blob: b00ec95f0e76af6715fc6a980268be321e102e9e [file] [log] [blame]
//===--- ProtocolConformance.cpp - Swift protocol conformance checking ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Checking and caching of Swift protocol conformances.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Lazy.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Unreachable.h"
#include "CompatibilityOverride.h"
#include "ImageInspection.h"
#include "Private.h"
#include <vector>
using namespace swift;
#ifndef NDEBUG
template <> void ProtocolDescriptor::dump() const {
printf("TargetProtocolDescriptor.\n"
"Name: \"%s\".\n",
Name.get());
}
void ProtocolDescriptorFlags::dump() const {
printf("ProtocolDescriptorFlags.\n");
printf("Is Swift: %s.\n", (isSwift() ? "true" : "false"));
printf("Needs Witness Table: %s.\n",
(needsWitnessTable() ? "true" : "false"));
printf("Is Resilient: %s.\n", (isResilient() ? "true" : "false"));
printf("Special Protocol: %s.\n",
(bool(getSpecialProtocol()) ? "Error" : "None"));
printf("Class Constraint: %s.\n",
(bool(getClassConstraint()) ? "Class" : "Any"));
printf("Dispatch Strategy: %s.\n",
(bool(getDispatchStrategy()) ? "Swift" : "ObjC"));
}
#endif
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
static const char *class_getName(const ClassMetadata* type) {
return class_getName(
reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
}
template<> void ProtocolConformanceDescriptor::dump() const {
auto symbolName = [&](const void *addr) -> const char * {
SymbolInfo info;
int ok = lookupSymbol(addr, &info);
if (!ok)
return "<unknown addr>";
return info.symbolName;
};
switch (auto kind = getTypeKind()) {
case TypeReferenceKind::DirectObjCClassName:
printf("direct Objective-C class name %s", getDirectObjCClassName());
break;
case TypeReferenceKind::IndirectObjCClass:
printf("indirect Objective-C class %s",
class_getName(*getIndirectObjCClass()));
break;
case TypeReferenceKind::DirectNominalTypeDescriptor:
case TypeReferenceKind::IndirectNominalTypeDescriptor:
printf("unique nominal type descriptor %s", symbolName(getTypeContextDescriptor()));
break;
}
printf(" => ");
switch (getConformanceKind()) {
case ConformanceFlags::ConformanceKind::WitnessTable:
printf("witness table %s\n", symbolName(getStaticWitnessTable()));
break;
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
printf("witness table accessor %s\n",
symbolName((const void *)(uintptr_t)getWitnessTableAccessor()));
break;
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor:
printf("conditional witness table accessor %s\n",
symbolName((const void *)(uintptr_t)getWitnessTableAccessor()));
break;
}
}
#endif
#ifndef NDEBUG
template<> void ProtocolConformanceDescriptor::verify() const {
auto typeKind = unsigned(getTypeKind());
assert(((unsigned(TypeReferenceKind::First_Kind) <= typeKind) &&
(unsigned(TypeReferenceKind::Last_Kind) >= typeKind)) &&
"Corrupted type metadata record kind");
auto confKind = unsigned(getConformanceKind());
using ConformanceKind = ConformanceFlags::ConformanceKind;
assert(((unsigned(ConformanceKind::First_Kind) <= confKind) &&
(unsigned(ConformanceKind::Last_Kind) >= confKind)) &&
"Corrupted conformance kind");
}
#endif
#if SWIFT_OBJC_INTEROP
template <>
const ClassMetadata *TypeReference::getObjCClass(TypeReferenceKind kind) const {
switch (kind) {
case TypeReferenceKind::IndirectObjCClass:
return *getIndirectObjCClass(kind);
case TypeReferenceKind::DirectObjCClassName:
return reinterpret_cast<const ClassMetadata *>(
objc_lookUpClass(getDirectObjCClassName(kind)));
case TypeReferenceKind::DirectNominalTypeDescriptor:
case TypeReferenceKind::IndirectNominalTypeDescriptor:
return nullptr;
}
swift_runtime_unreachable("Unhandled TypeReferenceKind in switch.");
}
#endif
/// Take the type reference inside a protocol conformance record and fetch the
/// canonical metadata pointer for the type it refers to.
/// Returns nil for universal or generic type references.
template <>
const Metadata *
ProtocolConformanceDescriptor::getCanonicalTypeMetadata() const {
switch (getTypeKind()) {
case TypeReferenceKind::IndirectObjCClass:
case TypeReferenceKind::DirectObjCClassName:
#if SWIFT_OBJC_INTEROP
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata. The class additionally may be weak-linked, so we have to check
// for null.
if (auto cls = TypeRef.getObjCClass(getTypeKind()))
return getMetadataForClass(cls);
#endif
return nullptr;
case TypeReferenceKind::DirectNominalTypeDescriptor:
case TypeReferenceKind::IndirectNominalTypeDescriptor:
return nullptr;
}
swift_runtime_unreachable("Unhandled TypeReferenceKind in switch.");
}
template<>
const WitnessTable *
ProtocolConformanceDescriptor::getWitnessTable(const Metadata *type) const {
switch (getConformanceKind()) {
case ConformanceFlags::ConformanceKind::WitnessTable:
return getStaticWitnessTable();
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
return getWitnessTableAccessor()(type, nullptr, 0);
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor: {
// Check the conditional requirements.
std::vector<unsigned> genericParamCounts;
(void)_gatherGenericParameterCounts(type->getTypeContextDescriptor(),
genericParamCounts);
auto genericArgs = type->getGenericArgs();
std::vector<const void *> conditionalArgs;
bool failed =
_checkGenericRequirements(getConditionalRequirements(), conditionalArgs,
[&](unsigned flatIndex) {
// FIXME: Adjust for non-key type parameters.
return genericArgs[flatIndex];
},
[&](unsigned depth, unsigned index) -> const Metadata * {
// FIXME: Adjust for non-key type parameters.
if (auto flatIndex = _depthIndexToFlatIndex(depth, index,
genericParamCounts)) {
return genericArgs[*flatIndex];
}
return nullptr;
});
if (failed) return nullptr;
return getWitnessTableAccessor()(
type,
(const swift::WitnessTable**)conditionalArgs.data(),
conditionalArgs.size());
}
}
return nullptr;
}
namespace {
struct ConformanceSection {
const ProtocolConformanceRecord *Begin, *End;
const ProtocolConformanceRecord *begin() const {
return Begin;
}
const ProtocolConformanceRecord *end() const {
return End;
}
};
struct ConformanceCacheKey {
/// Either a Metadata* or a NominalTypeDescriptor*.
const void *Type;
const ProtocolDescriptor *Proto;
ConformanceCacheKey(const void *type, const ProtocolDescriptor *proto)
: Type(type), Proto(proto) {
assert(type);
}
};
struct ConformanceCacheEntry {
private:
const void *Type;
const ProtocolDescriptor *Proto;
std::atomic<const WitnessTable *> Table;
std::atomic<size_t> FailureGeneration;
public:
ConformanceCacheEntry(ConformanceCacheKey key,
const WitnessTable *table,
size_t failureGeneration)
: Type(key.Type), Proto(key.Proto), Table(table),
FailureGeneration(failureGeneration) {
}
int compareWithKey(const ConformanceCacheKey &key) const {
if (key.Type != Type) {
return (uintptr_t(key.Type) < uintptr_t(Type) ? -1 : 1);
} else if (key.Proto != Proto) {
return (uintptr_t(key.Proto) < uintptr_t(Proto) ? -1 : 1);
} else {
return 0;
}
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
bool isSuccessful() const {
return Table.load(std::memory_order_relaxed) != nullptr;
}
void makeSuccessful(const WitnessTable *table) {
Table.store(table, std::memory_order_release);
}
void updateFailureGeneration(size_t failureGeneration) {
assert(!isSuccessful());
FailureGeneration.store(failureGeneration, std::memory_order_relaxed);
}
/// Get the cached witness table, if successful.
const WitnessTable *getWitnessTable() const {
assert(isSuccessful());
return Table.load(std::memory_order_acquire);
}
/// Get the generation in which this lookup failed.
size_t getFailureGeneration() const {
assert(!isSuccessful());
return FailureGeneration.load(std::memory_order_relaxed);
}
};
} // end anonymous namespace
// Conformance Cache.
struct ConformanceState {
ConcurrentMap<ConformanceCacheEntry> Cache;
ConcurrentReadableArray<ConformanceSection> SectionsToScan;
ConformanceState() {
initializeProtocolConformanceLookup();
}
void cacheSuccess(const void *type, const ProtocolDescriptor *proto,
const WitnessTable *witness) {
auto result = Cache.getOrInsert(ConformanceCacheKey(type, proto),
witness, 0);
// If the entry was already present, we may need to update it.
if (!result.second) {
result.first->makeSuccessful(witness);
}
}
void cacheFailure(const void *type, const ProtocolDescriptor *proto,
size_t failureGeneration) {
auto result = Cache.getOrInsert(ConformanceCacheKey(type, proto),
(const WitnessTable *) nullptr,
failureGeneration);
// If the entry was already present, we may need to update it.
if (!result.second) {
result.first->updateFailureGeneration(failureGeneration);
}
}
ConformanceCacheEntry *findCached(const void *type,
const ProtocolDescriptor *proto) {
return Cache.find(ConformanceCacheKey(type, proto));
}
#ifndef NDEBUG
void verify() const LLVM_ATTRIBUTE_USED;
#endif
};
#ifndef NDEBUG
void ConformanceState::verify() const {
// Iterate over all of the sections and verify all of the protocol
// descriptors.
auto &Self = const_cast<ConformanceState &>(*this);
for (const auto &Section : Self.SectionsToScan.snapshot()) {
for (const auto &Record : Section) {
Record.get()->verify();
}
}
}
#endif
static Lazy<ConformanceState> Conformances;
static void
_registerProtocolConformances(ConformanceState &C,
const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end) {
C.SectionsToScan.push_back(ConformanceSection{begin, end});
}
void swift::addImageProtocolConformanceBlockCallback(const void *conformances,
uintptr_t conformancesSize) {
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 &&
"conformances section not a multiple of ProtocolConformanceRecord");
// If we have a section, enqueue the conformances for lookup.
auto conformanceBytes = reinterpret_cast<const char *>(conformances);
auto recordsBegin
= reinterpret_cast<const ProtocolConformanceRecord*>(conformances);
auto recordsEnd
= reinterpret_cast<const ProtocolConformanceRecord*>
(conformanceBytes + conformancesSize);
// Conformance cache should always be sufficiently initialized by this point.
_registerProtocolConformances(Conformances.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end){
auto &C = Conformances.get();
_registerProtocolConformances(C, begin, end);
}
struct ConformanceCacheResult {
// true if witnessTable is an authoritative result as-is.
// false if more searching is required (for example, because a cached
// failure was returned in failureEntry but it is out-of-date.
bool isAuthoritative;
// The matching witness table, or null if no cached conformance was found.
const WitnessTable *witnessTable;
// If the search fails, this may be the negative cache entry for the
// queried type itself. This entry may be null or out-of-date.
ConformanceCacheEntry *failureEntry;
static ConformanceCacheResult
cachedSuccess(const WitnessTable *table) {
return ConformanceCacheResult { true, table, nullptr };
}
static ConformanceCacheResult
cachedFailure(ConformanceCacheEntry *entry, bool auth) {
return ConformanceCacheResult { auth, nullptr, entry };
}
static ConformanceCacheResult
cacheMiss() {
return ConformanceCacheResult { false, nullptr, nullptr };
}
};
/// Retrieve the type key from the given metadata, to be used when looking
/// into the conformance cache.
static const void *getConformanceCacheTypeKey(const Metadata *type) {
if (auto description = type->getTypeContextDescriptor())
return description;
return type;
}
/// Search for a witness table in the ConformanceCache.
static
ConformanceCacheResult
searchInConformanceCache(const Metadata *type,
const ProtocolDescriptor *protocol) {
auto &C = Conformances.get();
auto origType = type;
ConformanceCacheEntry *failureEntry = nullptr;
recur:
{
// Try the specific type first.
if (auto *Value = C.findCached(type, protocol)) {
if (Value->isSuccessful()) {
// Found a conformance on the type or some superclass. Return it.
return ConformanceCacheResult::cachedSuccess(Value->getWitnessTable());
}
// Found a negative cache entry.
bool isAuthoritative;
if (type == origType) {
// This negative cache entry is for the original query type.
// Remember it so it can be returned later.
failureEntry = Value;
// An up-to-date entry for the original type is authoritative.
isAuthoritative = true;
} else {
// An up-to-date cached failure for a superclass of the type is not
// authoritative: there may be a still-undiscovered conformance
// for the original query type.
isAuthoritative = false;
}
// Check if the negative cache entry is up-to-date.
if (Value->getFailureGeneration() == C.SectionsToScan.snapshot().count()) {
// Negative cache entry is up-to-date. Return failure along with
// the original query type's own cache entry, if we found one.
// (That entry may be out of date but the caller still has use for it.)
return ConformanceCacheResult::cachedFailure(failureEntry,
isAuthoritative);
}
// Negative cache entry is out-of-date.
// Continue searching for a better result.
}
}
{
// For generic and resilient types, nondependent conformances
// are keyed by the nominal type descriptor rather than the
// metadata, so try that.
auto typeKey = getConformanceCacheTypeKey(type);
// Hash and lookup the type-protocol pair in the cache.
if (auto *Value = C.findCached(typeKey, protocol)) {
if (Value->isSuccessful())
return ConformanceCacheResult::cachedSuccess(Value->getWitnessTable());
// We don't try to cache negative responses for generic
// patterns.
}
}
// If the type is a class, try its superclass.
if (const ClassMetadata *classType = type->getClassObject()) {
if (classHasSuperclass(classType)) {
type = getMetadataForClass(classType->Superclass);
goto recur;
}
}
// We did not find an up-to-date cache entry.
// If we found an out-of-date entry for the original query type then
// return it (non-authoritatively). Otherwise return a cache miss.
if (failureEntry)
return ConformanceCacheResult::cachedFailure(failureEntry, false);
else
return ConformanceCacheResult::cacheMiss();
}
/// Checks if a given candidate is a type itself, one of its
/// superclasses or a related generic type.
///
/// This check is supposed to use the same logic that is used
/// by searchInConformanceCache.
///
/// \param candidate Pointer to a Metadata or a NominalTypeDescriptor.
///
static
bool isRelatedType(const Metadata *type, const void *candidate,
bool candidateIsMetadata) {
while (true) {
// Check whether the types match.
if (candidateIsMetadata && type == candidate)
return true;
// Check whether the nominal type descriptors match.
if (!candidateIsMetadata) {
const auto *description = type->getTypeContextDescriptor();
auto candidateDescription =
static_cast<const TypeContextDescriptor *>(candidate);
if (description && equalContexts(description, candidateDescription))
return true;
}
// If the type is a class, try its superclass.
if (const ClassMetadata *classType = type->getClassObject()) {
if (classHasSuperclass(classType)) {
type = getMetadataForClass(classType->Superclass);
continue;
}
}
break;
}
return false;
}
static const WitnessTable *
swift_conformsToProtocolImpl(const Metadata * const type,
const ProtocolDescriptor *protocol) {
auto &C = Conformances.get();
// See if we have a cached conformance. The ConcurrentMap data structure
// allows us to insert and search the map concurrently without locking.
auto FoundConformance = searchInConformanceCache(type, protocol);
// If the result (positive or negative) is authoritative, return it.
if (FoundConformance.isAuthoritative)
return FoundConformance.witnessTable;
auto failureEntry = FoundConformance.failureEntry;
// Prepare to scan conformance records.
auto snapshot = C.SectionsToScan.snapshot();
// Scan only sections that were not scanned yet.
// If we found an out-of-date negative cache entry,
// we need not to re-scan the sections that it covers.
auto startIndex = failureEntry ? failureEntry->getFailureGeneration() : 0;
auto endIndex = snapshot.count();
// If there are no unscanned sections outstanding
// then we can cache failure and give up now.
if (startIndex == endIndex) {
C.cacheFailure(type, protocol, snapshot.count());
return nullptr;
}
/// Local function to retrieve the witness table and record the result.
auto recordWitnessTable = [&](const ProtocolConformanceDescriptor &descriptor,
const Metadata *type) {
switch (descriptor.getConformanceKind()) {
case ConformanceFlags::ConformanceKind::WitnessTable:
// If the record provides a nondependent witness table for all
// instances of a generic type, cache it for the generic pattern.
C.cacheSuccess(type, protocol, descriptor.getStaticWitnessTable());
return;
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
// If the record provides a dependent witness table accessor,
// cache the result for the instantiated type metadata.
C.cacheSuccess(type, protocol, descriptor.getWitnessTable(type));
return;
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor: {
auto witnessTable = descriptor.getWitnessTable(type);
if (witnessTable)
C.cacheSuccess(type, protocol, witnessTable);
else
C.cacheFailure(type, protocol, snapshot.count());
return;
}
}
// Always fail, because we cannot interpret a future conformance
// kind.
C.cacheFailure(type, protocol, snapshot.count());
};
// Really scan conformance records.
for (size_t i = startIndex; i < endIndex; i++) {
auto &section = snapshot.Start[i];
// Eagerly pull records for nondependent witnesses into our cache.
for (const auto &record : section) {
auto &descriptor = *record.get();
// If the record applies to a specific type, cache it.
if (auto metadata = descriptor.getCanonicalTypeMetadata()) {
auto P = descriptor.getProtocol();
// Look for an exact match.
if (protocol != P)
continue;
if (!isRelatedType(type, metadata, /*candidateIsMetadata=*/true))
continue;
// Record the witness table.
recordWitnessTable(descriptor, metadata);
// TODO: "Nondependent witness table" probably deserves its own flag.
// An accessor function might still be necessary even if the witness table
// can be shared.
} else if (descriptor.getTypeKind()
== TypeReferenceKind::DirectNominalTypeDescriptor ||
descriptor.getTypeKind()
== TypeReferenceKind::IndirectNominalTypeDescriptor) {
auto R = descriptor.getTypeContextDescriptor();
auto P = descriptor.getProtocol();
// Look for an exact match.
if (protocol != P)
continue;
if (!isRelatedType(type, R, /*candidateIsMetadata=*/false))
continue;
recordWitnessTable(descriptor, type);
}
}
}
// Conformance scan is complete.
// Search the cache once more, and this time update the cache if necessary.
FoundConformance = searchInConformanceCache(type, protocol);
if (FoundConformance.isAuthoritative) {
return FoundConformance.witnessTable;
} else {
C.cacheFailure(type, protocol, snapshot.count());
return nullptr;
}
}
const TypeContextDescriptor *
swift::_searchConformancesByMangledTypeName(Demangle::NodePointer node) {
auto &C = Conformances.get();
for (auto &section : C.SectionsToScan.snapshot()) {
for (const auto &record : section) {
if (auto ntd = record->getTypeContextDescriptor()) {
if (_contextDescriptorMatchesMangling(ntd, node))
return ntd;
}
}
}
return nullptr;
}
/// Resolve a reference to a generic parameter to type metadata.
static const Metadata *resolveGenericParamRef(
const GenericParamRef &param,
SubstFlatGenericParameterFn substFlatGenericParam) {
// Resolve the root generic parameter.
const Metadata *current = substFlatGenericParam(param.getRootParamIndex());
if (!current) return nullptr;
// Follow the associated type path.
for (const auto &assocTypeRef : param) {
// Look for the witness table.
auto witnessTable =
swift_conformsToProtocol(current, assocTypeRef.Protocol);
if (!witnessTable) return nullptr;
// Determine the index of the associated type based on its offset
// from the beginning of the protocol's requirements.
auto protocolDescriptor = witnessTable->Description->getProtocol();
unsigned index = assocTypeRef.Requirement.get() -
protocolDescriptor->getRequirements().data();
// Call the associated type access function.
using AssociatedTypeAccessFn =
const Metadata *(*)(const Metadata *base, const WitnessTable *);
unsigned adjustedIndex = index + WitnessTableFirstRequirementOffset;
current =
((const AssociatedTypeAccessFn *)witnessTable)[adjustedIndex]
(current, witnessTable);
if (!current) return nullptr;
}
return current;
}
bool swift::_checkGenericRequirements(
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
std::vector<const void *> &extraArguments,
SubstFlatGenericParameterFn substFlatGenericParam,
SubstGenericParameterFn substGenericParam) {
for (const auto &req : requirements) {
// Make sure we understand the requirement we're dealing with.
if (!req.hasKnownKind()) return true;
// Resolve the subject generic parameter.
auto subjectType =
resolveGenericParamRef(req.getParam(), substFlatGenericParam);
if (!subjectType) return true;
// Check the requirement.
switch (req.getKind()) {
case GenericRequirementKind::Protocol: {
const WitnessTable *witnessTable = nullptr;
if (!_conformsToProtocol(nullptr, subjectType, req.getProtocol(),
&witnessTable))
return true;
// If we need a witness table, add it.
if (req.getProtocol().needsWitnessTable()) {
assert(witnessTable);
extraArguments.push_back(witnessTable);
}
continue;
}
case GenericRequirementKind::SameType: {
// Demangle the second type under the given substitutions.
auto otherType =
_getTypeByMangledName(req.getMangledTypeName(), substGenericParam);
if (!otherType) return true;
assert(!req.getFlags().hasExtraArgument());
// Check that the types are equivalent.
if (subjectType != otherType) return true;
continue;
}
case GenericRequirementKind::Layout: {
switch (req.getLayout()) {
case GenericRequirementLayoutKind::Class:
if (!subjectType->satisfiesClassConstraint())
return true;
continue;
}
// Unknown layout.
return true;
}
case GenericRequirementKind::BaseClass: {
// Demangle the base type under the given substitutions.
auto baseType =
_getTypeByMangledName(req.getMangledTypeName(), substGenericParam);
if (!baseType) return true;
// Check whether it's dynamically castable, which works as a superclass
// check.
if (!swift_dynamicCastMetatype(subjectType, baseType)) return true;
continue;
}
case GenericRequirementKind::SameConformance: {
// FIXME: Implement this check.
continue;
}
}
// Unknown generic requirement kind.
return true;
}
// Success!
return false;
}
#define OVERRIDE_PROTOCOLCONFORMANCE COMPATIBILITY_OVERRIDE
#include "CompatibilityOverride.def"