blob: ee2b584c1f75f88cb46df79560a33649033896c8 [file] [log] [blame]
//===--- Verifier.cpp - Verification of Swift SIL Code --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "silverifier"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/SILVTable.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Module.h"
#include "swift/AST/Types.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Basic/Range.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
using Lowering::AbstractionPattern;
// This flag is used only to check that sil-combine can properly
// remove any code after unreachable, thus bringing SIL into
// its canonical form which may get temporarily broken during
// intermediate transformations.
static llvm::cl::opt<bool> SkipUnreachableMustBeLastErrors(
"verify-skip-unreachable-must-be-last",
llvm::cl::init(false));
// The verifier is basically all assertions, so don't compile it with NDEBUG to
// prevent release builds from triggering spurious unused variable warnings.
#ifndef NDEBUG
/// Returns true if A is an opened existential type, Self, or is equal to an
/// archetype in F's nested archetype list.
///
/// FIXME: Once Self has been removed in favor of opened existential types
/// everywhere, remove support for self.
static bool isArchetypeValidInFunction(ArchetypeType *A, SILFunction *F) {
// The only two cases where an archetype is always legal in a function is if
// it is self or if it is from an opened existential type. Currently, Self is
// being migrated away from in favor of opened existential types, so we should
// remove the special case here for Self when that process is completed.
//
// *NOTE* Associated types of self are not valid here.
if (!A->getOpenedExistentialType().isNull() || A->getSelfProtocol())
return true;
// Ok, we have an archetype, make sure it is in the nested archetypes of our
// caller.
for (auto Iter : F->getContextGenericParams()->getAllNestedArchetypes())
if (A->isEqual(&*Iter))
return true;
return A->getIsRecursive();
}
namespace {
/// Metaprogramming-friendly base class.
template <class Impl>
class SILVerifierBase : public SILVisitor<Impl> {
public:
// visitCLASS calls visitPARENT and checkCLASS.
// checkCLASS does nothing by default.
#define VALUE(CLASS, PARENT) \
void visit##CLASS(CLASS *I) { \
static_cast<Impl*>(this)->visit##PARENT(I); \
static_cast<Impl*>(this)->check##CLASS(I); \
} \
void check##CLASS(CLASS *I) {}
#include "swift/SIL/SILNodes.def"
void visitValueBase(ValueBase *V) {
static_cast<Impl*>(this)->checkValueBase(V);
}
void checkValueBase(ValueBase *V) {}
};
} // end anonymous namespace
namespace {
/// The SIL verifier walks over a SIL function / basic block / instruction,
/// checking and enforcing its invariants.
class SILVerifier : public SILVerifierBase<SILVerifier> {
Module *M;
const SILFunction &F;
Lowering::TypeConverter &TC;
const SILInstruction *CurInstruction = nullptr;
DominanceInfo *Dominance = nullptr;
SILVerifier(const SILVerifier&) = delete;
void operator=(const SILVerifier&) = delete;
public:
void _require(bool condition, const Twine &complaint,
const std::function<void()> &extraContext = nullptr) {
if (condition) return;
llvm::dbgs() << "SIL verification failed: " << complaint << "\n";
if (extraContext) extraContext();
if (CurInstruction) {
llvm::dbgs() << "Verifying instruction:\n";
CurInstruction->printInContext(llvm::dbgs());
llvm::dbgs() << "In function:\n";
F.print(llvm::dbgs());
} else {
llvm::dbgs() << "In function:\n";
F.print(llvm::dbgs());
}
abort();
}
#define require(condition, complaint) \
_require(bool(condition), complaint ": " #condition)
template <class T> typename CanTypeWrapperTraits<T>::type
_requireObjectType(SILType type, const Twine &valueDescription,
const char *typeName) {
_require(type.isObject(), valueDescription + " must be an object");
auto result = type.getAs<T>();
_require(bool(result), valueDescription + " must have type " + typeName);
return result;
}
template <class T> typename CanTypeWrapperTraits<T>::type
_requireObjectType(SILValue value, const Twine &valueDescription,
const char *typeName) {
return _requireObjectType<T>(value.getType(), valueDescription, typeName);
}
#define requireObjectType(type, value, valueDescription) \
_requireObjectType<type>(value, valueDescription, #type)
template <class T>
typename CanTypeWrapperTraits<T>::type
_forbidObjectType(SILType type, const Twine &valueDescription,
const char *typeName) {
_require(type.isObject(), valueDescription + " must be an object");
auto result = type.getAs<T>();
_require(!bool(result),
valueDescription + " must not have type " + typeName);
return result;
}
template <class T>
typename CanTypeWrapperTraits<T>::type
_forbidObjectType(SILValue value, const Twine &valueDescription,
const char *typeName) {
return _forbidObjectType<T>(value.getType(), valueDescription, typeName);
}
#define forbidObjectType(type, value, valueDescription) \
_forbidObjectType<type>(value, valueDescription, #type)
// Require that the operand is a non-optional, non-unowned reference-counted
// type.
void requireReferenceValue(SILValue value, const Twine &valueDescription) {
require(value.getType().isObject(), valueDescription +" must be an object");
require(value.getType().isReferenceCounted(F.getModule()),
valueDescription + " must have reference semantics");
forbidObjectType(UnownedStorageType, value, valueDescription);
}
// Require that the operand is a reference-counted type, or an Optional
// thereof.
void requireReferenceOrOptionalReferenceValue(SILValue value,
const Twine &valueDescription) {
require(value.getType().isObject(), valueDescription +" must be an object");
auto objectTy = value.getType();
OptionalTypeKind otk;
if (auto optObjTy = objectTy.getAnyOptionalObjectType(F.getModule(), otk)) {
objectTy = optObjTy;
}
require(objectTy.isReferenceCounted(F.getModule()),
valueDescription + " must have reference semantics");
}
// Require that the operand is a type that supports reference storage
// modifiers.
void requireReferenceStorageCapableValue(SILValue value,
const Twine &valueDescription) {
requireReferenceOrOptionalReferenceValue(value, valueDescription);
require(!value.getType().is<SILFunctionType>(),
valueDescription + " cannot apply to a function type");
}
// Require that the operand is a reference-counted type, or potentially an
// optional thereof.
void requireRetainablePointerValue(SILValue value,
const Twine &valueDescription) {
require(value.getType().isObject(), valueDescription +" must be an object");
require(value.getType().hasRetainablePointerRepresentation(),
valueDescription + " must have retainable pointer representation");
}
/// Assert that two types are equal.
void requireSameType(SILType type1, SILType type2, const Twine &complaint) {
_require(type1 == type2, complaint, [&] {
llvm::dbgs() << " " << type1 << "\n " << type2 << '\n';
});
}
/// Require two function types to be ABI-compatible.
void requireABICompatibleFunctionTypes(CanSILFunctionType type1,
CanSILFunctionType type2,
const Twine &what) {
auto complain = [=](const char *msg) -> std::function<void()> {
return [=]{
llvm::dbgs() << " " << msg << '\n'
<< " " << type1 << "\n " << type2 << '\n';
};
};
auto complainBy = [=](std::function<void()> msg) -> std::function<void()> {
return [=]{
msg();
llvm::dbgs() << '\n';
llvm::dbgs() << " " << type1 << "\n " << type2 << '\n';
};
};
// The calling convention and function representation can't be changed.
_require(type1->getRepresentation() == type2->getRepresentation(), what,
complain("Different function representations"));
// TODO: We should compare generic signatures. Class and witness methods
// allow variance in "self"-fulfilled parameters; other functions must
// match exactly.
auto signature1 = type1->getGenericSignature();
auto signature2 = type2->getGenericSignature();
auto getAnyOptionalObjectTypeInContext = [&](CanGenericSignature sig,
SILType type) {
Lowering::GenericContextScope context(F.getModule().Types, sig);
OptionalTypeKind _;
return type.getAnyOptionalObjectType(F.getModule(), _);
};
// TODO: More sophisticated param and return ABI compatibility rules could
// diverge.
std::function<bool (SILType, SILType)>
areABICompatibleParamsOrReturns = [&](SILType a, SILType b) -> bool {
// Address parameters are all ABI-compatible, though the referenced
// values may not be. Assume whoever's doing this knows what they're
// doing.
if (a.isAddress() && b.isAddress())
return true;
// Addresses aren't compatible with values.
// TODO: An exception for pointerish types?
else if (a.isAddress() || b.isAddress())
return false;
// Tuples are ABI compatible if their elements are.
// TODO: Should destructure recursively.
SmallVector<CanType, 1> aElements, bElements;
if (auto tup = a.getAs<TupleType>()) {
auto types = tup.getElementTypes();
aElements.append(types.begin(), types.end());
} else {
aElements.push_back(a.getSwiftRValueType());
}
if (auto tup = b.getAs<TupleType>()) {
auto types = tup.getElementTypes();
bElements.append(types.begin(), types.end());
} else {
bElements.push_back(b.getSwiftRValueType());
}
if (aElements.size() != bElements.size())
return false;
for (unsigned i : indices(aElements)) {
auto aa = SILType::getPrimitiveObjectType(aElements[i]),
bb = SILType::getPrimitiveObjectType(bElements[i]);
// Equivalent types are always ABI-compatible.
if (aa == bb)
continue;
// FIXME: If one or both types are dependent, we can't accurately assess
// whether they're ABI-compatible without a generic context. We can
// do a better job here when dependent types are related to their
// generic signatures.
if (aa.hasTypeParameter() || bb.hasTypeParameter())
continue;
// Bridgeable object types are interchangeable.
if (aa.isBridgeableObjectType() && bb.isBridgeableObjectType())
continue;
// Optional and IUO are interchangeable if their elements are.
auto aObject = getAnyOptionalObjectTypeInContext(signature1, aa);
auto bObject = getAnyOptionalObjectTypeInContext(signature2, bb);
if (aObject && bObject
&& areABICompatibleParamsOrReturns(aObject, bObject))
continue;
// Optional objects are ABI-interchangeable with non-optionals;
// None is represented by a null pointer.
if (aObject && aObject.isBridgeableObjectType()
&& bb.isBridgeableObjectType())
continue;
if (bObject && bObject.isBridgeableObjectType()
&& aa.isBridgeableObjectType())
continue;
// Optional thick metatypes are ABI-interchangeable with non-optionals
// too.
if (aObject)
if (auto aObjMeta = aObject.getAs<MetatypeType>())
if (auto bMeta = bb.getAs<MetatypeType>())
if (aObjMeta->getRepresentation() == bMeta->getRepresentation()
&& bMeta->getRepresentation() != MetatypeRepresentation::Thin)
continue;
if (bObject)
if (auto aMeta = aa.getAs<MetatypeType>())
if (auto bObjMeta = bObject.getAs<MetatypeType>())
if (aMeta->getRepresentation() == bObjMeta->getRepresentation()
&& aMeta->getRepresentation() != MetatypeRepresentation::Thin)
continue;
// Function types are interchangeable if they're also ABI-compatible.
if (auto aFunc = aa.getAs<SILFunctionType>())
if (auto bFunc = bb.getAs<SILFunctionType>()) {
// FIXME
requireABICompatibleFunctionTypes(aFunc, bFunc, what);
return true;
}
// Metatypes are interchangeable with metatypes with the same
// representation.
if (auto aMeta = aa.getAs<MetatypeType>())
if (auto bMeta = bb.getAs<MetatypeType>())
if (aMeta->getRepresentation() == bMeta->getRepresentation())
continue;
// Other types must match exactly.
return false;
}
return true;
};
// Check the return value.
auto result1 = type1->getResult();
auto result2 = type2->getResult();
_require(result1.getConvention() == result2.getConvention(), what,
complain("Different return value conventions"));
_require(areABICompatibleParamsOrReturns(result1.getSILType(),
result2.getSILType()), what,
complain("ABI-incompatible return values"));
// Our error result conventions are designed to be ABI compatible
// with functions lacking error results. Just make sure that the
// actual conventions match up.
if (type1->hasErrorResult() && type2->hasErrorResult()) {
auto error1 = type1->getErrorResult();
auto error2 = type2->getErrorResult();
_require(error1.getConvention() == error2.getConvention(), what,
complain("Different error result conventions"));
_require(areABICompatibleParamsOrReturns(error1.getSILType(),
error2.getSILType()), what,
complain("ABI-incompatible error results"));
}
// Check the parameters.
// TODO: Could allow known-empty types to be inserted or removed, but SIL
// doesn't know what empty types are yet.
_require(type1->getParameters().size() == type2->getParameters().size(),
what, complain("different number of parameters"));
for (unsigned i : indices(type1->getParameters())) {
auto param1 = type1->getParameters()[i];
auto param2 = type2->getParameters()[i];
_require(param1.getConvention() == param2.getConvention(), what,
complainBy([=] {
llvm::dbgs() << "Different conventions for parameter " << i;
}));
_require(areABICompatibleParamsOrReturns(param1.getSILType(),
param2.getSILType()), what,
complainBy([=] {
llvm::dbgs() << "ABI-incompatible types for parameter " << i;
}));
}
}
void requireSameFunctionComponents(CanSILFunctionType type1,
CanSILFunctionType type2,
const Twine &what) {
require(type1->getResult() == type2->getResult(),
"result types of " + what + " do not match");
require(type1->getParameters().size() ==
type2->getParameters().size(),
"inputs of " + what + " do not match in count");
for (auto i : indices(type1->getParameters())) {
require(type1->getParameters()[i] ==
type2->getParameters()[i],
"input " + Twine(i) + " of " + what + " do not match");
}
}
SILVerifier(const SILFunction &F)
: M(F.getModule().getSwiftModule()), F(F), TC(F.getModule().Types),
Dominance(nullptr) {
if (F.isExternalDeclaration())
return;
// Check to make sure that all blocks are well formed. If not, the
// SILVerifier object will explode trying to compute dominance info.
for (auto &BB : F) {
require(!BB.empty(), "Basic blocks cannot be empty");
require(isa<TermInst>(BB.back()),
"Basic blocks must end with a terminator instruction");
}
Dominance = new DominanceInfo(const_cast<SILFunction*>(&F));
auto *DebugScope = F.getDebugScope();
require(DebugScope, "All SIL functions must have a debug scope");
require(DebugScope && DebugScope->SILFn == &F,
"Scope of SIL function points to different function");
}
~SILVerifier() {
if (Dominance)
delete Dominance;
}
void visitSILArgument(SILArgument *arg) {
checkLegalTypes(arg->getFunction(), arg);
}
void visitSILInstruction(SILInstruction *I) {
CurInstruction = I;
checkSILInstruction(I);
// Check the SILLLocation attached to the instruction.
checkInstructionsSILLocation(I);
checkLegalTypes(I->getFunction(), I);
}
void checkSILInstruction(SILInstruction *I) {
const SILBasicBlock *BB = I->getParent();
require(BB, "Instruction with null parent");
require(I->getFunction(), "Instruction not in function");
// Check that non-terminators look ok.
if (!isa<TermInst>(I)) {
require(!BB->empty(), "Can't be in a parent block if it is empty");
require(&*BB->rbegin() != I,
"Non-terminators cannot be the last in a block");
} else {
// Skip the check for UnreachableInst, if explicitly asked to do so.
if (!isa<UnreachableInst>(I) || !SkipUnreachableMustBeLastErrors)
require(&*BB->rbegin() == I,
"Terminator must be the last in block");
}
// Verify that all of our uses are in this function.
for (Operand *use : I->getUses()) {
auto user = use->getUser();
require(user, "instruction user is null?");
require(isa<SILInstruction>(user),
"instruction used by non-instruction");
auto userI = cast<SILInstruction>(user);
require(userI->getParent(),
"instruction used by unparented instruction");
require(userI->getFunction() == &F,
"instruction used by instruction in different function");
auto operands = userI->getAllOperands();
require(operands.begin() <= use && use <= operands.end(),
"use doesn't actually belong to instruction it claims to");
}
// Verify some basis structural stuff about an instruction's operands.
for (auto &operand : I->getAllOperands()) {
require(operand.get().isValid(), "instruction has null operand");
if (auto *valueI = dyn_cast<SILInstruction>(operand.get())) {
require(valueI->getParent(),
"instruction uses value of unparented instruction");
require(valueI->getFunction() == &F,
"instruction uses value of instruction from another function");
require(Dominance->properlyDominates(valueI, I),
"instruction isn't dominated by its operand");
}
if (auto *valueBBA = dyn_cast<SILArgument>(operand.get())) {
require(valueBBA->getParent(),
"instruction uses value of unparented instruction");
require(valueBBA->getFunction() == &F,
"bb argument value from another function");
require(Dominance->dominates(valueBBA->getParent(), I->getParent()),
"instruction isn't dominated by its bb argument operand");
}
require(operand.getUser() == I,
"instruction's operand's owner isn't the instruction");
require(isInValueUses(&operand), "operand value isn't used by operand");
// Make sure that if operand is generic that its primary archetypes match
// the function context.
checkLegalTypes(I->getFunction(), operand.get().getDef());
}
}
/// Return the SIL function of a SILDebugScope's ancestor.
static SILFunction *getFunction(const SILDebugScope *DS) {
if (DS->InlinedCallSite)
return getFunction(DS->InlinedCallSite);
if (DS->Parent)
return getFunction(DS->Parent);
return DS->SILFn;
}
void checkInstructionsSILLocation(SILInstruction *I) {
// Check the debug scope.
auto *DS = I->getDebugScope();
if (DS && !maybeScopeless(*I)) {
require(DS, "instruction has a location, but no scope");
require(getFunction(DS) == I->getFunction(),
"parent scope of instruction points to a different function");
}
require(!DS || DS->InlinedCallSite || DS->SILFn == I->getFunction(),
"scope of a non-inlined instruction points to different function");
// Check the location kind.
SILLocation L = I->getLoc();
SILLocation::LocationKind LocKind = L.getKind();
ValueKind InstKind = I->getKind();
// Regular locations and SIL file locations are allowed on all instructions.
if (LocKind == SILLocation::RegularKind ||
LocKind == SILLocation::SILFileKind)
return;
#if 0
// FIXME: This check was tautological before the removal of
// AutoreleaseReturnInst, and it turns out that we're violating it.
// Fix incoming.
if (LocKind == SILLocation::CleanupKind ||
LocKind == SILLocation::InlinedKind)
require(InstKind != ValueKind::ReturnInst ||
InstKind != ValueKind::AutoreleaseReturnInst,
"cleanup and inlined locations are not allowed on return instructions");
#endif
if (LocKind == SILLocation::ReturnKind ||
LocKind == SILLocation::ImplicitReturnKind)
require(InstKind == ValueKind::BranchInst ||
InstKind == ValueKind::ReturnInst ||
InstKind == ValueKind::UnreachableInst,
"return locations are only allowed on branch and return instructions");
if (LocKind == SILLocation::ArtificialUnreachableKind)
require(InstKind == ValueKind::UnreachableInst,
"artificial locations are only allowed on Unreachable instructions");
}
/// Check that the types of this value producer are all legal in the function
/// context in which it exists.
void checkLegalTypes(SILFunction *F, ValueBase *value) {
for (auto type : value->getTypes()) {
checkLegalType(F, type);
}
}
/// Check that the given type is a legal SIL value.
void checkLegalType(SILFunction *F, SILType type) {
auto rvalueType = type.getSwiftRValueType();
require(!isa<LValueType>(rvalueType),
"l-value types are not legal in SIL");
require(!isa<AnyFunctionType>(rvalueType),
"AST function types are not legal in SIL");
rvalueType.visit([&](Type t) {
auto *A = dyn_cast<ArchetypeType>(t.getPointer());
if (!A)
return;
require(isArchetypeValidInFunction(A, F),
"Operand is of an ArchetypeType that does not exist in the "
"Caller's generic param list.");
});
}
/// Check that this operand appears in the use-chain of the value it uses.
static bool isInValueUses(const Operand *operand) {
for (auto use : operand->get()->getUses())
if (use == operand)
return true;
return false;
}
/// \return True if all of the users of the AllocStack instruction \p ASI are
/// inside the same basic block.
static bool isSingleBlockUsage(AllocStackInst *ASI, DominanceInfo *Dominance){
SILBasicBlock *BB = ASI->getParent();
for (auto UI = ASI->use_begin(), E = ASI->use_end(); UI != E; ++UI)
if (UI->getUser()->getParent() != BB &&
Dominance->isReachableFromEntry(UI->getUser()->getParent()))
return false;
return true;
}
void checkAllocStackInst(AllocStackInst *AI) {
require(AI->getContainerResult().getType().isLocalStorage(),
"first result of alloc_stack must be local storage");
require(AI->getAddressResult().getType().isAddress(),
"second result of alloc_stack must be an address type");
require(AI->getContainerResult().getType().getSwiftRValueType()
== AI->getElementType().getSwiftRValueType(),
"container storage must be for allocated type");
// Scan the parent block of AI and check that the users of AI inside this
// block are inside the lifetime of the allocated memory.
SILBasicBlock *SBB = AI->getParent();
bool Allocated = true;
for (auto Inst = AI->getIterator(), E = SBB->end(); Inst != E; ++Inst) {
if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
if (LI->getOperand().getDef() == AI)
require(Allocated, "AllocStack used by Load outside its lifetime");
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
if (SI->getDest().getDef() == AI)
require(Allocated, "AllocStack used by Store outside its lifetime");
if (DeallocStackInst *DSI = dyn_cast<DeallocStackInst>(Inst))
if (DSI->getOperand() == AI)
Allocated = false;
}
// If the AllocStackInst is also deallocated inside the allocation block
// then make sure that all the users are inside that block.
if (!Allocated) {
require(isSingleBlockUsage(AI, Dominance),
"AllocStack has users in other basic blocks after allocation");
}
}
void checkAllocRefInst(AllocRefInst *AI) {
requireReferenceValue(AI, "Result of alloc_ref");
}
void checkAllocRefDynamicInst(AllocRefDynamicInst *ARDI) {
requireReferenceValue(ARDI, "Result of alloc_ref_dynamic");
require(ARDI->getOperand().getType().is<AnyMetatypeType>(),
"operand of alloc_ref_dynamic must be of metatype type");
auto metaTy = ARDI->getOperand().getType().castTo<AnyMetatypeType>();
require(metaTy->hasRepresentation(),
"operand of alloc_ref_dynamic must have a metatype representation");
if (ARDI->isObjC()) {
require(metaTy->getRepresentation() == MetatypeRepresentation::ObjC,
"alloc_ref_dynamic @objc requires operand of ObjC metatype");
} else {
require(metaTy->getRepresentation() == MetatypeRepresentation::Thick,
"alloc_ref_dynamic requires operand of thick metatype");
}
}
/// Check the substitutions passed to an apply or partial_apply.
CanSILFunctionType checkApplySubstitutions(ArrayRef<Substitution> subs,
SILType calleeTy) {
auto fnTy = requireObjectType(SILFunctionType, calleeTy, "callee operand");
// If there are substitutions, verify them and apply them to the callee.
if (subs.empty()) {
require(!fnTy->isPolymorphic(),
"callee of apply without substitutions must not be polymorphic");
return fnTy;
}
require(fnTy->isPolymorphic(),
"callee of apply with substitutions must be polymorphic");
// Apply the substitutions.
return fnTy->substGenericArgs(F.getModule(), M, subs);
}
void checkFullApplySite(FullApplySite site) {
// If we have a substitution whose replacement type is an archetype, make
// sure that the replacement archetype is in the context generic params of
// the caller function.
// For each substitution Sub in AI...
for (auto &Sub : site.getSubstitutions()) {
// If Sub's replacement is not an archetype type or is from an opened
// existential type, skip it...
auto *A = Sub.getReplacement()->getAs<ArchetypeType>();
if (!A)
continue;
require(isArchetypeValidInFunction(A, site.getInstruction()->getFunction()),
"Archetype to be substituted must be valid in function.");
}
// Then make sure that we have a type that can be substituted for the
// callee.
auto substTy = checkApplySubstitutions(site.getSubstitutions(),
site.getCallee().getType());
require(site.getOrigCalleeType()->getRepresentation() ==
site.getSubstCalleeType()->getRepresentation(),
"calling convention difference between types");
require(!site.getSubstCalleeType()->isPolymorphic(),
"substituted callee type should not be generic");
requireSameType(SILType::getPrimitiveObjectType(substTy),
SILType::getPrimitiveObjectType(site.getSubstCalleeType()),
"substituted callee type does not match substitutions");
// Check that the arguments and result match.
require(site.getArguments().size() ==
substTy->getParameters().size(),
"apply doesn't have right number of arguments for function");
for (size_t i = 0, size = site.getArguments().size(); i < size; ++i) {
requireSameType(site.getArguments()[i].getType(),
substTy->getParameters()[i].getSILType(),
"operand of 'apply' doesn't match function input type");
}
}
void checkApplyInst(ApplyInst *AI) {
checkFullApplySite(AI);
auto substTy = AI->getSubstCalleeType();
require(AI->getType() == substTy->getResult().getSILType(),
"type of apply instruction doesn't match function result type");
if (AI->isNonThrowing()) {
require(substTy->hasErrorResult(),
"nothrow flag used for callee without error result");
} else {
require(!substTy->hasErrorResult(),
"apply instruction cannot call function with error result");
}
// Check that if the apply is of a noreturn callee, make sure that an
// unreachable is the next instruction.
if (AI->getModule().getStage() == SILStage::Raw ||
!AI->getCallee().getType().getAs<SILFunctionType>()->isNoReturn())
return;
require(isa<UnreachableInst>(std::next(SILBasicBlock::iterator(AI))),
"No return apply without an unreachable as a next instruction.");
}
void checkTryApplyInst(TryApplyInst *AI) {
checkFullApplySite(AI);
auto substTy = AI->getSubstCalleeType();
auto normalBB = AI->getNormalBB();
require(normalBB->bbarg_size() == 1,
"normal destination of try_apply must take one argument");
requireSameType((*normalBB->bbarg_begin())->getType(),
substTy->getResult().getSILType(),
"normal destination of try_apply must take argument "
"of normal result type");
auto errorBB = AI->getErrorBB();
require(substTy->hasErrorResult(),
"try_apply must call function with error result");
require(errorBB->bbarg_size() == 1,
"error destination of try_apply must take one argument");
requireSameType((*errorBB->bbarg_begin())->getType(),
substTy->getErrorResult().getSILType(),
"error destination of try_apply must take argument "
"of error result type");
}
void verifyLLVMIntrinsic(BuiltinInst *BI, llvm::Intrinsic::ID ID) {
// Certain llvm intrinsic require constant values as their operands.
// Consequently, these must not be phi nodes (aka. basic block arguments).
switch (ID) {
default:
break;
case llvm::Intrinsic::ctlz: // llvm.ctlz
case llvm::Intrinsic::cttz: // llvm.cttz
break;
case llvm::Intrinsic::memcpy:
case llvm::Intrinsic::memmove:
case llvm::Intrinsic::memset:
require(!isa<SILArgument>(BI->getArguments()[3]),
"alignment argument of memory intrinsics must be an integer "
"literal");
require(!isa<SILArgument>(BI->getArguments()[4]),
"isvolatile argument of memory intrinsics must be an integer "
"literal");
break;
case llvm::Intrinsic::lifetime_start:
case llvm::Intrinsic::lifetime_end:
case llvm::Intrinsic::invariant_start:
require(!isa<SILArgument>(BI->getArguments()[0]),
"size argument of memory use markers must be an integer literal");
break;
case llvm::Intrinsic::invariant_end:
require(!isa<SILArgument>(BI->getArguments()[1]),
"llvm.invariant.end parameter #2 must be an integer literal");
break;
}
}
void checkPartialApplyInst(PartialApplyInst *PAI) {
auto resultInfo = requireObjectType(SILFunctionType, PAI,
"result of partial_apply");
verifySILFunctionType(resultInfo);
require(resultInfo->getExtInfo().hasContext(),
"result of closure cannot have a thin function type");
// If we have a substitution whose replacement type is an archetype, make
// sure that the replacement archetype is in the context generic params of
// the caller function.
// For each substitution Sub in AI...
for (auto &Sub : PAI->getSubstitutions()) {
// If Sub's replacement is not an archetype type or is from an opened
// existential type, skip it...
Sub.getReplacement().visit([&](Type t) {
auto *A = t->getAs<ArchetypeType>();
if (!A)
return;
require(isArchetypeValidInFunction(A, PAI->getFunction()),
"Archetype to be substituted must be valid in function.");
});
}
auto substTy = checkApplySubstitutions(PAI->getSubstitutions(),
PAI->getCallee().getType());
require(!PAI->getSubstCalleeType()->isPolymorphic(),
"substituted callee type should not be generic");
requireSameType(SILType::getPrimitiveObjectType(substTy),
SILType::getPrimitiveObjectType(PAI->getSubstCalleeType()),
"substituted callee type does not match substitutions");
// The arguments must match the suffix of the original function's input
// types.
require(PAI->getArguments().size() +
resultInfo->getParameters().size()
== substTy->getParameters().size(),
"result of partial_apply should take as many inputs as were not "
"applied by the instruction");
unsigned offset =
substTy->getParameters().size() - PAI->getArguments().size();
for (unsigned i = 0, size = PAI->getArguments().size(); i < size; ++i) {
require(PAI->getArguments()[i].getType()
== substTy->getParameters()[i + offset].getSILType(),
"applied argument types do not match suffix of function type's "
"inputs");
}
// The arguments to the result function type must match the prefix of the
// original function's input types.
for (unsigned i = 0, size = resultInfo->getParameters().size();
i < size; ++i) {
require(resultInfo->getParameters()[i] ==
substTy->getParameters()[i],
"inputs to result function type do not match unapplied inputs "
"of original function");
}
// The "returns inner pointer" convention doesn't survive through a partial
// application, since the thunk takes responsibility for lifetime-extending
// 'self'.
auto expectedResult = substTy->getResult();
if (expectedResult.getConvention() == ResultConvention::UnownedInnerPointer)
{
expectedResult = SILResultInfo(expectedResult.getType(),
ResultConvention::Unowned);
require(resultInfo->getResult() == expectedResult,
"result type of result function type for partially applied "
"@unowned_inner_pointer function should have @unowned convention");
} else {
require(resultInfo->getResult() == expectedResult,
"result type of result function type does not match original "
"function");
}
}
void checkBuiltinInst(BuiltinInst *BI) {
// Check for special constraints on llvm intrinsics.
if (BI->getIntrinsicInfo().ID != llvm::Intrinsic::not_intrinsic)
verifyLLVMIntrinsic(BI, BI->getIntrinsicInfo().ID);
}
bool isValidLinkageForFragileRef(SILLinkage linkage) {
switch (linkage) {
case SILLinkage::Private:
case SILLinkage::PrivateExternal:
case SILLinkage::Hidden:
case SILLinkage::HiddenExternal:
return false;
case SILLinkage::Shared:
case SILLinkage::SharedExternal:
// This handles some kind of generated functions, like constructors
// of clang imported types.
// TODO: check why those functions are not fragile anyway and make
// a less conservative check here.
return true;
case SILLinkage::Public:
case SILLinkage::PublicExternal:
return true;
}
}
void checkFunctionRefInst(FunctionRefInst *FRI) {
auto fnType = requireObjectType(SILFunctionType, FRI,
"result of function_ref");
require(!fnType->getExtInfo().hasContext(),
"function_ref should have a context-free function result");
if (F.isFragile()) {
SILFunction *RefF = FRI->getReferencedFunction();
require(RefF->isFragile()
|| isValidLinkageForFragileRef(RefF->getLinkage())
|| RefF->isExternalDeclaration(),
"function_ref inside fragile function cannot "
"reference a private or hidden symbol");
}
verifySILFunctionType(fnType);
}
void checkGlobalAddrInst(GlobalAddrInst *GAI) {
require(GAI->getType().isAddress(),
"global_addr must have an address result type");
require(GAI->getType().getObjectType() ==
GAI->getReferencedGlobal()->getLoweredType(),
"global_addr must be the address type of the variable it "
"references");
if (F.isFragile()) {
SILGlobalVariable *RefG = GAI->getReferencedGlobal();
require(RefG->isFragile()
|| isValidLinkageForFragileRef(RefG->getLinkage()),
"global_addr inside fragile function cannot "
"reference a private or hidden symbol");
}
}
void checkIntegerLiteralInst(IntegerLiteralInst *ILI) {
require(ILI->getType().is<BuiltinIntegerType>(),
"invalid integer literal type");
}
void checkLoadInst(LoadInst *LI) {
require(LI->getType().isObject(), "Result of load must be an object");
require(LI->getOperand().getType().isAddress(),
"Load operand must be an address");
require(LI->getOperand().getType().getObjectType() == LI->getType(),
"Load operand type and result type mismatch");
}
void checkStoreInst(StoreInst *SI) {
require(SI->getSrc().getType().isObject(),
"Can't store from an address source");
require(SI->getDest().getType().isAddress(),
"Must store to an address dest");
require(SI->getDest().getType().getObjectType() == SI->getSrc().getType(),
"Store operand type and dest type mismatch");
}
void checkAssignInst(AssignInst *AI) {
SILValue Src = AI->getSrc(), Dest = AI->getDest();
require(AI->getModule().getStage() == SILStage::Raw,
"assign instruction can only exist in raw SIL");
require(Src.getType().isObject(), "Can't assign from an address source");
require(Dest.getType().isAddress(), "Must store to an address dest");
require(Dest.getType().getObjectType() == Src.getType(),
"Store operand type and dest type mismatch");
}
void checkLoadUnownedInst(LoadUnownedInst *LUI) {
require(LUI->getType().isObject(), "Result of load must be an object");
auto PointerType = LUI->getOperand().getType();
auto PointerRVType = PointerType.getSwiftRValueType();
require(PointerType.isAddress() &&
PointerRVType->is<UnownedStorageType>(),
"load_unowned operand must be an unowned address");
require(PointerRVType->getReferenceStorageReferent()->getCanonicalType() ==
LUI->getType().getSwiftType(),
"Load operand type and result type mismatch");
}
void checkStoreUnownedInst(StoreUnownedInst *SUI) {
require(SUI->getSrc().getType().isObject(),
"Can't store from an address source");
auto PointerType = SUI->getDest().getType();
auto PointerRVType = PointerType.getSwiftRValueType();
require(PointerType.isAddress() &&
PointerRVType->is<UnownedStorageType>(),
"store_unowned address operand must be an unowned address");
require(PointerRVType->getReferenceStorageReferent()->getCanonicalType() ==
SUI->getSrc().getType().getSwiftType(),
"Store operand type and dest type mismatch");
}
void checkLoadWeakInst(LoadWeakInst *LWI) {
require(LWI->getType().isObject(), "Result of load must be an object");
require(LWI->getType().getSwiftType()->getAnyOptionalObjectType(),
"Result of weak load must be an optional");
auto PointerType = LWI->getOperand().getType();
auto PointerRVType = PointerType.getSwiftRValueType();
require(PointerType.isAddress() &&
PointerRVType->is<WeakStorageType>(),
"load_weak operand must be a weak address");
require(PointerRVType->getReferenceStorageReferent()->getCanonicalType() ==
LWI->getType().getSwiftType(),
"Load operand type and result type mismatch");
}
void checkStoreWeakInst(StoreWeakInst *SWI) {
require(SWI->getSrc().getType().isObject(),
"Can't store from an address source");
require(SWI->getSrc().getType().getSwiftType()->getAnyOptionalObjectType(),
"store_weak must be of an optional value");
auto PointerType = SWI->getDest().getType();
auto PointerRVType = PointerType.getSwiftRValueType();
require(PointerType.isAddress() &&
PointerRVType->is<WeakStorageType>(),
"store_weak address operand must be a weak address");
require(PointerRVType->getReferenceStorageReferent()->getCanonicalType() ==
SWI->getSrc().getType().getSwiftType(),
"Store operand type and dest type mismatch");
}
void checkMarkUninitializedInst(MarkUninitializedInst *MU) {
SILValue Src = MU->getOperand();
require(MU->getModule().getStage() == SILStage::Raw,
"mark_uninitialized instruction can only exist in raw SIL");
require(Src.getType().isAddress() ||
Src.getType().getSwiftRValueType()->getClassOrBoundGenericClass(),
"mark_uninitialized must be an address or class");
require(Src.getType() == MU->getType(0),"operand and result type mismatch");
}
void checkMarkFunctionEscapeInst(MarkFunctionEscapeInst *MFE) {
require(MFE->getModule().getStage() == SILStage::Raw,
"mark_function_escape instruction can only exist in raw SIL");
for (auto Elt : MFE->getElements())
require(Elt.getType().isAddress(), "MFE must refer to variable addrs");
}
void checkCopyAddrInst(CopyAddrInst *SI) {
require(SI->getSrc().getType().isAddress(),
"Src value should be lvalue");
require(SI->getDest().getType().isAddress(),
"Dest address should be lvalue");
require(SI->getDest().getType() == SI->getSrc().getType(),
"Store operand type and dest type mismatch");
}
void checkRetainValueInst(RetainValueInst *I) {
require(I->getOperand().getType().isObject(),
"Source value should be an object value");
}
void checkReleaseValueInst(ReleaseValueInst *I) {
require(I->getOperand().getType().isObject(),
"Source value should be an object value");
}
void checkAutoreleaseValueInst(AutoreleaseValueInst *I) {
require(I->getOperand().getType().isObject(),
"Source value should be an object value");
// TODO: This instruction could in principle be generalized.
require(I->getOperand().getType().hasRetainablePointerRepresentation(),
"Source value must be a reference type or optional thereof");
}
void checkCopyBlockInst(CopyBlockInst *I) {
require(I->getOperand().getType().isBlockPointerCompatible(),
"operand of copy_block should be a block");
require(I->getOperand().getType() == I->getType(),
"result of copy_block should be same type as operand");
}
void checkAllocValueBufferInst(AllocValueBufferInst *I) {
require(I->getOperand().getType().isAddress(),
"Operand value should be an address");
require(I->getOperand().getType().is<BuiltinUnsafeValueBufferType>(),
"Operand value should be a Builtin.UnsafeValueBuffer");
}
void checkProjectValueBufferInst(ProjectValueBufferInst *I) {
require(I->getOperand().getType().isAddress(),
"Operand value should be an address");
require(I->getOperand().getType().is<BuiltinUnsafeValueBufferType>(),
"Operand value should be a Builtin.UnsafeValueBuffer");
}
void checkProjectBoxInst(ProjectBoxInst *I) {
require(I->getOperand().getType().isObject(),
"project_box operand should be a value");
require(I->getOperand().getType().is<SILBoxType>(),
"project_box operand should be a @box type");
require(I->getType() == I->getOperand().getType().castTo<SILBoxType>()
->getBoxedAddressType(),
"project_box result should be address of boxed type");
}
void checkDeallocValueBufferInst(DeallocValueBufferInst *I) {
require(I->getOperand().getType().isAddress(),
"Operand value should be an address");
require(I->getOperand().getType().is<BuiltinUnsafeValueBufferType>(),
"Operand value should be a Builtin.UnsafeValueBuffer");
}
void checkStructInst(StructInst *SI) {
auto *structDecl = SI->getType().getStructOrBoundGenericStruct();
require(structDecl, "StructInst must return a struct");
require(!structDecl->hasUnreferenceableStorage(),
"Cannot build a struct with unreferenceable storage from elements "
"using StructInst");
require(SI->getType().isObject(),
"StructInst must produce an object");
SILType structTy = SI->getType();
auto opi = SI->getElements().begin(), opEnd = SI->getElements().end();
for (VarDecl *field : structDecl->getStoredProperties()) {
require(opi != opEnd,
"number of struct operands does not match number of stored "
"member variables of struct");
SILType loweredType = structTy.getFieldType(field, F.getModule());
require((*opi).getType() == loweredType,
"struct operand type does not match field type");
++opi;
}
}
void checkEnumInst(EnumInst *UI) {
EnumDecl *ud = UI->getType().getEnumOrBoundGenericEnum();
require(ud, "EnumInst must return an enum");
require(UI->getElement()->getParentEnum() == ud,
"EnumInst case must be a case of the result enum type");
require(UI->getType().isObject(),
"EnumInst must produce an object");
require(UI->hasOperand() == UI->getElement()->hasArgumentType(),
"EnumInst must take an argument iff the element does");
if (UI->getElement()->hasArgumentType()) {
require(UI->getOperand().getType().isObject(),
"EnumInst operand must be an object");
SILType caseTy = UI->getType().getEnumElementType(UI->getElement(),
F.getModule());
require(caseTy == UI->getOperand().getType(),
"EnumInst operand type does not match type of case");
}
}
void checkInitEnumDataAddrInst(InitEnumDataAddrInst *UI) {
EnumDecl *ud = UI->getOperand().getType().getEnumOrBoundGenericEnum();
require(ud, "InitEnumDataAddrInst must take an enum operand");
require(UI->getElement()->getParentEnum() == ud,
"InitEnumDataAddrInst case must be a case of the enum operand type");
require(UI->getElement()->hasArgumentType(),
"InitEnumDataAddrInst case must have a data type");
require(UI->getOperand().getType().isAddress(),
"InitEnumDataAddrInst must take an address operand");
require(UI->getType().isAddress(),
"InitEnumDataAddrInst must produce an address");
SILType caseTy =
UI->getOperand().getType().getEnumElementType(UI->getElement(),
F.getModule());
requireSameType(caseTy, UI->getType(),
"InitEnumDataAddrInst result does not match type of enum case");
}
void checkUncheckedEnumDataInst(UncheckedEnumDataInst *UI) {
EnumDecl *ud = UI->getOperand().getType().getEnumOrBoundGenericEnum();
require(ud, "UncheckedEnumData must take an enum operand");
require(UI->getElement()->getParentEnum() == ud,
"UncheckedEnumData case must be a case of the enum operand type");
require(UI->getElement()->hasArgumentType(),
"UncheckedEnumData case must have a data type");
require(UI->getOperand().getType().isObject(),
"UncheckedEnumData must take an address operand");
require(UI->getType().isObject(),
"UncheckedEnumData must produce an address");
SILType caseTy =
UI->getOperand().getType().getEnumElementType(UI->getElement(),
F.getModule());
require(caseTy == UI->getType(),
"UncheckedEnumData result does not match type of enum case");
}
void checkUncheckedTakeEnumDataAddrInst(UncheckedTakeEnumDataAddrInst *UI) {
EnumDecl *ud = UI->getOperand().getType().getEnumOrBoundGenericEnum();
require(ud, "UncheckedTakeEnumDataAddrInst must take an enum operand");
require(UI->getElement()->getParentEnum() == ud,
"UncheckedTakeEnumDataAddrInst case must be a case of the enum operand type");
require(UI->getElement()->hasArgumentType(),
"UncheckedTakeEnumDataAddrInst case must have a data type");
require(UI->getOperand().getType().isAddress(),
"UncheckedTakeEnumDataAddrInst must take an address operand");
require(UI->getType().isAddress(),
"UncheckedTakeEnumDataAddrInst must produce an address");
SILType caseTy =
UI->getOperand().getType().getEnumElementType(UI->getElement(),
F.getModule());
require(caseTy == UI->getType(),
"UncheckedTakeEnumDataAddrInst result does not match type of enum case");
}
void checkInjectEnumAddrInst(InjectEnumAddrInst *IUAI) {
require(IUAI->getOperand().getType().is<EnumType>()
|| IUAI->getOperand().getType().is<BoundGenericEnumType>(),
"InjectEnumAddrInst must take an enum operand");
require(IUAI->getElement()->getParentEnum()
== IUAI->getOperand().getType().getEnumOrBoundGenericEnum(),
"InjectEnumAddrInst case must be a case of the enum operand type");
require(IUAI->getOperand().getType().isAddress(),
"InjectEnumAddrInst must take an address operand");
}
void checkTupleInst(TupleInst *TI) {
CanTupleType ResTy = requireObjectType(TupleType, TI, "Result of tuple");
require(TI->getElements().size() == ResTy->getNumElements(),
"Tuple field count mismatch!");
for (size_t i = 0, size = TI->getElements().size(); i < size; ++i) {
require(TI->getElement(i).getType().getSwiftType()
->isEqual(ResTy.getElementType(i)),
"Tuple element arguments do not match tuple type!");
}
}
// Is a SIL type a potential lowering of a formal type?
static bool isLoweringOf(SILType loweredType,
CanType formalType) {
// Metatypes preserve their instance type through lowering.
if (auto loweredMT = loweredType.getAs<MetatypeType>()) {
if (auto formalMT = dyn_cast<MetatypeType>(formalType)) {
return loweredMT.getInstanceType() == formalMT.getInstanceType();
}
}
if (auto loweredEMT = loweredType.getAs<ExistentialMetatypeType>()) {
if (auto formalEMT = dyn_cast<ExistentialMetatypeType>(formalType)) {
return loweredEMT.getInstanceType() == formalEMT.getInstanceType();
}
}
// TODO: Function types go through a more elaborate lowering.
// For now, just check that a SIL function type came from some AST function
// type.
if (loweredType.is<SILFunctionType>())
return isa<AnyFunctionType>(formalType);
// Tuples are lowered elementwise.
// TODO: Will this always be the case?
if (auto loweredTT = loweredType.getAs<TupleType>())
if (auto formalTT = dyn_cast<TupleType>(formalType)) {
if (loweredTT->getNumElements() != formalTT->getNumElements())
return false;
for (unsigned i = 0, e = loweredTT->getNumElements(); i < e; ++i) {
if (!isLoweringOf(SILType::getPrimitiveAddressType(
loweredTT.getElementType(i)),
formalTT.getElementType(i)))
return false;
}
return true;
}
// Other types are preserved through lowering.
return loweredType.getSwiftRValueType() == formalType;
}
void checkMetatypeInst(MetatypeInst *MI) {
require(MI->getType(0).is<MetatypeType>(),
"metatype instruction must be of metatype type");
require(MI->getType(0).castTo<MetatypeType>()->hasRepresentation(),
"metatype instruction must have a metatype representation");
}
void checkValueMetatypeInst(ValueMetatypeInst *MI) {
require(MI->getType().is<MetatypeType>(),
"value_metatype instruction must be of metatype type");
require(MI->getType().castTo<MetatypeType>()->hasRepresentation(),
"value_metatype instruction must have a metatype representation");
auto formalInstanceTy
= MI->getType().castTo<MetatypeType>().getInstanceType();
require(isLoweringOf(MI->getOperand().getType(), formalInstanceTy),
"value_metatype result must be formal metatype of "
"lowered operand type");
}
void checkExistentialMetatypeInst(ExistentialMetatypeInst *MI) {
require(MI->getType().is<ExistentialMetatypeType>(),
"existential_metatype instruction must be of metatype type");
require(MI->getType().castTo<ExistentialMetatypeType>()->hasRepresentation(),
"value_metatype instruction must have a metatype representation");
require(MI->getOperand().getType().isAnyExistentialType(),
"existential_metatype operand must be of protocol type");
auto formalInstanceTy
= MI->getType().castTo<ExistentialMetatypeType>().getInstanceType();
require(isLoweringOf(MI->getOperand().getType(), formalInstanceTy),
"existential_metatype result must be formal metatype of "
"lowered operand type");
}
void checkStrongRetainInst(StrongRetainInst *RI) {
requireReferenceValue(RI->getOperand(), "Operand of strong_retain");
}
void checkStrongReleaseInst(StrongReleaseInst *RI) {
requireReferenceValue(RI->getOperand(), "Operand of release");
}
void checkStrongRetainUnownedInst(StrongRetainUnownedInst *RI) {
auto unownedType = requireObjectType(UnownedStorageType, RI->getOperand(),
"Operand of strong_retain_unowned");
require(unownedType->isLoadable(ResilienceExpansion::Maximal),
"strong_retain_unowned requires unowned type to be loadable");
}
void checkUnownedRetainInst(UnownedRetainInst *RI) {
auto unownedType = requireObjectType(UnownedStorageType, RI->getOperand(),
"Operand of unowned_retain");
require(unownedType->isLoadable(ResilienceExpansion::Maximal),
"unowned_retain requires unowned type to be loadable");
}
void checkUnownedReleaseInst(UnownedReleaseInst *RI) {
auto unownedType = requireObjectType(UnownedStorageType, RI->getOperand(),
"Operand of unowned_release");
require(unownedType->isLoadable(ResilienceExpansion::Maximal),
"unowned_release requires unowned type to be loadable");
}
void checkDeallocStackInst(DeallocStackInst *DI) {
require(DI->getOperand().getType().isLocalStorage(),
"Operand of dealloc_stack must be local storage");
}
void checkDeallocRefInst(DeallocRefInst *DI) {
require(DI->getOperand().getType().isObject(),
"Operand of dealloc_ref must be object");
require(DI->getOperand().getType().getClassOrBoundGenericClass(),
"Operand of dealloc_ref must be of class type");
}
void checkDeallocPartialRefInst(DeallocPartialRefInst *DPRI) {
require(DPRI->getInstance().getType().isObject(),
"First operand of dealloc_partial_ref must be object");
auto class1 = DPRI->getInstance().getType().getClassOrBoundGenericClass();
require(class1,
"First operand of dealloc_partial_ref must be of class type");
require(DPRI->getMetatype().getType().is<MetatypeType>(),
"Second operand of dealloc_partial_ref must be a metatype");
auto class2 = DPRI->getMetatype().getType().castTo<MetatypeType>()
->getInstanceType()->getClassOrBoundGenericClass();
require(class2,
"Second operand of dealloc_partial_ref must be a class metatype");
while (class1 != class2) {
class1 = class1->getSuperclass()->getClassOrBoundGenericClass();
require(class1, "First operand not superclass of second instance type");
}
}
void checkAllocBoxInst(AllocBoxInst *AI) {
// TODO: Allow the box to be typed, but for staging purposes, only require
// it when -sil-enable-typed-boxes is enabled.
auto boxTy = AI->getType(0).getAs<SILBoxType>();
require(boxTy, "first result must be a @box type");
require(AI->getType(0).isObject(),
"first result must be an object");
require(AI->getType(1).isAddress(),
"second result of alloc_box must be address");
requireSameType(boxTy->getBoxedAddressType(), AI->getType(1),
"address type must match box type");
}
void checkDeallocBoxInst(DeallocBoxInst *DI) {
// TODO: Allow the box to be typed, but for staging purposes, only require
// it when -sil-enable-typed-boxes is enabled.
auto boxTy = DI->getOperand().getType().getAs<SILBoxType>();
require(boxTy, "operand must be a @box type");
require(DI->getOperand().getType().isObject(),
"operand must be an object");
requireSameType(boxTy->getBoxedAddressType().getObjectType(),
DI->getElementType().getObjectType(),
"element type of dealloc_box must match box element type");
}
void checkDestroyAddrInst(DestroyAddrInst *DI) {
require(DI->getOperand().getType().isAddress(),
"Operand of destroy_addr must be address");
}
void checkIndexAddrInst(IndexAddrInst *IAI) {
require(IAI->getType().isAddress(), "index_addr must produce an address");
require(IAI->getType() == IAI->getBase().getType(),
"index_addr must produce an address of the same type as its base");
require(IAI->getIndex().getType().is<BuiltinIntegerType>(),
"index_addr index must be of a builtin integer type");
}
void checkIndexRawPointerInst(IndexRawPointerInst *IAI) {
require(IAI->getType().is<BuiltinRawPointerType>(),
"index_raw_pointer must produce a RawPointer");
require(IAI->getBase().getType().is<BuiltinRawPointerType>(),
"index_raw_pointer base must be a RawPointer");
require(IAI->getIndex().getType().is<BuiltinIntegerType>(),
"index_raw_pointer index must be of a builtin integer type");
}
void checkTupleExtractInst(TupleExtractInst *EI) {
CanTupleType operandTy = requireObjectType(TupleType, EI->getOperand(),
"Operand of tuple_extract");
require(EI->getType().isObject(),
"result of tuple_extract must be object");
require(EI->getFieldNo() < operandTy->getNumElements(),
"invalid field index for tuple_extract instruction");
require(EI->getType().getSwiftRValueType()
== operandTy.getElementType(EI->getFieldNo()),
"type of tuple_extract does not match type of element");
}
void checkStructExtractInst(StructExtractInst *EI) {
SILType operandTy = EI->getOperand().getType();
require(operandTy.isObject(),
"cannot struct_extract from address");
require(EI->getType().isObject(),
"result of struct_extract cannot be address");
StructDecl *sd = operandTy.getStructOrBoundGenericStruct();
require(sd, "must struct_extract from struct");
require(!EI->getField()->isStatic(),
"cannot get address of static property with struct_element_addr");
require(EI->getField()->hasStorage(),
"cannot load computed property with struct_extract");
require(EI->getField()->getDeclContext() == sd,
"struct_extract field is not a member of the struct");
SILType loweredFieldTy = operandTy.getFieldType(EI->getField(),
F.getModule());
require(loweredFieldTy == EI->getType(),
"result of struct_extract does not match type of field");
}
void checkTupleElementAddrInst(TupleElementAddrInst *EI) {
SILType operandTy = EI->getOperand().getType();
require(operandTy.isAddress(),
"must derive element_addr from address");
require(EI->getType(0).isAddress(),
"result of tuple_element_addr must be address");
require(operandTy.is<TupleType>(),
"must derive tuple_element_addr from tuple");
ArrayRef<TupleTypeElt> fields = operandTy.castTo<TupleType>()->getElements();
require(EI->getFieldNo() < fields.size(),
"invalid field index for element_addr instruction");
require(EI->getType().getSwiftRValueType()
== CanType(fields[EI->getFieldNo()].getType()),
"type of tuple_element_addr does not match type of element");
}
void checkStructElementAddrInst(StructElementAddrInst *EI) {
SILType operandTy = EI->getOperand().getType();
require(operandTy.isAddress(),
"must derive struct_element_addr from address");
StructDecl *sd = operandTy.getStructOrBoundGenericStruct();
require(sd, "struct_element_addr operand must be struct address");
require(EI->getType(0).isAddress(),
"result of struct_element_addr must be address");
require(!EI->getField()->isStatic(),
"cannot get address of static property with struct_element_addr");
require(EI->getField()->hasStorage(),
"cannot get address of computed property with struct_element_addr");
require(EI->getField()->getDeclContext() == sd,
"struct_element_addr field is not a member of the struct");
SILType loweredFieldTy = operandTy.getFieldType(EI->getField(),
F.getModule());
require(loweredFieldTy == EI->getType(),
"result of struct_element_addr does not match type of field");
}
void checkRefElementAddrInst(RefElementAddrInst *EI) {
requireReferenceValue(EI->getOperand(), "Operand of ref_element_addr");
require(EI->getType(0).isAddress(),
"result of ref_element_addr must be lvalue");
require(!EI->getField()->isStatic(),
"cannot get address of static property with struct_element_addr");
require(EI->getField()->hasStorage(),
"cannot get address of computed property with ref_element_addr");
SILType operandTy = EI->getOperand().getType();
ClassDecl *cd = operandTy.getClassOrBoundGenericClass();
require(cd, "ref_element_addr operand must be a class instance");
require(EI->getField()->getDeclContext() == cd,
"ref_element_addr field must be a member of the class");
SILType loweredFieldTy = operandTy.getFieldType(EI->getField(),
F.getModule());
require(loweredFieldTy == EI->getType(),
"result of ref_element_addr does not match type of field");
EI->getFieldNo(); // Make sure we can access the field without crashing.
}
SILType getMethodSelfType(CanSILFunctionType ft) {
return ft->getParameters().back().getSILType();
}
CanType getMethodSelfInstanceType(CanSILFunctionType ft) {
auto selfTy = getMethodSelfType(ft);
if (auto metaTy = selfTy.getAs<AnyMetatypeType>())
return metaTy.getInstanceType();
return selfTy.getSwiftRValueType();
}
void checkWitnessMethodInst(WitnessMethodInst *AMI) {
auto methodType = requireObjectType(SILFunctionType, AMI,
"result of witness_method");
auto *protocol
= dyn_cast<ProtocolDecl>(AMI->getMember().getDecl()->getDeclContext());
require(protocol,
"witness_method method must be a protocol method");
require(methodType->getRepresentation()
== F.getModule().Types.getProtocolWitnessRepresentation(protocol),
"result of witness_method must have correct representation for protocol");
require(methodType->isPolymorphic(),
"result of witness_method must be polymorphic");
auto selfGenericParam
= methodType->getGenericSignature()->getGenericParams()[0];
require(selfGenericParam->getDepth() == 0
&& selfGenericParam->getIndex() == 0,
"method should be polymorphic on Self parameter at depth 0 index 0");
auto selfMarker
= methodType->getGenericSignature()->getRequirements()[0];
require(selfMarker.getKind() == RequirementKind::WitnessMarker
&& selfMarker.getFirstType()->isEqual(selfGenericParam),
"method's Self parameter should appear first in requirements");
auto selfRequirement
= methodType->getGenericSignature()->getRequirements()[1];
require(selfRequirement.getKind() == RequirementKind::Conformance
&& selfRequirement.getFirstType()->isEqual(selfGenericParam)
&& selfRequirement.getSecondType()->getAs<ProtocolType>()
->getDecl() == protocol,
"method's Self parameter should be constrained by protocol");
auto lookupType = AMI->getLookupType();
if (isOpenedArchetype(lookupType))
require(AMI->hasOperand(), "Must have an opened existential operand");
if (isa<ArchetypeType>(lookupType) || lookupType->isAnyExistentialType()) {
require(AMI->getConformance() == nullptr,
"archetype or existential lookup should have null conformance");
} else {
require(AMI->getConformance(),
"concrete type lookup requires conformance");
require(AMI->getConformance()->getType()
->isEqual(AMI->getLookupType()),
"concrete type lookup requires conformance that matches type");
require(AMI->getModule().lookUpWitnessTable(AMI->getConformance(),
false).first,
"Could not find witness table for conformance.");
}
}
bool isSelfArchetype(CanType t, ArrayRef<ProtocolDecl*> protocols) {
ArchetypeType *archetype = dyn_cast<ArchetypeType>(t);
if (!archetype)
return false;
auto selfProto = archetype->getSelfProtocol();
if (!selfProto)
return false;
for (auto checkProto : protocols) {
if (checkProto == selfProto || checkProto->inheritsFrom(selfProto))
return true;
}
return false;
}
bool isOpenedArchetype(CanType t) {
ArchetypeType *archetype = dyn_cast<ArchetypeType>(t);
if (!archetype)
return false;
return !archetype->getOpenedExistentialType().isNull();
}
// Get the expected type of a dynamic method reference.
SILType getDynamicMethodType(SILType selfType, SILDeclRef method) {
auto &C = F.getASTContext();
// The type of the dynamic method must match the usual type of the method,
// but with the more opaque Self type.
auto methodTy = F.getModule().Types.getConstantType(method)
.castTo<SILFunctionType>();
auto params = methodTy->getParameters();
SmallVector<SILParameterInfo, 4>
dynParams(params.begin(), params.end() - 1);
dynParams.push_back(SILParameterInfo(selfType.getSwiftRValueType(),
params.back().getConvention()));
auto dynResult = methodTy->getResult();
// If the method returns Self, substitute AnyObject for the result type.
if (auto fnDecl = dyn_cast<FuncDecl>(method.getDecl())) {
if (fnDecl->hasDynamicSelf()) {
auto anyObjectTy = C.getProtocol(KnownProtocolKind::AnyObject)
->getDeclaredType();
auto newResultTy
= dynResult.getType()->replaceCovariantResultType(anyObjectTy, 0);
dynResult = SILResultInfo(newResultTy->getCanonicalType(),
dynResult.getConvention());
}
}
auto fnTy = SILFunctionType::get(nullptr,
methodTy->getExtInfo(),
methodTy->getCalleeConvention(),
dynParams,
dynResult,
methodTy->getOptionalErrorResult(),
F.getASTContext());
return SILType::getPrimitiveObjectType(fnTy);
}
void checkDynamicMethodInst(DynamicMethodInst *EMI) {
requireObjectType(SILFunctionType, EMI, "result of dynamic_method");
SILType operandType = EMI->getOperand().getType();
require(EMI->getMember().getDecl()->isObjC(), "method must be @objc");
if (!EMI->getMember().getDecl()->isInstanceMember()) {
require(operandType.getSwiftType()->is<MetatypeType>(),
"operand must have metatype type");
require(operandType.getSwiftType()->castTo<MetatypeType>()
->getInstanceType()->mayHaveSuperclass(),
"operand must have metatype of class or class-bound type");
}
requireSameType(EMI->getType(),
getDynamicMethodType(operandType, EMI->getMember()),
"result must be of the method's type");
}
void checkClassMethodInst(ClassMethodInst *CMI) {
auto overrideTy = TC.getConstantOverrideType(CMI->getMember());
requireSameType(CMI->getType(),
SILType::getPrimitiveObjectType(overrideTy),
"result type of class_method must match abstracted type of method");
auto methodType = requireObjectType(SILFunctionType, CMI,
"result of class_method");
require(!methodType->getExtInfo().hasContext(),
"result method must be of a context-free function type");
SILType operandType = CMI->getOperand().getType();
require(operandType.isClassOrClassMetatype(),
"operand must be of a class type");
require(getMethodSelfType(methodType).isClassOrClassMetatype(),
"result must be a method of a class");
require(CMI->getMember().isForeign
|| !CMI->getMember().getDecl()->hasClangNode(),
"foreign method cannot be dispatched natively");
require(CMI->getMember().isForeign
|| !isa<ExtensionDecl>(CMI->getMember().getDecl()->getDeclContext()),
"extension method cannot be dispatched natively");
/* TODO: We should enforce that ObjC methods are dispatched on ObjC
metatypes, but IRGen appears not to care right now.
if (auto metaTy = operandType.getAs<AnyMetatypeType>()) {
bool objcMetatype
= metaTy->getRepresentation() == MetatypeRepresentation::ObjC;
bool objcMethod = CMI->getMember().isForeign;
require(objcMetatype == objcMethod,
"objc class methods must be invoked on objc metatypes");
}
*/
}
void checkSuperMethodInst(SuperMethodInst *CMI) {
auto overrideTy = TC.getConstantOverrideType(CMI->getMember());
requireSameType(CMI->getType(), SILType::getPrimitiveObjectType(overrideTy),
"result type of super_method must match abstracted type of method");
auto methodType = requireObjectType(SILFunctionType, CMI,
"result of super_method");
require(!methodType->getExtInfo().hasContext(),
"result method must be of a context-free function type");
SILType operandType = CMI->getOperand().getType();
require(operandType.isClassOrClassMetatype(),
"operand must be of a class type");
require(getMethodSelfType(methodType).isClassOrClassMetatype(),
"result must be a method of a class");
Type methodClass;
auto decl = CMI->getMember().getDecl();
if (auto classDecl = dyn_cast<ClassDecl>(decl))
methodClass = classDecl->getDeclaredTypeInContext();
else
methodClass = decl->getDeclContext()->getDeclaredTypeInContext();
require(methodClass->getClassOrBoundGenericClass(),
"super_method must look up a class method");
require(!methodClass->isEqual(operandType.getSwiftType()),
"super_method operand should be a subtype of the "
"lookup class type");
}
void checkOpenExistentialAddrInst(OpenExistentialAddrInst *OEI) {
SILType operandType = OEI->getOperand().getType();
require(operandType.isAddress(),
"open_existential_addr must be applied to address");
require(operandType.canUseExistentialRepresentation(F.getModule(),
ExistentialRepresentation::Opaque),
"open_existential_addr must be applied to opaque existential");
require(OEI->getType().isAddress(),
"open_existential_addr result must be an address");
require(isOpenedArchetype(OEI->getType().getSwiftRValueType()),
"open_existential_addr result must be an opened existential archetype");
}
void checkOpenExistentialRefInst(OpenExistentialRefInst *OEI) {
SILType operandType = OEI->getOperand().getType();
require(operandType.isObject(),
"open_existential_ref operand must not be address");
require(operandType.canUseExistentialRepresentation(F.getModule(),
ExistentialRepresentation::Class),
"open_existential_ref operand must be class existential");
CanType resultInstanceTy = OEI->getType().getSwiftRValueType();
require(OEI->getType().isObject(),
"open_existential_ref result must be an address");
require(isOpenedArchetype(resultInstanceTy),
"open_existential_ref result must be an opened existential");
}
void checkOpenExistentialBoxInst(OpenExistentialBoxInst *OEI) {
SILType operandType = OEI->getOperand().getType();
require(operandType.isObject(),
"open_existential_box operand must not be address");
require(operandType.canUseExistentialRepresentation(F.getModule(),
ExistentialRepresentation::Boxed),
"open_existential_box operand must be boxed existential");
CanType resultInstanceTy = OEI->getType().getSwiftRValueType();
require(OEI->getType().isAddress(),
"open_existential_box result must be an address");
require(isOpenedArchetype(resultInstanceTy),
"open_existential_box result must be an opened existential");
}
void checkOpenExistentialMetatypeInst(OpenExistentialMetatypeInst *I) {
SILType operandType = I->getOperand().getType();
require(operandType.isObject(),
"open_existential_metatype operand must not be address");
require(operandType.is<ExistentialMetatypeType>(),
"open_existential_metatype operand must be existential metatype");
require(operandType.castTo<ExistentialMetatypeType>()->hasRepresentation(),
"open_existential_metatype operand must have a representation");
SILType resultType = I->getType();
require(resultType.isObject(),
"open_existential_metatype result must not be address");
require(resultType.is<MetatypeType>(),
"open_existential_metatype result must be metatype");
require(resultType.castTo<MetatypeType>()->hasRepresentation(),
"open_existential_metatype result must have a representation");
require(operandType.castTo<ExistentialMetatypeType>()->getRepresentation()
== resultType.castTo<MetatypeType>()->getRepresentation(),
"open_existential_metatype result must match representation of "
"operand");
CanType operandInstTy =
operandType.castTo<ExistentialMetatypeType>().getInstanceType();
CanType resultInstTy =
resultType.castTo<MetatypeType>().getInstanceType();
while (auto operandMetatype =
dyn_cast<ExistentialMetatypeType>(operandInstTy)) {
require(isa<MetatypeType>(resultInstTy),
"metatype depth mismatch in open_existential_metatype result");
operandInstTy = operandMetatype.getInstanceType();
resultInstTy = cast<MetatypeType>(resultInstTy).getInstanceType();
}
require(operandInstTy.isExistentialType(),
"ill-formed existential metatype in open_existential_metatype "
"operand");
require(isOpenedArchetype(resultInstTy),
"open_existential_metatype result must be an opened existential "
"metatype");
}
void checkAllocExistentialBoxInst(AllocExistentialBoxInst *AEBI) {
SILType exType = AEBI->getExistentialType();
require(exType.isObject(),
"alloc_existential_box #0 result should be a value");
require(exType.canUseExistentialRepresentation(F.getModule(),
ExistentialRepresentation::Boxed,
AEBI->getFormalConcreteType()),
"alloc_existential_box must be used with a boxed existential "
"type");
// The lowered type must be the properly-abstracted form of the AST type.
auto archetype = ArchetypeType::getOpened(exType.getSwiftRValueType());
auto loweredTy = F.getModule().Types.getLoweredType(
Lowering::AbstractionPattern(archetype),
AEBI->getFormalConcreteType())
.getAddressType();
requireSameType(loweredTy, AEBI->getLoweredConcreteType(),
"alloc_existential_box #1 result should be the lowered "
"concrete type at the right abstraction level");
require(isLoweringOf(AEBI->getLoweredConcreteType(),
AEBI->getFormalConcreteType()),
"alloc_existential_box payload must be a lowering of the formal "
"concrete type");
for (ProtocolConformance *C : AEBI->getConformances())
// We allow for null conformances.
require(!C || AEBI->getModule().lookUpWitnessTable(C, false).first,
"Could not find witness table for conformance.");
}
void checkInitExistentialAddrInst(InitExistentialAddrInst *AEI) {
SILType exType = AEI->getOperand().getType();
require(exType.isAddress(),
"init_existential_addr must be applied to an address");
require(exType.canUseExistentialRepresentation(F.getModule(),
ExistentialRepresentation::Opaque,
AEI->getFormalConcreteType()),
"init_existential_addr must be used with an opaque "
"existential type");
// The lowered type must be the properly-abstracted form of the AST type.
auto archetype = ArchetypeType::getOpened(exType.getSwiftRValueType());
auto loweredTy = F.getModule().Types.getLoweredType(
Lowering::AbstractionPattern(archetype),
AEI->getFormalConcreteType())
.getAddressType();
requireSameType(loweredTy, AEI->getLoweredConcreteType(),
"init_existential_addr result type must be the lowered "
"concrete type at the right abstraction level");
require(isLoweringOf(AEI->getLoweredConcreteType(),
AEI->getFormalConcreteType()),
"init_existential_addr payload must be a lowering of the formal "
"concrete type");
for (ProtocolConformance *C : AEI->getConformances())
// We allow for null conformances.
require(!C || AEI->getModule().lookUpWitnessTable(C, false).first,
"Could not find witness table for conformance.");
}
void checkInitExistentialRefInst(InitExistentialRefInst *IEI) {
SILType concreteType = IEI->getOperand().getType();
require(concreteType.getSwiftType()->isBridgeableObjectType(),
"init_existential_ref operand must be a class instance");
require(IEI->getType().canUseExistentialRepresentation(F.getModule(),
ExistentialRepresentation::Class,
IEI->getFormalConcreteType()),
"init_existential_ref must be used with a class existential type");
require(IEI->getType().isObject(),
"init_existential_ref result must not be an address");
// The operand must be at the right abstraction level for the existential.
auto archetype = ArchetypeType::getOpened(
IEI->getType().getSwiftRValueType());
auto loweredTy = F.getModule().Types.getLoweredType(
Lowering::AbstractionPattern(archetype),
IEI->getFormalConcreteType());
requireSameType(concreteType, loweredTy,
"init_existential_ref operand must be lowered to the right "
"abstraction level for the existential");
require(isLoweringOf(IEI->getOperand().getType(),
IEI->getFormalConcreteType()),
"init_existential_ref operand must be a lowering of the formal "
"concrete type");
for (ProtocolConformance *C : IEI->getConformances())
// We allow for null conformances.
require(!C || IEI->getModule().lookUpWitnessTable(C, false).first,
"Could not find witness table for conformance.");
}
void checkDeinitExistentialAddrInst(DeinitExistentialAddrInst *DEI) {
SILType exType = DEI->getOperand().getType();
require(exType.isAddress(),
"deinit_existential_addr must be applied to an address");
require(exType.canUseExistentialRepresentation(F.getModule(),
ExistentialRepresentation::Opaque),
"deinit_existential_addr must be applied to an opaque "
"existential");
}
void checkDeallocExistentialBoxInst(DeallocExistentialBoxInst *DEBI) {
SILType exType = DEBI->getOperand().getType();
require(exType.isObject(),
"dealloc_existential_box must be applied to a value");
require(exType.canUseExistentialRepresentation(F.getModule(),
ExistentialRepresentation::Boxed),
"dealloc_existential_box must be applied to a boxed "
"existential");
}
void checkInitExistentialMetatypeInst(InitExistentialMetatypeInst *I) {
SILType operandType = I->getOperand().getType();
require(operandType.isObject(),
"init_existential_metatype operand must not be an address");
require(operandType.is<MetatypeType>(),
"init_existential_metatype operand must be a metatype");
require(operandType.castTo<MetatypeType>()->hasRepresentation(),
"init_existential_metatype operand must have a representation");
SILType resultType = I->getType();
require(resultType.is<ExistentialMetatypeType>(),
"init_existential_metatype result must be an existential metatype");
require(resultType.isObject(),
"init_existential_metatype result must not be an address");
require(resultType.castTo<ExistentialMetatypeType>()->hasRepresentation(),
"init_existential_metatype result must have a representation");
require(resultType.castTo<ExistentialMetatypeType>()->getRepresentation()
== operandType.castTo<MetatypeType>()->getRepresentation(),
"init_existential_metatype result must match representation of "
"operand");
for (ProtocolConformance *C : I->getConformances())
// We allow for null conformances.
require(!C || I->getModule().lookUpWitnessTable(C, false).first,
"Could not find witness table for conformance.");
}
void verifyCheckedCast(bool isExact, SILType fromTy, SILType toTy) {
// Verify common invariants.
require(fromTy.isObject() && toTy.isObject(),
"value checked cast src and dest must be objects");
auto fromCanTy = fromTy.getSwiftRValueType();
auto toCanTy = toTy.getSwiftRValueType();
require(canUseScalarCheckedCastInstructions(F.getModule(),
fromCanTy, toCanTy),
"invalid value checked cast src or dest types");
// Peel off metatypes. If two types are checked-cast-able, so are their
// metatypes.
unsigned MetatyLevel = 0;
while (isa<AnyMetatypeType>(fromCanTy) && isa<AnyMetatypeType>(toCanTy)) {
auto fromMetaty = cast<AnyMetatypeType>(fromCanTy);
auto toMetaty = cast<AnyMetatypeType>(toCanTy);
// Check representations only for the top-level metatypes as only
// those are SIL-lowered.
if (!MetatyLevel) {
// The representations must match.
require(fromMetaty->getRepresentation() == toMetaty->getRepresentation(),
"metatype checked cast cannot change metatype representation");
// We can't handle the 'thin' case yet, but it shouldn't really even be
// interesting.
require(fromMetaty->getRepresentation() != MetatypeRepresentation::Thin,
"metatype checked cast cannot check thin metatypes");
}
fromCanTy = fromMetaty.getInstanceType();
toCanTy = toMetaty.getInstanceType();
MetatyLevel++;
}
if (isExact) {
require(fromCanTy.getClassOrBoundGenericClass(),
"downcast operand must be a class type");
require(toCanTy.getClassOrBoundGenericClass(),
"downcast must convert to a class type");
require(SILType::getPrimitiveObjectType(fromCanTy).
isSuperclassOf(SILType::getPrimitiveObjectType(toCanTy)),
"downcast must convert to a subclass");
}
}
void checkUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *CI) {
verifyCheckedCast(/*exact*/ false,
CI->getOperand().getType(),
CI->getType());
}
void checkCheckedCastBranchInst(CheckedCastBranchInst *CBI) {
verifyCheckedCast(CBI->isExact(),
CBI->getOperand().getType(),
CBI->getCastType());
require(CBI->getSuccessBB()->bbarg_size() == 1,
"success dest of checked_cast_br must take one argument");
require(CBI->getSuccessBB()->bbarg_begin()[0]->getType()
== CBI->getCastType(),
"success dest block argument of checked_cast_br must match type of cast");
require(CBI->getFailureBB()->bbarg_empty(),
"failure dest of checked_cast_br must take no arguments");
}
void checkCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *CCABI) {
require(CCABI->getSrc().getType().isAddress(),
"checked_cast_addr_br src must be an address");
require(CCABI->getDest().getType().isAddress(),
"checked_cast_addr_br dest must be an address");
require(CCABI->getSuccessBB()->bbarg_size() == 0,
"success dest block of checked_cast_addr_br must not take an argument");
require(CCABI->getFailureBB()->bbarg_size() == 0,
"failure dest block of checked_cast_addr_br must not take an argument");
}
void checkThinToThickFunctionInst(ThinToThickFunctionInst *TTFI) {
auto opFTy = requireObjectType(SILFunctionType, TTFI->getOperand(),
"thin_to_thick_function operand");
auto resFTy = requireObjectType(SILFunctionType, TTFI,
"thin_to_thick_function result");
require(opFTy->isPolymorphic() == resFTy->isPolymorphic(),
"thin_to_thick_function operand and result type must differ only "
" in thinness");
requireSameFunctionComponents(opFTy, resFTy,
"thin_to_thick_function operand and result");
require(opFTy->getRepresentation() == SILFunctionType::Representation::Thin,
"operand of thin_to_thick_function must be thin");
require(resFTy->getRepresentation() == SILFunctionType::Representation::Thick,
"result of thin_to_thick_function must be thick");
auto adjustedOperandExtInfo = opFTy->getExtInfo().withRepresentation(
SILFunctionType::Representation::Thick);
require(adjustedOperandExtInfo == resFTy->getExtInfo(),
"operand and result of thin_to_think_function must agree in particulars");
}
void checkThickToObjCMetatypeInst(ThickToObjCMetatypeInst *TTOCI) {
auto opTy = requireObjectType(AnyMetatypeType, TTOCI->getOperand(),
"thick_to_objc_metatype operand");
auto resTy = requireObjectType(AnyMetatypeType, TTOCI,
"thick_to_objc_metatype result");
require(TTOCI->getOperand().getType().is<MetatypeType>() ==
TTOCI->getType().is<MetatypeType>(),
"thick_to_objc_metatype cannot change metatype kinds");
require(opTy->getRepresentation() == MetatypeRepresentation::Thick,
"operand of thick_to_objc_metatype must be thick");
require(resTy->getRepresentation() == MetatypeRepresentation::ObjC,
"operand of thick_to_objc_metatype must be ObjC");
require(opTy->getInstanceType()->isEqual(resTy->getInstanceType()),
"thick_to_objc_metatype instance types do not match");
}
void checkObjCToThickMetatypeInst(ObjCToThickMetatypeInst *OCTTI) {
auto opTy = requireObjectType(AnyMetatypeType, OCTTI->getOperand(),
"objc_to_thick_metatype operand");
auto resTy = requireObjectType(AnyMetatypeType, OCTTI,
"objc_to_thick_metatype result");
require(OCTTI->getOperand().getType().is<MetatypeType>() ==
OCTTI->getType().is<MetatypeType>(),
"objc_to_thick_metatype cannot change metatype kinds");
require(opTy->getRepresentation() == MetatypeRepresentation::ObjC,
"operand of objc_to_thick_metatype must be ObjC");
require(resTy->getRepresentation() == MetatypeRepresentation::Thick,
"operand of objc_to_thick_metatype must be thick");
require(opTy->getInstanceType()->isEqual(resTy->getInstanceType()),
"objc_to_thick_metatype instance types do not match");
}
void checkRefToUnownedInst(RefToUnownedInst *I) {
requireReferenceStorageCapableValue(I->getOperand(),
"Operand of ref_to_unowned");
auto operandType = I->getOperand().getType().getSwiftRValueType();
auto resultType = requireObjectType(UnownedStorageType, I,
"Result of ref_to_unowned");
require(resultType->isLoadable(ResilienceExpansion::Maximal),
"ref_to_unowned requires unowned type to be loadable");
require(resultType.getReferentType() == operandType,
"Result of ref_to_unowned does not have the "
"operand's type as its referent type");
}
void checkUnownedToRefInst(UnownedToRefInst *I) {
auto operandType = requireObjectType(UnownedStorageType,
I->getOperand(),
"Operand of unowned_to_ref");
require(operandType->isLoadable(ResilienceExpansion::Maximal),
"unowned_to_ref requires unowned type to be loadable");
requireReferenceStorageCapableValue(I, "Result of unowned_to_ref");
auto resultType = I->getType().getSwiftRValueType();
require(operandType.getReferentType() == resultType,
"Operand of unowned_to_ref does not have the "
"operand's type as its referent type");
}
void checkRefToUnmanagedInst(RefToUnmanagedInst *I) {
requireReferenceStorageCapableValue(I->getOperand(),
"Operand of ref_to_unmanaged");
auto operandType = I->getOperand().getType().getSwiftRValueType();
auto resultType = requireObjectType(UnmanagedStorageType, I,
"Result of ref_to_unmanaged");
require(resultType.getReferentType() == operandType,
"Result of ref_to_unmanaged does not have the "
"operand's type as its referent type");
}
void checkUnmanagedToRefInst(UnmanagedToRefInst *I) {
auto operandType = requireObjectType(UnmanagedStorageType,
I->getOperand(),
"Operand of unmanaged_to_ref");
requireReferenceStorageCapableValue(I, "Result of unmanaged_to_ref");
auto resultType = I->getType().getSwiftRValueType();
require(operandType.getReferentType() == resultType,
"Operand of unmanaged_to_ref does not have the "
"operand's type as its referent type");
}
void checkUpcastInst(UpcastInst *UI) {
require(UI->getType() != UI->getOperand().getType(),
"can't upcast to same type");
if (UI->getType().is<MetatypeType>()) {
CanType instTy(UI->getType().castTo<MetatypeType>()->getInstanceType());
require(UI->getOperand().getType().is<MetatypeType>(),
"upcast operand must be a class or class metatype instance");
CanType opInstTy(UI->getOperand().getType().castTo<MetatypeType>()
->getInstanceType());
require(instTy->getClassOrBoundGenericClass(),
"upcast must convert a class metatype to a class metatype");
require(instTy->isSuperclassOf(opInstTy, nullptr),
"upcast must cast to a superclass or an existential metatype");
return;
}
require(UI->getType().getCategory() ==
UI->getOperand().getType().getCategory(),
"Upcast can only upcast in between types of the same "
"SILValueCategory. This prevents address types from being cast to "
"object types or vis-a-versa");
auto ToTy = UI->getType();
auto FromTy = UI->getOperand().getType();
// Upcast from Optional<B> to Optional<A> is legal as long as B is a
// subclass of A.
if (ToTy.getSwiftRValueType().getAnyOptionalObjectType() &&
FromTy.getSwiftRValueType().getAnyOptionalObjectType()) {
ToTy = SILType::getPrimitiveObjectType(
ToTy.getSwiftRValueType().getAnyOptionalObjectType());
FromTy = SILType::getPrimitiveObjectType(
FromTy.getSwiftRValueType().getAnyOptionalObjectType());
}
require(ToTy.getClassOrBoundGenericClass(),
"upcast must convert a class instance to a class type");
require(ToTy.isSuperclassOf(FromTy),
"upcast must cast to a superclass");
}
void checkIsNonnullInst(IsNonnullInst *II) {
// The operand must be a function type or a class type.
auto OpTy = II->getOperand().getType().getSwiftType();
require(OpTy->mayHaveSuperclass() || OpTy->is<SILFunctionType>(),
"is_nonnull operand must be a class or function type");
}
void checkAddressToPointerInst(AddressToPointerInst *AI) {
require(AI->getOperand().getType().isAddress(),
"address-to-pointer operand must be an address");
require(AI->getType().getSwiftType()->isEqual(
AI->getType().getASTContext().TheRawPointerType),
"address-to-pointer result type must be RawPointer");
}
void checkUncheckedRefCastInst(UncheckedRefCastInst *AI) {
require(AI->getOperand().getType().isObject(),
"unchecked_ref_cast operand must be a value");
require(AI->getType().isObject(),
"unchecked_ref_cast result must be an object");
require(SILType::canRefCast(AI->getOperand().getType(), AI->getType(),
AI->getModule()),
"unchecked_ref_cast requires a heap object reference type");
}
void checkUncheckedRefCastAddrInst(UncheckedRefCastAddrInst *AI) {
auto srcTy = AI->getSrc().getType();
auto destTy = AI->getDest().getType();
require(srcTy.isAddress(),
"unchecked_ref_cast_addr operand must be an address");
require(destTy.isAddress(),
"unchecked_ref_cast_addr result must be an address");
// The static src/dest types cannot be checked here even if they are
// loadable. unchecked_ref_cast_addr may accept nonreference static types
// (as a result of specialization). These cases will never be promoted to
// value bitcast, thus will cause the subsequent runtime cast to fail.
}
void checkUncheckedAddrCastInst(UncheckedAddrCastInst *AI) {
require(AI->getOperand().getType().isAddress(),
"unchecked_addr_cast operand must be an address");
require(AI->getType().isAddress(),
"unchecked_addr_cast result must be an address");
}
void checkUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *BI) {
require(BI->getOperand().getType().isObject(),
"unchecked_trivial_bit_cast must operate on a value");
require(BI->getType().isObject(),
"unchecked_trivial_bit_cast must produce a value");
require(BI->getType().isTrivial(F.getModule()),
"unchecked_trivial_bit_cast must produce a value of trivial type");
}
void checkUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *BI) {
require(BI->getOperand().getType().isObject(),
"unchecked_bitwise_cast must operate on a value");
require(BI->getType().isObject(),
"unchecked_bitwise_cast must produce a value");
}
void checkRefToRawPointerInst(RefToRawPointerInst *AI) {
require(AI->getOperand().getType().getSwiftType()
->isAnyClassReferenceType(),
"ref-to-raw-pointer operand must be a class reference or"
" NativeObject");
require(AI->getType().getSwiftType()->isEqual(
AI->getType().getASTContext().TheRawPointerType),
"ref-to-raw-pointer result must be RawPointer");
}
void checkRawPointerToRefInst(RawPointerToRefInst *AI) {
require(AI->getType()
.getSwiftType()->isBridgeableObjectType()
|| AI->getType().getSwiftType()->isEqual(
AI->getType().getASTContext().TheNativeObjectType)
|| AI->getType().getSwiftType()->isEqual(
AI->getType().getASTContext().TheUnknownObjectType),
"raw-pointer-to-ref result must be a class reference or NativeObject");
require(AI->getOperand().getType().getSwiftType()->isEqual(
AI->getType().getASTContext().TheRawPointerType),
"raw-pointer-to-ref operand must be NativeObject");
}
void checkRefToBridgeObjectInst(RefToBridgeObjectInst *RI) {
require(RI->getConverted().getType().isObject(),
"ref_to_bridge_object must convert from a value");
require(RI->getConverted().getType().getSwiftRValueType()
->isBridgeableObjectType(),
"ref_to_bridge_object must convert from a heap object ref");
require(RI->getBitsOperand().getType()
== SILType::getBuiltinWordType(F.getASTContext()),
"ref_to_bridge_object must take a Builtin.Word bits operand");
require(RI->getType() == SILType::getBridgeObjectType(F.getASTContext()),
"ref_to_bridge_object must produce a BridgeObject");
}
void checkBridgeObjectToRefInst(BridgeObjectToRefInst *RI) {
require(RI->getConverted().getType()
== SILType::getBridgeObjectType(F.getASTContext()),
"bridge_object_to_ref must take a BridgeObject");
require(RI->getType().isObject(),
"bridge_object_to_ref must produce a value");
require(RI->getType().getSwiftRValueType()->isBridgeableObjectType(),
"bridge_object_to_ref must produce a heap object reference");
}
void checkBridgeObjectToWordInst(BridgeObjectToWordInst *RI) {
require(RI->getConverted().getType()
== SILType::getBridgeObjectType(F.getASTContext()),
"bridge_object_to_word must take a BridgeObject");
require(RI->getType().isObject(),
"bridge_object_to_word must produce a value");
require(RI->getType() == SILType::getBuiltinWordType(F.getASTContext()),
"bridge_object_to_word must produce a Word");
}
void checkConvertFunctionInst(ConvertFunctionInst *ICI) {
auto opTI = requireObjectType(SILFunctionType, ICI->getOperand(),
"convert_function operand");
auto resTI = requireObjectType(SILFunctionType, ICI,
"convert_function result");
// convert_function is required to be an ABI-compatible conversion.
requireABICompatibleFunctionTypes(opTI, resTI,
"convert_function cannot change function ABI");
}
void checkThinFunctionToPointerInst(ThinFunctionToPointerInst *CI) {
auto opTI = requireObjectType(SILFunctionType, CI->getOperand(),
"thin_function_to_pointer operand");
requireObjectType(BuiltinRawPointerType, CI,
"thin_function_to_pointer result");
require(opTI->getRepresentation() == SILFunctionType::Representation::Thin,
"thin_function_to_pointer only works on thin functions");
}
void checkPointerToThinFunctionInst(PointerToThinFunctionInst *CI) {
auto resultTI = requireObjectType(SILFunctionType, CI,
"pointer_to_thin_function result");
requireObjectType(BuiltinRawPointerType, CI->getOperand(),
"pointer_to_thin_function operand");
require(resultTI->getRepresentation() == SILFunctionType::Representation::Thin,
"pointer_to_thin_function only works on thin functions");
}
void checkCondFailInst(CondFailInst *CFI) {
require(CFI->getOperand().getType()
== SILType::getBuiltinIntegerType(1, F.getASTContext()),
"cond_fail operand must be a Builtin.Int1");
}
void checkReturnInst(ReturnInst *RI) {
DEBUG(RI->print(llvm::dbgs()));
CanSILFunctionType ti = F.getLoweredFunctionType();
SILType functionResultType
= F.mapTypeIntoContext(ti->getResult().getSILType());
SILType instResultType = RI->getOperand().getType();
DEBUG(llvm::dbgs() << "function return type: ";
functionResultType.dump();
llvm::dbgs() << "return inst type: ";
instResultType.dump(););
require(functionResultType == instResultType,
"return value type does not match return type of function");
}
void checkThrowInst(ThrowInst *TI) {
DEBUG(TI->print(llvm::dbgs()));
CanSILFunctionType fnType = F.getLoweredFunctionType();
require(fnType->hasErrorResult(),
"throw in function that doesn't have an error result");
SILType functionResultType
= F.mapTypeIntoContext(fnType->getErrorResult().getSILType());
SILType instResultType = TI->getOperand().getType();
DEBUG(llvm::dbgs() << "function error result type: ";
functionResultType.dump();
llvm::dbgs() << "throw operand type: ";
instResultType.dump(););
require(functionResultType == instResultType,
"throw operand type does not match error result type of function");
}
void checkSelectEnumCases(SelectEnumInstBase *I) {
EnumDecl *eDecl = I->getEnumOperand().getType().getEnumOrBoundGenericEnum();
require(eDecl, "select_enum operand must be an enum");
// Find the set of enum elements for the type so we can verify
// exhaustiveness.
// FIXME: We also need to consider if the enum is resilient, in which case
// we're never guaranteed to be exhaustive.
llvm::DenseSet<EnumElementDecl*> unswitchedElts;
eDecl->getAllElements(unswitchedElts);
// Verify the set of enum cases we dispatch on.
for (unsigned i = 0, e = I->getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILValue result;
std::tie(elt, result) = I->getCase(i);
require(elt->getDeclContext() == eDecl,
"select_enum dispatches on enum element that is not part of "
"its type");
require(unswitchedElts.count(elt),
"select_enum dispatches on same enum element more than once");
unswitchedElts.erase(elt);
// The result value must match the type of the instruction.
requireSameType(result.getType(), I->getType(),
"select_enum case operand must match type of instruction");
}
// If the select is non-exhaustive, we require a default.
require(unswitchedElts.empty() || I->hasDefault(),
"nonexhaustive select_enum must have a default destination");
if (I->hasDefault()) {
requireSameType(I->getDefaultResult().getType(),
I->getType(),
"select_enum default operand must match type of instruction");
}
}
void checkSelectEnumInst(SelectEnumInst *SEI) {
require(SEI->getEnumOperand().getType().isObject(),
"select_enum operand must be an object");
checkSelectEnumCases(SEI);
}
void checkSelectEnumAddrInst(SelectEnumAddrInst *SEI) {
require(SEI->getEnumOperand().getType().isAddress(),
"select_enum_addr operand must be an address");
checkSelectEnumCases(SEI);
}
void checkSwitchValueInst(SwitchValueInst *SVI) {
// TODO: Type should be either integer or function
auto Ty = SVI->getOperand().getType();
require(Ty.getAs<BuiltinIntegerType>() || Ty.getAs<SILFunctionType>(),
"switch_value operand should be either of an integer "
"or function type");
auto ult = [](const SILValue &a, const SILValue &b) {
return a == b || a < b;
};
std::set<SILValue, decltype(ult)> cases(ult);
for (unsigned i = 0, e = SVI->getNumCases(); i < e; ++i) {
SILValue value;
SILBasicBlock *dest;
std::tie(value, dest) = SVI->getCase(i);
require(value.getType() == Ty,
"switch_value case value should have the same type as its operand");
require(!cases.count(value),
"multiple switch_value cases for same value");
cases.insert(value);
require(dest->bbarg_empty(),
"switch_value case destination cannot take arguments");
}
if (SVI->hasDefault())
require(SVI->getDefaultBB()->bbarg_empty(),
"switch_value default destination cannot take arguments");
}
void checkSelectValueCases(SelectValueInst *I) {
struct APIntCmp {
bool operator()(const APInt &a, const APInt &b) const {
return a.ult(b);
};
};
llvm::SmallSet<APInt, 16, APIntCmp> seenCaseValues;
// Verify the set of cases we dispatch on.
for (unsigned i = 0, e = I->getNumCases(); i < e; ++i) {
SILValue casevalue;
SILValue result;
std::tie(casevalue, result) = I->getCase(i);
auto *il = dyn_cast<IntegerLiteralInst>(casevalue);
require(il,
"select_value case operands should refer to integer literals");
APInt elt = il->getValue();
require(!seenCaseValues.count(elt),
"select_value dispatches on same case value more than once");
seenCaseValues.insert(elt);
// The result value must match the type of the instruction.
requireSameType(result.getType(), I->getType(),
"select_value case operand must match type of instruction");
}
require(I->hasDefault(),
"select_value should always have a default");
requireSameType(I->getDefaultResult().getType(),
I->getType(),
"select_value default operand must match type of instruction");
}
void checkSelectValueInst(SelectValueInst *SVI) {
require(SVI->getOperand().getType().isObject(),
"select_value operand must be an object");
checkSelectValueCases(SVI);
}
void checkSwitchEnumInst(SwitchEnumInst *SOI) {
require(SOI->getOperand().getType().isObject(),
"switch_enum operand must be an object");
SILType uTy = SOI->getOperand().getType();
EnumDecl *uDecl = uTy.getEnumOrBoundGenericEnum();
require(uDecl, "switch_enum operand is not an enum");
// Find the set of enum elements for the type so we can verify
// exhaustiveness.
// FIXME: We also need to consider if the enum is resilient, in which case
// we're never guaranteed to be exhaustive.
llvm::DenseSet<EnumElementDecl*> unswitchedElts;
uDecl->getAllElements(unswitchedElts);
// Verify the set of enum cases we dispatch on.
for (unsigned i = 0, e = SOI->getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILBasicBlock *dest;
std::tie(elt, dest) = SOI->getCase(i);
require(elt->getDeclContext() == uDecl,
"switch_enum dispatches on enum element that is not part of "
"its type");
require(unswitchedElts.count(elt),
"switch_enum dispatches on same enum element more than once");
unswitchedElts.erase(elt);
// The destination BB can take the argument payload, if any, as a BB
// arguments, or it can ignore it and take no arguments.
if (elt->hasArgumentType()) {
require(dest->getBBArgs().size() == 0
|| dest->getBBArgs().size() == 1,
"switch_enum destination for case w/ args must take 0 or 1 "
"arguments");
if (dest->getBBArgs().size() == 1) {
SILType eltArgTy = uTy.getEnumElementType(elt, F.getModule());
SILType bbArgTy = dest->getBBArgs()[0]->getType();
require(eltArgTy == bbArgTy,
"switch_enum destination bbarg must match case arg type");
require(!dest->getBBArgs()[0]->getType().isAddress(),
"switch_enum destination bbarg type must not be an address");
}
} else {
require(dest->getBBArgs().size() == 0,
"switch_enum destination for no-argument case must take no "
"arguments");
}
}
// If the switch is non-exhaustive, we require a default.
require(unswitchedElts.empty() || SOI->hasDefault(),
"nonexhaustive switch_enum must have a default destination");
if (SOI->hasDefault())
require(SOI->getDefaultBB()->bbarg_empty(),
"switch_enum default destination must take no arguments");
}
void checkSwitchEnumAddrInst(SwitchEnumAddrInst *SOI){
require(SOI->getOperand().getType().isAddress(),
"switch_enum_addr operand must be an address");
SILType uTy = SOI->getOperand().getType();
EnumDecl *uDecl = uTy.getEnumOrBoundGenericEnum();
require(uDecl, "switch_enum_addr operand must be an enum");
// Find the set of enum elements for the type so we can verify
// exhaustiveness.
// FIXME: We also need to consider if the enum is resilient, in which case
// we're never guaranteed to be exhaustive.
llvm::DenseSet<EnumElementDecl*> unswitchedElts;
uDecl->getAllElements(unswitchedElts);
// Verify the set of enum cases we dispatch on.
for (unsigned i = 0, e = SOI->getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILBasicBlock *dest;
std::tie(elt, dest) = SOI->getCase(i);
require(elt->getDeclContext() == uDecl,
"switch_enum_addr dispatches on enum element that "
"is not part of its type");
require(unswitchedElts.count(elt),
"switch_enum_addr dispatches on same enum element "
"more than once");
unswitchedElts.erase(elt);
// The destination BB must not have BB arguments.
require(dest->getBBArgs().size() == 0,
"switch_enum_addr destination must take no BB args");
}
// If the switch is non-exhaustive, we require a default.
require(unswitchedElts.empty() || SOI->hasDefault(),
"nonexhaustive switch_enum_addr must have a default "
"destination");
if (SOI->hasDefault())
require(SOI->getDefaultBB()->bbarg_empty(),
"switch_enum_addr default destination must take "
"no arguments");
}
void checkBranchInst(BranchInst *BI) {
require(BI->getArgs().size() == BI->getDestBB()->bbarg_size(),
"branch has wrong number of arguments for dest bb");
require(std::equal(BI->getArgs().begin(), BI->getArgs().end(),
BI->getDestBB()->bbarg_begin(),
[](SILValue branchArg, SILArgument *bbArg) {
return branchArg.getType() == bbArg->getType();
}),
"branch argument types do not match arguments for dest bb");
}
void checkCondBranchInst(CondBranchInst *CBI) {
// It is important that cond_br keeps an i1 type. ARC Sequence Opts assumes
// that cond_br does not use reference counted values or decrement reference
// counted values under the assumption that the instruction that computes
// the i1 is the use/decrement that ARC cares about and that after that
// instruction is evaluated, the scalar i1 has a different identity and the
// object can be deallocated.
require(CBI->getCondition().getType() ==
SILType::getBuiltinIntegerType(1,
CBI->getCondition().getType().getASTContext()),
"condition of conditional branch must have Int1 type");
require(CBI->getTrueArgs().size() == CBI->getTrueBB()->bbarg_size(),
"true branch has wrong number of arguments for dest bb");
require(CBI->getTrueBB() != CBI->getFalseBB(),
"identical destinations");
require(std::equal(CBI->getTrueArgs().begin(), CBI->getTrueArgs().end(),
CBI->getTrueBB()->bbarg_begin(),
[](SILValue branchArg, SILArgument *bbArg) {
return branchArg.getType() == bbArg->getType();
}),
"true branch argument types do not match arguments for dest bb");
require(CBI->getFalseArgs().size() == CBI->getFalseBB()->bbarg_size(),
"false branch has wrong number of arguments for dest bb");
require(std::equal(CBI->getFalseArgs().begin(), CBI->getFalseArgs().end(),
CBI->getFalseBB()->bbarg_begin(),
[](SILValue branchArg, SILArgument *bbArg) {
return branchArg.getType() == bbArg->getType();
}),
"false branch argument types do not match arguments for dest bb");
}
void checkDynamicMethodBranchInst(DynamicMethodBranchInst *DMBI) {
SILType operandType = DMBI->getOperand().getType();
require(DMBI->getMember().getDecl()->isObjC(), "method must be @objc");
if (!DMBI->getMember().getDecl()->isInstanceMember()) {
require(operandType.getSwiftType()->is<MetatypeType>(),
"operand must have metatype type");
require(operandType.getSwiftType()->castTo<MetatypeType>()
->getInstanceType()->mayHaveSuperclass(),
"operand must have metatype of class or class-bound type");
}
// Check that the branch argument is of the expected dynamic method type.
require(DMBI->getHasMethodBB()->bbarg_size() == 1,
"true bb for dynamic_method_br must take an argument");
requireSameType(DMBI->getHasMethodBB()->bbarg_begin()[0]->getType(),
getDynamicMethodType(operandType, DMBI->getMember()),
"bb argument for dynamic_method_br must be of the method's type");
}
void checkProjectBlockStorageInst(ProjectBlockStorageInst *PBSI) {
require(PBSI->getOperand().getType().isAddress(),
"operand must be an address");
auto storageTy = PBSI->getOperand().getType().getAs<SILBlockStorageType>();
require(storageTy, "operand must be a @block_storage type");
require(PBSI->getType().isAddress(),
"result must be an address");
auto captureTy = PBSI->getType().getSwiftRValueType();
require(storageTy->getCaptureType() == captureTy,
"result must be the capture type of the @block_storage type");
}
void checkInitBlockStorageHeaderInst(InitBlockStorageHeaderInst *IBSHI) {
require(IBSHI->getBlockStorage().getType().isAddress(),
"block storage operand must be an address");
auto storageTy
= IBSHI->getBlockStorage().getType().getAs<SILBlockStorageType>();
require(storageTy, "block storage operand must be a @block_storage type");
require(IBSHI->getInvokeFunction().getType().isObject(),
"invoke function operand must be a value");
auto invokeTy
= IBSHI->getInvokeFunction().getType().getAs<SILFunctionType>();
require(invokeTy, "invoke function operand must be a function");
require(invokeTy->getRepresentation()
== SILFunctionType::Representation::CFunctionPointer,
"invoke function operand must be a c function");
require(invokeTy->getParameters().size() >= 1,
"invoke function must take at least one parameter");
auto storageParam = invokeTy->getParameters()[0];
require(storageParam.getConvention() ==
ParameterConvention::Indirect_InoutAliasable,
"invoke function must take block storage as @inout_aliasable "
"parameter");
require(storageParam.getType() == storageTy,
"invoke function must take block storage type as first parameter");
require(IBSHI->getType().isObject(), "result must be a value");
auto blockTy = IBSHI->getType().getAs<SILFunctionType>();
require(blockTy, "result must be a function");
require(blockTy->getRepresentation() == SILFunctionType::Representation::Block,
"result must be a cdecl block function");
require(blockTy->getResult() == invokeTy->getResult(),
"result must have same return type as invoke function");
require(blockTy->getParameters().size() + 1
== invokeTy->getParameters().size(),
"result must match all parameters of invoke function but the first");
auto blockParams = blockTy->getParameters();
auto invokeBlockParams = invokeTy->getParameters().slice(1);
for (unsigned i : indices(blockParams)) {
require(blockParams[i] == invokeBlockParams[i],
"result must match all parameters of invoke function but the first");
}
}
void checkObjCProtocolInst(ObjCProtocolInst *OPI) {
require(OPI->getProtocol()->isObjC(),
"objc_protocol must be applied to an @objc protocol");
auto classTy = OPI->getType();
require(classTy.isObject(), "objc_protocol must produce a value");
auto classDecl = classTy.getClassOrBoundGenericClass();
require(classDecl, "objc_protocol must produce a class instance");
require(classDecl->getName() == F.getASTContext().Id_Protocol,
"objc_protocol must produce an instance of ObjectiveC.Protocol class");
require(classDecl->getModuleContext()->getName() == F.getASTContext().Id_ObjectiveC,
"objc_protocol must produce an instance of ObjectiveC.Protocol class");
}
void checkObjCMetatypeToObjectInst(ObjCMetatypeToObjectInst *OMOI) {
require(OMOI->getOperand().getType().isObject(),
"objc_metatype_to_object must take a value");
auto fromMetaTy = OMOI->getOperand().getType().getAs<MetatypeType>();
require(fromMetaTy, "objc_metatype_to_object must take an @objc metatype value");
require(fromMetaTy->getRepresentation() == MetatypeRepresentation::ObjC,
"objc_metatype_to_object must take an @objc metatype value");
require(OMOI->getType().isObject(),
"objc_metatype_to_object must produce a value");
require(OMOI->getType().getSwiftRValueType()->isAnyObject(),
"objc_metatype_to_object must produce an AnyObject value");
}
void checkObjCExistentialMetatypeToObjectInst(
ObjCExistentialMetatypeToObjectInst *OMOI) {
require(OMOI->getOperand().getType().isObject(),
"objc_metatype_to_object must take a value");
auto fromMetaTy = OMOI->getOperand().getType()
.getAs<ExistentialMetatypeType>();
require(fromMetaTy, "objc_metatype_to_object must take an @objc existential metatype value");
require(fromMetaTy->getRepresentation() == MetatypeRepresentation::ObjC,
"objc_metatype_to_object must take an @objc existential metatype value");
require(OMOI->getType().isObject(),
"objc_metatype_to_object must produce a value");
require(OMOI->getType().getSwiftRValueType()->isAnyObject(),
"objc_metatype_to_object must produce an AnyObject value");
}
void verifyEntryPointArguments(SILBasicBlock *entry) {
SILFunctionType *ti = F.getLoweredFunctionType();
DEBUG(llvm::dbgs() << "Argument types for entry point BB:\n";
for (auto *arg : make_range(entry->bbarg_begin(), entry->bbarg_end()))
arg->getType().dump();
llvm::dbgs() << "Input types for SIL function type ";
ti->print(llvm::dbgs());
llvm::dbgs() << ":\n";
for (auto input : ti->getParameters())
input.getSILType().dump(););
require(entry->bbarg_size() == ti->getParameters().size(),
"entry point has wrong number of arguments");
require(std::equal(entry->bbarg_begin(), entry->bbarg_end(),
ti->getParameterSILTypes().begin(),
[&](SILArgument *bbarg, SILType ty) {
auto mappedTy = F.mapTypeIntoContext(ty);
if (bbarg->getType() != mappedTy) {
llvm::errs() << "argument type mismatch!\n";
llvm::errs() << " argument: "; bbarg->dump();
llvm::errs() << " expected: "; mappedTy.dump();
return false;
}
return true;
}),
"entry point argument types do not match function type");
// TBAA requirement for all address arguments.
require(std::equal(entry->bbarg_begin(), entry->bbarg_end(),
ti->getParameters().begin(),
[&](SILArgument *bbarg, SILParameterInfo paramInfo) {
if (!bbarg->getType().isAddress())
return true;
switch (paramInfo.getConvention()) {
default:
return false;
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Indirect_Out:
case ParameterConvention::Indirect_In_Guaranteed:
return true;
}
}),
"entry point address argument must have an indirect calling "
"convention");
}
void verifyEpilogBlocks(SILFunction *F) {
bool FoundReturnBlock = false;
bool FoundThrowBlock = false;
for (auto &BB : *F) {
if (isa<ReturnInst>(BB.getTerminator())) {
require(FoundReturnBlock == false,
"more than one return block in function");
FoundReturnBlock = true;
}
if (isa<ThrowInst>(BB.getTerminator())) {
require(FoundThrowBlock == false,
"more than one throw block in function");
FoundThrowBlock = true;
}
}
}
bool
isUnreachableAlongAllPathsStartingAt(SILBasicBlock *StartBlock,
SmallPtrSet<SILBasicBlock *, 16> &Visited) {
if (isa<UnreachableInst>(StartBlock->getTerminator()))
return true;
else if (isa<ReturnInst>(StartBlock->getTerminator()))
return false;
else if (isa<ThrowInst>(StartBlock->getTerminator()))
return false;
// Recursively check all successors.
for (auto *SuccBB : StartBlock->getSuccessorBlocks())
if (!Visited.insert(SuccBB).second)
if (!isUnreachableAlongAllPathsStartingAt(SuccBB, Visited))
return false;
return true;
}
void verifySILFunctionType(CanSILFunctionType FTy) {
// Make sure that if FTy's calling convention implies that it must have a
// self parameter.
require(!FTy->hasSelfParam() || !FTy->getParameters().empty(),
"Functions with a calling convention with self parameter must "
"have at least one argument for self.");
// Make sure that FTy does not have any out parameters except for the first
// parameter.
if (FTy->getParameters().size() < 2)
return;
for (SILParameterInfo PInfo : FTy->getParameters().slice(1)) {
require(!PInfo.isIndirectResult(),
"Indirect results can only be the first argument of a "
"SILFunction.");
}
}
void verifyStackHeight(SILFunction *F) {
llvm::DenseMap<SILBasicBlock*, std::vector<SILInstruction*>> visitedBBs;
SmallVector<SILBasicBlock*, 16> Worklist;
visitedBBs[&*F->begin()] = {};
Worklist.push_back(&*F->begin());
while (!Worklist.empty()) {
SILBasicBlock *BB = Worklist.pop_back_val();
std::vector<SILInstruction*> stack = visitedBBs[BB];
for (SILInstruction &i : *BB) {
CurInstruction = &i;
if (i.isAllocatingStack()) {
stack.push_back(&i);
}
if (i.isDeallocatingStack()) {
SILValue op = i.getOperand(0);
require(op.getResultNumber() == 0,
"stack dealloc operand is not local storage of stack alloc");
require(!stack.empty(),
"stack dealloc with empty stack");
require(op.getDef() == stack.back(),
"stack dealloc does not match most recent stack alloc");
stack.pop_back();
}
if (isa<ReturnInst>(&i) || isa<ThrowInst>(&i)) {
require(stack.empty(),
"return with stack allocs that haven't been deallocated");
}
if (auto term = dyn_cast<TermInst>(&i)) {
for (auto &successor : term->getSuccessors()) {
SILBasicBlock *SuccBB = successor.getBB();
auto found = visitedBBs.find(SuccBB);
if (found != visitedBBs.end()) {
// Check that the stack height is consistent coming from all entry
// points into this BB. We only care about consistency if there is
// a possible return from this function along the path starting at
// this successor bb.
SmallPtrSet<SILBasicBlock *, 16> Visited;
require(isUnreachableAlongAllPathsStartingAt(SuccBB, Visited) ||
stack == found->second,
"inconsistent stack heights entering basic block");
continue;
}
Worklist.push_back(SuccBB);
visitedBBs.insert({SuccBB, stack});
}
}
}
}
}
void verifyBranches(SILFunction *F) {
// If we are not in canonical SIL return early.
if (F->getModule().getStage() != SILStage::Canonical)
return;
// Verify that there is no non_condbr critical edge.
auto isCriticalEdgePred = [](const TermInst *T, unsigned EdgeIdx) {
assert(T->getSuccessors().size() > EdgeIdx && "Not enough successors");
// A critical edge has more than one outgoing edges from the source
// block.
auto SrcSuccs = T->getSuccessors();
if (SrcSuccs.size() <= 1)
return false;
// And its destination block has more than one predecessor.
SILBasicBlock *DestBB = SrcSuccs[EdgeIdx];
assert(!DestBB->pred_empty() && "There should be a predecessor");
if (DestBB->getSinglePredecessor())
return false;
return true;
};
// Check for non-cond_br critical edges.
for (auto &BB : *F) {
TermInst *TI = BB.getTerminator();
if (isa<CondBranchInst>(TI))
continue;
for (unsigned Idx = 0, e = BB.getSuccessors().size(); Idx != e; ++Idx) {
require(!isCriticalEdgePred(TI, Idx),
"non cond_br critical edges not allowed");
}
}
}
void visitSILBasicBlock(SILBasicBlock *BB) {
// Make sure that each of the successors/predecessors of this basic block
// have this basic block in its predecessor/successor list.
for (const auto *SuccBB : BB->getSuccessorBlocks()) {
bool FoundSelfInSuccessor = false;
if (SuccBB->isPredecessor(BB)) {
FoundSelfInSuccessor = true;
break;
}
require(FoundSelfInSuccessor, "Must be a predecessor of each successor.");
}
for (const SILBasicBlock *PredBB : BB->getPreds()) {
bool FoundSelfInPredecessor = false;
if (PredBB->isSuccessor(BB)) {
FoundSelfInPredecessor = true;
break;
}
require(FoundSelfInPredecessor, "Must be a successor of each predecessor.");
}
SILVisitor::visitSILBasicBlock(BB);
}
void visitSILFunction(SILFunction *F) {
PrettyStackTraceSILFunction stackTrace("verifying", F);
if (F->getLinkage() == SILLinkage::PrivateExternal) {
// FIXME: uncomment these checks.
// <rdar://problem/18635841> SILGen can create non-fragile external
// private_external declarations
//
// assert(!isExternalDeclaration() &&
// "PrivateExternal should not be an external declaration");
// assert(isFragile() &&
// "PrivateExternal should be fragile (otherwise, how did it appear "
// "in this module?)");
}
CanSILFunctionType FTy = F->getLoweredFunctionType();
verifySILFunctionType(FTy);
if (F->isExternalDeclaration()) {
if (F->hasForeignBody())
return;
assert(F->isAvailableExternally() &&
"external declaration of internal SILFunction not allowed");
assert(!hasSharedVisibility(F->getLinkage()) &&
"external declarations of SILFunctions with shared visibility is not "
"allowed");
// If F is an external declaration, there is nothing further to do,
// return.
return;
}
assert(!F->hasForeignBody());
// Make sure that our SILFunction only has context generic params if our
// SILFunctionType is non-polymorphic.
if (F->getContextGenericParams()) {
require(FTy->isPolymorphic(),
"non-generic function definitions cannot have context "
"archetypes");
} else {
require(!FTy->isPolymorphic(),
"generic function definition must have context archetypes");
}
// Otherwise, verify the body of the function.
verifyEntryPointArguments(&*F->getBlocks().begin());
verifyEpilogBlocks(F);
verifyStackHeight(F);
verifyBranches(F);
SILVisitor::visitSILFunction(F);
}
void verify() {
visitSILFunction(const_cast<SILFunction*>(&F));
}
};
} // end anonymous namespace
#undef require
#undef requireObjectType
#endif //NDEBUG
/// verify - Run the SIL verifier to make sure that the SILFunction follows
/// invariants.
void SILFunction::verify() const {
#ifndef NDEBUG
// Please put all checks in visitSILFunction in SILVerifier, not here. This
// ensures that the pretty stack trace in the verifier is included with the
// back trace when the verifier crashes.
SILVerifier(*this).verify();
#endif
}
/// Verify that a vtable follows invariants.
void SILVTable::verify(const SILModule &M) const {
#ifndef NDEBUG
for (auto &entry : getEntries()) {
// All vtable entries must be decls in a class context.
assert(entry.first.hasDecl() && "vtable entry is not a decl");
auto baseInfo = M.Types.getConstantInfo(entry.first);
ValueDecl *decl = entry.first.getDecl();
assert((!isa<FuncDecl>(decl)
|| !cast<FuncDecl>(decl)->isObservingAccessor())
&& "observing accessors shouldn't have vtable entries");
// For ivar destroyers, the decl is the class itself.
ClassDecl *theClass;
if (entry.first.kind == SILDeclRef::Kind::IVarDestroyer)
theClass = dyn_cast<ClassDecl>(decl);
else
theClass = dyn_cast<ClassDecl>(decl->getDeclContext());
assert(theClass && "vtable entry must refer to a class member");
// The class context must be the vtable's class, or a superclass thereof.
auto c = getClass();
do {
if (c == theClass)
break;
if (auto ty = c->getSuperclass())
c = ty->getClassOrBoundGenericClass();
else
c = nullptr;
} while (c);
assert(c && "vtable entry must refer to a member of the vtable's class");
// All function vtable entries must be at their natural uncurry level.
assert(!entry.first.isCurried && "vtable entry must not be curried");
// Foreign entry points shouldn't appear in vtables.
assert(!entry.first.isForeign && "vtable entry must not be foreign");
// The vtable entry must be ABI-compatible with the overridden vtable slot.
SmallString<32> baseName;
{
llvm::raw_svector_ostream os(baseName);
entry.first.print(os);
}
SILVerifier(*entry.second)
.requireABICompatibleFunctionTypes(
baseInfo.getSILType().castTo<SILFunctionType>(),
entry.second->getLoweredFunctionType(),
"vtable entry for " + baseName + " must be ABI-compatible");
}
#endif
}
/// Verify that a witness table follows invariants.
void SILWitnessTable::verify(const SILModule &M) const {
#ifndef NDEBUG
if (isDeclaration())
assert(getEntries().size() == 0 &&
"A witness table declaration should not have any entries.");
// Currently all witness tables have public conformances, thus witness tables
// should not reference SILFunctions without public/public_external linkage.
// FIXME: Once we support private conformances, update this.
for (const Entry &E : getEntries())
if (E.getKind() == SILWitnessTable::WitnessKind::Method) {
SILFunction *F = E.getMethodWitness().Witness;
if (F) {
assert(!isLessVisibleThan(F->getLinkage(), getLinkage()) &&
"Witness tables should not reference less visible functions.");
}
}
#endif
}
/// Verify that a global variable follows invariants.
void SILGlobalVariable::verify() const {
#ifndef NDEBUG
assert(getLoweredType().isObject()
&& "global variable cannot have address type");
// Verify the static initializer.
if (InitializerF)
assert(SILGlobalVariable::canBeStaticInitializer(InitializerF) &&
"illegal static initializer");
#endif
}
/// Verify the module.
void SILModule::verify() const {
#ifndef NDEBUG
// Uniquing set to catch symbol name collisions.
llvm::StringSet<> symbolNames;
// Check all functions.
for (const SILFunction &f : *this) {
if (!symbolNames.insert(f.getName()).second) {
llvm::errs() << "Symbol redefined: " << f.getName() << "!\n";
assert(false && "triggering standard assertion failure routine");
}
f.verify();
}
// Check all globals.
for (const SILGlobalVariable &g : getSILGlobals()) {
if (!symbolNames.insert(g.getName()).second) {
llvm::errs() << "Symbol redefined: " << g.getName() << "!\n";
assert(false && "triggering standard assertion failure routine");
}
g.verify();
}
// Check all vtables.
llvm::DenseSet<ClassDecl*> vtableClasses;
for (const SILVTable &vt : getVTables()) {
if (!vtableClasses.insert(vt.getClass()).second) {
llvm::errs() << "Vtable redefined: " << vt.getClass()->getName() << "!\n";
assert(false && "triggering standard assertion failure routine");
}
vt.verify(*this);
}
// Check all witness tables.
DEBUG(llvm::dbgs() << "*** Checking witness tables for duplicates ***\n");
llvm::DenseSet<NormalProtocolConformance*> wtableConformances;
for (const SILWitnessTable &wt : getWitnessTables()) {
DEBUG(llvm::dbgs() << "Witness Table:\n"; wt.dump());
auto conformance = wt.getConformance();
if (!wtableConformances.insert(conformance).second) {
llvm::errs() << "Witness table redefined: ";
conformance->printName(llvm::errs());
assert(false && "triggering standard assertion failure routine");
}
wt.verify(*this);
}
#endif
}
#ifndef NDEBUG
/// Determine whether an instruction may not have a SILDebugScope.
bool swift::maybeScopeless(SILInstruction &I) {
if (I.getFunction()->isBare())
return true;
return !isa<DebugValueInst>(I) && !isa<DebugValueAddrInst>(I);
}
#endif