blob: 5ff9c9f568f68160592207e49b69893902ca9197 [file] [log] [blame]
//===--- SILConstants.cpp - SIL constant representation -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILConstants.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/Demangling/Demangle.h"
#include "swift/SIL/SILBuilder.h"
#include "llvm/Support/TrailingObjects.h"
using namespace swift;
namespace swift {
llvm::cl::opt<unsigned>
ConstExprLimit("constexpr-limit", llvm::cl::init(512),
llvm::cl::desc("Number of instructions interpreted in a"
" constexpr function"));
}
template <typename... T, typename... U>
static InFlightDiagnostic diagnose(ASTContext &Context, SourceLoc loc,
Diag<T...> diag, U &&... args) {
return Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
//===----------------------------------------------------------------------===//
// SymbolicValue implementation
//===----------------------------------------------------------------------===//
void SymbolicValue::print(llvm::raw_ostream &os, unsigned indent) const {
os.indent(indent);
switch (representationKind) {
case RK_Unknown: {
os << "unknown(" << (int)getUnknownReason() << "): ";
getUnknownNode()->dump();
return;
}
case RK_Metatype:
os << "metatype: ";
getMetatypeValue()->print(os);
os << "\n";
return;
case RK_Function: {
auto fn = getFunctionValue();
os << "fn: " << fn->getName() << ": ";
os << Demangle::demangleSymbolAsString(fn->getName());
os << "\n";
return;
}
case RK_Integer:
case RK_IntegerInline:
os << "int: " << getIntegerValue() << "\n";
return;
case RK_Aggregate: {
ArrayRef<SymbolicValue> elements = getAggregateValue();
switch (elements.size()) {
case 0:
os << "agg: 0 elements []\n";
return;
case 1:
os << "agg: 1 elt: ";
elements[0].print(os, indent + 2);
return;
default:
os << "agg: " << elements.size() << " elements [\n";
for (auto elt : elements)
elt.print(os, indent + 2);
os.indent(indent) << "]\n";
return;
}
}
}
}
void SymbolicValue::dump() const { print(llvm::errs()); }
/// For constant values, return the classification of this value. We have
/// multiple forms for efficiency, but provide a simpler interface to clients.
SymbolicValue::Kind SymbolicValue::getKind() const {
switch (representationKind) {
case RK_Unknown:
return Unknown;
case RK_Metatype:
return Metatype;
case RK_Function:
return Function;
case RK_Aggregate:
return Aggregate;
case RK_Integer:
case RK_IntegerInline:
return Integer;
}
}
/// Clone this SymbolicValue into the specified ASTContext and return the new
/// version. This only works for valid constants.
SymbolicValue
SymbolicValue::cloneInto(ASTContext &astContext) const {
auto thisRK = representationKind;
switch (thisRK) {
case RK_Unknown:
case RK_Metatype:
case RK_Function:
assert(0 && "cloning this representation kind is not supported");
case RK_IntegerInline:
case RK_Integer:
return SymbolicValue::getInteger(getIntegerValue(), astContext);
case RK_Aggregate: {
auto elts = getAggregateValue();
SmallVector<SymbolicValue, 4> results;
results.reserve(elts.size());
for (auto elt : elts)
results.push_back(elt.cloneInto(astContext));
return getAggregate(results, astContext);
}
}
}
//===----------------------------------------------------------------------===//
// Integers
//===----------------------------------------------------------------------===//
SymbolicValue SymbolicValue::getInteger(int64_t value, unsigned bitWidth) {
SymbolicValue result;
result.representationKind = RK_IntegerInline;
result.value.integerInline = value;
result.auxInfo.integerBitwidth = bitWidth;
return result;
}
SymbolicValue SymbolicValue::getInteger(const APInt &value,
ASTContext &astContext) {
// In the common case, we can form an inline representation.
unsigned numWords = value.getNumWords();
if (numWords == 1)
return getInteger(value.getRawData()[0], value.getBitWidth());
// Copy the integers from the APInt into the bump pointer.
auto *words = astContext.Allocate<uint64_t>(numWords).data();
std::uninitialized_copy(value.getRawData(), value.getRawData() + numWords,
words);
SymbolicValue result;
result.representationKind = RK_Integer;
result.value.integer = words;
result.auxInfo.integerBitwidth = value.getBitWidth();
return result;
}
APInt SymbolicValue::getIntegerValue() const {
assert(getKind() == Integer);
if (representationKind == RK_IntegerInline) {
auto numBits = auxInfo.integerBitwidth;
return APInt(numBits, value.integerInline);
}
assert(representationKind == RK_Integer);
auto numBits = auxInfo.integerBitwidth;
auto numWords =
(numBits + APInt::APINT_BITS_PER_WORD - 1) / APInt::APINT_BITS_PER_WORD;
return APInt(numBits, {value.integer, numWords});
}
unsigned SymbolicValue::getIntegerValueBitWidth() const {
assert(getKind() == Integer);
assert (representationKind == RK_IntegerInline ||
representationKind == RK_Integer);
return auxInfo.integerBitwidth;
}
//===----------------------------------------------------------------------===//
// Aggregates
//===----------------------------------------------------------------------===//
/// This returns a constant Symbolic value with the specified elements in it.
/// This assumes that the elements lifetime has been managed for this.
SymbolicValue SymbolicValue::getAggregate(ArrayRef<SymbolicValue> elements,
ASTContext &astContext) {
// Copy the elements into the bump pointer.
auto *resultElts =
astContext.Allocate<SymbolicValue>(elements.size()).data();
std::uninitialized_copy(elements.begin(), elements.end(), resultElts);
SymbolicValue result;
result.representationKind = RK_Aggregate;
result.value.aggregate = resultElts;
result.auxInfo.aggregateNumElements = elements.size();
return result;
}
ArrayRef<SymbolicValue> SymbolicValue::getAggregateValue() const {
assert(getKind() == Aggregate);
return ArrayRef<SymbolicValue>(value.aggregate, auxInfo.aggregateNumElements);
}
//===----------------------------------------------------------------------===//
// Unknown
//===----------------------------------------------------------------------===//
namespace swift {
/// When the value is Unknown, this contains information about the unfoldable
/// part of the computation.
struct alignas(SourceLoc) UnknownSymbolicValue final
: private llvm::TrailingObjects<UnknownSymbolicValue, SourceLoc> {
friend class llvm::TrailingObjects<UnknownSymbolicValue, SourceLoc>;
/// The value that was unfoldable.
SILNode *node;
/// A more explanatory reason for the value being unknown.
UnknownReason reason;
/// The number of elements in the call stack.
unsigned callStackSize;
static UnknownSymbolicValue *create(SILNode *node, UnknownReason reason,
ArrayRef<SourceLoc> elements,
ASTContext &astContext) {
auto byteSize =
UnknownSymbolicValue::totalSizeToAlloc<SourceLoc>(elements.size());
auto rawMem = astContext.Allocate(byteSize, alignof(UnknownSymbolicValue));
// Placement-new the value inside the memory we just allocated.
auto value = ::new (rawMem) UnknownSymbolicValue(
node, reason, static_cast<unsigned>(elements.size()));
std::uninitialized_copy(elements.begin(), elements.end(),
value->getTrailingObjects<SourceLoc>());
return value;
}
ArrayRef<SourceLoc> getCallStack() const {
return {getTrailingObjects<SourceLoc>(), callStackSize};
}
// This is used by the llvm::TrailingObjects base class.
size_t numTrailingObjects(OverloadToken<SourceLoc>) const {
return callStackSize;
}
private:
UnknownSymbolicValue() = delete;
UnknownSymbolicValue(const UnknownSymbolicValue &) = delete;
UnknownSymbolicValue(SILNode *node, UnknownReason reason,
unsigned callStackSize)
: node(node), reason(reason), callStackSize(callStackSize) {}
};
} // namespace swift
SymbolicValue SymbolicValue::getUnknown(SILNode *node, UnknownReason reason,
llvm::ArrayRef<SourceLoc> callStack,
ASTContext &astContext) {
assert(node && "node must be present");
SymbolicValue result;
result.representationKind = RK_Unknown;
result.value.unknown =
UnknownSymbolicValue::create(node, reason, callStack, astContext);
return result;
}
ArrayRef<SourceLoc> SymbolicValue::getUnknownCallStack() const {
assert(getKind() == Unknown);
return value.unknown->getCallStack();
}
SILNode *SymbolicValue::getUnknownNode() const {
assert(getKind() == Unknown);
return value.unknown->node;
}
UnknownReason SymbolicValue::getUnknownReason() const {
assert(getKind() == Unknown);
return value.unknown->reason;
}
//===----------------------------------------------------------------------===//
// Higher level code
//===----------------------------------------------------------------------===//
/// The SIL location for operations we process are usually deep in the bowels
/// of inlined code from opaque libraries, which are all implementation details
/// to the user. As such, walk the inlining location of the specified node to
/// return the first location *outside* opaque libraries.
static SILDebugLocation skipInternalLocations(SILDebugLocation loc) {
auto ds = loc.getScope();
if (!ds || loc.getLocation().getSourceLoc().isValid())
return loc;
// Zip through inlined call site information that came from the
// implementation guts of the library. We want to report the message inside
// the user's code, not in the guts we inlined through.
for (; auto ics = ds->InlinedCallSite; ds = ics) {
// If we found a valid inlined-into location, then we are good.
if (ds->Loc.getSourceLoc().isValid())
return SILDebugLocation(ds->Loc, ds);
if (SILFunction *F = ds->getInlinedFunction()) {
if (F->getLocation().getSourceLoc().isValid())
break;
}
}
if (ds->Loc.getSourceLoc().isValid())
return SILDebugLocation(ds->Loc, ds);
return loc;
}
/// Dig through single element aggregates, return the ultimate thing inside of
/// it. This is useful when dealing with integers and floats, because they
/// are often wrapped in single-element struct wrappers.
SymbolicValue SymbolicValue::lookThroughSingleElementAggregates() const {
auto result = *this;
while (1) {
if (result.getKind() != Aggregate)
return result;
auto elts = result.getAggregateValue();
if (elts.size() != 1)
return result;
result = elts[0];
}
}
/// Emits an explanatory note if there is useful information to note or if there
/// is an interesting SourceLoc to point at.
/// Returns true if a diagnostic was emitted.
static bool emitNoteDiagnostic(SILInstruction *badInst, UnknownReason reason,
SILLocation fallbackLoc) {
auto loc = skipInternalLocations(badInst->getDebugLocation()).getLocation();
if (loc.isNull()) {
// If we have important clarifying information, make sure to emit it.
if (reason == UnknownReason::Default || fallbackLoc.isNull())
return false;
loc = fallbackLoc;
}
auto &ctx = badInst->getModule().getASTContext();
auto sourceLoc = loc.getSourceLoc();
switch (reason) {
case UnknownReason::Default:
diagnose(ctx, sourceLoc, diag::constexpr_unknown_reason_default)
.highlight(loc.getSourceRange());
break;
case UnknownReason::TooManyInstructions:
// TODO: Should pop up a level of the stack trace.
diagnose(ctx, sourceLoc, diag::constexpr_too_many_instructions,
ConstExprLimit)
.highlight(loc.getSourceRange());
break;
case UnknownReason::Loop:
diagnose(ctx, sourceLoc, diag::constexpr_loop)
.highlight(loc.getSourceRange());
break;
case UnknownReason::Overflow:
diagnose(ctx, sourceLoc, diag::constexpr_overflow)
.highlight(loc.getSourceRange());
break;
case UnknownReason::Trap:
diagnose(ctx, sourceLoc, diag::constexpr_trap)
.highlight(loc.getSourceRange());
break;
}
return true;
}
/// Given that this is an 'Unknown' value, emit diagnostic notes providing
/// context about what the problem is.
void SymbolicValue::emitUnknownDiagnosticNotes(SILLocation fallbackLoc) {
auto badInst = dyn_cast<SILInstruction>(getUnknownNode());
if (!badInst)
return;
bool emittedFirstNote = emitNoteDiagnostic(badInst, getUnknownReason(),
fallbackLoc);
auto sourceLoc = fallbackLoc.getSourceLoc();
auto &module = badInst->getModule();
if (sourceLoc.isInvalid()) {
diagnose(module.getASTContext(), sourceLoc, diag::constexpr_not_evaluable);
return;
}
for (auto &sourceLoc : llvm::reverse(getUnknownCallStack())) {
// Skip unknown sources.
if (!sourceLoc.isValid())
continue;
auto diag = emittedFirstNote ? diag::constexpr_called_from
: diag::constexpr_not_evaluable;
diagnose(module.getASTContext(), sourceLoc, diag);
emittedFirstNote = true;
}
}