set(_nativeBuffer: deferredBuffer.nativeBuffer)
}
if let nativeStorage = s as? _HashableTypedNativeSetStorage<Element> {
return Set(_nativeBuffer:
_NativeSetBuffer(_storage: nativeStorage))
}
if s === _RawNativeSetStorage.empty {
return Set()
}
// FIXME: what if `s` is native storage, but for different key/value type?
return nil
}
}
#endif