blob: 9267d5e4800f8a202f1a29212db524e3e25dd2db [file] [log] [blame]
//===--- Decl.cpp - Swift Language Decl ASTs ------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/ArchetypeBuilder.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Mangle.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/TypeLoc.h"
#include "clang/Lex/MacroInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/raw_ostream.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Basic/Fallthrough.h"
#include "clang/Basic/CharInfo.h"
#include "clang/AST/DeclObjC.h"
#include <algorithm>
using namespace swift;
bool impl::isTestingEnabled(const ValueDecl *VD) {
return VD->getModuleContext()->isTestingEnabled();
}
clang::SourceLocation ClangNode::getLocation() const {
if (auto D = getAsDecl())
return D->getLocation();
if (auto M = getAsMacro())
return M->getDefinitionLoc();
return clang::SourceLocation();
}
clang::SourceRange ClangNode::getSourceRange() const {
if (auto D = getAsDecl())
return D->getSourceRange();
if (auto M = getAsMacro())
return clang::SourceRange(M->getDefinitionLoc(), M->getDefinitionEndLoc());
return clang::SourceLocation();
}
const clang::Module *ClangNode::getClangModule() const {
if (auto *M = getAsModule())
return M;
if (auto *ID = dyn_cast_or_null<clang::ImportDecl>(getAsDecl()))
return ID->getImportedModule();
return nullptr;
}
// Only allow allocation of Decls using the allocator in ASTContext.
void *Decl::operator new(size_t Bytes, const ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
// Only allow allocation of Modules using the allocator in ASTContext.
void *Module::operator new(size_t Bytes, const ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
StringRef Decl::getKindName(DeclKind K) {
switch (K) {
#define DECL(Id, Parent) case DeclKind::Id: return #Id;
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("bad DeclKind");
}
DescriptiveDeclKind Decl::getDescriptiveKind() const {
#define TRIVIAL_KIND(Kind) \
case DeclKind::Kind: \
return DescriptiveDeclKind::Kind
switch (getKind()) {
TRIVIAL_KIND(Import);
TRIVIAL_KIND(Extension);
TRIVIAL_KIND(EnumCase);
TRIVIAL_KIND(TopLevelCode);
TRIVIAL_KIND(IfConfig);
TRIVIAL_KIND(PatternBinding);
TRIVIAL_KIND(InfixOperator);
TRIVIAL_KIND(PrefixOperator);
TRIVIAL_KIND(PostfixOperator);
TRIVIAL_KIND(TypeAlias);
TRIVIAL_KIND(GenericTypeParam);
TRIVIAL_KIND(AssociatedType);
TRIVIAL_KIND(Protocol);
TRIVIAL_KIND(Subscript);
TRIVIAL_KIND(Constructor);
TRIVIAL_KIND(Destructor);
TRIVIAL_KIND(EnumElement);
TRIVIAL_KIND(Param);
TRIVIAL_KIND(Module);
case DeclKind::Enum:
return cast<EnumDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericEnum
: DescriptiveDeclKind::Enum;
case DeclKind::Struct:
return cast<StructDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericStruct
: DescriptiveDeclKind::Struct;
case DeclKind::Class:
return cast<ClassDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericClass
: DescriptiveDeclKind::Class;
case DeclKind::Var: {
auto var = cast<VarDecl>(this);
switch (var->getCorrectStaticSpelling()) {
case StaticSpellingKind::None:
return var->isLet()? DescriptiveDeclKind::Let
: DescriptiveDeclKind::Var;
case StaticSpellingKind::KeywordStatic:
return var->isLet()? DescriptiveDeclKind::StaticLet
: DescriptiveDeclKind::StaticVar;
case StaticSpellingKind::KeywordClass:
return var->isLet()? DescriptiveDeclKind::ClassLet
: DescriptiveDeclKind::ClassVar;
}
}
case DeclKind::Func: {
auto func = cast<FuncDecl>(this);
// First, check for an accessor.
switch (func->getAccessorKind()) {
case AccessorKind::NotAccessor:
// Other classifications below.
break;
case AccessorKind::IsGetter:
return DescriptiveDeclKind::Getter;
case AccessorKind::IsSetter:
return DescriptiveDeclKind::Setter;
case AccessorKind::IsWillSet:
return DescriptiveDeclKind::WillSet;
case AccessorKind::IsDidSet:
return DescriptiveDeclKind::DidSet;
case AccessorKind::IsAddressor:
return DescriptiveDeclKind::Addressor;
case AccessorKind::IsMutableAddressor:
return DescriptiveDeclKind::MutableAddressor;
case AccessorKind::IsMaterializeForSet:
return DescriptiveDeclKind::MaterializeForSet;
}
if (!func->getName().empty() && func->getName().isOperator())
return DescriptiveDeclKind::OperatorFunction;
if (func->getDeclContext()->isLocalContext())
return DescriptiveDeclKind::LocalFunction;
if (func->getDeclContext()->isModuleScopeContext())
return DescriptiveDeclKind::GlobalFunction;
// We have a method.
switch (func->getCorrectStaticSpelling()) {
case StaticSpellingKind::None:
return DescriptiveDeclKind::Method;
case StaticSpellingKind::KeywordStatic:
return DescriptiveDeclKind::StaticMethod;
case StaticSpellingKind::KeywordClass:
return DescriptiveDeclKind::ClassMethod;
}
}
}
#undef TRIVIAL_KIND
llvm_unreachable("bad DescriptiveDeclKind");
}
StringRef Decl::getDescriptiveKindName(DescriptiveDeclKind K) {
#define ENTRY(Kind, String) case DescriptiveDeclKind::Kind: return String
switch (K) {
ENTRY(Import, "import");
ENTRY(Extension, "extension");
ENTRY(EnumCase, "case");
ENTRY(TopLevelCode, "top-level code");
ENTRY(IfConfig, "if configuration");
ENTRY(PatternBinding, "pattern binding");
ENTRY(Var, "var");
ENTRY(Param, "parameter");
ENTRY(Let, "let");
ENTRY(StaticVar, "static var");
ENTRY(StaticLet, "static let");
ENTRY(ClassVar, "class var");
ENTRY(ClassLet, "class let");
ENTRY(InfixOperator, "infix operator");
ENTRY(PrefixOperator, "prefix operator");
ENTRY(PostfixOperator, "postfix operator");
ENTRY(TypeAlias, "type alias");
ENTRY(GenericTypeParam, "generic parameter");
ENTRY(AssociatedType, "associated type");
ENTRY(Enum, "enum");
ENTRY(Struct, "struct");
ENTRY(Class, "class");
ENTRY(Protocol, "protocol");
ENTRY(GenericEnum, "generic enum");
ENTRY(GenericStruct, "generic struct");
ENTRY(GenericClass, "generic class");
ENTRY(Subscript, "subscript");
ENTRY(Constructor, "initializer");
ENTRY(Destructor, "deinitializer");
ENTRY(LocalFunction, "local function");
ENTRY(GlobalFunction, "global function");
ENTRY(OperatorFunction, "operator function");
ENTRY(Method, "instance method");
ENTRY(StaticMethod, "static method");
ENTRY(ClassMethod, "class method");
ENTRY(Getter, "getter");
ENTRY(Setter, "setter");
ENTRY(WillSet, "willSet observer");
ENTRY(DidSet, "didSet observer");
ENTRY(MaterializeForSet, "materializeForSet accessor");
ENTRY(Addressor, "address accessor");
ENTRY(MutableAddressor, "mutableAddress accessor");
ENTRY(EnumElement, "enum element");
ENTRY(Module, "module");
}
#undef ENTRY
llvm_unreachable("bad DescriptiveDeclKind");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
StaticSpellingKind SSK) {
switch (SSK) {
case StaticSpellingKind::None:
return OS << "<none>";
case StaticSpellingKind::KeywordStatic:
return OS << "'static'";
case StaticSpellingKind::KeywordClass:
return OS << "'class'";
}
llvm_unreachable("bad StaticSpellingKind");
}
DeclContext *Decl::getInnermostDeclContext() {
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
return func;
if (auto nominal = dyn_cast<NominalTypeDecl>(this))
return nominal;
if (auto ext = dyn_cast<ExtensionDecl>(this))
return ext;
if (auto topLevel = dyn_cast<TopLevelCodeDecl>(this))
return topLevel;
return getDeclContext();
}
DeclContext *Decl::getDeclContextForModule() const {
if (auto module = dyn_cast<ModuleDecl>(this))
return const_cast<ModuleDecl *>(module);
return nullptr;
}
void Decl::setDeclContext(DeclContext *DC) {
Context = DC;
}
bool Decl::isUserAccessible() const {
if (auto VD = dyn_cast<VarDecl>(this)){
return VD->isUserAccessible();
}
return true;
}
Module *Decl::getModuleContext() const {
return getDeclContext()->getParentModule();
}
// Helper functions to verify statically whether source-location
// functions have been overridden.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceLocType(SourceLoc (Class::*)() const);
inline TwoChars checkSourceLocType(SourceLoc (Decl::*)() const);
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Decl::*)() const);
SourceRange Decl::getSourceRange() const {
switch (getKind()) {
#define DECL(ID, PARENT) \
static_assert(sizeof(checkSourceRangeType(&ID##Decl::getSourceRange)) == 1, \
#ID "Decl is missing getSourceRange()"); \
case DeclKind::ID: return cast<ID##Decl>(this)->getSourceRange();
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("Unknown decl kind");
}
SourceLoc Decl::getLoc() const {
switch (getKind()) {
#define DECL(ID, X) \
static_assert(sizeof(checkSourceLocType(&ID##Decl::getLoc)) == 1, \
#ID "Decl is missing getLoc()"); \
case DeclKind::ID: return cast<ID##Decl>(this)->getLoc();
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("Unknown decl kind");
}
bool Decl::isTransparent() const {
// Check if the declaration had the attribute.
if (getAttrs().hasAttribute<TransparentAttr>())
return true;
// Check if this is a function declaration which is within a transparent
// extension.
if (const AbstractFunctionDecl *FD = dyn_cast<AbstractFunctionDecl>(this)) {
if (const ExtensionDecl *ED = dyn_cast<ExtensionDecl>(FD->getParent()))
if (ED->isTransparent())
return true;
}
// If this is an accessor, check if the transparent attribute was set
// on the value decl.
if (const FuncDecl *FD = dyn_cast<FuncDecl>(this)) {
if (auto *ASD = FD->getAccessorStorageDecl())
return ASD->isTransparent();
}
return false;
}
bool Decl::isBeingTypeChecked() {
auto decl = this;
while (true) {
if (decl->DeclBits.BeingTypeChecked)
return true;
auto dc = decl->getDeclContext();
if (auto nominal = dyn_cast<NominalTypeDecl>(dc))
decl = nominal;
else if (auto ext = dyn_cast<ExtensionDecl>(dc))
decl = ext;
else
break;
}
return false;
}
bool Decl::isPrivateStdlibDecl(bool whitelistProtocols) const {
const Decl *D = this;
if (auto ExtD = dyn_cast<ExtensionDecl>(D))
return ExtD->getExtendedType().isPrivateStdlibType(whitelistProtocols);
DeclContext *DC = D->getDeclContext()->getModuleScopeContext();
if (DC->getParentModule()->isBuiltinModule() ||
DC->getParentModule()->isSwiftShimsModule())
return true;
if (!DC->getParentModule()->isSystemModule())
return false;
auto FU = dyn_cast<FileUnit>(DC);
if (!FU)
return false;
// Check for Swift module and overlays.
if (!DC->getParentModule()->isStdlibModule() &&
FU->getKind() != FileUnitKind::SerializedAST)
return false;
auto hasInternalParameter = [](const ParameterList *params) -> bool {
for (auto param : *params) {
if (param->hasName() && param->getNameStr().startswith("_"))
return true;
}
return false;
};
if (auto AFD = dyn_cast<AbstractFunctionDecl>(D)) {
// Hide '~>' functions (but show the operator, because it defines
// precedence).
if (AFD->getNameStr() == "~>")
return true;
// If it's a function with a parameter with leading underscore, it's a
// private function.
for (auto *PL : AFD->getParameterLists())
if (hasInternalParameter(PL))
return true;
}
if (auto SubscriptD = dyn_cast<SubscriptDecl>(D)) {
if (hasInternalParameter(SubscriptD->getIndices()))
return true;
}
if (auto PD = dyn_cast<ProtocolDecl>(D)) {
StringRef NameStr = PD->getNameStr();
if (NameStr.startswith("_Builtin"))
return true;
if (NameStr.startswith("_") && NameStr.endswith("LiteralConvertible"))
return true;
if (whitelistProtocols)
return false;
}
if (auto ImportD = dyn_cast<ImportDecl>(D)) {
if (ImportD->getModule()->isSwiftShimsModule())
return true;
}
auto VD = dyn_cast<ValueDecl>(D);
if (!VD || !VD->hasName())
return false;
// If the name has leading underscore then it's a private symbol.
if (VD->getNameStr().startswith("_"))
return true;
return false;
}
bool Decl::isWeakImported(Module *fromModule) const {
// For a Clang declaration, trust Clang.
if (auto clangDecl = getClangDecl()) {
return clangDecl->isWeakImported();
}
// FIXME: Implement using AvailableAttr::getMinVersionAvailability().
return false;
}
GenericParamList::GenericParamList(SourceLoc LAngleLoc,
ArrayRef<GenericTypeParamDecl *> Params,
SourceLoc WhereLoc,
MutableArrayRef<RequirementRepr> Requirements,
SourceLoc RAngleLoc)
: Brackets(LAngleLoc, RAngleLoc), NumParams(Params.size()),
WhereLoc(WhereLoc), Requirements(Requirements),
OuterParameters(nullptr),
FirstTrailingWhereArg(Requirements.size()),
Builder(nullptr)
{
std::uninitialized_copy(Params.begin(), Params.end(),
reinterpret_cast<GenericTypeParamDecl **>(this + 1));
}
GenericParamList *
GenericParamList::create(ASTContext &Context,
SourceLoc LAngleLoc,
ArrayRef<GenericTypeParamDecl *> Params,
SourceLoc RAngleLoc) {
unsigned Size = sizeof(GenericParamList)
+ sizeof(GenericTypeParamDecl *) * Params.size();
void *Mem = Context.Allocate(Size, alignof(GenericParamList));
return new (Mem) GenericParamList(LAngleLoc, Params, SourceLoc(),
MutableArrayRef<RequirementRepr>(),
RAngleLoc);
}
GenericParamList *
GenericParamList::create(const ASTContext &Context,
SourceLoc LAngleLoc,
ArrayRef<GenericTypeParamDecl *> Params,
SourceLoc WhereLoc,
MutableArrayRef<RequirementRepr> Requirements,
SourceLoc RAngleLoc) {
unsigned Size = sizeof(GenericParamList)
+ sizeof(GenericTypeParamDecl *) * Params.size();
void *Mem = Context.Allocate(Size, alignof(GenericParamList));
return new (Mem) GenericParamList(LAngleLoc, Params,
WhereLoc,
Context.AllocateCopy(Requirements),
RAngleLoc);
}
void GenericParamList::addTrailingWhereClause(
ASTContext &ctx,
SourceLoc trailingWhereLoc,
ArrayRef<RequirementRepr> trailingRequirements) {
assert(TrailingWhereLoc.isInvalid() &&
"Already have a trailing where clause?");
TrailingWhereLoc = trailingWhereLoc;
FirstTrailingWhereArg = Requirements.size();
// Create a unified set of requirements.
auto newRequirements = ctx.AllocateUninitialized<RequirementRepr>(
Requirements.size() + trailingRequirements.size());
std::memcpy(newRequirements.data(), Requirements.data(),
Requirements.size() * sizeof(RequirementRepr));
std::memcpy(newRequirements.data() + Requirements.size(),
trailingRequirements.data(),
trailingRequirements.size() * sizeof(RequirementRepr));
Requirements = newRequirements;
}
GenericSignature *
GenericParamList::getAsCanonicalGenericSignature(
llvm::DenseMap<ArchetypeType *, Type> &archetypeMap,
ASTContext &C) const {
SmallVector<GenericTypeParamType *, 4> params;
SmallVector<Requirement, 4> requirements;
getAsGenericSignatureElements(C, archetypeMap, params, requirements);
// Canonicalize the types in the signature.
for (auto &param : params)
param = cast<GenericTypeParamType>(param->getCanonicalType());
for (auto &reqt : requirements)
reqt = Requirement(reqt.getKind(),
reqt.getFirstType()->getCanonicalType(),
reqt.getSecondType()->getCanonicalType());
return GenericSignature::get(params, requirements, /*isKnownCanonical=*/true);
}
ArrayRef<Substitution>
GenericParamList::getForwardingSubstitutions(ASTContext &C) {
SmallVector<Substitution, 4> subs;
// TODO: IRGen wants substitutions for secondary archetypes.
// for (auto &param : params->getNestedGenericParams()) {
// ArchetypeType *archetype = param.getAsTypeParam()->getArchetype();
for (auto archetype : getAllNestedArchetypes()) {
// "Check conformance" on each declared protocol to build a
// conformance map.
SmallVector<ProtocolConformance *, 2> conformances;
for (ProtocolDecl *conformsTo : archetype->getConformsTo()) {
(void)conformsTo;
conformances.push_back(nullptr);
}
// Build an identity mapping with the derived conformances.
auto replacement = SubstitutedType::get(archetype, archetype, C);
subs.push_back({archetype, replacement, C.AllocateCopy(conformances)});
}
return C.AllocateCopy(subs);
}
// Helper for getAsGenericSignatureElements to remap an archetype in a
// requirement to a canonical dependent type.
Type
ArchetypeType::getAsDependentType(
const llvm::DenseMap<ArchetypeType*, Type> &archetypeMap) {
// Map associated archetypes to DependentMemberTypes.
if (auto parent = getParent()) {
auto assocTy = getAssocType();
assert(assocTy);
Type base = parent->getAsDependentType(archetypeMap);
return DependentMemberType::get(base, assocTy, getASTContext());
}
// Map primary archetypes to generic type parameters.
auto found = archetypeMap.find(this);
assert(found != archetypeMap.end()
&& "did not find generic param for archetype");
return found->second;
}
static Type getAsDependentType(Type t,
const llvm::DenseMap<ArchetypeType*, Type> &archetypeMap) {
if (!t->hasArchetype())
return t;
return t.transform([&](Type type) -> Type {
if (auto arch = type->getAs<ArchetypeType>())
return arch->getAsDependentType(archetypeMap);
return type;
});
}
// A helper to recursively collect the generic parameters from the outer levels
// of a generic parameter list.
void
GenericParamList::getAsGenericSignatureElements(ASTContext &C,
llvm::DenseMap<ArchetypeType *, Type> &archetypeMap,
SmallVectorImpl<GenericTypeParamType *> &genericParams,
SmallVectorImpl<Requirement> &requirements) const {
// Collect outer generic parameters first.
if (OuterParameters) {
OuterParameters->getAsGenericSignatureElements(C, archetypeMap,
genericParams,
requirements);
}
// Collect our parameters.
for (auto paramIndex : indices(getParams())) {
auto param = getParams()[paramIndex];
auto typeParamTy = param->getDeclaredType()->castTo<GenericTypeParamType>();
// Make sure we didn't visit this param already in the parent.
auto found = archetypeMap.find(param->getArchetype());
if (found != archetypeMap.end()) {
assert(found->second->isEqual(typeParamTy));
continue;
}
// Set up a mapping we can use to remap requirements to dependent types.
ArchetypeType *archetype = getPrimaryArchetypes()[paramIndex];
archetypeMap[archetype] = typeParamTy;
genericParams.push_back(typeParamTy);
requirements.push_back(Requirement(RequirementKind::WitnessMarker,
typeParamTy, typeParamTy));
// Collect conformance requirements declared on the archetype.
if (auto super = archetype->getSuperclass()) {
requirements.push_back(Requirement(RequirementKind::Conformance,
typeParamTy, super));
}
for (auto proto : archetype->getConformsTo()) {
requirements.push_back(Requirement(RequirementKind::Conformance,
typeParamTy, proto->getDeclaredType()));
}
}
// FIXME: Emit WitnessMarker requirements for associated types in an order
// that preserves AllArchetypes order but otherwise makes no sense.
for (auto assocTy : getAssociatedArchetypes()) {
auto depTy = getAsDependentType(assocTy, archetypeMap);
requirements.push_back(Requirement(RequirementKind::WitnessMarker,
depTy, depTy));
// Add conformance requirements for this associated archetype.
for (const auto &repr : getRequirements()) {
// Handle same-type requirements at last.
if (repr.getKind() != RequirementKind::Conformance)
continue;
// Primary conformance declarations would have already been gathered as
// conformance requirements of the archetype.
if (auto arch = repr.getSubject()->getAs<ArchetypeType>())
if (!arch->getParent())
continue;
auto depTyOfReqt = getAsDependentType(repr.getSubject(), archetypeMap);
if (depTyOfReqt.getPointer() != depTy.getPointer())
continue;
Requirement reqt(RequirementKind::Conformance,
getAsDependentType(repr.getSubject(), archetypeMap),
getAsDependentType(repr.getConstraint(), archetypeMap));
requirements.push_back(reqt);
}
}
// Add all of the same-type requirements.
if (Builder) {
for (auto req : Builder->getSameTypeRequirements()) {
auto firstType = req.first->getDependentType(*Builder, false);
Type secondType;
if (auto concrete = req.second.dyn_cast<Type>())
secondType = getAsDependentType(concrete, archetypeMap);
else if (auto secondPA =
req.second.dyn_cast<ArchetypeBuilder::PotentialArchetype*>())
secondType = secondPA->getDependentType(*Builder, false);
if (firstType->is<ErrorType>() || secondType->is<ErrorType>())
continue;
requirements.push_back(Requirement(RequirementKind::SameType,
firstType, secondType));
}
}
}
/// \brief Add the nested archetypes of the given archetype to the set
/// of all archetypes.
void GenericParamList::addNestedArchetypes(ArchetypeType *archetype,
SmallPtrSetImpl<ArchetypeType*> &known,
SmallVectorImpl<ArchetypeType*> &all) {
for (auto nested : archetype->getNestedTypes()) {
auto nestedArch = nested.second.getAsArchetype();
if (!nestedArch)
continue;
if (known.insert(nestedArch).second) {
assert(!nestedArch->isPrimary() && "Unexpected primary archetype");
all.push_back(nestedArch);
addNestedArchetypes(nestedArch, known, all);
}
}
}
ArrayRef<ArchetypeType*>
GenericParamList::deriveAllArchetypes(ArrayRef<GenericTypeParamDecl *> params,
SmallVectorImpl<ArchetypeType*> &all) {
// This should be kept in sync with ArchetypeBuilder::getAllArchetypes().
assert(all.empty());
llvm::SmallPtrSet<ArchetypeType*, 8> known;
// Collect all the primary archetypes.
for (auto param : params) {
auto archetype = param->getArchetype();
if (known.insert(archetype).second)
all.push_back(archetype);
}
// Collect all the nested archetypes.
for (auto param : params) {
auto archetype = param->getArchetype();
addNestedArchetypes(archetype, known, all);
}
return all;
}
TrailingWhereClause::TrailingWhereClause(
SourceLoc whereLoc,
ArrayRef<RequirementRepr> requirements)
: WhereLoc(whereLoc),
NumRequirements(requirements.size())
{
memcpy(getRequirements().data(), requirements.data(),
NumRequirements * sizeof(RequirementRepr));
}
TrailingWhereClause *TrailingWhereClause::create(
ASTContext &ctx,
SourceLoc whereLoc,
ArrayRef<RequirementRepr> requirements) {
unsigned size = sizeof(TrailingWhereClause)
+ requirements.size() * sizeof(RequirementRepr);
void *mem = ctx.Allocate(size, alignof(TrailingWhereClause));
return new (mem) TrailingWhereClause(whereLoc, requirements);
}
ImportDecl *ImportDecl::create(ASTContext &Ctx, DeclContext *DC,
SourceLoc ImportLoc, ImportKind Kind,
SourceLoc KindLoc,
ArrayRef<AccessPathElement> Path,
ClangNode ClangN) {
assert(!Path.empty());
assert(Kind == ImportKind::Module || Path.size() > 1);
assert(ClangN.isNull() || ClangN.getAsModule() ||
isa<clang::ImportDecl>(ClangN.getAsDecl()));
size_t Size = sizeof(ImportDecl) + Path.size() * sizeof(AccessPathElement);
void *ptr = allocateMemoryForDecl<ImportDecl>(Ctx, Size, !ClangN.isNull());
auto D = new (ptr) ImportDecl(DC, ImportLoc, Kind, KindLoc, Path);
if (ClangN)
D->setClangNode(ClangN);
return D;
}
ImportDecl::ImportDecl(DeclContext *DC, SourceLoc ImportLoc, ImportKind K,
SourceLoc KindLoc, ArrayRef<AccessPathElement> Path)
: Decl(DeclKind::Import, DC), ImportLoc(ImportLoc), KindLoc(KindLoc),
NumPathElements(Path.size()) {
ImportDeclBits.ImportKind = static_cast<unsigned>(K);
assert(getImportKind() == K && "not enough bits for ImportKind");
std::uninitialized_copy(Path.begin(), Path.end(), getPathBuffer());
}
ImportKind ImportDecl::getBestImportKind(const ValueDecl *VD) {
switch (VD->getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::EnumCase:
case DeclKind::IfConfig:
llvm_unreachable("not a ValueDecl");
case DeclKind::AssociatedType:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::GenericTypeParam:
case DeclKind::Subscript:
case DeclKind::EnumElement:
case DeclKind::Param:
llvm_unreachable("not a top-level ValueDecl");
case DeclKind::Protocol:
return ImportKind::Protocol;
case DeclKind::Class:
return ImportKind::Class;
case DeclKind::Enum:
return ImportKind::Enum;
case DeclKind::Struct:
return ImportKind::Struct;
case DeclKind::TypeAlias: {
Type underlyingTy = cast<TypeAliasDecl>(VD)->getUnderlyingType();
return getBestImportKind(underlyingTy->getAnyNominal());
}
case DeclKind::Func:
return ImportKind::Func;
case DeclKind::Var:
return ImportKind::Var;
case DeclKind::Module:
return ImportKind::Module;
}
llvm_unreachable("bad DeclKind");
}
Optional<ImportKind>
ImportDecl::findBestImportKind(ArrayRef<ValueDecl *> Decls) {
assert(!Decls.empty());
ImportKind FirstKind = ImportDecl::getBestImportKind(Decls.front());
// FIXME: Only functions can be overloaded.
if (Decls.size() == 1)
return FirstKind;
if (FirstKind != ImportKind::Func)
return None;
for (auto NextDecl : Decls.slice(1)) {
if (ImportDecl::getBestImportKind(NextDecl) != FirstKind)
return None;
}
return FirstKind;
}
template <typename T>
static void
loadAllConformances(const T *container,
const LazyLoaderArray<ProtocolConformance*> &loaderInfo) {
if (!loaderInfo.isLazy())
return;
// Don't try to load conformances re-entrant-ly.
auto resolver = loaderInfo.getLoader();
auto contextData = loaderInfo.getLoaderContextData();
const_cast<LazyLoaderArray<ProtocolConformance*> &>(loaderInfo) = {};
SmallVector<ProtocolConformance *, 8> Conformances;
resolver->loadAllConformances(container, contextData, Conformances);
const_cast<T *>(container)->setConformances(
container->getASTContext().AllocateCopy(Conformances));
}
DeclRange NominalTypeDecl::getMembers(bool forceDelayedMembers) const {
loadAllMembers();
if (forceDelayedMembers)
const_cast<NominalTypeDecl*>(this)->forceDelayedMemberDecls();
return IterableDeclContext::getMembers();
}
void NominalTypeDecl::setMemberLoader(LazyMemberLoader *resolver,
uint64_t contextData) {
IterableDeclContext::setLoader(resolver, contextData);
}
void NominalTypeDecl::setConformanceLoader(LazyMemberLoader *resolver,
uint64_t contextData) {
assert(!HaveConformanceLoader &&
"Already have a conformance loader");
HaveConformanceLoader = true;
getASTContext().recordConformanceLoader(this, resolver, contextData);
}
std::pair<LazyMemberLoader *, uint64_t>
NominalTypeDecl::takeConformanceLoaderSlow() {
assert(HaveConformanceLoader && "no conformance loader?");
HaveConformanceLoader = false;
return getASTContext().takeConformanceLoader(this);
}
ExtensionDecl::ExtensionDecl(SourceLoc extensionLoc,
TypeLoc extendedType,
MutableArrayRef<TypeLoc> inherited,
DeclContext *parent,
TrailingWhereClause *trailingWhereClause)
: Decl(DeclKind::Extension, parent),
DeclContext(DeclContextKind::ExtensionDecl, parent),
IterableDeclContext(IterableDeclContextKind::ExtensionDecl),
ExtensionLoc(extensionLoc),
ExtendedType(extendedType),
Inherited(inherited),
TrailingWhere(trailingWhereClause)
{
ExtensionDeclBits.Validated = false;
ExtensionDeclBits.CheckedInheritanceClause = false;
ExtensionDeclBits.DefaultAndMaxAccessLevel = 0;
ExtensionDeclBits.HaveConformanceLoader = false;
}
ExtensionDecl *ExtensionDecl::create(ASTContext &ctx, SourceLoc extensionLoc,
TypeLoc extendedType,
MutableArrayRef<TypeLoc> inherited,
DeclContext *parent,
TrailingWhereClause *trailingWhereClause,
ClangNode clangNode) {
unsigned size = sizeof(ExtensionDecl);
void *declPtr = allocateMemoryForDecl<ExtensionDecl>(ctx, size,
!clangNode.isNull());
// Construct the extension.
auto result = ::new (declPtr) ExtensionDecl(extensionLoc, extendedType,
inherited, parent,
trailingWhereClause);
if (clangNode)
result->setClangNode(clangNode);
return result;
}
void ExtensionDecl::setGenericParams(GenericParamList *params) {
GenericParams = params;
if (GenericParams) {
for (auto param : *GenericParams)
param->setDeclContext(this);
}
}
void ExtensionDecl::setGenericSignature(GenericSignature *sig) {
assert(!GenericSig && "Already have generic signature");
GenericSig = sig;
}
DeclRange ExtensionDecl::getMembers(bool forceDelayedMembers) const {
loadAllMembers();
return IterableDeclContext::getMembers();
}
void ExtensionDecl::setMemberLoader(LazyMemberLoader *resolver,
uint64_t contextData) {
IterableDeclContext::setLoader(resolver, contextData);
}
void ExtensionDecl::setConformanceLoader(LazyMemberLoader *resolver,
uint64_t contextData) {
assert(!ExtensionDeclBits.HaveConformanceLoader &&
"Already have a conformance loader");
ExtensionDeclBits.HaveConformanceLoader = true;
getASTContext().recordConformanceLoader(this, resolver, contextData);
}
std::pair<LazyMemberLoader *, uint64_t>
ExtensionDecl::takeConformanceLoaderSlow() {
assert(ExtensionDeclBits.HaveConformanceLoader && "no conformance loader?");
ExtensionDeclBits.HaveConformanceLoader = false;
return getASTContext().takeConformanceLoader(this);
}
bool ExtensionDecl::isConstrainedExtension() const {
auto nominal = getExtendedType()->getAnyNominal();
// Error case: erroneous extension.
if (!nominal)
return false;
// Non-generic extension.
if (!getGenericSignature())
return false;
// If the generic signature differs from that of the nominal type, it's a
// constrained extension.
return getGenericSignature()->getCanonicalSignature()
!= nominal->getGenericSignature()->getCanonicalSignature();
}
PatternBindingDecl::PatternBindingDecl(SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc VarLoc,
unsigned NumPatternEntries,
DeclContext *Parent)
: Decl(DeclKind::PatternBinding, Parent),
StaticLoc(StaticLoc), VarLoc(VarLoc),
numPatternEntries(NumPatternEntries) {
PatternBindingDeclBits.IsStatic = StaticLoc.isValid();
PatternBindingDeclBits.StaticSpelling =
static_cast<unsigned>(StaticSpelling);
}
PatternBindingDecl *
PatternBindingDecl::create(ASTContext &Ctx, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc VarLoc,
ArrayRef<PatternBindingEntry> PatternList,
DeclContext *Parent) {
size_t Size = sizeof(PatternBindingDecl) +
PatternList.size() * sizeof(PatternBindingEntry);
void *D = allocateMemoryForDecl<PatternBindingDecl>(Ctx, Size,
false);
auto PBD = ::new (D) PatternBindingDecl(StaticLoc, StaticSpelling, VarLoc,
PatternList.size(), Parent);
// Set up the patterns.
auto entries = PBD->getMutablePatternList();
unsigned elt = 0U-1;
for (auto pe : PatternList) {
++elt;
auto &newEntry = entries[elt];
newEntry = { nullptr, pe.getInit() };
PBD->setPattern(elt, pe.getPattern());
}
return PBD;
}
static bool patternContainsVarDeclBinding(const Pattern *P, const VarDecl *VD) {
bool Result = false;
P->forEachVariable([&](VarDecl *FoundVD) {
Result |= FoundVD == VD;
});
return Result;
}
unsigned PatternBindingDecl::getPatternEntryIndexForVarDecl(const VarDecl *VD) const {
assert(VD && "Cannot find a null VarDecl");
auto List = getPatternList();
if (List.size() == 1) {
assert(patternContainsVarDeclBinding(List[0].getPattern(), VD) &&
"Single entry PatternBindingDecl is set up wrong");
return 0;
}
unsigned Result = 0;
for (auto entry : List) {
if (patternContainsVarDeclBinding(entry.getPattern(), VD))
return Result;
++Result;
}
assert(0 && "PatternBindingDecl doesn't bind the specified VarDecl!");
return ~0U;
}
SourceRange PatternBindingDecl::getSourceRange() const {
SourceLoc startLoc = getStartLoc();
// Take the init of the last pattern in the list.
if (auto init = getPatternList().back().getInit()) {
SourceLoc EndLoc = init->getEndLoc();
if (EndLoc.isValid())
return { startLoc, EndLoc };
}
// If the last pattern had no init, we take the end of its pattern.
return { startLoc, getPatternList().back().getPattern()->getEndLoc() };
}
static StaticSpellingKind getCorrectStaticSpellingForDecl(const Decl *D) {
auto StaticSpelling = StaticSpellingKind::KeywordStatic;
if (Type T = D->getDeclContext()->getDeclaredTypeInContext()) {
if (auto NTD = T->getAnyNominal()) {
if (isa<ClassDecl>(NTD))
StaticSpelling = StaticSpellingKind::KeywordClass;
}
}
return StaticSpelling;
}
StaticSpellingKind PatternBindingDecl::getCorrectStaticSpelling() const {
if (!isStatic())
return StaticSpellingKind::None;
return getCorrectStaticSpellingForDecl(this);
}
bool PatternBindingDecl::hasStorage() const {
// Walk the pattern, to check to see if any of the VarDecls included in it
// have storage.
bool HasStorage = false;
for (auto entry : getPatternList())
entry.getPattern()->forEachVariable([&](VarDecl *VD) {
if (VD->hasStorage())
HasStorage = true;
});
return HasStorage;
}
void PatternBindingDecl::setPattern(unsigned i, Pattern *P) {
auto PatternList = getMutablePatternList();
PatternList[i].setPattern(P);
// Make sure that any VarDecl's contained within the pattern know about this
// PatternBindingDecl as their parent.
if (P)
P->forEachVariable([&](VarDecl *VD) {
VD->setParentPatternBinding(this);
});
}
VarDecl *PatternBindingDecl::getSingleVar() const {
if (getNumPatternEntries() == 1)
return getPatternList()[0].getPattern()->getSingleVar();
return nullptr;
}
SourceLoc TopLevelCodeDecl::getStartLoc() const {
return Body->getStartLoc();
}
SourceRange TopLevelCodeDecl::getSourceRange() const {
return Body->getSourceRange();
}
SourceRange IfConfigDecl::getSourceRange() const {
return SourceRange(getLoc(), EndLoc);
}
static bool isPolymorphic(const AbstractStorageDecl *storage) {
auto ctx = storage->getDeclContext()->getDeclaredTypeInContext();
if (!ctx) return false;
auto nominal = ctx->getNominalOrBoundGenericNominal();
assert(nominal && "context wasn't a nominal type?");
switch (nominal->getKind()) {
#define DECL(ID, BASE) case DeclKind::ID:
#define NOMINAL_TYPE_DECL(ID, BASE)
#include "swift/AST/DeclNodes.def"
llvm_unreachable("not a nominal type!");
case DeclKind::Struct:
case DeclKind::Enum:
return false;
case DeclKind::Protocol:
return true;
case DeclKind::Class:
// Final properties can always be direct, even in classes.
return !storage->isFinal();
}
llvm_unreachable("bad DeclKind");
}
/// Determines the access semantics to use in a DeclRefExpr or
/// MemberRefExpr use of this value in the specified context.
AccessSemantics
ValueDecl::getAccessSemanticsFromContext(const DeclContext *UseDC) const {
if (auto *var = dyn_cast<AbstractStorageDecl>(this)) {
// Observing member are accessed directly from within their didSet/willSet
// specifiers. This prevents assignments from becoming infinite loops.
if (auto *UseFD = dyn_cast<FuncDecl>(UseDC))
if (var->hasStorage() && var->hasAccessorFunctions() &&
UseFD->getAccessorStorageDecl() == var)
return AccessSemantics::DirectToStorage;
// "StoredWithTrivialAccessors" are generally always accessed indirectly,
// but if we know that the trivial accessor will always produce the same
// thing as the getter/setter (i.e., it can't be overridden), then just do a
// direct access.
//
// This is true in structs and for final properties.
// TODO: What about static properties?
switch (var->getStorageKind()) {
case AbstractStorageDecl::Stored:
case AbstractStorageDecl::Addressed:
// The storage is completely trivial. Always do direct access.
return AccessSemantics::DirectToStorage;
case AbstractStorageDecl::StoredWithTrivialAccessors:
case AbstractStorageDecl::AddressedWithTrivialAccessors: {
// If the property is defined in a non-final class or a protocol, the
// accessors are dynamically dispatched, and we cannot do direct access.
if (isPolymorphic(var))
return AccessSemantics::Ordinary;
// If the property is defined in a nominal type which must be accessed
// resiliently from the current module, we cannot do direct access.
auto VarDC = var->getDeclContext();
if (auto *nominal = VarDC->isNominalTypeOrNominalTypeExtensionContext())
if (!nominal->hasFixedLayout(UseDC->getParentModule()))
return AccessSemantics::Ordinary;
// We know enough about the property to perform direct access.
return AccessSemantics::DirectToStorage;
}
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
case AbstractStorageDecl::Computed:
case AbstractStorageDecl::ComputedWithMutableAddress:
case AbstractStorageDecl::AddressedWithObservers:
// Property is not trivially backed by storage, do not perform
// direct access.
break;
}
}
return AccessSemantics::Ordinary;
}
AccessStrategy
AbstractStorageDecl::getAccessStrategy(AccessSemantics semantics,
AccessKind accessKind) const {
switch (semantics) {
case AccessSemantics::DirectToStorage:
switch (getStorageKind()) {
case Stored:
case StoredWithTrivialAccessors:
case StoredWithObservers:
return AccessStrategy::Storage;
case Addressed:
case AddressedWithTrivialAccessors:
case AddressedWithObservers:
case ComputedWithMutableAddress:
return AccessStrategy::Addressor;
case InheritedWithObservers:
case Computed:
llvm_unreachable("cannot have direct-to-storage access to "
"computed storage");
}
llvm_unreachable("bad storage kind");
case AccessSemantics::DirectToAccessor:
assert(hasAccessorFunctions() &&
"direct-to-accessors access to storage without accessors?");
return AccessStrategy::DirectToAccessor;
case AccessSemantics::Ordinary:
switch (auto storageKind = getStorageKind()) {
case Stored:
return AccessStrategy::Storage;
case Addressed:
return AccessStrategy::Addressor;
case StoredWithObservers:
case InheritedWithObservers:
case AddressedWithObservers:
// An observing property backed by its own storage (i.e. which
// doesn't override anything) has a trivial getter implementation,
// but its setter is interesting.
if (accessKind != AccessKind::Read ||
storageKind == InheritedWithObservers) {
if (isPolymorphic(this))
return AccessStrategy::DispatchToAccessor;
return AccessStrategy::DirectToAccessor;
}
// Fall through to the trivial-implementation case.
SWIFT_FALLTHROUGH;
case StoredWithTrivialAccessors:
case AddressedWithTrivialAccessors: {
// If the property is defined in a non-final class or a protocol, the
// accessors are dynamically dispatched, and we cannot do direct access.
if (isPolymorphic(this))
return AccessStrategy::DispatchToAccessor;
// If we end up here with a stored property of a type that's resilient
// from some resilience domain, we cannot do direct access.
//
// As an optimization, we do want to perform direct accesses of stored
// properties of resilient types in the same resilience domain as the
// access.
//
// This is done by using DirectToStorage semantics above, with the
// understanding that the access semantics are with respect to the
// resilience domain of the accessor's caller.
auto DC = getDeclContext();
if (auto *nominal = DC->isNominalTypeOrNominalTypeExtensionContext())
if (!nominal->hasFixedLayout())
return AccessStrategy::DirectToAccessor;
if (storageKind == StoredWithObservers ||
storageKind == StoredWithTrivialAccessors) {
return AccessStrategy::Storage;
} else {
assert(storageKind == AddressedWithObservers ||
storageKind == AddressedWithTrivialAccessors);
return AccessStrategy::Addressor;
}
}
case ComputedWithMutableAddress:
if (isPolymorphic(this))
return AccessStrategy::DispatchToAccessor;
if (accessKind == AccessKind::Read)
return AccessStrategy::DirectToAccessor;
return AccessStrategy::Addressor;
case Computed:
if (isPolymorphic(this))
return AccessStrategy::DispatchToAccessor;
return AccessStrategy::DirectToAccessor;
}
llvm_unreachable("bad storage kind");
}
llvm_unreachable("bad access semantics");
}
bool ValueDecl::isDefinition() const {
switch (getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::Subscript:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::IfConfig:
llvm_unreachable("non-value decls shouldn't get here");
case DeclKind::Func:
case DeclKind::Constructor:
case DeclKind::Destructor:
return cast<AbstractFunctionDecl>(this)->hasBody();
case DeclKind::Var:
case DeclKind::Param:
case DeclKind::Enum:
case DeclKind::EnumElement:
case DeclKind::Struct:
case DeclKind::Class:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
case DeclKind::Protocol:
case DeclKind::Module:
return true;
}
llvm_unreachable("bad DeclKind");
}
bool ValueDecl::isInstanceMember() const {
DeclContext *DC = getDeclContext();
if (!DC->isTypeContext())
return false;
switch (getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::IfConfig:
llvm_unreachable("Not a ValueDecl");
case DeclKind::Class:
case DeclKind::Enum:
case DeclKind::Protocol:
case DeclKind::Struct:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
// Types are not instance members.
return false;
case DeclKind::Constructor:
// Constructors are not instance members.
return false;
case DeclKind::Destructor:
// Destructors are technically instance members, although they
// can't actually be referenced as such.
return true;
case DeclKind::Func:
// Non-static methods are instance members.
return !cast<FuncDecl>(this)->isStatic();
case DeclKind::EnumElement:
case DeclKind::Param:
// enum elements and function parameters are not instance members.
return false;
case DeclKind::Subscript:
// Subscripts are always instance members.
return true;
case DeclKind::Var:
// Non-static variables are instance members.
return !cast<VarDecl>(this)->isStatic();
case DeclKind::Module:
// Modules are never instance members.
return false;
}
llvm_unreachable("bad DeclKind");
}
bool ValueDecl::needsCapture() const {
// We don't need to capture anything from non-local contexts.
if (!getDeclContext()->isLocalContext())
return false;
// We don't need to capture types.
if (isa<TypeDecl>(this))
return false;
return true;
}
ValueDecl *ValueDecl::getOverriddenDecl() const {
if (auto fd = dyn_cast<FuncDecl>(this))
return fd->getOverriddenDecl();
if (auto sdd = dyn_cast<AbstractStorageDecl>(this))
return sdd->getOverriddenDecl();
if (auto cd = dyn_cast<ConstructorDecl>(this))
return cd->getOverriddenDecl();
return nullptr;
}
bool swift::conflicting(const OverloadSignature& sig1,
const OverloadSignature& sig2) {
// A member of a protocol extension never conflicts with a member of a
// protocol.
if (sig1.InProtocolExtension != sig2.InProtocolExtension)
return false;
// If the base names are different, they can't conflict.
if (sig1.Name.getBaseName() != sig2.Name.getBaseName())
return false;
// If one is a compound name and the other is not, they do not conflict
// if one is a property and the other is a non-nullary function.
if (sig1.Name.isCompoundName() != sig2.Name.isCompoundName()) {
return !((sig1.IsProperty && sig2.Name.getArgumentNames().size() > 0) ||
(sig2.IsProperty && sig1.Name.getArgumentNames().size() > 0));
}
return sig1.Name == sig2.Name &&
sig1.InterfaceType == sig2.InterfaceType &&
sig1.UnaryOperator == sig2.UnaryOperator &&
sig1.IsInstanceMember == sig2.IsInstanceMember;
}
static Type mapSignatureFunctionType(ASTContext &ctx, Type type,
bool topLevelFunction,
bool isMethod,
bool isInitializer,
unsigned curryLevels);
/// Map a type within the signature of a declaration.
static Type mapSignatureType(ASTContext &ctx, Type type) {
return type.transform([&](Type type) -> Type {
if (type->is<FunctionType>()) {
return mapSignatureFunctionType(ctx, type, false, false, false, 1);
}
return type;
});
}
/// Map a signature type for a parameter.
static Type mapSignatureParamType(ASTContext &ctx, Type type) {
/// Translate implicitly unwrapped optionals into strict optionals.
if (auto uncheckedOptOf = type->getImplicitlyUnwrappedOptionalObjectType()) {
type = OptionalType::get(uncheckedOptOf);
}
return mapSignatureType(ctx, type);
}
/// Map an ExtInfo for a function type.
///
/// When checking if two signatures should be equivalent for overloading,
/// we may need to compare the extended information.
///
/// In the type of the function declaration, none of the extended information
/// is relevant. We cannot overload purely on @noreturn, 'throws', or the
/// calling convention of the declaration itself.
///
/// For function parameter types, we do want to be able to overload on
/// 'throws', since that is part of the mangled symbol name, but not
/// @noreturn or @noescape.
static AnyFunctionType::ExtInfo
mapSignatureExtInfo(AnyFunctionType::ExtInfo info,
bool topLevelFunction) {
if (topLevelFunction)
return AnyFunctionType::ExtInfo();
return AnyFunctionType::ExtInfo()
.withRepresentation(info.getRepresentation())
.withIsAutoClosure(info.isAutoClosure())
.withThrows(info.throws());
}
/// Map a function's type to the type used for computing signatures,
/// which involves stripping some attributes, stripping default arguments,
/// transforming implicitly unwrapped optionals into strict optionals,
/// stripping 'inout' on the 'self' parameter etc.
static Type mapSignatureFunctionType(ASTContext &ctx, Type type,
bool topLevelFunction,
bool isMethod,
bool isInitializer,
unsigned curryLevels) {
if (curryLevels == 0) {
// In an initializer, ignore optionality.
if (isInitializer) {
if (auto objectType = type->getAnyOptionalObjectType())
type = objectType;
}
// Translate implicitly unwrapped optionals into strict optionals.
if (auto uncheckedOptOf = type->getImplicitlyUnwrappedOptionalObjectType()) {
type = OptionalType::get(uncheckedOptOf);
}
return mapSignatureType(ctx, type);
}
auto funcTy = type->castTo<AnyFunctionType>();
auto argTy = funcTy->getInput();
if (auto tupleTy = argTy->getAs<TupleType>()) {
SmallVector<TupleTypeElt, 4> elements;
bool anyChanged = false;
unsigned idx = 0;
for (const auto &elt : tupleTy->getElements()) {
Type eltTy = mapSignatureParamType(ctx, elt.getType());
if (anyChanged || eltTy.getPointer() != elt.getType().getPointer() ||
elt.getDefaultArgKind() != DefaultArgumentKind::None) {
if (!anyChanged) {
elements.reserve(tupleTy->getNumElements());
for (unsigned i = 0; i != idx; ++i) {
const TupleTypeElt &elt = tupleTy->getElement(i);
elements.push_back(TupleTypeElt(elt.getType(), elt.getName(),
DefaultArgumentKind::None,
elt.isVararg()));
}
anyChanged = true;
}
elements.push_back(TupleTypeElt(eltTy, elt.getName(),
DefaultArgumentKind::None,
elt.isVararg()));
}
++idx;
}
if (anyChanged) {
argTy = TupleType::get(elements, ctx);
}
} else {
argTy = mapSignatureParamType(ctx, argTy);
if (isMethod) {
// In methods, strip the 'inout' off of 'self' so that mutating and
// non-mutating methods have the same self parameter type.
if (auto inoutTy = argTy->getAs<InOutType>()) {
argTy = inoutTy->getObjectType();
}
}
}
// Map the result type.
auto resultTy = mapSignatureFunctionType(
ctx, funcTy->getResult(), topLevelFunction, false, isInitializer,
curryLevels - 1);
// Map various attributes differently depending on if we're looking at
// the declaration, or a function parameter type.
AnyFunctionType::ExtInfo info = mapSignatureExtInfo(
funcTy->getExtInfo(), topLevelFunction);
// Rebuild the resulting function type.
if (auto genericFuncTy = dyn_cast<GenericFunctionType>(funcTy))
return GenericFunctionType::get(genericFuncTy->getGenericSignature(),
argTy, resultTy, info);
return FunctionType::get(argTy, resultTy, info);
}
OverloadSignature ValueDecl::getOverloadSignature() const {
OverloadSignature signature;
signature.Name = getFullName();
signature.InProtocolExtension
= getDeclContext()->isProtocolExtensionContext();
// Functions, initializers, and de-initializers include their
// interface types in their signatures as well as whether they are
// instance members.
if (auto afd = dyn_cast<AbstractFunctionDecl>(this)) {
signature.InterfaceType =
mapSignatureFunctionType(
getASTContext(), getInterfaceType(),
/*topLevelFunction=*/true,
/*isMethod=*/afd->getImplicitSelfDecl() != nullptr,
/*isInitializer=*/isa<ConstructorDecl>(afd),
afd->getNumParameterLists())->getCanonicalType();
signature.IsInstanceMember = isInstanceMember();
// Unary operators also include prefix/postfix.
if (auto func = dyn_cast<FuncDecl>(this)) {
if (func->isUnaryOperator()) {
signature.UnaryOperator = func->getAttrs().getUnaryOperatorKind();
}
}
} else if (isa<SubscriptDecl>(this)) {
signature.InterfaceType
= getInterfaceType()->getWithoutDefaultArgs(getASTContext())
->getCanonicalType();
// If the subscript occurs within a generic extension context,
// consider the generic signature of the extension.
if (auto ext = dyn_cast<ExtensionDecl>(getDeclContext())) {
if (auto genericSig = ext->getGenericSignature()) {
auto funcTy = signature.InterfaceType->castTo<AnyFunctionType>();
signature.InterfaceType
= GenericFunctionType::get(genericSig,
funcTy->getInput(),
funcTy->getResult(),
funcTy->getExtInfo())
->getCanonicalType();
}
}
} else if (isa<VarDecl>(this)) {
signature.IsProperty = true;
signature.IsInstanceMember = isInstanceMember();
// If the property occurs within a generic extension context,
// consider the generic signature of the extension.
if (auto ext = dyn_cast<ExtensionDecl>(getDeclContext())) {
if (auto genericSig = ext->getGenericSignature()) {
ASTContext &ctx = getASTContext();
signature.InterfaceType
= GenericFunctionType::get(genericSig,
TupleType::getEmpty(ctx),
TupleType::getEmpty(ctx),
AnyFunctionType::ExtInfo())
->getCanonicalType();
}
}
}
return signature;
}
void ValueDecl::setIsObjC(bool Value) {
bool CurrentValue = isObjC();
if (CurrentValue == Value)
return;
if (!Value) {
for (auto *Attr : getAttrs()) {
if (auto *OA = dyn_cast<ObjCAttr>(Attr))
OA->setInvalid();
}
} else {
getAttrs().add(ObjCAttr::createUnnamedImplicit(getASTContext()));
}
}
bool ValueDecl::canBeAccessedByDynamicLookup() const {
if (!hasName())
return false;
// Dynamic lookup can only find [objc] members.
if (!isObjC())
return false;
// Dynamic lookup can only find class and protocol members, or extensions of
// classes.
auto declaredType = getDeclContext()->getDeclaredTypeOfContext();
if (!declaredType)
return false;
auto nominalDC = declaredType->getAnyNominal();
if (!nominalDC ||
(!isa<ClassDecl>(nominalDC) && !isa<ProtocolDecl>(nominalDC)))
return false;
// Dynamic lookup cannot find results within a non-protocol generic context,
// because there is no sensible way to infer the generic arguments.
if (getDeclContext()->isGenericContext() && !isa<ProtocolDecl>(nominalDC))
return false;
// Dynamic lookup can find functions, variables, and subscripts.
if (isa<FuncDecl>(this) || isa<VarDecl>(this) || isa<SubscriptDecl>(this))
return true;
return false;
}
ArrayRef<ValueDecl *>
ValueDecl::getSatisfiedProtocolRequirements(bool Sorted) const {
// Dig out the nominal type.
NominalTypeDecl *NTD =
getDeclContext()->isNominalTypeOrNominalTypeExtensionContext();
if (!NTD || isa<ProtocolDecl>(NTD))
return {};
return NTD->getSatisfiedProtocolRequirementsForMember(this, Sorted);
}
void ValueDecl::setType(Type T) {
assert(!hasType() && "changing type of declaration");
overwriteType(T);
}
void ValueDecl::overwriteType(Type T) {
TypeAndAccess.setPointer(T);
if (!T.isNull() && T->is<ErrorType>())
setInvalid();
}
Type ValueDecl::getInterfaceType() const {
if (InterfaceTy)
return InterfaceTy;
if (auto nominal = dyn_cast<NominalTypeDecl>(this))
return nominal->computeInterfaceType();
if (auto assocType = dyn_cast<AssociatedTypeDecl>(this)) {
auto proto = cast<ProtocolDecl>(getDeclContext());
(void)proto->getType(); // make sure we've computed the type.
// FIXME: the generic parameter types list should never be empty.
auto selfTy = proto->getGenericParamTypes().empty()
? proto->getProtocolSelf()->getType()
: proto->getGenericParamTypes().back();
auto &ctx = getASTContext();
InterfaceTy = DependentMemberType::get(
selfTy,
const_cast<AssociatedTypeDecl *>(assocType),
ctx);
InterfaceTy = MetatypeType::get(InterfaceTy, ctx);
return InterfaceTy;
}
if (!hasType())
return Type();
// If the type involves a type variable, don't cache it.
auto type = getType();
assert((type.isNull() || !type->is<PolymorphicFunctionType>())
&& "decl has polymorphic function type but no interface type");
if (type->hasTypeVariable())
return type;
InterfaceTy = type;
return InterfaceTy;
}
void ValueDecl::setInterfaceType(Type type) {
assert((type.isNull() || !type->hasTypeVariable()) &&
"Type variable in interface type");
assert((type.isNull() || !type->is<PolymorphicFunctionType>()) &&
"setting polymorphic function type as interface type");
InterfaceTy = type;
}
SourceLoc ValueDecl::getAttributeInsertionLoc(bool forModifier) const {
if (auto var = dyn_cast<VarDecl>(this)) {
if (auto pbd = var->getParentPatternBinding()) {
SourceLoc resultLoc = pbd->getAttrs().getStartLoc(forModifier);
return resultLoc.isValid() ? resultLoc : pbd->getStartLoc();
}
}
SourceLoc resultLoc = getAttrs().getStartLoc(forModifier);
return resultLoc.isValid() ? resultLoc : getStartLoc();
}
Type TypeDecl::getDeclaredType() const {
if (auto TAD = dyn_cast<TypeAliasDecl>(this)) {
if (TAD->hasType() && TAD->getType()->is<ErrorType>())
return TAD->getType();
return TAD->getAliasType();
}
if (auto typeParam = dyn_cast<AbstractTypeParamDecl>(this)) {
auto type = typeParam->getType();
if (type->is<ErrorType>())
return type;
return type->castTo<MetatypeType>()->getInstanceType();
}
if (auto module = dyn_cast<ModuleDecl>(this)) {
return ModuleType::get(const_cast<ModuleDecl *>(module));
}
return cast<NominalTypeDecl>(this)->getDeclaredType();
}
Type TypeDecl::getDeclaredInterfaceType() const {
Type interfaceType = getInterfaceType();
if (interfaceType->is<ErrorType>())
return interfaceType;
return interfaceType->castTo<MetatypeType>()->getInstanceType();
}
bool NominalTypeDecl::hasFixedLayout() const {
// Private and internal types always have a fixed layout.
// TODO: internal types with availability information need to be
// resilient, since they can be used from @_transparent functions.
if (getFormalAccess() != Accessibility::Public)
return true;
// Check for an explicit @_fixed_layout attribute.
if (getAttrs().hasAttribute<FixedLayoutAttr>())
return true;
if (hasClangNode()) {
// Classes imported from Objective-C *never* have a fixed layout.
// IRGen needs to use dynamic ivar layout to ensure that subclasses
// of Objective-C classes are resilient against base class size
// changes.
if (isa<ClassDecl>(this))
return false;
// Structs and enums imported from C *always* have a fixed layout.
// We know their size, and pass them as values in SIL and IRGen.
return true;
}
// Objective-C enums always have a fixed layout.
if (isa<EnumDecl>(this) && isObjC())
return true;
// Otherwise, access via indirect "resilient" interfaces.
return false;
}
/// Provide the set of parameters to a generic type, or null if
/// this function is not generic.
void NominalTypeDecl::setGenericParams(GenericParamList *params) {
assert(!GenericParams && "Already has generic parameters");
GenericParams = params;
if (params)
for (auto Param : *params)
Param->setDeclContext(this);
}
bool NominalTypeDecl::derivesProtocolConformance(ProtocolDecl *protocol) const {
// Only known protocols can be derived.
auto knownProtocol = protocol->getKnownProtocolKind();
if (!knownProtocol)
return false;
// All nominal types can derive their ErrorType conformance.
if (*knownProtocol == KnownProtocolKind::ErrorType)
return true;
if (auto *enumDecl = dyn_cast<EnumDecl>(this)) {
switch (*knownProtocol) {
// Enums with raw types can implicitly derive their RawRepresentable
// conformance.
case KnownProtocolKind::RawRepresentable:
return enumDecl->hasRawType();
// Enums without associated values can implicitly derive Equatable and
// Hashable conformance.
case KnownProtocolKind::Equatable:
case KnownProtocolKind::Hashable:
return enumDecl->hasOnlyCasesWithoutAssociatedValues();
// @objc enums can explicitly derive their _BridgedNSError conformance.
case KnownProtocolKind::BridgedNSError:
return isObjC() && enumDecl->hasOnlyCasesWithoutAssociatedValues();
default:
return false;
}
}
return false;
}
void NominalTypeDecl::setGenericSignature(GenericSignature *sig) {
assert(!GenericSig && "Already have generic signature");
GenericSig = sig;
}
void NominalTypeDecl::computeType() {
assert(!hasType() && "Nominal type declaration already has a type");
// Compute the declared type.
Type parentTy = getDeclContext()->getDeclaredTypeInContext();
ASTContext &ctx = getASTContext();
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
if (!getDeclaredType()) {
ProtocolType::get(proto, ctx);
assert(getDeclaredType());
}
} else if (getGenericParams()) {
setDeclaredType(UnboundGenericType::get(this, parentTy, ctx));
} else {
setDeclaredType(NominalType::get(this, parentTy, ctx));
}
// Set the type.
setType(MetatypeType::get(DeclaredTy, ctx));
// A protocol has an implicit generic parameter list consisting of a single
// generic parameter, Self, that conforms to the protocol itself. This
// parameter is always implicitly bound.
//
// If this protocol has been deserialized, it already has generic parameters.
// Don't add them again.
if (!getGenericParams()) {
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
GenericParams = proto->createGenericParams(proto);
}
}
}
Type NominalTypeDecl::getDeclaredTypeInContext() const {
if (DeclaredTyInContext)
return DeclaredTyInContext;
Type Ty = getDeclaredType();
if (!Ty)
return Ty;
if (UnboundGenericType *UGT = Ty->getAs<UnboundGenericType>()) {
// If we have an unbound generic type, bind the type to the archetypes
// in the type's definition.
NominalTypeDecl *D = UGT->getDecl();
SmallVector<Type, 4> GenericArgs;
for (auto Param : *D->getGenericParams()) {
auto Archetype = Param->getArchetype();
if (!Archetype)
return ErrorType::get(getASTContext());
GenericArgs.push_back(Archetype);
}
Ty = BoundGenericType::get(D, getDeclContext()->getDeclaredTypeInContext(),
GenericArgs);
}
const_cast<NominalTypeDecl *>(this)->DeclaredTyInContext = Ty;
return DeclaredTyInContext;
}
Type NominalTypeDecl::computeInterfaceType() const {
if (InterfaceTy)
return InterfaceTy;
// Figure out the interface type of the parent.
Type parentType;
if (auto parent = getDeclContext()->isNominalTypeOrNominalTypeExtensionContext())
parentType = parent->getDeclaredInterfaceType();
Type type;
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
type = ProtocolType::get(const_cast<ProtocolDecl *>(proto),getASTContext());
} else if (auto params = getGenericParams()) {
// If we have a generic type, bind the type to the archetypes
// in the type's definition.
SmallVector<Type, 4> genericArgs;
for (auto param : *params)
genericArgs.push_back(param->getDeclaredType());
type = BoundGenericType::get(const_cast<NominalTypeDecl *>(this),
parentType, genericArgs);
} else {
type = NominalType::get(const_cast<NominalTypeDecl *>(this), parentType,
getASTContext());
}
InterfaceTy = MetatypeType::get(type, getASTContext());
return InterfaceTy;
}
void NominalTypeDecl::prepareExtensions() {
auto &context = Decl::getASTContext();
// If our list of extensions is out of date, update it now.
if (context.getCurrentGeneration() > ExtensionGeneration) {
unsigned previousGeneration = ExtensionGeneration;
ExtensionGeneration = context.getCurrentGeneration();
context.loadExtensions(this, previousGeneration);
}
}
ExtensionRange NominalTypeDecl::getExtensions() {
prepareExtensions();
return ExtensionRange(ExtensionIterator(FirstExtension), ExtensionIterator());
}
void NominalTypeDecl::addExtension(ExtensionDecl *extension) {
assert(!extension->NextExtension.getInt() && "Already added extension");
extension->NextExtension.setInt(true);
// First extension; set both first and last.
if (!FirstExtension) {
FirstExtension = extension;
LastExtension = extension;
return;
}
// Add to the end of the list.
LastExtension->NextExtension.setPointer(extension);
LastExtension = extension;
}
OptionalTypeKind NominalTypeDecl::classifyAsOptionalType() const {
const ASTContext &ctx = getASTContext();
if (this == ctx.getOptionalDecl()) {
return OTK_Optional;
} else if (this == ctx.getImplicitlyUnwrappedOptionalDecl()) {
return OTK_ImplicitlyUnwrappedOptional;
} else {
return OTK_None;
}
}
TypeAliasDecl::TypeAliasDecl(SourceLoc TypeAliasLoc, Identifier Name,
SourceLoc NameLoc, TypeLoc UnderlyingTy,
DeclContext *DC)
: TypeDecl(DeclKind::TypeAlias, DC, Name, NameLoc, {}),
TypeAliasLoc(TypeAliasLoc),
UnderlyingTy(UnderlyingTy)
{
// Set the type of the TypeAlias to the right MetatypeType.
ASTContext &Ctx = getASTContext();
AliasTy = new (Ctx, AllocationArena::Permanent) NameAliasType(this);
}
void TypeAliasDecl::computeType() {
ASTContext &ctx = getASTContext();
setType(MetatypeType::get(AliasTy, ctx));
}
SourceRange TypeAliasDecl::getSourceRange() const {
if (UnderlyingTy.hasLocation())
return { TypeAliasLoc, UnderlyingTy.getSourceRange().End };
return { TypeAliasLoc, getNameLoc() };
}
Type AbstractTypeParamDecl::getSuperclass() const {
if (Archetype)
return Archetype->getSuperclass();
// FIXME: Assert that this is never queried.
return nullptr;
}
ArrayRef<ProtocolDecl *> AbstractTypeParamDecl::getConformingProtocols(
LazyResolver *resolver) const {
if (Archetype)
return Archetype->getConformsTo();
// FIXME: Assert that this is never queried.
return { };
}
GenericTypeParamDecl::GenericTypeParamDecl(DeclContext *dc, Identifier name,
SourceLoc nameLoc,
unsigned depth, unsigned index)
: AbstractTypeParamDecl(DeclKind::GenericTypeParam, dc, name, nameLoc),
Depth(depth), Index(index)
{
auto &ctx = dc->getASTContext();
auto type = new (ctx, AllocationArena::Permanent) GenericTypeParamType(this);
setType(MetatypeType::get(type, ctx));
}
SourceRange GenericTypeParamDecl::getSourceRange() const {
SourceLoc endLoc = getNameLoc();
if (!getInherited().empty()) {
endLoc = getInherited().back().getSourceRange().End;
}
return SourceRange(getNameLoc(), endLoc);
}
bool GenericTypeParamDecl::isProtocolSelf() const {
if (!isImplicit()) return false;
auto dc = getDeclContext();
if (!dc->isProtocolOrProtocolExtensionContext()) return false;
return dc->getProtocolSelf() == this;
}
AssociatedTypeDecl::AssociatedTypeDecl(DeclContext *dc, SourceLoc keywordLoc,
Identifier name, SourceLoc nameLoc,
TypeLoc defaultDefinition)
: AbstractTypeParamDecl(DeclKind::AssociatedType, dc, name, nameLoc),
KeywordLoc(keywordLoc), DefaultDefinition(defaultDefinition)
{
AssociatedTypeDeclBits.Recursive = 0;
}
AssociatedTypeDecl::AssociatedTypeDecl(DeclContext *dc, SourceLoc keywordLoc,
Identifier name, SourceLoc nameLoc,
LazyMemberLoader *definitionResolver,
uint64_t resolverData)
: AbstractTypeParamDecl(DeclKind::AssociatedType, dc, name, nameLoc),
KeywordLoc(keywordLoc), Resolver(definitionResolver),
ResolverContextData(resolverData)
{
assert(Resolver && "missing resolver");
AssociatedTypeDeclBits.Recursive = 0;
}
void AssociatedTypeDecl::computeType() {
auto &ctx = getASTContext();
auto type = new (ctx, AllocationArena::Permanent) AssociatedTypeType(this);
setType(MetatypeType::get(type, ctx));
}
TypeLoc &AssociatedTypeDecl::getDefaultDefinitionLoc() {
if (Resolver) {
DefaultDefinition =
Resolver->loadAssociatedTypeDefault(this, ResolverContextData);
Resolver = nullptr;
}
return DefaultDefinition;
}
SourceRange AssociatedTypeDecl::getSourceRange() const {
SourceLoc endLoc = getNameLoc();
if (!getInherited().empty()) {
endLoc = getInherited().back().getSourceRange().End;
}
return SourceRange(KeywordLoc, endLoc);
}
EnumDecl::EnumDecl(SourceLoc EnumLoc,
Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Enum, Parent, Name, NameLoc, Inherited,
GenericParams),
EnumLoc(EnumLoc)
{
EnumDeclBits.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
}
StructDecl::StructDecl(SourceLoc StructLoc, Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Struct, Parent, Name, NameLoc, Inherited,
GenericParams),
StructLoc(StructLoc)
{
StructDeclBits.HasUnreferenceableStorage = false;
}
ClassDecl::ClassDecl(SourceLoc ClassLoc, Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Class, Parent, Name, NameLoc, Inherited,
GenericParams),
ClassLoc(ClassLoc) {
ClassDeclBits.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
ClassDeclBits.RequiresStoredPropertyInits = 0;
ClassDeclBits.InheritsSuperclassInits
= static_cast<unsigned>(StoredInheritsSuperclassInits::Unchecked);
ClassDeclBits.Foreign = false;
ClassDeclBits.HasDestructorDecl = 0;
}
DestructorDecl *ClassDecl::getDestructor() {
auto name = getASTContext().Id_deinit;
auto results = lookupDirect(name);
assert(!results.empty() && "Class without destructor?");
assert(results.size() == 1 && "More than one destructor?");
return cast<DestructorDecl>(results.front());
}
bool ClassDecl::inheritsSuperclassInitializers(LazyResolver *resolver) {
// Check whether we already have a cached answer.
switch (static_cast<StoredInheritsSuperclassInits>(
ClassDeclBits.InheritsSuperclassInits)) {
case StoredInheritsSuperclassInits::Unchecked:
// Compute below.
break;
case StoredInheritsSuperclassInits::Inherited:
return true;
case StoredInheritsSuperclassInits::NotInherited:
return false;
}
// If there's no superclass, there's nothing to inherit.
ClassDecl *superclassDecl;
if (!getSuperclass() ||
!(superclassDecl = getSuperclass()->getClassOrBoundGenericClass())) {
ClassDeclBits.InheritsSuperclassInits
= static_cast<unsigned>(StoredInheritsSuperclassInits::NotInherited);
return false;
}
// Look at all of the initializers of the subclass to gather the initializers
// they override from the superclass.
auto &ctx = getASTContext();
llvm::SmallPtrSet<ConstructorDecl *, 4> overriddenInits;
if (resolver)
resolver->resolveImplicitConstructors(this);
for (auto member : lookupDirect(ctx.Id_init)) {
auto ctor = dyn_cast<ConstructorDecl>(member);
if (!ctor)
continue;
// Resolve this initializer, if needed.
if (!ctor->hasType())
resolver->resolveDeclSignature(ctor);
// Ignore any stub implementations.
if (ctor->hasStubImplementation())
continue;
if (auto overridden = ctor->getOverriddenDecl()) {
if (overridden->isDesignatedInit())
overriddenInits.insert(overridden);
}
}
// Check all of the designated initializers in the direct superclass.
// Note: This should be treated as a lookup for intra-module dependency
// purposes, but a subclass already depends on its superclasses and any
// extensions for many other reasons.
for (auto member : superclassDecl->lookupDirect(ctx.Id_init)) {
if (AvailableAttr::isUnavailable(member))
continue;
// We only care about designated initializers.
auto ctor = dyn_cast<ConstructorDecl>(member);
if (!ctor || !ctor->isDesignatedInit() || ctor->hasStubImplementation())
continue;
// If this designated initializer wasn't overridden, we can't inherit.
if (overriddenInits.count(ctor) == 0) {
ClassDeclBits.InheritsSuperclassInits
= static_cast<unsigned>(StoredInheritsSuperclassInits::NotInherited);
return false;
}
}
// All of the direct superclass's designated initializers have been overridden
// by the subclass. Initializers can be inherited.
ClassDeclBits.InheritsSuperclassInits
= static_cast<unsigned>(StoredInheritsSuperclassInits::Inherited);
return true;
}
ObjCClassKind ClassDecl::checkObjCAncestry() const {
llvm::SmallPtrSet<const ClassDecl *, 8> visited;
bool genericAncestry = false, isObjC = false;
const ClassDecl *CD = this;
for (;;) {
// If we hit circularity, we will diagnose at some point in typeCheckDecl().
// However we have to explicitly guard against that here because we get
// called as part of validateDecl().
if (!visited.insert(CD).second)
break;
if (CD->isGenericContext())
genericAncestry = true;
if (CD->isObjC())
isObjC = true;
if (!CD->hasSuperclass())
break;
CD = CD->getSuperclass()->getClassOrBoundGenericClass();
}
if (!isObjC)
return ObjCClassKind::NonObjC;
if (genericAncestry)
return ObjCClassKind::ObjCMembers;
if (CD == this || !CD->isObjC())
return ObjCClassKind::ObjCWithSwiftRoot;
return ObjCClassKind::ObjC;
}
/// Mangle the name of a protocol or class for use in the Objective-C
/// runtime.
static StringRef mangleObjCRuntimeName(const NominalTypeDecl *nominal,
llvm::SmallVectorImpl<char> &buffer) {
{
// Mangle the type.
Mangle::Mangler mangler(false/*dwarf*/, false/*punycode*/);
// We add the "_Tt" prefix to make this a reserved name that will
// not conflict with any valid Objective-C class or protocol name.
mangler.append("_Tt");
NominalTypeDecl *NTD = const_cast<NominalTypeDecl*>(nominal);
if (isa<ClassDecl>(nominal)) {
mangler.mangleNominalType(NTD,
ResilienceExpansion::Minimal,
Mangle::Mangler::BindGenerics::None);
} else {
mangler.mangleProtocolDecl(cast<ProtocolDecl>(NTD));
}
buffer.clear();
llvm::raw_svector_ostream os(buffer);
mangler.finalize(os);
}
assert(buffer.size() && "Invalid buffer size");
return StringRef(buffer.data(), buffer.size());
}
StringRef ClassDecl::getObjCRuntimeName(
llvm::SmallVectorImpl<char> &buffer) const {
// If there is an 'objc' attribute with a name, use that name.
if (auto objc = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objc->getName())
return name->getString(buffer);
}
// Produce the mangled name for this class.
return mangleObjCRuntimeName(this, buffer);
}
ArtificialMainKind ClassDecl::getArtificialMainKind() const {
if (getAttrs().hasAttribute<UIApplicationMainAttr>())
return ArtificialMainKind::UIApplicationMain;
if (getAttrs().hasAttribute<NSApplicationMainAttr>())
return ArtificialMainKind::NSApplicationMain;
llvm_unreachable("class has no @ApplicationMain attr?!");
}
AbstractFunctionDecl *
ClassDecl::findOverridingDecl(const AbstractFunctionDecl *Method) const {
auto Members = getMembers();
for (auto M : Members) {
AbstractFunctionDecl *CurMethod = dyn_cast<AbstractFunctionDecl>(M);
if (!CurMethod)
continue;
if (CurMethod->isOverridingDecl(Method)) {
return CurMethod;
}
}
return nullptr;
}
bool AbstractFunctionDecl::isOverridingDecl(
const AbstractFunctionDecl *Method) const {
const AbstractFunctionDecl *CurMethod = this;
while (CurMethod) {
if (CurMethod == Method)
return true;
CurMethod = CurMethod->getOverriddenDecl();
}
return false;
}
AbstractFunctionDecl *
ClassDecl::findImplementingMethod(const AbstractFunctionDecl *Method) const {
const ClassDecl *C = this;
while (C) {
auto Members = C->getMembers();
for (auto M : Members) {
AbstractFunctionDecl *CurMethod = dyn_cast<AbstractFunctionDecl>(M);
if (!CurMethod)
continue;
if (Method == CurMethod)
return CurMethod;
if (CurMethod->isOverridingDecl(Method)) {
// This class implements a method
return CurMethod;
}
}
// Check the superclass
if (!C->hasSuperclass())
break;
C = C->getSuperclass()->getClassOrBoundGenericClass();
}
return nullptr;
}
EnumCaseDecl *EnumCaseDecl::create(SourceLoc CaseLoc,
ArrayRef<EnumElementDecl *> Elements,
DeclContext *DC) {
void *buf = DC->getASTContext()
.Allocate(sizeof(EnumCaseDecl) +
sizeof(EnumElementDecl*) * Elements.size(),
alignof(EnumCaseDecl));
return ::new (buf) EnumCaseDecl(CaseLoc, Elements, DC);
}
EnumElementDecl *EnumDecl::getElement(Identifier Name) const {
// FIXME: Linear search is not great for large enum decls.
for (EnumElementDecl *Elt : getAllElements())
if (Elt->getName() == Name)
return Elt;
return nullptr;
}
bool EnumDecl::hasOnlyCasesWithoutAssociatedValues() const {
// FIXME: Should probably cache this.
bool hasElements = false;
for (auto elt : getAllElements()) {
hasElements = true;
if (!elt->getArgumentTypeLoc().isNull())
return false;
}
return hasElements;
}
ProtocolDecl::ProtocolDecl(DeclContext *DC, SourceLoc ProtocolLoc,
SourceLoc NameLoc, Identifier Name,
MutableArrayRef<TypeLoc> Inherited)
: NominalTypeDecl(DeclKind::Protocol, DC, Name, NameLoc, Inherited,
nullptr),
ProtocolLoc(ProtocolLoc)
{
ProtocolDeclBits.RequiresClassValid = false;
ProtocolDeclBits.RequiresClass = false;
ProtocolDeclBits.ExistentialConformsToSelfValid = false;
ProtocolDeclBits.ExistentialConformsToSelf = false;
ProtocolDeclBits.KnownProtocol = 0;
ProtocolDeclBits.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
HasMissingRequirements = false;
InheritedProtocolsSet = false;
}
ArrayRef<ProtocolDecl *>
ProtocolDecl::getInheritedProtocols(LazyResolver *resolver) const {
return InheritedProtocols;
}
bool ProtocolDecl::inheritsFrom(const ProtocolDecl *super) const {
if (this == super)
return false;
auto allProtocols = getLocalProtocols();
return std::find(allProtocols.begin(), allProtocols.end(), super)
!= allProtocols.end();
}
bool ProtocolDecl::requiresClassSlow() {
ProtocolDeclBits.RequiresClass = false;
// Ensure that the result cannot change in future.
assert(isInheritedProtocolsValid() || isBeingTypeChecked());
if (getAttrs().hasAttribute<ObjCAttr>() || isObjC()) {
ProtocolDeclBits.RequiresClass = true;
return true;
}
// Check inherited protocols for class-ness.
for (auto *proto : getInheritedProtocols(nullptr)) {
if (proto->requiresClass()) {
ProtocolDeclBits.RequiresClass = true;
return true;
}
}
return false;
}
bool ProtocolDecl::existentialConformsToSelfSlow() {
// Assume for now that the existential conforms to itself; this
// prevents circularity issues.
ProtocolDeclBits.ExistentialConformsToSelfValid = true;
ProtocolDeclBits.ExistentialConformsToSelf = true;
if (isSpecificProtocol(KnownProtocolKind::AnyObject))
return true;
if (!isObjC()) {
ProtocolDeclBits.ExistentialConformsToSelf = false;
return false;
}
// Check whether this protocol conforms to itself.
for (auto member : getMembers()) {
if (member->isInvalid())
continue;
if (auto vd = dyn_cast<ValueDecl>(member)) {
if (!vd->isInstanceMember()) {
// A protocol cannot conform to itself if it has static members.
ProtocolDeclBits.ExistentialConformsToSelf = false;
return false;
}
}
}
// Check whether any of the inherited protocols fail to conform to
// themselves.
// FIXME: does this need a resolver?
for (auto proto : getInheritedProtocols(nullptr)) {
if (!proto->existentialConformsToSelf()) {
ProtocolDeclBits.ExistentialConformsToSelf = false;
return false;
}
}
return true;
}
bool ProtocolDecl::existentialTypeSupportedSlow(LazyResolver *resolver) {
// Assume for now that the existential type is supported; this
// prevents circularity issues.
ProtocolDeclBits.ExistentialTypeSupportedValid = true;
ProtocolDeclBits.ExistentialTypeSupported = true;
// Resolve the protocol's type.
if (resolver && !hasType())
resolver->resolveDeclSignature(this);
auto selfType = getProtocolSelf()->getArchetype();
for (auto member : getMembers()) {
if (auto vd = dyn_cast<ValueDecl>(member)) {
if (resolver && !vd->hasType())
resolver->resolveDeclSignature(vd);
}
if (member->isInvalid())
continue;
// Check for associated types.
if (isa<AssociatedTypeDecl>(member)) {
// An existential type cannot be used if the protocol has an
// associated type.
ProtocolDeclBits.ExistentialTypeSupported = false;
return false;
}
// For value members, look at their type signatures.
auto valueMember = dyn_cast<ValueDecl>(member);
if (!valueMember || !valueMember->hasType())
continue;
// Extract the type of the member, ignoring the 'self' parameter and return
// type of functions.
auto memberTy = valueMember->getType();
if (memberTy->is<ErrorType>())
continue;
if (isa<AbstractFunctionDecl>(valueMember)) {
// Drop the 'Self' parameter.
memberTy = memberTy->castTo<AnyFunctionType>()->getResult();
// Drop the return type. Methods are allowed to return Self.
memberTy = memberTy->castTo<AnyFunctionType>()->getInput();
}
// If we find 'Self' anywhere in the member's type, we cannot use the
// existential type.
if (memberTy.findIf([&](Type type) -> bool {
// If we found our archetype, return null.
if (auto archetype = type->getAs<ArchetypeType>()) {
return archetype == selfType;
}
return false;
})) {
ProtocolDeclBits.ExistentialTypeSupported = false;
return false;
}
}
// Check whether all of the inherited protocols can have existential
// types themselves.
for (auto proto : getInheritedProtocols(resolver)) {
if (!proto->existentialTypeSupported(resolver)) {
ProtocolDeclBits.ExistentialTypeSupported = false;
return false;
}
}
return true;
}
StringRef ProtocolDecl::getObjCRuntimeName(
llvm::SmallVectorImpl<char> &buffer) const {
// If there is an 'objc' attribute with a name, use that name.
if (auto objc = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objc->getName())
return name->getString(buffer);
}
// Produce the mangled name for this protocol.
return mangleObjCRuntimeName(this, buffer);
}
GenericParamList *ProtocolDecl::createGenericParams(DeclContext *dc) {
SourceLoc loc;
if (auto ext = dyn_cast<ExtensionDecl>(dc))
loc = ext->getLoc();
else
loc = getLoc();
// Find the depth of the 'Self' parameter. This is zero in all valid
// code; however, we compute it nonetheless to maintain the AST
// invariants around generic parameter depths.
unsigned depth = 0;
GenericParamList *outerGenericParams
= dc->getParent()->getGenericParamsOfContext();
if (outerGenericParams)
depth = outerGenericParams->getDepth() + 1;
// The generic parameter 'Self'.
auto &ctx = getASTContext();
auto selfId = ctx.Id_Self;
auto selfDecl = new (ctx) GenericTypeParamDecl(dc, selfId, loc, depth, 0);
auto protoRef = new (ctx) SimpleIdentTypeRepr(loc, getName());
protoRef->setValue(this);
TypeLoc selfInherited[1] = { TypeLoc(protoRef) };
selfInherited[0].setType(ProtocolType::get(this, ctx));
selfDecl->setInherited(ctx.AllocateCopy(selfInherited));
selfDecl->setImplicit();
// The generic parameter list itself.
auto result = GenericParamList::create(ctx, SourceLoc(), selfDecl,
SourceLoc());
result->setOuterParameters(outerGenericParams);
return result;
}
/// \brief Return true if the 'getter' is mutating, i.e. that it requires an
/// lvalue base to be accessed.
bool AbstractStorageDecl::isGetterMutating() const {
switch (getStorageKind()) {
case AbstractStorageDecl::Stored:
return false;
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::StoredWithTrivialAccessors:
case AbstractStorageDecl::InheritedWithObservers:
case AbstractStorageDecl::ComputedWithMutableAddress:
case AbstractStorageDecl::Computed:
case AbstractStorageDecl::AddressedWithTrivialAccessors:
case AbstractStorageDecl::AddressedWithObservers:
assert(getGetter());
return getGetter()->isMutating();
case AbstractStorageDecl::Addressed:
assert(getAddressor());
return getAddressor()->isMutating();
}
}
/// \brief Return true if the 'setter' is nonmutating, i.e. that it can be
/// called even on an immutable base value.
bool AbstractStorageDecl::isSetterNonMutating() const {
// Setters declared in reference type contexts are never mutating.
if (auto contextType = getDeclContext()->getDeclaredTypeInContext()) {
if (contextType->hasReferenceSemantics())
return true;
}
switch (getStorageKind()) {
case AbstractStorageDecl::Stored:
case AbstractStorageDecl::StoredWithTrivialAccessors:
return false;
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
case AbstractStorageDecl::Computed:
assert(getSetter());
return !getSetter()->isMutating();
case AbstractStorageDecl::Addressed:
case AbstractStorageDecl::AddressedWithTrivialAccessors:
case AbstractStorageDecl::AddressedWithObservers:
case AbstractStorageDecl::ComputedWithMutableAddress:
assert(getMutableAddressor());
return !getMutableAddressor()->isMutating();
}
llvm_unreachable("bad storage kind");
}
FuncDecl *AbstractStorageDecl::getAccessorFunction(AccessorKind kind) const {
switch (kind) {
case AccessorKind::IsGetter: return getGetter();
case AccessorKind::IsSetter: return getSetter();
case AccessorKind::IsMaterializeForSet: return getMaterializeForSetFunc();
case AccessorKind::IsAddressor: return getAddressor();
case AccessorKind::IsMutableAddressor: return getMutableAddressor();
case AccessorKind::IsDidSet: return getDidSetFunc();
case AccessorKind::IsWillSet: return getWillSetFunc();
case AccessorKind::NotAccessor: llvm_unreachable("called with NotAccessor");
}
llvm_unreachable("bad accessor kind!");
}
void AbstractStorageDecl::configureGetSetRecord(GetSetRecord *getSetInfo,
FuncDecl *getter,
FuncDecl *setter,
FuncDecl *materializeForSet) {
getSetInfo->Get = getter;
if (getter)
getter->makeAccessor(this, AccessorKind::IsGetter);
configureSetRecord(getSetInfo, setter, materializeForSet);
}
void AbstractStorageDecl::configureSetRecord(GetSetRecord *getSetInfo,
FuncDecl *setter,
FuncDecl *materializeForSet) {
getSetInfo->Set = setter;
getSetInfo->MaterializeForSet = materializeForSet;
auto setSetterAccess = [&](FuncDecl *fn) {
if (auto setterAccess = GetSetInfo.getInt()) {
assert(!fn->hasAccessibility() ||
fn->getFormalAccess() == setterAccess.getValue());
fn->overwriteAccessibility(setterAccess.getValue());
}
};
if (setter) {
setter->makeAccessor(this, AccessorKind::IsSetter);
setSetterAccess(setter);
}
if (materializeForSet) {
materializeForSet->makeAccessor(this, AccessorKind::IsMaterializeForSet);
setSetterAccess(materializeForSet);
}
}
void AbstractStorageDecl::configureAddressorRecord(AddressorRecord *record,
FuncDecl *addressor,
FuncDecl *mutableAddressor) {
record->Address = addressor;
record->MutableAddress = mutableAddressor;
if (addressor) {
addressor->makeAccessor(this, AccessorKind::IsAddressor);
}
if (mutableAddressor) {
mutableAddressor->makeAccessor(this, AccessorKind::IsMutableAddressor);
}
}
void AbstractStorageDecl::configureObservingRecord(ObservingRecord *record,
FuncDecl *willSet,
FuncDecl *didSet) {
record->WillSet = willSet;
record->DidSet = didSet;
if (willSet) {
willSet->makeAccessor(this, AccessorKind::IsWillSet);
}
if (didSet) {
didSet->makeAccessor(this, AccessorKind::IsDidSet);
}
}
void AbstractStorageDecl::makeComputed(SourceLoc LBraceLoc,
FuncDecl *Get, FuncDecl *Set,
FuncDecl *MaterializeForSet,
SourceLoc RBraceLoc) {
assert(getStorageKind() == Stored && "StorageKind already set");
auto &Context = getASTContext();
void *Mem = Context.Allocate(sizeof(GetSetRecord), alignof(GetSetRecord));
auto *getSetInfo = new (Mem) GetSetRecord();
getSetInfo->Braces = SourceRange(LBraceLoc, RBraceLoc);
GetSetInfo.setPointer(getSetInfo);
configureGetSetRecord(getSetInfo, Get, Set, MaterializeForSet);
// Mark that this is a computed property.
setStorageKind(Computed);
}
void AbstractStorageDecl::setComputedSetter(FuncDecl *Set) {
assert(getStorageKind() == Computed && "Not a computed variable");
assert(getGetter() && "sanity check: missing getter");
assert(!getSetter() && "already has a setter");
assert(hasClangNode() && "should only be used for ObjC properties");
assert(Set && "should not be called for readonly properties");
GetSetInfo.getPointer()->Set = Set;
Set->makeAccessor(this, AccessorKind::IsSetter);
if (auto setterAccess = GetSetInfo.getInt()) {
assert(!Set->hasAccessibility() ||
Set->getFormalAccess() == setterAccess.getValue());
Set->overwriteAccessibility(setterAccess.getValue());
}
}
void AbstractStorageDecl::makeComputedWithMutableAddress(SourceLoc lbraceLoc,
FuncDecl *get, FuncDecl *set,
FuncDecl *materializeForSet,
FuncDecl *mutableAddressor,
SourceLoc rbraceLoc) {
assert(getStorageKind() == Stored && "StorageKind already set");
assert(get);
assert(mutableAddressor);
auto &ctx = getASTContext();
void *mem = ctx.Allocate(sizeof(GetSetRecordWithAddressors),
alignof(GetSetRecordWithAddressors));
auto info = new (mem) GetSetRecordWithAddressors();
info->Braces = SourceRange(lbraceLoc, rbraceLoc);
GetSetInfo.setPointer(info);
setStorageKind(ComputedWithMutableAddress);
configureAddressorRecord(info, nullptr, mutableAddressor);
configureGetSetRecord(info, get, set, materializeForSet);
}
void AbstractStorageDecl::setMaterializeForSetFunc(FuncDecl *accessor) {
assert(hasAccessorFunctions() && "No accessors for declaration!");
assert(getSetter() && "declaration is not settable");
assert(!getMaterializeForSetFunc() && "already has a materializeForSet");
GetSetInfo.getPointer()->MaterializeForSet = accessor;
accessor->makeAccessor(this, AccessorKind::IsMaterializeForSet);
if (auto setterAccess = GetSetInfo.getInt()) {
assert(!accessor->hasAccessibility() ||
accessor->getFormalAccess() == setterAccess.getValue());
accessor->overwriteAccessibility(setterAccess.getValue());
}
}
/// \brief Turn this into a StoredWithTrivialAccessors var, specifying the
/// accessors (getter and setter) that go with it.
void AbstractStorageDecl::addTrivialAccessors(FuncDecl *Get,
FuncDecl *Set, FuncDecl *MaterializeForSet) {
assert((getStorageKind() == Stored ||
getStorageKind() == Addressed) && "StorageKind already set");
assert(Get);
auto &ctx = getASTContext();
GetSetRecord *getSetInfo;
if (getStorageKind() == Addressed) {
getSetInfo = GetSetInfo.getPointer();
setStorageKind(AddressedWithTrivialAccessors);
} else {
void *mem = ctx.Allocate(sizeof(GetSetRecord), alignof(GetSetRecord));
getSetInfo = new (mem) GetSetRecord();
getSetInfo->Braces = SourceRange();
GetSetInfo.setPointer(getSetInfo);
setStorageKind(StoredWithTrivialAccessors);
}
configureGetSetRecord(getSetInfo, Get, Set, MaterializeForSet);
}
void AbstractStorageDecl::makeAddressed(SourceLoc lbraceLoc, FuncDecl *addressor,
FuncDecl *mutableAddressor,
SourceLoc rbraceLoc) {
assert(getStorageKind() == Stored && "StorageKind already set");
assert(addressor && "addressed mode, but no addressor function?");
auto &ctx = getASTContext();
void *mem = ctx.Allocate(sizeof(GetSetRecordWithAddressors),
alignof(GetSetRecordWithAddressors));
auto info = new (mem) GetSetRecordWithAddressors();
info->Braces = SourceRange(lbraceLoc, rbraceLoc);
GetSetInfo.setPointer(info);
setStorageKind(Addressed);
configureAddressorRecord(info, addressor, mutableAddressor);
}
void AbstractStorageDecl::makeStoredWithObservers(SourceLoc LBraceLoc,
FuncDecl *WillSet,
FuncDecl *DidSet,
SourceLoc RBraceLoc) {
assert(getStorageKind() == Stored && "VarDecl StorageKind already set");
assert((WillSet || DidSet) &&
"Can't be Observing without one or the other");
auto &Context = getASTContext();
void *Mem = Context.Allocate(sizeof(ObservingRecord),
alignof(ObservingRecord));
auto *observingInfo = new (Mem) ObservingRecord;
observingInfo->Braces = SourceRange(LBraceLoc, RBraceLoc);
GetSetInfo.setPointer(observingInfo);
// Mark that this is an observing property.
setStorageKind(StoredWithObservers);
configureObservingRecord(observingInfo, WillSet, DidSet);
}
void AbstractStorageDecl::makeInheritedWithObservers(SourceLoc lbraceLoc,
FuncDecl *willSet,
FuncDecl *didSet,
SourceLoc rbraceLoc) {
assert(getStorageKind() == Stored && "StorageKind already set");
assert((willSet || didSet) &&
"Can't be Observing without one or the other");
auto &ctx = getASTContext();
void *mem = ctx.Allocate(sizeof(ObservingRecord), alignof(ObservingRecord));
auto *observingInfo = new (mem) ObservingRecord;
observingInfo->Braces = SourceRange(lbraceLoc, rbraceLoc);
GetSetInfo.setPointer(observingInfo);
// Mark that this is an observing property.
setStorageKind(InheritedWithObservers);
configureObservingRecord(observingInfo, willSet, didSet);
}
void AbstractStorageDecl::makeAddressedWithObservers(SourceLoc lbraceLoc,
FuncDecl *addressor,
FuncDecl *mutableAddressor,
FuncDecl *willSet,
FuncDecl *didSet,
SourceLoc rbraceLoc) {
assert(getStorageKind() == Stored && "VarDecl StorageKind already set");
assert(addressor);
assert(mutableAddressor && "observing but immutable?");
assert((willSet || didSet) &&
"Can't be Observing without one or the other");
auto &ctx = getASTContext();
void *mem = ctx.Allocate(sizeof(ObservingRecordWithAddressors),
alignof(ObservingRecordWithAddressors));
auto info = new (mem) ObservingRecordWithAddressors();
info->Braces = SourceRange(lbraceLoc, rbraceLoc);
GetSetInfo.setPointer(info);
setStorageKind(AddressedWithObservers);
configureAddressorRecord(info, addressor, mutableAddressor);
configureObservingRecord(info, willSet, didSet);
}
/// \brief Specify the synthesized get/set functions for a Observing var.
/// This is used by Sema.
void AbstractStorageDecl::setObservingAccessors(FuncDecl *Get,
FuncDecl *Set,
FuncDecl *MaterializeForSet) {
assert(hasObservers() && "VarDecl is wrong type");
assert(!getGetter() && !getSetter() && "getter and setter already set");
assert(Get && Set && "Must specify getter and setter");
configureGetSetRecord(GetSetInfo.getPointer(), Get, Set, MaterializeForSet);
}
void AbstractStorageDecl::setInvalidBracesRange(SourceRange BracesRange) {
assert(!GetSetInfo.getPointer() && "Braces range has already been set");
auto &Context = getASTContext();
void *Mem = Context.Allocate(sizeof(GetSetRecord), alignof(GetSetRecord));
auto *getSetInfo = new (Mem) GetSetRecord();
getSetInfo->Braces = BracesRange;
getSetInfo->Get = nullptr;
getSetInfo->Set = nullptr;
getSetInfo->MaterializeForSet = nullptr;
GetSetInfo.setPointer(getSetInfo);
}
ObjCSelector AbstractStorageDecl::getObjCGetterSelector(
LazyResolver *resolver) const {
// If the getter has an @objc attribute with a name, use that.
if (auto getter = getGetter()) {
if (auto objcAttr = getter->getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objcAttr->getName())
return *name;
}
}
// Subscripts use a specific selector.
auto &ctx = getASTContext();
if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
switch (SD->getObjCSubscriptKind(resolver)) {
case ObjCSubscriptKind::None:
llvm_unreachable("Not an Objective-C subscript");
case ObjCSubscriptKind::Indexed:
return ObjCSelector(ctx, 1, ctx.Id_objectAtIndexedSubscript);
case ObjCSubscriptKind::Keyed:
return ObjCSelector(ctx, 1, ctx.Id_objectForKeyedSubscript);
}
}
// The getter selector is the property name itself.
auto var = cast<VarDecl>(this);
return VarDecl::getDefaultObjCGetterSelector(ctx, var->getObjCPropertyName());
}
ObjCSelector AbstractStorageDecl::getObjCSetterSelector(
LazyResolver *resolver) const {
// If the setter has an @objc attribute with a name, use that.
auto setter = getSetter();
auto objcAttr = setter ? setter->getAttrs().getAttribute<ObjCAttr>()
: nullptr;
if (objcAttr) {
if (auto name = objcAttr->getName())
return *name;
}
// Subscripts use a specific selector.
auto &ctx = getASTContext();
if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
switch (SD->getObjCSubscriptKind(resolver)) {
case ObjCSubscriptKind::None:
llvm_unreachable("Not an Objective-C subscript");
case ObjCSubscriptKind::Indexed:
return ObjCSelector(ctx, 2,
{ ctx.Id_setObject, ctx.Id_atIndexedSubscript });
case ObjCSubscriptKind::Keyed:
return ObjCSelector(ctx, 2,
{ ctx.Id_setObject, ctx.Id_forKeyedSubscript });
}
}
// The setter selector for, e.g., 'fooBar' is 'setFooBar:', with the
// property name capitalized and preceded by 'set'.
auto var = cast<VarDecl>(this);
auto result = VarDecl::getDefaultObjCSetterSelector(
ctx,
var->getObjCPropertyName());
// Cache the result, so we don't perform string manipulation again.
if (objcAttr)
const_cast<ObjCAttr *>(objcAttr)->setName(result, /*implicit=*/true);
return result;
}
SourceLoc AbstractStorageDecl::getOverrideLoc() const {
if (auto *Override = getAttrs().getAttribute<OverrideAttr>())
return Override->getLocation();
return SourceLoc();
}
static bool isSettable(const AbstractStorageDecl *decl) {
switch (decl->getStorageKind()) {
case AbstractStorageDecl::Stored:
return true;
case AbstractStorageDecl::StoredWithTrivialAccessors:
return decl->getSetter() != nullptr;
case AbstractStorageDecl::Addressed:
case AbstractStorageDecl::AddressedWithTrivialAccessors:
return decl->getMutableAddressor() != nullptr;
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
case AbstractStorageDecl::AddressedWithObservers:
case AbstractStorageDecl::ComputedWithMutableAddress:
return true;
case AbstractStorageDecl::Computed:
return decl->getSetter() != nullptr;
}
llvm_unreachable("bad storage kind");
}
/// \brief Returns whether the var is settable in the specified context: this
/// is either because it is a stored var, because it has a custom setter, or
/// is a let member in an initializer.
bool VarDecl::isSettable(const DeclContext *UseDC,
const DeclRefExpr *base) const {
// If this is a 'var' decl, then we're settable if we have storage or a
// setter.
if (!isLet())
return ::isSettable(this);
// If the decl has a value bound to it but has no PBD, then it is
// initialized.
if (hasNonPatternBindingInit())
return false;
// 'let' parameters are never settable.
if (isa<ParamDecl>(this))
return false;
// Properties in structs/classes are only ever mutable in their designated
// initializer(s).
if (isInstanceMember()) {
auto *CD = dyn_cast_or_null<ConstructorDecl>(UseDC);
if (!CD) return false;
auto *CDC = CD->getDeclContext();
// If this init is defined inside of the same type (or in an extension
// thereof) as the let property, then it is mutable.
if (!CDC->isTypeContext() ||
CDC->getDeclaredTypeInContext()->getAnyNominal() !=
getDeclContext()->getDeclaredTypeInContext()->getAnyNominal())
return false;
if (base && CD->getImplicitSelfDecl() != base->getDecl())
return false;
// If this is a convenience initializer (i.e. one that calls
// self.init), then let properties are never mutable in it. They are
// only mutable in designated initializers.
if (CD->getDelegatingOrChainedInitKind(nullptr) ==
ConstructorDecl::BodyInitKind::Delegating)
return false;
return true;
}
// If the decl has an explicitly written initializer with a pattern binding,
// then it isn't settable.
if (getParentInitializer() != nullptr)
return false;
// Normal lets (e.g. globals) are only mutable in the context of the
// declaration. To handle top-level code properly, we look through
// the TopLevelCode decl on the use (if present) since the vardecl may be
// one level up.
if (getDeclContext() == UseDC)
return true;
if (UseDC && isa<TopLevelCodeDecl>(UseDC) &&
getDeclContext() == UseDC->getParent())
return true;
return false;
}
bool SubscriptDecl::isSettable() const {
return ::isSettable(this);
}
SourceRange VarDecl::getSourceRange() const {
if (auto Param = dyn_cast<ParamDecl>(this))
return Param->getSourceRange();
return getNameLoc();
}
SourceRange VarDecl::getTypeSourceRangeForDiagnostics() const {
// For a parameter, map back to its parameter to get the TypeLoc.
if (auto *PD = dyn_cast<ParamDecl>(this)) {
if (auto typeRepr = PD->getTypeLoc().getTypeRepr())
return typeRepr->getSourceRange();
}
Pattern *Pat = getParentPattern();
if (!Pat || Pat->isImplicit())
return getSourceRange();
if (auto *VP = dyn_cast<VarPattern>(Pat))
Pat = VP->getSubPattern();
if (auto *TP = dyn_cast<TypedPattern>(Pat))
return TP->getTypeLoc().getTypeRepr()->getSourceRange();
return getSourceRange();
}
static bool isVarInPattern(const VarDecl *VD, Pattern *P) {
bool foundIt = false;
P->forEachVariable([&](VarDecl *FoundFD) {
foundIt |= FoundFD == VD;
});
return foundIt;
}
/// Return the Pattern involved in initializing this VarDecl. Recall that the
/// Pattern may be involved in initializing more than just this one vardecl
/// though. For example, if this is a VarDecl for "x", the pattern may be
/// "(x, y)" and the initializer on the PatternBindingDecl may be "(1,2)" or
/// "foo()".
///
/// If this has no parent pattern binding decl or statement associated, it
/// returns null.
///
Pattern *VarDecl::getParentPattern() const {
// If this has a PatternBindingDecl parent, use its pattern.
if (auto *PBD = getParentPatternBinding())
return PBD->getPatternEntryForVarDecl(this).getPattern();
// If this is a statement parent, dig the pattern out of it.
if (auto *stmt = getParentPatternStmt()) {
if (auto *FES = dyn_cast<ForEachStmt>(stmt))
return FES->getPattern();
if (auto *CS = dyn_cast<CatchStmt>(stmt))
return CS->getErrorPattern();
if (auto *cs = dyn_cast<CaseStmt>(stmt)) {
// In a case statement, search for the pattern that contains it. This is
// a bit silly, because you can't have something like "case x, y:" anyway.
for (auto items : cs->getCaseLabelItems()) {
if (isVarInPattern(this, items.getPattern()))
return items.getPattern();
}
} else if (auto *LCS = dyn_cast<LabeledConditionalStmt>(stmt)) {
for (auto &elt : LCS->getCond())
if (auto pat = elt.getPatternOrNull())
if (isVarInPattern(this, pat))
return pat;
}
//stmt->dump();
assert(0 && "Unknown parent pattern statement?");
}
return nullptr;
}
bool VarDecl::isSelfParameter() const {
// Note: we need to check the isImplicit() bit here to make sure that we
// don't classify explicit parameters declared with `self` as the self param.
return isa<ParamDecl>(this) && getName() == getASTContext().Id_self &&
isImplicit();
}
/// Return true if this stored property needs to be accessed with getters and
/// setters for Objective-C.
bool AbstractStorageDecl::hasObjCGetterAndSetter() const {
if (auto override = getOverriddenDecl())
return override->hasObjCGetterAndSetter();
if (!isObjC())
return false;
return true;
}
bool AbstractStorageDecl::requiresObjCGetterAndSetter() const {
if (isFinal())
return false;
if (!hasObjCGetterAndSetter())
return false;
// Imported accessors are foreign and only have objc entry points.
if (hasClangNode())
return true;
// Otherwise, we only dispatch by @objc if the declaration is dynamic or
// NSManaged.
return getAttrs().hasAttribute<DynamicAttr>() ||
getAttrs().hasAttribute<NSManagedAttr>();
}
bool VarDecl::isAnonClosureParam() const {
auto name = getName();
if (name.empty())
return false;
auto nameStr = name.str();
if (nameStr.empty())
return false;
return nameStr[0] == '$';
}
StaticSpellingKind VarDecl::getCorrectStaticSpelling() const {
if (!isStatic())
return StaticSpellingKind::None;
return getCorrectStaticSpellingForDecl(this);
}
Identifier VarDecl::getObjCPropertyName() const {
if (auto attr = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = attr->getName())
return name->getSelectorPieces()[0];
}
return getName();
}
ObjCSelector VarDecl::getDefaultObjCGetterSelector(ASTContext &ctx,
Identifier propertyName) {
return ObjCSelector(ctx, 0, propertyName);
}
ObjCSelector VarDecl::getDefaultObjCSetterSelector(ASTContext &ctx,
Identifier propertyName) {
llvm::SmallString<16> scratch;
scratch += "set";
camel_case::appendSentenceCase(scratch, propertyName.str());
return ObjCSelector(ctx, 1, ctx.getIdentifier(scratch));
}
/// If this is a simple 'let' constant, emit a note with a fixit indicating
/// that it can be rewritten to a 'var'. This is used in situations where the
/// compiler detects obvious attempts to mutate a constant.
void VarDecl::emitLetToVarNoteIfSimple(DeclContext *UseDC) const {
// If it isn't a 'let', don't touch it.
if (!isLet()) return;
// If this is the 'self' argument of a non-mutating method in a value type,
// suggest adding 'mutating' to the method.
if (isSelfParameter() && UseDC) {
// If the problematic decl is 'self', then we might be trying to mutate
// a property in a non-mutating method.
auto FD = dyn_cast<FuncDecl>(UseDC->getInnermostMethodContext());
if (FD && !FD->isMutating() && !FD->isImplicit() && FD->isInstanceMember()&&
!FD->getDeclContext()->getDeclaredTypeInContext()
->hasReferenceSemantics()) {
auto &d = getASTContext().Diags;
d.diagnose(FD->getFuncLoc(), diag::change_to_mutating, FD->isAccessor())
.fixItInsert(FD->getFuncLoc(), "mutating ");
return;
}
}
// Besides self, don't suggest mutability for explicit function parameters.
if (isa<ParamDecl>(this)) return;
// If this is a normal variable definition, then we can change 'let' to 'var'.
// We even are willing to suggest this for multi-variable binding, like
// "let (a,b) = "
// since the user has to choose to apply this anyway.
if (auto *PBD = getParentPatternBinding()) {
// Don't touch generated or invalid code.
if (PBD->getLoc().isInvalid() || PBD->isImplicit())
return;
auto &d = getASTContext().Diags;
d.diagnose(PBD->getLoc(), diag::convert_let_to_var)
.fixItReplace(PBD->getLoc(), "var");
return;
}
}
ParamDecl::ParamDecl(bool isLet, SourceLoc argumentNameLoc,
Identifier argumentName, SourceLoc parameterNameLoc,
Identifier parameterName, Type ty, DeclContext *dc)
: VarDecl(DeclKind::Param, /*IsStatic=*/false, isLet, parameterNameLoc,
parameterName, ty, dc),
ArgumentName(argumentName), ArgumentNameLoc(argumentNameLoc) {
}
/// Clone constructor, allocates a new ParamDecl identical to the first.
/// Intentionally not defined as a copy constructor to avoid accidental copies.
ParamDecl::ParamDecl(ParamDecl *PD)
: VarDecl(DeclKind::Param, /*IsStatic=*/false, PD->isLet(), PD->getNameLoc(),
PD->getName(), PD->hasType() ? PD->getType() : Type(),
PD->getDeclContext()),
ArgumentName(PD->getArgumentName()),
ArgumentNameLoc(PD->getArgumentNameLoc()),
typeLoc(PD->getTypeLoc()),
DefaultValueAndIsVariadic(PD->DefaultValueAndIsVariadic),
IsTypeLocImplicit(PD->IsTypeLocImplicit),
defaultArgumentKind(PD->defaultArgumentKind) {
}
/// \brief Retrieve the type of 'self' for the given context.
static Type getSelfTypeForContext(DeclContext *dc) {
// For a protocol or extension thereof, the type is 'Self'.
// FIXME: Weird that we're producing an archetype for protocol Self,
// but the declared type of the context in non-protocol cases.
if (dc->isProtocolOrProtocolExtensionContext()) {
// In the parser, generic parameters won't be wired up yet, just give up on
// producing a type.
if (dc->getGenericParamsOfContext() == nullptr)
return Type();
return dc->getProtocolSelf()->getArchetype();
}
return dc->getDeclaredTypeOfContext();
}
/// Create an implicit 'self' decl for a method in the specified decl context.
/// If 'static' is true, then this is self for a static method in the type.
///
/// Note that this decl is created, but it is returned with an incorrect
/// DeclContext that needs to be set correctly. This is automatically handled
/// when a function is created with this as part of its argument list.
///
ParamDecl *ParamDecl::createSelf(SourceLoc loc, DeclContext *DC,
bool isStaticMethod, bool isInOut) {
ASTContext &C = DC->getASTContext();
auto selfType = getSelfTypeForContext(DC);
// If we have a selfType (i.e. we're not in the parser before we know such
// things, configure it.
if (selfType) {
if (isStaticMethod)
selfType = MetatypeType::get(selfType);
if (isInOut)
selfType = InOutType::get(selfType);
}
auto *selfDecl = new (C) ParamDecl(/*IsLet*/!isInOut, SourceLoc(),
Identifier(), loc, C.Id_self, selfType,DC);
selfDecl->setImplicit();
return selfDecl;
}
/// Return the full source range of this parameter.
SourceRange ParamDecl::getSourceRange() const {
SourceRange range;
SourceLoc APINameLoc = getArgumentNameLoc();
SourceLoc nameLoc = getNameLoc();
if (APINameLoc.isValid() && nameLoc.isInvalid())
range = APINameLoc;
else if (APINameLoc.isInvalid() && nameLoc.isValid())
range = nameLoc;
else
range = SourceRange(APINameLoc, nameLoc);
if (range.isInvalid()) return range;
// It would be nice to extend the front of the range to show where inout is,
// but we don't have that location info. Extend the back of the range to the
// location of the default argument, or the typeloc if they are valid.
if (auto expr = getDefaultValue()) {
auto endLoc = expr->getExpr()->getEndLoc();
if (endLoc.isValid())
return SourceRange(range.Start, endLoc);
}
// If the typeloc has a valid location, use it to end the range.
if (auto typeRepr = getTypeLoc().getTypeRepr()) {
auto endLoc = typeRepr->getEndLoc();
if (endLoc.isValid())
return SourceRange(range.Start, endLoc);
}
// Otherwise, just return the info we have about the parameter.
return range;
}
Type ParamDecl::getVarargBaseTy(Type VarArgT) {
TypeBase *T = VarArgT.getPointer();
if (ArraySliceType *AT = dyn_cast<ArraySliceType>(T))
return AT->getBaseType();
if (BoundGenericType *BGT = dyn_cast<BoundGenericType>(T)) {
// It's the stdlib Array<T>.
return BGT->getGenericArgs()[0];
}
assert(isa<ErrorType>(T));
return T;
}
/// Determine whether the given Swift type is an integral type, i.e.,
/// a type that wraps a builtin integer.
static bool isIntegralType(Type type) {
// Consider structs in the standard library module that wrap a builtin
// integer type to be integral types.
if (auto structTy = type->getAs<StructType>()) {
auto structDecl = structTy->getDecl();
const DeclContext *DC = structDecl->getDeclContext();
if (!DC->isModuleScopeContext() || !DC->getParentModule()->isStdlibModule())
return false;
// Find the single ivar.
VarDecl *singleVar = nullptr;
for (auto member : structDecl->getStoredProperties()) {
if (singleVar)
return false;
singleVar = member;
}
if (!singleVar)
return false;
// Check whether it has integer type.
return singleVar->getType()->is<BuiltinIntegerType>();
}
return false;
}
void SubscriptDecl::setIndices(ParameterList *p) {
Indices = p;
if (Indices)
Indices->setDeclContextOfParamDecls(this);
}
Type SubscriptDecl::getIndicesType() const {
const auto type = getType();
if (type->is<ErrorType>())
return type;
return type->castTo<AnyFunctionType>()->getInput();
}
Type SubscriptDecl::getIndicesInterfaceType() const {
// FIXME: Unfortunate that we can't really capture the generic parameters
// here.
return getInterfaceType()->castTo<AnyFunctionType>()->getInput();
}
ObjCSubscriptKind SubscriptDecl::getObjCSubscriptKind(
LazyResolver *resolver) const {
auto indexTy = getIndicesType();
// Look through a named 1-tuple.
if (auto tupleTy = indexTy->getAs<TupleType>()) {
if (tupleTy->getNumElements() == 1 &&
!tupleTy->getElement(0).isVararg()) {
indexTy = tupleTy->getElementType(0);
}
}
// If the index type is an integral type, we have an indexed
// subscript.
if (isIntegralType(indexTy))
return ObjCSubscriptKind::Indexed;
// If the index type is an object type in Objective-C, we have a
// keyed subscript.
if (Type objectTy = indexTy->getAnyOptionalObjectType())
indexTy = objectTy;
if (getASTContext().getBridgedToObjC(getDeclContext(), indexTy, resolver))
return ObjCSubscriptKind::Keyed;
return ObjCSubscriptKind::None;
}
SourceRange SubscriptDecl::getSourceRange() const {
if (getBracesRange().isValid())
return { getSubscriptLoc(), getBracesRange().End };
return { getSubscriptLoc(), ElementTy.getSourceRange().End };
}
static Type getSelfTypeForContainer(AbstractFunctionDecl *theMethod,
bool isInitializingCtor,
bool wantInterfaceType) {
auto *dc = theMethod->getDeclContext();
// Determine the type of the container.
Type containerTy = wantInterfaceType ? dc->getDeclaredInterfaceType()
: dc->getDeclaredTypeInContext();
assert(containerTy && "stand alone functions don't have 'self'");
if (!containerTy) return Type();
bool isStatic = false;
bool isMutating = false;
Type selfTypeOverride;
if (auto *FD = dyn_cast<FuncDecl>(theMethod)) {
isStatic = FD->isStatic();
isMutating = FD->isMutating();
// The non-interface type of a method that returns DynamicSelf
// uses DynamicSelf for the type of 'self', which is important
// when type checking the body of the function.
if (!wantInterfaceType)
selfTypeOverride = FD->getDynamicSelf();
} else if (isa<ConstructorDecl>(theMethod)) {
if (isInitializingCtor) {
// initializing constructors of value types always have an implicitly
// inout self.
isMutating = true;
} else {
// allocating constructors have metatype 'self'.
isStatic = true;
}
} else if (isa<DestructorDecl>(theMethod)) {
// destructors of value types always have an implicitly inout self.
isMutating = true;
}
Type selfTy = selfTypeOverride;
if (!selfTy) {
// For a protocol, the type of 'self' is the parameter type 'Self', not
// the protocol itself.
selfTy = containerTy;
if (containerTy->is<ProtocolType>()) {
auto self = dc->getProtocolSelf();
assert(self && "Missing 'Self' type in protocol");
if (wantInterfaceType)
selfTy = self->getDeclaredType();
else
selfTy = self->getArchetype();
}
}
// If the self type couldn't be computed, or is the result of an
// upstream error, return an error type.
if (!selfTy || selfTy->is<ErrorType>())
return ErrorType::get(dc->getASTContext());
// 'static' functions have 'self' of type metatype<T>.
if (isStatic)
return MetatypeType::get(selfTy, dc->getASTContext());
// Reference types have 'self' of type T.
if (containerTy->hasReferenceSemantics())
return selfTy;
// Mutating methods are always passed inout so we can receive the side
// effect.
if (isMutating)
return InOutType::get(selfTy);
// Nonmutating methods on structs and enums pass the receiver by value.
return selfTy;
}
DeclName AbstractFunctionDecl::getEffectiveFullName() const {
if (getFullName())
return getFullName();
if (auto func = dyn_cast<FuncDecl>(this)) {
if (auto afd = func->getAccessorStorageDecl()) {
auto &ctx = getASTContext();
auto subscript = dyn_cast<SubscriptDecl>(afd);
switch (auto accessorKind = func->getAccessorKind()) {
case AccessorKind::NotAccessor:
break;
// These don't have any extra implicit parameters.
case AccessorKind::IsAddressor:
case AccessorKind::IsMutableAddressor:
case AccessorKind::IsGetter:
return subscript ? subscript->getFullName()
: DeclName(ctx, afd->getName(),
ArrayRef<Identifier>());
case AccessorKind::IsSetter:
case AccessorKind::IsMaterializeForSet:
case AccessorKind::IsDidSet:
case AccessorKind::IsWillSet: {
SmallVector<Identifier, 4> argNames;
// The implicit value/buffer parameter.
argNames.push_back(Identifier());
// The callback storage parameter on materializeForSet.
if (accessorKind == AccessorKind::IsMaterializeForSet)
argNames.push_back(Identifier());
// The subscript index parameters.
if (subscript) {
argNames.append(subscript->getFullName().getArgumentNames().begin(),
subscript->getFullName().getArgumentNames().end());
}
return DeclName(ctx, afd->getName(), argNames);
}
}
}
}
return DeclName();
}
void AbstractFunctionDecl::setGenericParams(GenericParamList *GP) {
// Set the specified generic parameters onto this abstract function, setting
// the parameters' context to the function along the way.
GenericParams = GP;
if (GP)
for (auto Param : *GP)
Param->setDeclContext(this);
}
Type AbstractFunctionDecl::computeSelfType() {
return getSelfTypeForContainer(this, true, false);
}
Type AbstractFunctionDecl::computeInterfaceSelfType(bool isInitializingCtor) {
return getSelfTypeForContainer(this, isInitializingCtor, true);
}
/// \brief This method returns the implicit 'self' decl.
///
/// Note that some functions don't have an implicit 'self' decl, for example,
/// free functions. In this case nullptr is returned.
ParamDecl *AbstractFunctionDecl::getImplicitSelfDecl() {
auto paramLists = getParameterLists();
if (paramLists.empty())
return nullptr;
// "self" is always the first parameter list.
if (paramLists[0]->size() == 1 && paramLists[0]->get(0)->isSelfParameter())
return paramLists[0]->get(0);
return nullptr;
}
Type AbstractFunctionDecl::getExtensionType() const {
return getDeclContext()->getDeclaredTypeInContext();
}
std::pair<DefaultArgumentKind, Type>
AbstractFunctionDecl::getDefaultArg(unsigned Index) const {
auto paramLists = getParameterLists();
if (getImplicitSelfDecl()) // Skip the 'self' parameter; it is not counted.
paramLists = paramLists.slice(1);
for (auto paramList : paramLists) {
if (Index < paramList->size()) {
auto param = paramList->get(Index);
return { param->getDefaultArgumentKind(), param->getType() };
}
Index -= paramList->size();
}
llvm_unreachable("Invalid parameter index");
}
bool AbstractFunctionDecl::argumentNameIsAPIByDefault(unsigned i) const {
// Initializers have argument labels.
if (isa<ConstructorDecl>(this))
return true;
if (auto func = dyn_cast<FuncDecl>(this)) {
// Operators do not have argument labels.
if (func->isOperator())
return false;
// Other functions have argument labels for every argument after the first.
return i > 0;
}
assert(isa<DestructorDecl>(this));
return false;
}
SourceRange AbstractFunctionDecl::getBodySourceRange() const {
switch (getBodyKind()) {
case BodyKind::None:
case BodyKind::MemberwiseInitializer:
return SourceRange();
case BodyKind::Parsed:
case BodyKind::Synthesize:
case BodyKind::TypeChecked:
if (auto body = getBody())
return body->getSourceRange();
return SourceRange();
case BodyKind::Skipped:
case BodyKind::Unparsed:
return BodyRange;
}
llvm_unreachable("bad BodyKind");
}
SourceRange AbstractFunctionDecl::getSignatureSourceRange() const {
if (isImplicit())
return SourceRange();
auto paramLists = getParameterLists();
if (paramLists.empty())
return getNameLoc();
for (auto *paramList : reversed(paramLists)) {
auto endLoc = paramList->getSourceRange().End;
if (endLoc.isValid())
return SourceRange(getNameLoc(), endLoc);
}
return getNameLoc();
}
ObjCSelector AbstractFunctionDecl::getObjCSelector(
LazyResolver *resolver) const {
// If there is an @objc attribute with a name, use that name.
auto objc = getAttrs().getAttribute<ObjCAttr>();
if (objc) {
if (auto name = objc->getName())
return *name;
}
auto &ctx = getASTContext();
auto argNames = getFullName().getArgumentNames();
auto func = dyn_cast<FuncDecl>(this);
if (func) {
// For a getter or setter, go through the variable or subscript decl.
if (func->isGetterOrSetter()) {
auto asd = cast<AbstractStorageDecl>(func->getAccessorStorageDecl());
return func->isGetter() ? asd->getObjCGetterSelector(resolver)
: asd->getObjCSetterSelector(resolver);
}
}
// Deinitializers are always called "dealloc".
if (isa<DestructorDecl>(this)) {
return ObjCSelector(ctx, 0, ctx.Id_dealloc);
}
// If this is a zero-parameter initializer with a long selector
// name, form that selector.
auto ctor = dyn_cast<ConstructorDecl>(this);
if (ctor && ctor->isObjCZeroParameterWithLongSelector()) {
Identifier firstName = argNames[0];
llvm::SmallString<16> scratch;
scratch += "init";
// If the first argument name doesn't start with a preposition, add "with".
if (getPrepositionKind(camel_case::getFirstWord(firstName.str()))
== PK_None) {
camel_case::appendSentenceCase(scratch, "With");
}
camel_case::appendSentenceCase(scratch, firstName.str());
return ObjCSelector(ctx, 0, ctx.getIdentifier(scratch));
}
// The number of selector pieces we'll have.
Optional<ForeignErrorConvention> errorConvention
= getForeignErrorConvention();
unsigned numSelectorPieces
= argNames.size() + (errorConvention.hasValue() ? 1 : 0);
// If we have no arguments, it's a nullary selector.
if (numSelectorPieces == 0) {
return ObjCSelector(ctx, 0, getName());
}
// If it's a unary selector with no name for the first argument, we're done.
if (numSelectorPieces == 1 && argNames.size() == 1 && argNames[0].empty()) {
return ObjCSelector(ctx, 1, getName());
}
/// Collect the selector pieces.
SmallVector<Identifier, 4> selectorPieces;
selectorPieces.reserve(numSelectorPieces);
bool didStringManipulation = false;
unsigned argIndex = 0;
for (unsigned piece = 0; piece != numSelectorPieces; ++piece) {
if (piece > 0) {
// If we have an error convention that inserts an error parameter
// here, add "error".
if (errorConvention &&
piece == errorConvention->getErrorParameterIndex()) {
selectorPieces.push_back(ctx.Id_error);
continue;
}
// Selector pieces beyond the first are simple.
selectorPieces.push_back(argNames[argIndex++]);
continue;
}
// For the first selector piece, attach either the first parameter
// or "AndReturnError" to the base name, if appropriate.
auto firstPiece = getName();
llvm::SmallString<32> scratch;
scratch += firstPiece.str();
if (errorConvention && piece == errorConvention->getErrorParameterIndex()) {
// The error is first; append "AndReturnError".
camel_case::appendSentenceCase(scratch, "AndReturnError");
firstPiece = ctx.getIdentifier(scratch);
didStringManipulation = true;
} else if (!argNames[argIndex].empty()) {
// If the first argument name doesn't start with a preposition, and the
// method name doesn't end with a preposition, add "with".
auto firstName = argNames[argIndex++];
if (getPrepositionKind(camel_case::getFirstWord(firstName.str()))
== PK_None &&
getPrepositionKind(camel_case::getLastWord(firstPiece.str()))
== PK_None) {
camel_case::appendSentenceCase(scratch, "With");
}
camel_case::appendSentenceCase(scratch, firstName.str());
firstPiece = ctx.getIdentifier(scratch);
didStringManipulation = true;
} else {
++argIndex;
}
selectorPieces.push_back(firstPiece);
}
assert(argIndex == argNames.size());
// Form the result.
auto result = ObjCSelector(ctx, selectorPieces.size(), selectorPieces);
// If we did any string manipulation, cache the result. We don't want to
// do that again.
if (didStringManipulation && objc)
const_cast<ObjCAttr *>(objc)->setName(result, /*implicit=*/true);
return result;
}
bool AbstractFunctionDecl::isObjCInstanceMethod() const {
return isInstanceMember() || isa<ConstructorDecl>(this);
}
AbstractFunctionDecl *AbstractFunctionDecl::getOverriddenDecl() const {
if (auto func = dyn_cast<FuncDecl>(this))
return func->getOverriddenDecl();
if (auto ctor = dyn_cast<ConstructorDecl>(this))
return ctor->getOverriddenDecl();
return nullptr;
}
FuncDecl *FuncDecl::createImpl(ASTContext &Context,
SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc FuncLoc,
DeclName Name, SourceLoc NameLoc,
SourceLoc ThrowsLoc,
SourceLoc AccessorKeywordLoc,
GenericParamList *GenericParams,
Type Ty, unsigned NumParamPatterns,
DeclContext *Parent,
ClangNode ClangN) {
assert(NumParamPatterns > 0);
size_t Size = sizeof(FuncDecl) + NumParamPatterns * sizeof(Pattern *);
void *DeclPtr = allocateMemoryForDecl<FuncDecl>(Context, Size,
!ClangN.isNull());
auto D = ::new (DeclPtr)
FuncDecl(StaticLoc, StaticSpelling, FuncLoc, Name, NameLoc, ThrowsLoc,
AccessorKeywordLoc, NumParamPatterns, GenericParams, Ty, Parent);
if (ClangN)
D->setClangNode(ClangN);
return D;
}
FuncDecl *FuncDecl::createDeserialized(ASTContext &Context,
SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc FuncLoc,
DeclName Name, SourceLoc NameLoc,
SourceLoc ThrowsLoc,
SourceLoc AccessorKeywordLoc,
GenericParamList *GenericParams,
Type Ty, unsigned NumParamPatterns,
DeclContext *Parent) {
return createImpl(Context, StaticLoc, StaticSpelling, FuncLoc, Name, NameLoc,
ThrowsLoc, AccessorKeywordLoc, GenericParams, Ty,
NumParamPatterns, Parent, ClangNode());
}
FuncDecl *FuncDecl::create(ASTContext &Context, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc FuncLoc, DeclName Name,
SourceLoc NameLoc, SourceLoc ThrowsLoc,
SourceLoc AccessorKeywordLoc,
GenericParamList *GenericParams,
Type Ty, ArrayRef<ParameterList*> BodyParams,
TypeLoc FnRetType, DeclContext *Parent,
ClangNode ClangN) {
const unsigned NumParamPatterns = BodyParams.size();
auto *FD = FuncDecl::createImpl(
Context, StaticLoc, StaticSpelling, FuncLoc, Name, NameLoc, ThrowsLoc,
AccessorKeywordLoc, GenericParams, Ty, NumParamPatterns, Parent, ClangN);
FD->setDeserializedSignature(BodyParams, FnRetType);
return FD;
}
StaticSpellingKind FuncDecl::getCorrectStaticSpelling() const {
assert(getDeclContext()->isTypeContext());
if (!isStatic())
return StaticSpellingKind::None;
return getCorrectStaticSpellingForDecl(this);
}
bool FuncDecl::isExplicitNonMutating() const {
return !isMutating() &&
isAccessor() && !isGetter() &&
isInstanceMember() &&
!getDeclContext()->getDeclaredTypeInContext()->hasReferenceSemantics();
}
void FuncDecl::setDeserializedSignature(ArrayRef<ParameterList *> BodyParams,
TypeLoc FnRetType) {
MutableArrayRef<ParameterList *> BodyParamsRef = getParameterLists();
unsigned NumParamPatterns = BodyParamsRef.size();
#ifndef NDEBUG
unsigned NumParams = BodyParams[getDeclContext()->isTypeContext()]->size();
auto Name = getFullName();
assert((!Name || !Name.isSimpleName()) && "Must have a simple name");
assert(!Name || (Name.getArgumentNames().size() == NumParams));
#endif
for (unsigned i = 0; i != NumParamPatterns; ++i)
BodyParamsRef[i] = BodyParams[i];
// Set the decl context of any vardecls to this FuncDecl.
for (auto P : BodyParams)
if (P)
P->setDeclContextOfParamDecls(this);
this->FnRetType = FnRetType;
}
Type FuncDecl::getResultType() const {
if (!hasType())
return nullptr;
Type resultTy = getType();
if (resultTy->is<ErrorType>())
return resultTy;
for (unsigned i = 0, e = getNaturalArgumentCount(); i != e; ++i)
resultTy = resultTy->castTo<AnyFunctionType>()->getResult();
if (!resultTy)
resultTy = TupleType::getEmpty(getASTContext());
return resultTy;
}
bool AbstractFunctionDecl::isBodyThrowing() const {
if (!hasType())
return false;
Type type = getType();
if (type->is<ErrorType>())
return false;
auto fnTy = type->castTo<AnyFunctionType>();
for (unsigned i = 1, e = getNaturalArgumentCount(); i != e; ++i)
fnTy = fnTy->getResult()->castTo<AnyFunctionType>();
return fnTy->getExtInfo().throws();
}
bool FuncDecl::isUnaryOperator() const {
if (!isOperator())
return false;
unsigned opArgIndex
= getDeclContext()->isProtocolOrProtocolExtensionContext() ? 1 : 0;
auto *params = getParameterList(opArgIndex);
return params->size() == 1 && !params->get(0)->isVariadic();
}
bool FuncDecl::isBinaryOperator() const {
if (!isOperator())
return false;
unsigned opArgIndex
= getDeclContext()->isProtocolOrProtocolExtensionContext() ? 1 : 0;
auto *params = getParameterList(opArgIndex);
return params->size() == 2 && !params->get(1)->isVariadic();
}
ConstructorDecl::ConstructorDecl(DeclName Name, SourceLoc ConstructorLoc,
OptionalTypeKind Failability,
SourceLoc FailabilityLoc,
ParamDecl *selfDecl,
ParameterList *BodyParams,
GenericParamList *GenericParams,
SourceLoc throwsLoc,
DeclContext *Parent)
: AbstractFunctionDecl(DeclKind::Constructor, Parent, Name,
ConstructorLoc, 2, GenericParams),
FailabilityLoc(FailabilityLoc), ThrowsLoc(throwsLoc)
{
setParameterLists(selfDecl, BodyParams);
ConstructorDeclBits.ComputedBodyInitKind = 0;
ConstructorDeclBits.InitKind
= static_cast<unsigned>(CtorInitializerKind::Designated);
ConstructorDeclBits.HasStubImplementation = 0;
this->Failability = static_cast<unsigned>(Failability);
}
void ConstructorDecl::setParameterLists(ParamDecl *selfDecl,
ParameterList *bodyParams) {
if (selfDecl) {
ParameterLists[0] = ParameterList::createWithoutLoc(selfDecl);
ParameterLists[0]->setDeclContextOfParamDecls(this);
} else {
ParameterLists[0] = nullptr;
}
ParameterLists[1] = bodyParams;
if (bodyParams)
bodyParams->setDeclContextOfParamDecls(this);
assert(!getFullName().isSimpleName() && "Constructor name must be compound");
assert(!bodyParams ||
(getFullName().getArgumentNames().size() == bodyParams->size()));
}
bool ConstructorDecl::isObjCZeroParameterWithLongSelector() const {
// The initializer must have a single, non-empty argument name.
if (getFullName().getArgumentNames().size() != 1 ||
getFullName().getArgumentNames()[0].empty())
return false;
auto *params = getParameterList(1);
if (params->size() != 1)
return false;
return params->get(0)->getType()->isVoid();
}
DestructorDecl::DestructorDecl(Identifier NameHack, SourceLoc DestructorLoc,
ParamDecl *selfDecl, DeclContext *Parent)
: AbstractFunctionDecl(DeclKind::Destructor, Parent, NameHack,
DestructorLoc, 1, nullptr) {
setSelfDecl(selfDecl);
}
void DestructorDecl::setSelfDecl(ParamDecl *selfDecl) {
if (selfDecl) {
SelfParameter = ParameterList::createWithoutLoc(selfDecl);
SelfParameter->setDeclContextOfParamDecls(this);
} else {
SelfParameter = nullptr;
}
}
DynamicSelfType *FuncDecl::getDynamicSelf() const {
if (!hasDynamicSelf())
return nullptr;
auto extType = getExtensionType();
if (extType->is<ProtocolType>())
return DynamicSelfType::get(getDeclContext()->getProtocolSelf()
->getArchetype(),
getASTContext());
return DynamicSelfType::get(extType, getASTContext());
}
DynamicSelfType *FuncDecl::getDynamicSelfInterface() const {
if (!hasDynamicSelf())
return nullptr;
auto extType = getDeclContext()->getDeclaredInterfaceType();
if (extType->is<ProtocolType>())
return DynamicSelfType::get(getDeclContext()->getProtocolSelf()
->getDeclaredType(),
getASTContext());
return DynamicSelfType::get(extType, getASTContext());
}
bool FuncDecl::hasArchetypeSelf() const {
if (!getDeclContext()->isProtocolExtensionContext())
return false;
auto selfTy = getDeclContext()->getProtocolSelf()->getArchetype();
auto resultTy = getResultType();
auto optionalResultTy = resultTy->getAnyOptionalObjectType();
if (optionalResultTy)
return optionalResultTy->isEqual(selfTy);
return resultTy->isEqual(selfTy);
}
SourceRange FuncDecl::getSourceRange() const {
SourceLoc StartLoc = getStartLoc();
if (StartLoc.isInvalid()) return SourceRange();
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { StartLoc, BodyRange.End };
if (auto *B = getBody())
return { StartLoc, B->getEndLoc() };
if (getBodyResultTypeLoc().hasLocation() &&
getBodyResultTypeLoc().getSourceRange().End.isValid() &&
!this->isAccessor())
return { StartLoc, getBodyResultTypeLoc().getSourceRange().End };
auto LastParamListEndLoc = getParameterLists().back()->getSourceRange().End;
if (LastParamListEndLoc.isValid())
return { StartLoc, LastParamListEndLoc };
return StartLoc;
}
SourceRange EnumElementDecl::getSourceRange() const {
if (RawValueExpr && !RawValueExpr->isImplicit())
return {getStartLoc(), RawValueExpr->getEndLoc()};
if (ArgumentType.hasLocation())
return {getStartLoc(), ArgumentType.getSourceRange().End};
return {getStartLoc(), getNameLoc()};
}
void EnumElementDecl::computeType() {
EnumDecl *ED = getParentEnum();
Type resultTy = ED->getDeclaredTypeInContext();
Type argTy = MetatypeType::get(resultTy);
// The type of the enum element is either (T) -> T or (T) -> ArgType -> T.
if (getArgumentType())
resultTy = FunctionType::get(getArgumentType(), resultTy);
if (ED->isGenericTypeContext())
resultTy = PolymorphicFunctionType::get(argTy, resultTy,
ED->getGenericParamsOfContext());
else
resultTy = FunctionType::get(argTy, resultTy);
setType(resultTy);
}
Type EnumElementDecl::getArgumentInterfaceType() const {
if (!hasArgumentType())
return nullptr;
auto interfaceType = getInterfaceType();
if (interfaceType->is<ErrorType>()) {
return interfaceType;
}
auto funcTy = interfaceType->castTo<AnyFunctionType>();
funcTy = funcTy->getResult()->castTo<AnyFunctionType>();
return funcTy->getInput();
}
EnumCaseDecl *EnumElementDecl::getParentCase() const {
for (EnumCaseDecl *EC : getParentEnum()->getAllCases()) {
ArrayRef<EnumElementDecl *> CaseElements = EC->getElements();
if (std::find(CaseElements.begin(), CaseElements.end(), this) !=
CaseElements.end()) {
return EC;
}
}
llvm_unreachable("enum element not in case of parent enum");
}
SourceRange ConstructorDecl::getSourceRange() const {
if (isImplicit())
return getConstructorLoc();
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { getConstructorLoc(), BodyRange.End };
SourceLoc End;
if (auto body = getBody())
End = body->getEndLoc();
if (End.isInvalid())
End = getSignatureSourceRange().End;
return { getConstructorLoc(), End };
}
Type ConstructorDecl::getArgumentType() const {
Type ArgTy = getType();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getInput();
return ArgTy;
}
Type ConstructorDecl::getResultType() const {
Type ArgTy = getType();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
return ArgTy;
}
Type ConstructorDecl::getInitializerInterfaceType() {
if (!InitializerInterfaceType) {
assert((!InitializerType || !InitializerType->is<PolymorphicFunctionType>())
&& "polymorphic function type is invalid interface type");
// Don't cache type variable types.
if (InitializerType->hasTypeVariable())
return InitializerType;
InitializerInterfaceType = InitializerType;
}
return InitializerInterfaceType;
}
void ConstructorDecl::setInitializerInterfaceType(Type t) {
assert(!t->is<PolymorphicFunctionType>()
&& "polymorphic function type is invalid interface type");
InitializerInterfaceType = t;
}
ConstructorDecl::BodyInitKind
ConstructorDecl::getDelegatingOrChainedInitKind(DiagnosticEngine *diags,
ApplyExpr **init) const {
assert(hasBody() && "Constructor does not have a definition");
if (init)
*init = nullptr;
// If we already computed the result, return it.
if (ConstructorDeclBits.ComputedBodyInitKind) {
return static_cast<BodyInitKind>(
ConstructorDeclBits.ComputedBodyInitKind - 1);
}
struct FindReferenceToInitializer : ASTWalker {
const ConstructorDecl *Decl;
BodyInitKind Kind = BodyInitKind::None;
ApplyExpr *InitExpr = nullptr;
DiagnosticEngine *Diags;
FindReferenceToInitializer(const ConstructorDecl *decl,
DiagnosticEngine *diags)
: Decl(decl), Diags(diags) { }
bool isSelfExpr(Expr *E) {
E = E->getSemanticsProvidingExpr();
if (auto ATSE = dyn_cast<ArchetypeToSuperExpr>(E))
E = ATSE->getSubExpr();
if (auto IOE = dyn_cast<InOutExpr>(E))
E = IOE->getSubExpr();
if (auto LE = dyn_cast<LoadExpr>(E))
E = LE->getSubExpr();
if (auto DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getDecl() == Decl->getImplicitSelfDecl();
return false;
}
std::pair<bool, Expr*> walkToExprPre(Expr *E) override {
// Don't walk into closures.
if (isa<ClosureExpr>(E))
return { false, E };
// Look for calls of a constructor on self or super.
auto apply = dyn_cast<ApplyExpr>(E);
if (!apply)
return { true, E };
auto Callee = apply->getFn()->getSemanticsProvidingExpr();
Expr *arg;
if (isa<OtherConstructorDeclRefExpr>(Callee)) {
arg = apply->getArg();
} else if (auto *UCE = dyn_cast<UnresolvedConstructorExpr>(Callee)) {
arg = UCE->getSubExpr();
} else if (auto *CRE = dyn_cast<ConstructorRefCallExpr>(Callee)) {
arg = CRE->getArg();
} else {
// Not a constructor call.
return { true, E };
}
// Look for a base of 'self' or 'super'.
BodyInitKind myKind;
if (arg->isSuperExpr())
myKind = BodyInitKind::Chained;
else if (isSelfExpr(arg))
myKind = BodyInitKind::Delegating;
else {
// We're constructing something else.
return { true, E };
}
if (Kind == BodyInitKind::None) {
Kind = myKind;
// If we're not emitting diagnostics, we're done.
if (!Diags)
return { false, nullptr };
InitExpr = apply;
return { true, E };
}
assert(Diags && "Failed to abort traversal early");
// If the kind changed, complain.
if (Kind != myKind) {
// The kind changed. Complain.
Diags->diagnose(E->getLoc(), diag::init_delegates_and_chains);
Diags->diagnose(InitExpr->getLoc(), diag::init_delegation_or_chain,
Kind == BodyInitKind::Chained);
}
return { true, E };
}
};
FindReferenceToInitializer finder(this, diags);
getBody()->walk(finder);
// get the kind out of the finder.
auto Kind = finder.Kind;
// If we didn't find any delegating or chained initializers, check whether
// the initializer was explicitly marked 'convenience'.
if (Kind == BodyInitKind::None && getAttrs().hasAttribute<ConvenienceAttr>())
Kind = BodyInitKind::Delegating;
// If wes till don't know, check whether we have a class with a superclass: it
// gets an implicit chained initializer.
if (Kind == BodyInitKind::None) {
if (auto classDecl = getDeclContext()->getDeclaredTypeInContext()
->getClassOrBoundGenericClass()) {
if (classDecl->getSuperclass())
Kind = BodyInitKind::ImplicitChained;
}
}
// Cache the result if it is trustworthy.
if (diags) {
auto *mutableThis = const_cast<ConstructorDecl *>(this);
mutableThis->ConstructorDeclBits.ComputedBodyInitKind =
static_cast<unsigned>(Kind) + 1;
if (init)
*init = finder.InitExpr;
}
return Kind;
}
SourceRange DestructorDecl::getSourceRange() const {
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { getDestructorLoc(), BodyRange.End };
if (getBodyKind() == BodyKind::None)
return getDestructorLoc();
return { getDestructorLoc(), getBody()->getEndLoc() };
}
void InfixOperatorDecl::collectOperatorKeywordRanges(SmallVectorImpl
<CharSourceRange> &Ranges) {
auto AddToRange = [&] (SourceLoc Loc, StringRef Word) {
if (Loc.isValid())
Ranges.push_back(CharSourceRange(Loc, strlen(Word.data())));
};
AddToRange(AssociativityLoc, "associativity");
AddToRange(AssignmentLoc, "assignment");
AddToRange(PrecedenceLoc, "precedence");
}
bool FuncDecl::isDeferBody() const {
return getName() == getASTContext().getIdentifier("$defer");
}