blob: 5013e92e1cb2d8e5ed3b5ea91554ea5e2b556b43 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
// Definitions that make elements of Builtin usable in real code
// without gobs of boilerplate.
// This function is the implementation of the `_roundUp` overload set. It is
// marked `@inline(__always)` to make primary `_roundUp` entry points seem
// cheap enough for the inliner.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _roundUpImpl(_ offset: UInt, toAlignment alignment: Int) -> UInt {
_sanityCheck(alignment > 0)
_sanityCheck(_isPowerOf2(alignment))
// Note, given that offset is >= 0, and alignment > 0, we don't
// need to underflow check the -1, as it can never underflow.
let x = offset + UInt(bitPattern: alignment) &- 1
// Note, as alignment is a power of 2, we'll use masking to efficiently
// get the aligned value
return x & ~(UInt(bitPattern: alignment) &- 1)
}
@inlinable // FIXME(sil-serialize-all)
internal func _roundUp(_ offset: UInt, toAlignment alignment: Int) -> UInt {
return _roundUpImpl(offset, toAlignment: alignment)
}
@inlinable // FIXME(sil-serialize-all)
internal func _roundUp(_ offset: Int, toAlignment alignment: Int) -> Int {
_sanityCheck(offset >= 0)
return Int(_roundUpImpl(UInt(bitPattern: offset), toAlignment: alignment))
}
/// Returns a tri-state of 0 = no, 1 = yes, 2 = maybe.
@_transparent
public // @testable
func _canBeClass<T>(_: T.Type) -> Int8 {
return Int8(Builtin.canBeClass(T.self))
}
/// Returns the bits of the given instance, interpreted as having the specified
/// type.
///
/// Use this function only to convert the instance passed as `x` to a
/// layout-compatible type when conversion through other means is not
/// possible. Common conversions supported by the Swift standard library
/// include the following:
///
/// - Value conversion from one integer type to another. Use the destination
/// type's initializer or the `numericCast(_:)` function.
/// - Bitwise conversion from one integer type to another. Use the destination
/// type's `init(truncatingIfNeeded:)` or `init(bitPattern:)` initializer.
/// - Conversion from a pointer to an integer value with the bit pattern of the
/// pointer's address in memory, or vice versa. Use the `init(bitPattern:)`
/// initializer for the destination type.
/// - Casting an instance of a reference type. Use the casting operators (`as`,
/// `as!`, or `as?`) or the `unsafeDowncast(_:to:)` function. Do not use
/// `unsafeBitCast(_:to:)` with class or pointer types; doing so may
/// introduce undefined behavior.
///
/// - Warning: Calling this function breaks the guarantees of the Swift type
/// system; use with extreme care.
///
/// - Parameters:
/// - x: The instance to cast to `type`.
/// - type: The type to cast `x` to. `type` and the type of `x` must have the
/// same size of memory representation and compatible memory layout.
/// - Returns: A new instance of type `U`, cast from `x`.
@inlinable // unsafe-performance
@_transparent
public func unsafeBitCast<T, U>(_ x: T, to type: U.Type) -> U {
_precondition(MemoryLayout<T>.size == MemoryLayout<U>.size,
"Can't unsafeBitCast between types of different sizes")
return Builtin.reinterpretCast(x)
}
/// Returns `x` as its concrete type `U`.
///
/// This cast can be useful for dispatching to specializations of generic
/// functions.
///
/// - Requires: `x` has type `U`.
@_transparent
public func _identityCast<T, U>(_ x: T, to expectedType: U.Type) -> U {
_precondition(T.self == expectedType, "_identityCast to wrong type")
return Builtin.reinterpretCast(x)
}
/// `unsafeBitCast` something to `AnyObject`.
@usableFromInline @_transparent
internal func _reinterpretCastToAnyObject<T>(_ x: T) -> AnyObject {
return unsafeBitCast(x, to: AnyObject.self)
}
@usableFromInline @_transparent
internal func == (
lhs: Builtin.NativeObject, rhs: Builtin.NativeObject
) -> Bool {
return unsafeBitCast(lhs, to: Int.self) == unsafeBitCast(rhs, to: Int.self)
}
@usableFromInline @_transparent
internal func != (
lhs: Builtin.NativeObject, rhs: Builtin.NativeObject
) -> Bool {
return !(lhs == rhs)
}
@usableFromInline @_transparent
internal func == (
lhs: Builtin.RawPointer, rhs: Builtin.RawPointer
) -> Bool {
return unsafeBitCast(lhs, to: Int.self) == unsafeBitCast(rhs, to: Int.self)
}
@usableFromInline @_transparent
internal func != (lhs: Builtin.RawPointer, rhs: Builtin.RawPointer) -> Bool {
return !(lhs == rhs)
}
/// Returns a Boolean value indicating whether two types are identical.
///
/// - Parameters:
/// - t0: A type to compare.
/// - t1: Another type to compare.
/// - Returns: `true` if both `t0` and `t1` are `nil` or if they represent the
/// same type; otherwise, `false`.
@inlinable
public func == (t0: Any.Type?, t1: Any.Type?) -> Bool {
switch (t0, t1) {
case (.none, .none): return true
case let (.some(ty0), .some(ty1)):
return Bool(Builtin.is_same_metatype(ty0, ty1))
default: return false
}
}
/// Returns a Boolean value indicating whether two types are not identical.
///
/// - Parameters:
/// - t0: A type to compare.
/// - t1: Another type to compare.
/// - Returns: `true` if one, but not both, of `t0` and `t1` are `nil`, or if
/// they represent different types; otherwise, `false`.
@inlinable
public func != (t0: Any.Type?, t1: Any.Type?) -> Bool {
return !(t0 == t1)
}
/// Tell the optimizer that this code is unreachable if condition is
/// known at compile-time to be true. If condition is false, or true
/// but not a compile-time constant, this call has no effect.
@usableFromInline @_transparent
internal func _unreachable(_ condition: Bool = true) {
if condition {
// FIXME: use a parameterized version of Builtin.unreachable when
// <rdar://problem/16806232> is closed.
Builtin.unreachable()
}
}
/// Tell the optimizer that this code is unreachable if this builtin is
/// reachable after constant folding build configuration builtins.
@usableFromInline @_transparent
internal func _conditionallyUnreachable() -> Never {
Builtin.conditionallyUnreachable()
}
@inlinable // FIXME(sil-serialize-all)
@_silgen_name("_swift_isClassOrObjCExistentialType")
internal func _swift_isClassOrObjCExistentialType<T>(_ x: T.Type) -> Bool
/// Returns `true` iff `T` is a class type or an `@objc` existential such as
/// `AnyObject`.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _isClassOrObjCExistential<T>(_ x: T.Type) -> Bool {
switch _canBeClass(x) {
// Is not a class.
case 0:
return false
// Is a class.
case 1:
return true
// Maybe a class.
default:
return _swift_isClassOrObjCExistentialType(x)
}
}
/// Converts a reference of type `T` to a reference of type `U` after
/// unwrapping one level of Optional.
///
/// Unwrapped `T` and `U` must be convertible to AnyObject. They may
/// be either a class or a class protocol. Either T, U, or both may be
/// optional references.
@_transparent
public func _unsafeReferenceCast<T, U>(_ x: T, to: U.Type) -> U {
return Builtin.castReference(x)
}
/// Returns the given instance cast unconditionally to the specified type.
///
/// The instance passed as `x` must be an instance of type `T`.
///
/// Use this function instead of `unsafeBitcast(_:to:)` because this function
/// is more restrictive and still performs a check in debug builds. In -O
/// builds, no test is performed to ensure that `x` actually has the dynamic
/// type `T`.
///
/// - Warning: This function trades safety for performance. Use
/// `unsafeDowncast(_:to:)` only when you are confident that `x is T` always
/// evaluates to `true`, and only after `x as! T` has proven to be a
/// performance problem.
///
/// - Parameters:
/// - x: An instance to cast to type `T`.
/// - type: The type `T` to which `x` is cast.
/// - Returns: The instance `x`, cast to type `T`.
@_transparent
public func unsafeDowncast<T : AnyObject>(_ x: AnyObject, to type: T.Type) -> T {
_debugPrecondition(x is T, "invalid unsafeDowncast")
return Builtin.castReference(x)
}
@_transparent
public func _unsafeUncheckedDowncast<T : AnyObject>(_ x: AnyObject, to type: T.Type) -> T {
_sanityCheck(x is T, "invalid unsafeDowncast")
return Builtin.castReference(x)
}
import SwiftShims
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
public func _getUnsafePointerToStoredProperties(_ x: AnyObject)
-> UnsafeMutableRawPointer {
let storedPropertyOffset = _roundUp(
MemoryLayout<SwiftShims.HeapObject>.size,
toAlignment: MemoryLayout<Optional<AnyObject>>.alignment)
return UnsafeMutableRawPointer(Builtin.bridgeToRawPointer(x)) +
storedPropertyOffset
}
//===----------------------------------------------------------------------===//
// Branch hints
//===----------------------------------------------------------------------===//
// Use @_semantics to indicate that the optimizer recognizes the
// semantics of these function calls. This won't be necessary with
// mandatory generic inlining.
@usableFromInline @_transparent
@_semantics("branchhint")
internal func _branchHint(_ actual: Bool, expected: Bool) -> Bool {
return Bool(Builtin.int_expect_Int1(actual._value, expected._value))
}
/// Optimizer hint that `x` is expected to be `true`.
@_transparent
@_semantics("fastpath")
public func _fastPath(_ x: Bool) -> Bool {
return _branchHint(x, expected: true)
}
/// Optimizer hint that `x` is expected to be `false`.
@_transparent
@_semantics("slowpath")
public func _slowPath(_ x: Bool) -> Bool {
return _branchHint(x, expected: false)
}
/// Optimizer hint that the code where this function is called is on the fast
/// path.
@_transparent
public func _onFastPath() {
Builtin.onFastPath()
}
//===--- Runtime shim wrappers --------------------------------------------===//
/// Returns `true` iff the class indicated by `theClass` uses native
/// Swift reference-counting.
#if _runtime(_ObjC)
// Declare it here instead of RuntimeShims.h, because we need to specify
// the type of argument to be AnyClass. This is currently not possible
// when using RuntimeShims.h
@inlinable // FIXME(sil-serialize-all)
@_silgen_name("_objcClassUsesNativeSwiftReferenceCounting")
internal func _usesNativeSwiftReferenceCounting(_ theClass: AnyClass) -> Bool
#else
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _usesNativeSwiftReferenceCounting(_ theClass: AnyClass) -> Bool {
return true
}
#endif
@inlinable // FIXME(sil-serialize-all)
@_silgen_name("_getSwiftClassInstanceExtents")
internal func getSwiftClassInstanceExtents(_ theClass: AnyClass)
-> (negative: UInt, positive: UInt)
@inlinable // FIXME(sil-serialize-all)
@_silgen_name("_getObjCClassInstanceExtents")
internal func getObjCClassInstanceExtents(_ theClass: AnyClass)
-> (negative: UInt, positive: UInt)
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _class_getInstancePositiveExtentSize(_ theClass: AnyClass) -> Int {
#if _runtime(_ObjC)
return Int(getObjCClassInstanceExtents(theClass).positive)
#else
return Int(getSwiftClassInstanceExtents(theClass).positive)
#endif
}
@inlinable
internal
func _isValidAddress(_ address: UInt) -> Bool {
// TODO: define (and use) ABI max valid pointer value
return address >= _swift_abi_LeastValidPointerValue
}
//===--- Builtin.BridgeObject ---------------------------------------------===//
// TODO(<rdar://problem/34837023>): Get rid of superfluous UInt constructor
// calls
@inlinable // FIXME(sil-serialize-all)
internal var _objCTaggedPointerBits: UInt {
@inline(__always) get { return UInt(_swift_BridgeObject_TaggedPointerBits) }
}
@inlinable // FIXME(sil-serialize-all)
internal var _objectPointerSpareBits: UInt {
@inline(__always) get {
return UInt(_swift_abi_SwiftSpareBitsMask) & ~_objCTaggedPointerBits
}
}
@inlinable // FIXME(sil-serialize-all)
internal var _objectPointerLowSpareBitShift: UInt {
@inline(__always) get {
_sanityCheck(_swift_abi_ObjCReservedLowBits < 2,
"num bits now differs from num-shift-amount, new platform?")
return UInt(_swift_abi_ObjCReservedLowBits)
}
}
#if arch(i386) || arch(arm) || arch(powerpc64) || arch(powerpc64le) || arch(
s390x)
@inlinable // FIXME(sil-serialize-all)
internal var _objectPointerIsObjCBit: UInt {
@inline(__always) get { return 0x0000_0002 }
}
#else
@inlinable // FIXME(sil-serialize-all)
internal var _objectPointerIsObjCBit: UInt {
@inline(__always) get { return 0x4000_0000_0000_0000 }
}
#endif
/// Extract the raw bits of `x`.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _bitPattern(_ x: Builtin.BridgeObject) -> UInt {
return UInt(Builtin.castBitPatternFromBridgeObject(x))
}
/// Extract the raw spare bits of `x`.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _nonPointerBits(_ x: Builtin.BridgeObject) -> UInt {
return _bitPattern(x) & _objectPointerSpareBits
}
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _isObjCTaggedPointer(_ x: AnyObject) -> Bool {
return (Builtin.reinterpretCast(x) & _objCTaggedPointerBits) != 0
}
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _isObjCTaggedPointer(_ x: UInt) -> Bool {
return (x & _objCTaggedPointerBits) != 0
}
/// TODO: describe extras
@inlinable @inline(__always) public // FIXME
func _isTaggedObject(_ x: Builtin.BridgeObject) -> Bool {
return _bitPattern(x) & _objCTaggedPointerBits != 0
}
@inlinable @inline(__always) public // FIXME
func _isNativePointer(_ x: Builtin.BridgeObject) -> Bool {
return (
_bitPattern(x) & (_objCTaggedPointerBits | _objectPointerIsObjCBit)
) == 0
}
@inlinable @inline(__always) public // FIXME
func _isNonTaggedObjCPointer(_ x: Builtin.BridgeObject) -> Bool {
return !_isTaggedObject(x) && !_isNativePointer(x)
}
@inlinable
@inline(__always)
func _getNonTagBits(_ x: Builtin.BridgeObject) -> UInt {
// Zero out the tag bits, and leave them all at the top.
_sanityCheck(_isTaggedObject(x), "not tagged!")
return (_bitPattern(x) & ~_objCTaggedPointerBits)
>> _objectPointerLowSpareBitShift
}
// Values -> BridgeObject
@inline(__always)
@inlinable
public func _bridgeObject(fromNative x: AnyObject) -> Builtin.BridgeObject {
_sanityCheck(!_isObjCTaggedPointer(x))
let object = Builtin.castToBridgeObject(x, 0._builtinWordValue)
_sanityCheck(_isNativePointer(object))
return object
}
@inline(__always)
@inlinable
public func _bridgeObject(
fromNonTaggedObjC x: AnyObject
) -> Builtin.BridgeObject {
_sanityCheck(!_isObjCTaggedPointer(x))
let object = _makeObjCBridgeObject(x)
_sanityCheck(_isNonTaggedObjCPointer(object))
return object
}
@inline(__always)
@inlinable
public func _bridgeObject(fromTagged x: UInt) -> Builtin.BridgeObject {
_sanityCheck(x & _objCTaggedPointerBits != 0)
let object: Builtin.BridgeObject = Builtin.valueToBridgeObject(x)
_sanityCheck(_isTaggedObject(object))
return object
}
@inline(__always)
@inlinable
public func _bridgeObject(taggingPayload x: UInt) -> Builtin.BridgeObject {
let shifted = x &<< _objectPointerLowSpareBitShift
_sanityCheck(x == (shifted &>> _objectPointerLowSpareBitShift),
"out-of-range: limited bit range requires some zero top bits")
_sanityCheck(shifted & _objCTaggedPointerBits == 0,
"out-of-range: post-shift use of tag bits")
return _bridgeObject(fromTagged: shifted | _objCTaggedPointerBits)
}
// BridgeObject -> Values
@inline(__always)
@inlinable
public func _bridgeObject(toNative x: Builtin.BridgeObject) -> AnyObject {
_sanityCheck(_isNativePointer(x))
return Builtin.castReferenceFromBridgeObject(x)
}
@inline(__always)
@inlinable
public func _bridgeObject(
toNonTaggedObjC x: Builtin.BridgeObject
) -> AnyObject {
_sanityCheck(_isNonTaggedObjCPointer(x))
return Builtin.castReferenceFromBridgeObject(x)
}
@inline(__always)
@inlinable
public func _bridgeObject(toTagged x: Builtin.BridgeObject) -> UInt {
_sanityCheck(_isTaggedObject(x))
let bits = _bitPattern(x)
_sanityCheck(bits & _objCTaggedPointerBits != 0)
return bits
}
@inline(__always)
@inlinable
public func _bridgeObject(toTagPayload x: Builtin.BridgeObject) -> UInt {
return _getNonTagBits(x)
}
@inline(__always)
@inlinable
public func _bridgeObject(
fromNativeObject x: Builtin.NativeObject
) -> Builtin.BridgeObject {
return _bridgeObject(fromNative: _nativeObject(toNative: x))
}
//
// NativeObject
//
@inline(__always)
@inlinable
public func _nativeObject(fromNative x: AnyObject) -> Builtin.NativeObject {
_sanityCheck(!_isObjCTaggedPointer(x))
let native = Builtin.unsafeCastToNativeObject(x)
// _sanityCheck(native == Builtin.castToNativeObject(x))
return native
}
@inline(__always)
@inlinable
public func _nativeObject(
fromBridge x: Builtin.BridgeObject
) -> Builtin.NativeObject {
return _nativeObject(fromNative: _bridgeObject(toNative: x))
}
@inline(__always)
@inlinable
public func _nativeObject(toNative x: Builtin.NativeObject) -> AnyObject {
return Builtin.castFromNativeObject(x)
}
// FIXME
extension ManagedBufferPointer {
// FIXME: String Guts
@inline(__always)
@inlinable
public init(_nativeObject buffer: Builtin.NativeObject) {
self._nativeBuffer = buffer
}
}
/// Create a `BridgeObject` around the given `nativeObject` with the
/// given spare bits.
///
/// Reference-counting and other operations on this
/// object will have access to the knowledge that it is native.
///
/// - Precondition: `bits & _objectPointerIsObjCBit == 0`,
/// `bits & _objectPointerSpareBits == bits`.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _makeNativeBridgeObject(
_ nativeObject: AnyObject, _ bits: UInt
) -> Builtin.BridgeObject {
_sanityCheck(
(bits & _objectPointerIsObjCBit) == 0,
"BridgeObject is treated as non-native when ObjC bit is set"
)
return _makeBridgeObject(nativeObject, bits)
}
/// Create a `BridgeObject` around the given `objCObject`.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
public // @testable
func _makeObjCBridgeObject(
_ objCObject: AnyObject
) -> Builtin.BridgeObject {
return _makeBridgeObject(
objCObject,
_isObjCTaggedPointer(objCObject) ? 0 : _objectPointerIsObjCBit)
}
/// Create a `BridgeObject` around the given `object` with the
/// given spare bits.
///
/// - Precondition:
///
/// 1. `bits & _objectPointerSpareBits == bits`
/// 2. if `object` is a tagged pointer, `bits == 0`. Otherwise,
/// `object` is either a native object, or `bits ==
/// _objectPointerIsObjCBit`.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
internal func _makeBridgeObject(
_ object: AnyObject, _ bits: UInt
) -> Builtin.BridgeObject {
_sanityCheck(!_isObjCTaggedPointer(object) || bits == 0,
"Tagged pointers cannot be combined with bits")
_sanityCheck(
_isObjCTaggedPointer(object)
|| _usesNativeSwiftReferenceCounting(type(of: object))
|| bits == _objectPointerIsObjCBit,
"All spare bits must be set in non-native, non-tagged bridge objects"
)
_sanityCheck(
bits & _objectPointerSpareBits == bits,
"Can't store non-spare bits into Builtin.BridgeObject")
return Builtin.castToBridgeObject(
object, bits._builtinWordValue
)
}
@_silgen_name("_swift_class_getSuperclass")
internal func _swift_class_getSuperclass(_ t: AnyClass) -> AnyClass?
/// Returns the superclass of `t`, if any. The result is `nil` if `t` is
/// a root class or class protocol.
public
func _getSuperclass(_ t: AnyClass) -> AnyClass? {
return _swift_class_getSuperclass(t)
}
/// Returns the superclass of `t`, if any. The result is `nil` if `t` is
/// not a class, is a root class, or is a class protocol.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
public // @testable
func _getSuperclass(_ t: Any.Type) -> AnyClass? {
return (t as? AnyClass).flatMap { _getSuperclass($0) }
}
//===--- Builtin.IsUnique -------------------------------------------------===//
// _isUnique functions must take an inout object because they rely on
// Builtin.isUnique which requires an inout reference to preserve
// source-level copies in the presence of ARC optimization.
//
// Taking an inout object makes sense for two additional reasons:
//
// 1. You should only call it when about to mutate the object.
// Doing so otherwise implies a race condition if the buffer is
// shared across threads.
//
// 2. When it is not an inout function, self is passed by
// value... thus bumping the reference count and disturbing the
// result we are trying to observe, Dr. Heisenberg!
//
// _isUnique and _isUniquePinned cannot be made public or the compiler
// will attempt to generate generic code for the transparent function
// and type checking will fail.
/// Returns `true` if `object` is uniquely referenced.
@usableFromInline @_transparent
internal func _isUnique<T>(_ object: inout T) -> Bool {
return Bool(Builtin.isUnique(&object))
}
/// Returns `true` if `object` is uniquely referenced or pinned.
@usableFromInline @_transparent
internal func _isUniqueOrPinned<T>(_ object: inout T) -> Bool {
return Bool(Builtin.isUniqueOrPinned(&object))
}
/// Returns `true` if `object` is uniquely referenced.
/// This provides sanity checks on top of the Builtin.
@_transparent
public // @testable
func _isUnique_native<T>(_ object: inout T) -> Bool {
// This could be a bridge object, single payload enum, or plain old
// reference. Any case it's non pointer bits must be zero, so
// force cast it to BridgeObject and check the spare bits.
_sanityCheck(
(_bitPattern(Builtin.reinterpretCast(object)) & _objectPointerSpareBits)
== 0)
_sanityCheck(_usesNativeSwiftReferenceCounting(
type(of: Builtin.reinterpretCast(object) as AnyObject)))
return Bool(Builtin.isUnique_native(&object))
}
/// Returns `true` if `object` is uniquely referenced or pinned.
/// This provides sanity checks on top of the Builtin.
@_transparent
public // @testable
func _isUniqueOrPinned_native<T>(_ object: inout T) -> Bool {
// This could be a bridge object, single payload enum, or plain old
// reference. Any case it's non pointer bits must be zero.
_sanityCheck(
(_bitPattern(Builtin.reinterpretCast(object)) & _objectPointerSpareBits)
== 0)
_sanityCheck(_usesNativeSwiftReferenceCounting(
type(of: Builtin.reinterpretCast(object) as AnyObject)))
return Bool(Builtin.isUniqueOrPinned_native(&object))
}
/// Returns `true` if type is a POD type. A POD type is a type that does not
/// require any special handling on copying or destruction.
@_transparent
public // @testable
func _isPOD<T>(_ type: T.Type) -> Bool {
return Bool(Builtin.ispod(type))
}
/// Returns `true` if type is nominally an Optional type.
@_transparent
public // @testable
func _isOptional<T>(_ type: T.Type) -> Bool {
return Bool(Builtin.isOptional(type))
}
/// Extract an object reference from an Any known to contain an object.
@inlinable // FIXME(sil-serialize-all)
internal func _unsafeDowncastToAnyObject(fromAny any: Any) -> AnyObject {
_sanityCheck(type(of: any) is AnyObject.Type
|| type(of: any) is AnyObject.Protocol,
"Any expected to contain object reference")
// Ideally we would do something like this:
//
// func open<T>(object: T) -> AnyObject {
// return unsafeBitCast(object, to: AnyObject.self)
// }
// return _openExistential(any, do: open)
//
// Unfortunately, class constrained protocol existentials conform to AnyObject
// but are not word-sized. As a result, we cannot currently perform the
// `unsafeBitCast` on them just yet. When they are word-sized, it would be
// possible to efficiently grab the object reference out of the inline
// storage.
return any as AnyObject
}
// Game the SIL diagnostic pipeline by inlining this into the transparent
// definitions below after the stdlib's diagnostic passes run, so that the
// `staticReport`s don't fire while building the standard library, but do
// fire if they ever show up in code that uses the standard library.
@inlinable // FIXME(sil-serialize-all)
@inline(__always)
public // internal with availability
func _trueAfterDiagnostics() -> Builtin.Int1 {
return true._value
}
/// Returns the dynamic type of a value.
///
/// You can use the `type(of:)` function to find the dynamic type of a value,
/// particularly when the dynamic type is different from the static type. The
/// *static type* of a value is the known, compile-time type of the value. The
/// *dynamic type* of a value is the value's actual type at run-time, which
/// can be nested inside its concrete type.
///
/// In the following code, the `count` variable has the same static and dynamic
/// type: `Int`. When `count` is passed to the `printInfo(_:)` function,
/// however, the `value` parameter has a static type of `Any` (the type
/// declared for the parameter) and a dynamic type of `Int`.
///
/// func printInfo(_ value: Any) {
/// let type = type(of: value)
/// print("'\(value)' of type '\(type)'")
/// }
///
/// let count: Int = 5
/// printInfo(count)
/// // '5' of type 'Int'
///
/// The dynamic type returned from `type(of:)` is a *concrete metatype*
/// (`T.Type`) for a class, structure, enumeration, or other nonprotocol type
/// `T`, or an *existential metatype* (`P.Type`) for a protocol or protocol
/// composition `P`. When the static type of the value passed to `type(of:)`
/// is constrained to a class or protocol, you can use that metatype to access
/// initializers or other static members of the class or protocol.
///
/// For example, the parameter passed as `value` to the `printSmileyInfo(_:)`
/// function in the example below is an instance of the `Smiley` class or one
/// of its subclasses. The function uses `type(of:)` to find the dynamic type
/// of `value`, which itself is an instance of the `Smiley.Type` metatype.
///
/// class Smiley {
/// class var text: String {
/// return ":)"
/// }
/// }
///
/// class EmojiSmiley : Smiley {
/// override class var text: String {
/// return "😀"
/// }
/// }
///
/// func printSmileyInfo(_ value: Smiley) {
/// let smileyType = type(of: value)
/// print("Smile!", smileyType.text)
/// }
///
/// let emojiSmiley = EmojiSmiley()
/// printSmileyInfo(emojiSmiley)
/// // Smile! 😀
///
/// In this example, accessing the `text` property of the `smileyType` metatype
/// retrieves the overridden value from the `EmojiSmiley` subclass, instead of
/// the `Smiley` class's original definition.
///
/// Finding the Dynamic Type in a Generic Context
/// =============================================
///
/// Normally, you don't need to be aware of the difference between concrete and
/// existential metatypes, but calling `type(of:)` can yield unexpected
/// results in a generic context with a type parameter bound to a protocol. In
/// a case like this, where a generic parameter `T` is bound to a protocol
/// `P`, the type parameter is not statically known to be a protocol type in
/// the body of the generic function. As a result, `type(of:)` can only
/// produce the concrete metatype `P.Protocol`.
///
/// The following example defines a `printGenericInfo(_:)` function that takes
/// a generic parameter and declares the `String` type's conformance to a new
/// protocol `P`. When `printGenericInfo(_:)` is called with a string that has
/// `P` as its static type, the call to `type(of:)` returns `P.self` instead
/// of `String.self` (the dynamic type inside the parameter).
///
/// func printGenericInfo<T>(_ value: T) {
/// let type = type(of: value)
/// print("'\(value)' of type '\(type)'")
/// }
///
/// protocol P {}
/// extension String: P {}
///
/// let stringAsP: P = "Hello!"
/// printGenericInfo(stringAsP)
/// // 'Hello!' of type 'P'
///
/// This unexpected result occurs because the call to `type(of: value)` inside
/// `printGenericInfo(_:)` must return a metatype that is an instance of
/// `T.Type`, but `String.self` (the expected dynamic type) is not an instance
/// of `P.Type` (the concrete metatype of `value`). To get the dynamic type
/// inside `value` in this generic context, cast the parameter to `Any` when
/// calling `type(of:)`.
///
/// func betterPrintGenericInfo<T>(_ value: T) {
/// let type = type(of: value as Any)
/// print("'\(value)' of type '\(type)'")
/// }
///
/// betterPrintGenericInfo(stringAsP)
/// // 'Hello!' of type 'String'
///
/// - Parameter value: The value for which to find the dynamic type.
/// - Returns: The dynamic type, which is a metatype instance.
@_transparent
@_semantics("typechecker.type(of:)")
public func type<T, Metatype>(of value: T) -> Metatype {
// This implementation is never used, since calls to `Swift.type(of:)` are
// resolved as a special case by the type checker.
Builtin.staticReport(_trueAfterDiagnostics(), true._value,
("internal consistency error: 'type(of:)' operation failed to resolve"
as StaticString).utf8Start._rawValue)
Builtin.unreachable()
}
/// Allows a nonescaping closure to temporarily be used as if it were allowed
/// to escape.
///
/// You can use this function to call an API that takes an escaping closure in
/// a way that doesn't allow the closure to escape in practice. The examples
/// below demonstrate how to use `withoutActuallyEscaping(_:do:)` in
/// conjunction with two common APIs that use escaping closures: lazy
/// collection views and asynchronous operations.
///
/// The following code declares an `allValues(in:match:)` function that checks
/// whether all the elements in an array match a predicate. The function won't
/// compile as written, because a lazy collection's `filter(_:)` method
/// requires an escaping closure. The lazy collection isn't persisted, so the
/// `predicate` closure won't actually escape the body of the function;
/// nevertheless, it can't be used in this way.
///
/// func allValues(in array: [Int], match predicate: (Int) -> Bool) -> Bool {
/// return array.lazy.filter { !predicate($0) }.isEmpty
/// }
/// // error: closure use of non-escaping parameter 'predicate'...
///
/// `withoutActuallyEscaping(_:do:)` provides a temporarily escapable copy of
/// `predicate` that _can_ be used in a call to the lazy view's `filter(_:)`
/// method. The second version of `allValues(in:match:)` compiles without
/// error, with the compiler guaranteeing that the `escapablePredicate`
/// closure doesn't last beyond the call to `withoutActuallyEscaping(_:do:)`.
///
/// func allValues(in array: [Int], match predicate: (Int) -> Bool) -> Bool {
/// return withoutActuallyEscaping(predicate) { escapablePredicate in
/// array.lazy.filter { !escapablePredicate($0) }.isEmpty
/// }
/// }
///
/// Asynchronous calls are another type of API that typically escape their
/// closure arguments. The following code declares a
/// `perform(_:simultaneouslyWith:)` function that uses a dispatch queue to
/// execute two closures concurrently.
///
/// func perform(_ f: () -> Void, simultaneouslyWith g: () -> Void) {
/// let queue = DispatchQueue(label: "perform", attributes: .concurrent)
/// queue.async(execute: f)
/// queue.async(execute: g)
/// queue.sync(flags: .barrier) {}
/// }
/// // error: passing non-escaping parameter 'f'...
/// // error: passing non-escaping parameter 'g'...
///
/// The `perform(_:simultaneouslyWith:)` function ends with a call to the
/// `sync(flags:execute:)` method using the `.barrier` flag, which forces the
/// function to wait until both closures have completed running before
/// returning. Even though the barrier guarantees that neither closure will
/// escape the function, the `async(execute:)` method still requires that the
/// closures passed be marked as `@escaping`, so the first version of the
/// function does not compile. To resolve these errors, you can use
/// `withoutActuallyEscaping(_:do:)` to get copies of `f` and `g` that can be
/// passed to `async(execute:)`.
///
/// func perform(_ f: () -> Void, simultaneouslyWith g: () -> Void) {
/// withoutActuallyEscaping(f) { escapableF in
/// withoutActuallyEscaping(g) { escapableG in
/// let queue = DispatchQueue(label: "perform", attributes: .concurrent)
/// queue.async(execute: escapableF)
/// queue.async(execute: escapableG)
/// queue.sync(flags: .barrier) {}
/// }
/// }
/// }
///
/// - Important: The escapable copy of `closure` passed to `body` is only valid
/// during the call to `withoutActuallyEscaping(_:do:)`. It is undefined
/// behavior for the escapable closure to be stored, referenced, or executed
/// after the function returns.
///
/// - Parameters:
/// - closure: A nonescaping closure value that is made escapable for the
/// duration of the execution of the `body` closure. If `body` has a
/// return value, that value is also used as the return value for the
/// `withoutActuallyEscaping(_:do:)` function.
/// - body: A closure that is executed immediately with an escapable copy of
/// `closure` as its argument.
/// - Returns: The return value, if any, of the `body` closure.
@_transparent
@_semantics("typechecker.withoutActuallyEscaping(_:do:)")
public func withoutActuallyEscaping<ClosureType, ResultType>(
_ closure: ClosureType,
do body: (_ escapingClosure: ClosureType) throws -> ResultType
) rethrows -> ResultType {
// This implementation is never used, since calls to
// `Swift.withoutActuallyEscaping(_:do:)` are resolved as a special case by
// the type checker.
Builtin.staticReport(_trueAfterDiagnostics(), true._value,
("internal consistency error: 'withoutActuallyEscaping(_:do:)' operation failed to resolve"
as StaticString).utf8Start._rawValue)
Builtin.unreachable()
}
@_transparent
@_semantics("typechecker._openExistential(_:do:)")
public func _openExistential<ExistentialType, ContainedType, ResultType>(
_ existential: ExistentialType,
do body: (_ escapingClosure: ContainedType) throws -> ResultType
) rethrows -> ResultType {
// This implementation is never used, since calls to
// `Swift._openExistential(_:do:)` are resolved as a special case by
// the type checker.
Builtin.staticReport(_trueAfterDiagnostics(), true._value,
("internal consistency error: '_openExistential(_:do:)' operation failed to resolve"
as StaticString).utf8Start._rawValue)
Builtin.unreachable()
}