blob: 2817a8a1450bde5ef55df9d7cfc681c17af3b058 [file] [log] [blame]
//===--- ASTPrinter.cpp - Swift Language AST Printer ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements printing for the Swift ASTs.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ArchetypeBuilder.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/TypeVisitor.h"
#include "swift/AST/TypeWalker.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/Basic/PrimitiveParsing.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Parse/Lexer.h"
#include "swift/Config.h"
#include "swift/Sema/CodeCompletionTypeChecking.h"
#include "swift/Strings.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
#include <algorithm>
using namespace swift;
namespace swift {
class PrinterArchetypeTransformer {
Type BaseTy;
DeclContext *DC;
llvm::DenseMap<TypeBase *, Type> Cache;
llvm::DenseMap<StringRef, Type> IdMap;
public:
PrinterArchetypeTransformer(Type Ty, DeclContext *DC) :
BaseTy(Ty->getRValueType()), DC(DC){
(void) this->DC;
auto D = BaseTy->getNominalOrBoundGenericNominal();
if (!D || !D->getGenericParams())
return;
SmallVector<Type, 3> Scrach;
auto Args = BaseTy->getAllGenericArgs(Scrach);
const auto ParamDecls = D->getGenericParams()->getParams();
assert(ParamDecls.size() == Args.size());
// Map type parameter names with their instantiating arguments.
for(unsigned I = 0, N = ParamDecls.size(); I < N; I ++) {
IdMap[ParamDecls[I]->getName().str()] = Args[I];
}
}
Type transformByName(Type Ty) {
if (Ty->getKind() != TypeKind::Archetype)
return Ty;
// First, we try to find the map from cache.
if (Cache.count(Ty.getPointer()) > 0) {
return Cache[Ty.getPointer()];
}
auto Id = cast<ArchetypeType>(Ty.getPointer())->getName().str();
auto Result = Ty;
// Iterate the IdMap to find the argument type of the given param name.
for (auto It = IdMap.begin(); It != IdMap.end(); ++ It) {
if (Id == It->getFirst()) {
Result = It->getSecond();
break;
}
}
// Put the result into cache.
Cache[Ty.getPointer()] = Result;
return Result;
}
};
}
PrintOptions PrintOptions::printTypeInterface(Type T, DeclContext *DC) {
PrintOptions result = printInterface();
result.pTransformer = std::make_shared<PrinterArchetypeTransformer>(T, DC);
result.TypeToPrint = T.getPointer();
return result;
}
std::string ASTPrinter::sanitizeUtf8(StringRef Text) {
llvm::SmallString<256> Builder;
Builder.reserve(Text.size());
const UTF8* Data = reinterpret_cast<const UTF8*>(Text.begin());
const UTF8* End = reinterpret_cast<const UTF8*>(Text.end());
StringRef Replacement = "\ufffd";
while (Data < End) {
auto Step = getNumBytesForUTF8(*Data);
if (Data + Step > End) {
Builder.append(Replacement);
break;
}
if (isLegalUTF8Sequence(Data, Data + Step)) {
Builder.append(Data, Data + Step);
} else {
// If malformed, add replacement characters.
Builder.append(Replacement);
}
Data += Step;
}
return Builder.str();
}
bool ASTPrinter::printTypeInterface(Type Ty, DeclContext *DC,
llvm::raw_ostream &OS) {
if (!Ty)
return false;
Ty = Ty->getRValueType();
PrintOptions Options = PrintOptions::printTypeInterface(Ty.getPointer(), DC);
if (auto ND = Ty->getNominalOrBoundGenericNominal()) {
Options.printExtensionContentAsMembers = [&](const ExtensionDecl *ED) {
return isExtensionApplied(*ND->getDeclContext(), Ty, ED);
};
ND->print(OS, Options);
return true;
}
return false;
}
bool ASTPrinter::printTypeInterface(Type Ty, DeclContext *DC, std::string &Buffer) {
llvm::raw_string_ostream OS(Buffer);
auto Result = printTypeInterface(Ty, DC, OS);
OS.str();
return Result;
}
void ASTPrinter::anchor() {}
void ASTPrinter::printIndent() {
llvm::SmallString<16> Str;
for (unsigned i = 0; i != CurrentIndentation; ++i)
Str += ' ';
printText(Str);
}
void ASTPrinter::printTextImpl(StringRef Text) {
if (PendingNewlines != 0) {
llvm::SmallString<16> Str;
for (unsigned i = 0; i != PendingNewlines; ++i)
Str += '\n';
PendingNewlines = 0;
printText(Str);
printIndent();
}
const Decl *PreD = PendingDeclPreCallback;
const Decl *LocD = PendingDeclLocCallback;
PendingDeclPreCallback = nullptr;
PendingDeclLocCallback = nullptr;
if (PreD) {
printDeclPre(PreD);
}
if (LocD) {
printDeclLoc(LocD);
}
printText(Text);
}
void ASTPrinter::printTypeRef(const TypeDecl *TD, Identifier Name) {
PrintNameContext Context = PrintNameContext::Normal;
if (auto GP = dyn_cast<GenericTypeParamDecl>(TD)) {
if (GP->isProtocolSelf())
Context = PrintNameContext::GenericParameter;
}
printName(Name, Context);
}
void ASTPrinter::printModuleRef(ModuleEntity Mod, Identifier Name) {
printName(Name);
}
ASTPrinter &ASTPrinter::operator<<(unsigned long long N) {
llvm::SmallString<32> Str;
llvm::raw_svector_ostream OS(Str);
OS << N;
printTextImpl(OS.str());
return *this;
}
ASTPrinter &ASTPrinter::operator<<(UUID UU) {
llvm::SmallString<UUID::StringBufferSize> Str;
UU.toString(Str);
printTextImpl(Str);
return *this;
}
/// Determine whether to escape the given keyword in the given context.
static bool escapeKeywordInContext(StringRef keyword, PrintNameContext context){
switch (context) {
case PrintNameContext::Normal:
return true;
case PrintNameContext::GenericParameter:
return keyword != "Self";
case PrintNameContext::FunctionParameter:
return !canBeArgumentLabel(keyword);
}
}
void ASTPrinter::printName(Identifier Name, PrintNameContext Context) {
if (Name.empty()) {
*this << "_";
return;
}
bool IsKeyword = llvm::StringSwitch<bool>(Name.str())
#define KEYWORD(KW) \
.Case(#KW, true)
#include "swift/Parse/Tokens.def"
.Default(false);
if (IsKeyword)
IsKeyword = escapeKeywordInContext(Name.str(), Context);
if (IsKeyword)
*this << "`";
*this << Name.str();
if (IsKeyword)
*this << "`";
}
void StreamPrinter::printText(StringRef Text) {
OS << Text;
}
namespace {
/// \brief AST pretty-printer.
class PrintAST : public ASTVisitor<PrintAST> {
ASTPrinter &Printer;
PrintOptions Options;
unsigned IndentLevel = 0;
friend DeclVisitor<PrintAST>;
/// \brief RAII object that increases the indentation level.
class IndentRAII {
PrintAST &Self;
bool DoIndent;
public:
IndentRAII(PrintAST &self, bool DoIndent = true)
: Self(self), DoIndent(DoIndent) {
if (DoIndent)
Self.IndentLevel += Self.Options.Indent;
}
~IndentRAII() {
if (DoIndent)
Self.IndentLevel -= Self.Options.Indent;
}
};
/// \brief Indent the current number of indentation spaces.
void indent() {
Printer.setIndent(IndentLevel);
}
/// \brief Record the location of this declaration, which is about to
/// be printed.
template<typename FnTy>
void recordDeclLoc(Decl *decl, const FnTy &Fn) {
Printer.callPrintDeclLoc(decl);
Fn();
Printer.printDeclNameEndLoc(decl);
}
void printSourceRange(CharSourceRange Range, ASTContext &Ctx) {
Printer << Ctx.SourceMgr.extractText(Range);
}
void printClangDocumentationComment(const clang::Decl *D) {
const auto &ClangContext = D->getASTContext();
const clang::RawComment *RC = ClangContext.getRawCommentForAnyRedecl(D);
if (!RC)
return;
if (!Options.PrintRegularClangComments) {
Printer.printNewline();
indent();
}
bool Invalid;
unsigned StartLocCol =
ClangContext.getSourceManager().getSpellingColumnNumber(
RC->getLocStart(), &Invalid);
if (Invalid)
StartLocCol = 0;
unsigned WhitespaceToTrim = StartLocCol ? StartLocCol - 1 : 0;
SmallVector<StringRef, 8> Lines;
StringRef RawText =
RC->getRawText(ClangContext.getSourceManager()).rtrim("\n\r");
trimLeadingWhitespaceFromLines(RawText, WhitespaceToTrim, Lines);
for (auto Line : Lines) {
Printer << ASTPrinter::sanitizeUtf8(Line);
Printer.printNewline();
}
}
void printSwiftDocumentationComment(const Decl *D) {
auto RC = D->getRawComment();
if (RC.isEmpty())
return;
indent();
SmallVector<StringRef, 8> Lines;
for (const auto &SRC : RC.Comments) {
Lines.clear();
StringRef RawText = SRC.RawText.rtrim("\n\r");
unsigned WhitespaceToTrim = SRC.StartColumn - 1;
trimLeadingWhitespaceFromLines(RawText, WhitespaceToTrim, Lines);
for (auto Line : Lines) {
Printer << Line;
Printer.printNewline();
}
}
}
void printDocumentationComment(const Decl *D) {
if (!Options.PrintDocumentationComments)
return;
// Try to print a comment from Clang.
auto MaybeClangNode = D->getClangNode();
if (MaybeClangNode) {
if (auto *CD = MaybeClangNode.getAsDecl())
printClangDocumentationComment(CD);
return;
}
printSwiftDocumentationComment(D);
}
void printStaticKeyword(StaticSpellingKind StaticSpelling) {
switch (StaticSpelling) {
case StaticSpellingKind::None:
llvm_unreachable("should not be called for non-static decls");
case StaticSpellingKind::KeywordStatic:
Printer << "static ";
break;
case StaticSpellingKind::KeywordClass:
Printer<< "class ";
break;
}
}
void printAccessibility(Accessibility access, StringRef suffix = "") {
switch (access) {
case Accessibility::Private:
Printer << "private";
break;
case Accessibility::Internal:
if (!Options.PrintInternalAccessibilityKeyword)
return;
Printer << "internal";
break;
case Accessibility::Public:
Printer << "public";
break;
}
Printer << suffix << " ";
}
void printAccessibility(const ValueDecl *D) {
if (!Options.PrintAccessibility || !D->hasAccessibility() ||
D->getAttrs().hasAttribute<AccessibilityAttr>())
return;
printAccessibility(D->getFormalAccess());
if (auto storageDecl = dyn_cast<AbstractStorageDecl>(D)) {
if (auto setter = storageDecl->getSetter()) {
Accessibility setterAccess = setter->getFormalAccess();
if (setterAccess != D->getFormalAccess())
printAccessibility(setterAccess, "(set)");
}
}
}
void printTypeLoc(const TypeLoc &TL) {
if (Options.pTransformer && TL.getType()) {
if (auto RT = Options.pTransformer->transformByName(TL.getType())) {
PrintOptions FreshOptions;
RT.print(Printer, FreshOptions);
return;
}
}
// Print a TypeRepr if instructed to do so by options, or if the type
// is null.
if ((Options.PreferTypeRepr && TL.hasLocation()) ||
TL.getType().isNull()) {
if (auto repr = TL.getTypeRepr())
repr->print(Printer, Options);
return;
}
TL.getType().print(Printer, Options);
}
void printAttributes(const Decl *D);
void printTypedPattern(const TypedPattern *TP);
public:
void printPattern(const Pattern *pattern);
void printGenericParams(GenericParamList *params);
void printWhereClause(ArrayRef<RequirementRepr> requirements);
private:
bool shouldPrint(const Decl *D, bool Notify = false);
bool shouldPrintPattern(const Pattern *P);
void printPatternType(const Pattern *P);
void printAccessors(AbstractStorageDecl *ASD);
void printMembersOfDecl(Decl * NTD, bool needComma = false);
void printMembers(ArrayRef<Decl *> members, bool needComma = false);
void printNominalDeclName(NominalTypeDecl *decl);
void printInherited(const Decl *decl,
ArrayRef<TypeLoc> inherited,
ArrayRef<ProtocolDecl *> protos,
Type superclass = {},
bool explicitClass = false,
bool PrintAsProtocolComposition = false);
void printInherited(const NominalTypeDecl *decl,
bool explicitClass = false);
void printInherited(const EnumDecl *D);
void printInherited(const ExtensionDecl *decl);
void printInherited(const GenericTypeParamDecl *D);
void printEnumElement(EnumElementDecl *elt);
/// \returns true if anything was printed.
bool printASTNodes(const ArrayRef<ASTNode> &Elements, bool NeedIndent = true);
void printOneParameter(const ParamDecl *param, bool Curried,
bool ArgNameIsAPIByDefault);
void printParameterList(ParameterList *PL, bool isCurried,
std::function<bool(unsigned)> isAPINameByDefault);
/// \brief Print the function parameters in curried or selector style,
/// to match the original function declaration.
void printFunctionParameters(AbstractFunctionDecl *AFD);
#define DECL(Name,Parent) void visit##Name##Decl(Name##Decl *decl);
#define ABSTRACT_DECL(Name, Parent)
#define DECL_RANGE(Name,Start,End)
#include "swift/AST/DeclNodes.def"
#define STMT(Name, Parent) void visit##Name##Stmt(Name##Stmt *stmt);
#include "swift/AST/StmtNodes.def"
public:
PrintAST(ASTPrinter &Printer, const PrintOptions &Options)
: Printer(Printer), Options(Options) {}
using ASTVisitor::visit;
bool visit(Decl *D) {
if (!shouldPrint(D, true))
return false;
Printer.callPrintDeclPre(D);
ASTVisitor::visit(D);
Printer.printDeclPost(D);
return true;
}
};
} // unnamed namespace
void PrintAST::printAttributes(const Decl *D) {
if (Options.SkipAttributes)
return;
D->getAttrs().print(Printer, Options);
}
void PrintAST::printTypedPattern(const TypedPattern *TP) {
auto TheTypeLoc = TP->getTypeLoc();
if (TheTypeLoc.hasLocation()) {
// If the outer typeloc is an InOutTypeRepr, print the inout before the
// subpattern.
if (auto *IOT = dyn_cast<InOutTypeRepr>(TheTypeLoc.getTypeRepr())) {
TheTypeLoc = TypeLoc(IOT->getBase());
Type T = TheTypeLoc.getType();
if (T) {
if (auto *IOT = T->getAs<InOutType>()) {
T = IOT->getObjectType();
TheTypeLoc.setType(T);
}
}
Printer << "inout ";
}
printPattern(TP->getSubPattern());
Printer << ": ";
printTypeLoc(TheTypeLoc);
return;
}
Type T = TP->getType();
if (auto *IOT = T->getAs<InOutType>()) {
T = IOT->getObjectType();
Printer << "inout ";
}
printPattern(TP->getSubPattern());
Printer << ": ";
T.print(Printer, Options);
}
void PrintAST::printPattern(const Pattern *pattern) {
switch (pattern->getKind()) {
case PatternKind::Any:
Printer << "_";
break;
case PatternKind::Named: {
auto named = cast<NamedPattern>(pattern);
recordDeclLoc(named->getDecl(), [&]{
Printer.printName(named->getBoundName());
});
break;
}
case PatternKind::Paren:
Printer << "(";
printPattern(cast<ParenPattern>(pattern)->getSubPattern());
Printer << ")";
break;
case PatternKind::Tuple: {
Printer << "(";
auto TP = cast<TuplePattern>(pattern);
auto Fields = TP->getElements();
for (unsigned i = 0, e = Fields.size(); i != e; ++i) {
const auto &Elt = Fields[i];
if (i != 0)
Printer << ", ";
printPattern(Elt.getPattern());
}
Printer << ")";
break;
}
case PatternKind::Typed:
printTypedPattern(cast<TypedPattern>(pattern));
break;
case PatternKind::Is: {
auto isa = cast<IsPattern>(pattern);
Printer << "is ";
isa->getCastTypeLoc().getType().print(Printer, Options);
break;
}
case PatternKind::NominalType: {
auto type = cast<NominalTypePattern>(pattern);
type->getCastTypeLoc().getType().print(Printer, Options);
Printer << "(";
interleave(type->getElements().begin(), type->getElements().end(),
[&](const NominalTypePattern::Element &elt) {
Printer << elt.getPropertyName().str() << ":";
printPattern(elt.getSubPattern());
}, [&] {
Printer << ", ";
});
break;
}
case PatternKind::EnumElement: {
auto elt = cast<EnumElementPattern>(pattern);
// FIXME: Print element expr.
if (elt->hasSubPattern())
printPattern(elt->getSubPattern());
break;
}
case PatternKind::OptionalSome:
printPattern(cast<OptionalSomePattern>(pattern)->getSubPattern());
Printer << '?';
break;
case PatternKind::Bool:
Printer << (cast<BoolPattern>(pattern)->getValue() ? "true" : "false");
break;
case PatternKind::Expr:
// FIXME: Print expr.
break;
case PatternKind::Var:
if (!Options.SkipIntroducerKeywords)
Printer << (cast<VarPattern>(pattern)->isLet() ? "let " : "var ");
printPattern(cast<VarPattern>(pattern)->getSubPattern());
}
}
void PrintAST::printGenericParams(GenericParamList *Params) {
if (!Params)
return;
Printer << "<";
bool IsFirst = true;
SmallVector<Type, 4> Scrach;
if (Options.pTransformer) {
auto ArgArr = Options.TypeToPrint->getAllGenericArgs(Scrach);
for (auto Arg : ArgArr) {
if (IsFirst) {
IsFirst = false;
} else {
Printer << ", ";
}
auto NM = Arg->getAnyNominal();
assert(NM && "Cannot get nominal type.");
Printer << NM->getNameStr();
}
} else {
for (auto GP : Params->getParams()) {
if (IsFirst) {
IsFirst = false;
} else {
Printer << ", ";
}
Printer.printName(GP->getName());
printInherited(GP);
}
printWhereClause(Params->getRequirements());
}
Printer << ">";
}
void PrintAST::printWhereClause(ArrayRef<RequirementRepr> requirements) {
if (requirements.empty())
return;
bool isFirst = true;
for (auto &req : requirements) {
if (req.isInvalid() ||
req.getKind() == RequirementKind::WitnessMarker)
continue;
if (isFirst) {
Printer << " where ";
isFirst = false;
} else {
Printer << ", ";
}
auto asWrittenStr = req.getAsWrittenString();
if (!asWrittenStr.empty()) {
Printer << asWrittenStr;
continue;
}
switch (req.getKind()) {
case RequirementKind::Conformance:
printTypeLoc(req.getSubjectLoc());
Printer << " : ";
printTypeLoc(req.getConstraintLoc());
break;
case RequirementKind::SameType:
printTypeLoc(req.getFirstTypeLoc());
Printer << " == ";
printTypeLoc(req.getSecondTypeLoc());
break;
case RequirementKind::WitnessMarker:
llvm_unreachable("Handled above");
}
}
}
bool swift::shouldPrintPattern(const Pattern *P, PrintOptions &Options) {
bool ShouldPrint = false;
P->forEachVariable([&](VarDecl *VD) {
ShouldPrint |= shouldPrint(VD, Options);
});
return ShouldPrint;
}
bool PrintAST::shouldPrintPattern(const Pattern *P) {
return swift::shouldPrintPattern(P, Options);
}
void PrintAST::printPatternType(const Pattern *P) {
if (P->hasType()) {
Printer << ": ";
P->getType().print(Printer, Options);
}
}
bool swift::shouldPrint(const Decl *D, PrintOptions &Options) {
if (auto *ED= dyn_cast<ExtensionDecl>(D)) {
if (Options.printExtensionContentAsMembers(ED))
return false;
}
if (Options.SkipDeinit && isa<DestructorDecl>(D)) {
return false;
}
if (Options.SkipImports && isa<ImportDecl>(D)) {
return false;
}
if (Options.SkipImplicit && D->isImplicit())
return false;
if (Options.SkipUnavailable &&
D->getAttrs().isUnavailable(D->getASTContext()))
return false;
// Skip declarations that are not accessible.
if (auto *VD = dyn_cast<ValueDecl>(D)) {
if (Options.AccessibilityFilter > Accessibility::Private &&
VD->hasAccessibility() &&
VD->getFormalAccess() < Options.AccessibilityFilter)
return false;
}
if (Options.SkipPrivateStdlibDecls &&
D->isPrivateStdlibDecl(
/*whitelistProtocols=*/!Options.SkipUnderscoredStdlibProtocols))
return false;
if (Options.SkipEmptyExtensionDecls && isa<ExtensionDecl>(D)) {
auto Ext = cast<ExtensionDecl>(D);
// If the extension doesn't add protocols or has no members that we should
// print then skip printing it.
if (Ext->getLocalProtocols().empty()) {
bool HasMemberToPrint = false;
for (auto Member : Ext->getMembers()) {
if (shouldPrint(Member, Options)) {
HasMemberToPrint = true;
break;
}
}
if (!HasMemberToPrint)
return false;
}
}
// We need to handle PatternBindingDecl as a special case here because its
// attributes can only be retrieved from the inside VarDecls.
if (auto *PD = dyn_cast<PatternBindingDecl>(D)) {
auto ShouldPrint = false;
for (auto entry : PD->getPatternList()) {
ShouldPrint |= shouldPrintPattern(entry.getPattern(), Options);
if (ShouldPrint)
return true;
}
return false;
}
return true;
}
bool PrintAST::shouldPrint(const Decl *D, bool Notify) {
auto Result = swift::shouldPrint(D, Options);
if (!Result && Notify)
Printer.avoidPrintDeclPost(D);
return Result;
}
static bool isAccessorAssumedNonMutating(FuncDecl *accessor) {
switch (accessor->getAccessorKind()) {
case AccessorKind::IsGetter:
case AccessorKind::IsAddressor:
return true;
case AccessorKind::IsSetter:
case AccessorKind::IsWillSet:
case AccessorKind::IsDidSet:
case AccessorKind::IsMaterializeForSet:
case AccessorKind::IsMutableAddressor:
return false;
case AccessorKind::NotAccessor:
llvm_unreachable("not an addressor!");
}
llvm_unreachable("bad addressor kind");
}
static StringRef getAddressorLabel(FuncDecl *addressor) {
switch (addressor->getAddressorKind()) {
case AddressorKind::NotAddressor:
llvm_unreachable("addressor claims not to be an addressor");
case AddressorKind::Unsafe:
return "unsafeAddress";
case AddressorKind::Owning:
return "addressWithOwner";
case AddressorKind::NativeOwning:
return "addressWithNativeOwner";
case AddressorKind::NativePinning:
return "addressWithPinnedNativeOwner";
}
llvm_unreachable("bad addressor kind");
}
static StringRef getMutableAddressorLabel(FuncDecl *addressor) {
switch (addressor->getAddressorKind()) {
case AddressorKind::NotAddressor:
llvm_unreachable("addressor claims not to be an addressor");
case AddressorKind::Unsafe:
return "unsafeMutableAddress";
case AddressorKind::Owning:
return "mutableAddressWithOwner";
case AddressorKind::NativeOwning:
return "mutableAddressWithNativeOwner";
case AddressorKind::NativePinning:
return "mutableAddressWithPinnedNativeOwner";
}
llvm_unreachable("bad addressor kind");
}
void PrintAST::printAccessors(AbstractStorageDecl *ASD) {
if (isa<VarDecl>(ASD) && !Options.PrintPropertyAccessors)
return;
auto storageKind = ASD->getStorageKind();
// Never print anything for stored properties.
if (storageKind == AbstractStorageDecl::Stored)
return;
// Treat StoredWithTrivialAccessors the same as Stored unless
// we're printing for SIL, in which case we want to distinguish it
// from a pure stored property.
if (storageKind == AbstractStorageDecl::StoredWithTrivialAccessors) {
if (!Options.PrintForSIL) return;
// Don't print an accessor for a let; the parser can't handle it.
if (isa<VarDecl>(ASD) && cast<VarDecl>(ASD)->isLet())
return;
}
// We sometimes want to print the accessors abstractly
// instead of listing out how they're actually implemented.
bool inProtocol = isa<ProtocolDecl>(ASD->getDeclContext());
if (inProtocol ||
(Options.AbstractAccessors && !Options.FunctionDefinitions)) {
bool mutatingGetter = ASD->getGetter() && ASD->isGetterMutating();
bool settable = ASD->isSettable(nullptr);
bool nonmutatingSetter = false;
if (settable && ASD->isSetterNonMutating() && ASD->isInstanceMember() &&
!ASD->getDeclContext()->getDeclaredTypeInContext()
->hasReferenceSemantics())
nonmutatingSetter = true;
// We're about to print something like this:
// { mutating? get (nonmutating? set)? }
// But don't print "{ get set }" if we don't have to.
if (!inProtocol && !Options.PrintGetSetOnRWProperties &&
settable && !mutatingGetter && !nonmutatingSetter) {
return;
}
Printer << " {";
if (mutatingGetter) Printer << " mutating";
Printer << " get";
if (settable) {
if (nonmutatingSetter) Printer << " nonmutating";
Printer << " set";
}
Printer << " }";
return;
}
// Honor !Options.PrintGetSetOnRWProperties in the only remaining
// case where we could end up printing { get set }.
if (storageKind == AbstractStorageDecl::StoredWithTrivialAccessors ||
storageKind == AbstractStorageDecl::Computed) {
if (!Options.PrintGetSetOnRWProperties &&
!Options.FunctionDefinitions &&
ASD->getSetter() &&
!ASD->getGetter()->isMutating() &&
!ASD->getSetter()->isExplicitNonMutating()) {
return;
}
}
// Otherwise, print all the concrete defining accessors.
bool PrintAccessorBody = Options.FunctionDefinitions;
auto PrintAccessor = [&](FuncDecl *Accessor, StringRef Label) {
if (!Accessor)
return;
if (!PrintAccessorBody) {
if (isAccessorAssumedNonMutating(Accessor)) {
if (Accessor->isMutating())
Printer << " mutating";
} else {
if (Accessor->isExplicitNonMutating()) {
Printer << " nonmutating";
}
}
Printer << " " << Label;
} else {
Printer.printNewline();
IndentRAII IndentMore(*this);
indent();
visit(Accessor);
}
};
auto PrintAddressor = [&](FuncDecl *accessor) {
if (!accessor) return;
PrintAccessor(accessor, getAddressorLabel(accessor));
};
auto PrintMutableAddressor = [&](FuncDecl *accessor) {
if (!accessor) return;
PrintAccessor(accessor, getMutableAddressorLabel(accessor));
};
Printer << " {";
switch (storageKind) {
case AbstractStorageDecl::Stored:
llvm_unreachable("filtered out above!");
case AbstractStorageDecl::StoredWithTrivialAccessors:
case AbstractStorageDecl::Computed:
PrintAccessor(ASD->getGetter(), "get");
PrintAccessor(ASD->getSetter(), "set");
break;
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
PrintAccessor(ASD->getWillSetFunc(), "willSet");
PrintAccessor(ASD->getDidSetFunc(), "didSet");
break;
case AbstractStorageDecl::Addressed:
case AbstractStorageDecl::AddressedWithTrivialAccessors:
case AbstractStorageDecl::AddressedWithObservers:
PrintAddressor(ASD->getAddressor());
PrintMutableAddressor(ASD->getMutableAddressor());
if (ASD->hasObservers()) {
PrintAccessor(ASD->getWillSetFunc(), "willSet");
PrintAccessor(ASD->getDidSetFunc(), "didSet");
}
break;
case AbstractStorageDecl::ComputedWithMutableAddress:
PrintAccessor(ASD->getGetter(), "get");
PrintMutableAddressor(ASD->getMutableAddressor());
break;
}
if (PrintAccessorBody) {
Printer.printNewline();
indent();
} else
Printer << " ";
Printer << "}";
}
void PrintAST::printMembersOfDecl(Decl *D, bool needComma) {
llvm::SmallVector<Decl *, 3> Members;
auto AddDeclFunc = [&](DeclRange Range) {
for (auto RD : Range)
Members.push_back(RD);
};
if (auto Ext = dyn_cast<ExtensionDecl>(D)) {
AddDeclFunc(Ext->getMembers());
} else if (auto NTD = dyn_cast<NominalTypeDecl>(D)) {
AddDeclFunc(NTD->getMembers());
for (auto Ext : NTD->getExtensions()) {
if (Options.printExtensionContentAsMembers(Ext))
AddDeclFunc(Ext->getMembers());
}
}
printMembers(Members, needComma);
}
void PrintAST::printMembers(ArrayRef<Decl *> members, bool needComma) {
Printer << " {";
Printer.printNewline();
{
IndentRAII indentMore(*this);
for (auto i = members.begin(), iEnd = members.end(); i != iEnd; ++i) {
auto member = *i;
if (!shouldPrint(member, true))
continue;
if (!member->shouldPrintInContext(Options))
continue;
if (Options.EmptyLineBetweenMembers)
Printer.printNewline();
indent();
visit(member);
if (needComma && std::next(i) != iEnd)
Printer << ",";
Printer.printNewline();
}
}
indent();
Printer << "}";
}
void PrintAST::printNominalDeclName(NominalTypeDecl *decl) {
Printer.printName(decl->getName());
if (auto gp = decl->getGenericParams()) {
if (!isa<ProtocolDecl>(decl)) {
// For a protocol extension, print only the where clause; the
// generic parameter list is implicit. For other nominal types,
// print the generic parameters.
if (decl->isProtocolOrProtocolExtensionContext())
printWhereClause(gp->getRequirements());
else
printGenericParams(gp);
}
}
}
void PrintAST::printInherited(const Decl *decl,
ArrayRef<TypeLoc> inherited,
ArrayRef<ProtocolDecl *> protos,
Type superclass,
bool explicitClass,
bool PrintAsProtocolComposition) {
if (inherited.empty() && superclass.isNull() && !explicitClass) {
if (protos.empty())
return;
// If only conforms to AnyObject protocol, nothing to print.
if (protos.size() == 1) {
if (protos.front()->isSpecificProtocol(KnownProtocolKind::AnyObject))
return;
}
}
if (inherited.empty()) {
bool PrintedColon = false;
bool PrintedInherited = false;
if (explicitClass) {
Printer << " : class";
PrintedInherited = true;
} else if (superclass) {
bool ShouldPrintSuper = true;
if (auto NTD = superclass->getAnyNominal()) {
ShouldPrintSuper = shouldPrint(NTD);
}
if (ShouldPrintSuper) {
Printer << " : ";
superclass.print(Printer, Options);
PrintedInherited = true;
}
}
bool UseProtocolCompositionSyntax =
PrintAsProtocolComposition && protos.size() > 1;
if (UseProtocolCompositionSyntax) {
Printer << " : protocol<";
PrintedColon = true;
}
for (auto Proto : protos) {
if (!shouldPrint(Proto))
continue;
if (Proto->isSpecificProtocol(KnownProtocolKind::AnyObject))
continue;
if (auto Enum = dyn_cast<EnumDecl>(decl)) {
// Conformance to RawRepresentable is implied by having a raw type.
if (Enum->hasRawType()
&& Proto->isSpecificProtocol(KnownProtocolKind::RawRepresentable))
continue;
// Conformance to Equatable and Hashable is implied by being a "simple"
// no-payload enum.
if (Enum->hasOnlyCasesWithoutAssociatedValues()
&& (Proto->isSpecificProtocol(KnownProtocolKind::Equatable)
|| Proto->isSpecificProtocol(KnownProtocolKind::Hashable)))
continue;
}
if (PrintedInherited)
Printer << ", ";
else if (!PrintedColon)
Printer << " : ";
Proto->getDeclaredType()->print(Printer, Options);
PrintedInherited = true;
PrintedColon = true;
}
if (UseProtocolCompositionSyntax)
Printer << ">";
} else {
SmallVector<TypeLoc, 6> TypesToPrint;
for (auto TL : inherited) {
if (auto Ty = TL.getType()) {
if (auto NTD = Ty->getAnyNominal())
if (!shouldPrint(NTD))
continue;
}
TypesToPrint.push_back(TL);
}
if (TypesToPrint.empty())
return;
Printer << " : ";
if (explicitClass)
Printer << " class, ";
interleave(TypesToPrint, [&](TypeLoc TL) {
printTypeLoc(TL);
}, [&]() {
Printer << ", ";
});
}
}
void PrintAST::printInherited(const NominalTypeDecl *decl,
bool explicitClass) {
printInherited(decl, decl->getInherited(), { }, nullptr, explicitClass);
}
void PrintAST::printInherited(const EnumDecl *decl) {
printInherited(decl, decl->getInherited(), { });
}
void PrintAST::printInherited(const ExtensionDecl *decl) {
printInherited(decl, decl->getInherited(), { });
}
void PrintAST::printInherited(const GenericTypeParamDecl *D) {
printInherited(D, D->getInherited(), { });
}
static void getModuleEntities(const clang::Module *ClangMod,
SmallVectorImpl<ModuleEntity> &ModuleEnts) {
if (!ClangMod)
return;
getModuleEntities(ClangMod->Parent, ModuleEnts);
ModuleEnts.push_back(ClangMod);
}
static void getModuleEntities(ImportDecl *Import,
SmallVectorImpl<ModuleEntity> &ModuleEnts) {
if (auto *ClangMod = Import->getClangModule()) {
getModuleEntities(ClangMod, ModuleEnts);
return;
}
auto Mod = Import->getModule();
if (!Mod)
return;
if (auto *ClangMod = Mod->findUnderlyingClangModule()) {
getModuleEntities(ClangMod, ModuleEnts);
} else {
ModuleEnts.push_back(Mod);
}
}
void PrintAST::visitImportDecl(ImportDecl *decl) {
printAttributes(decl);
Printer << "import ";
switch (decl->getImportKind()) {
case ImportKind::Module:
break;
case ImportKind::Type:
Printer << "typealias ";
break;
case ImportKind::Struct:
Printer << "struct ";
break;
case ImportKind::Class:
Printer << "class ";
break;
case ImportKind::Enum:
Printer << "enum ";
break;
case ImportKind::Protocol:
Printer << "protocol ";
break;
case ImportKind::Var:
Printer << "var ";
break;
case ImportKind::Func:
Printer << "func ";
break;
}
SmallVector<ModuleEntity, 4> ModuleEnts;
getModuleEntities(decl, ModuleEnts);
ArrayRef<ModuleEntity> Mods = ModuleEnts;
interleave(decl->getFullAccessPath(),
[&](const ImportDecl::AccessPathElement &Elem) {
if (!Mods.empty()) {
Printer.printModuleRef(Mods.front(), Elem.first);
Mods = Mods.slice(1);
} else {
Printer << Elem.first.str();
}
},
[&] { Printer << "."; });
}
void PrintAST::visitExtensionDecl(ExtensionDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
Printer << "extension ";
recordDeclLoc(decl,
[&]{
// We cannot extend sugared types.
Type extendedType = decl->getExtendedType();
NominalTypeDecl *nominal = extendedType ? extendedType->getAnyNominal() : nullptr;
if (!nominal) {
// Fallback to TypeRepr.
printTypeLoc(decl->getExtendedTypeLoc());
return;
}
assert(nominal && "extension of non-nominal type");
if (auto ct = decl->getExtendedType()->getAs<ClassType>()) {
if (auto ParentType = ct->getParent()) {
ParentType.print(Printer, Options);
Printer << ".";
}
}
if (auto st = decl->getExtendedType()->getAs<StructType>()) {
if (auto ParentType = st->getParent()) {
ParentType.print(Printer, Options);
Printer << ".";
}
}
Printer.printTypeRef(nominal, nominal->getName());
});
printInherited(decl);
if (auto *GPs = decl->getGenericParams()) {
printWhereClause(GPs->getRequirements());
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitPatternBindingDecl(PatternBindingDecl *decl) {
// FIXME: We're not printing proper "{ get set }" annotations in pattern
// binding decls. As a hack, scan the decl to find out if any of the
// variables are immutable, and if so, we print as 'let'. This allows us to
// handle the 'let x = 4' case properly at least.
const VarDecl *anyVar = nullptr;
for (auto entry : decl->getPatternList()) {
entry.getPattern()->forEachVariable([&](VarDecl *V) {
anyVar = V;
});
if (anyVar) break;
}
if (anyVar)
printDocumentationComment(anyVar);
if (decl->isStatic())
printStaticKeyword(decl->getCorrectStaticSpelling());
// FIXME: PatternBindingDecls don't have attributes themselves, so just assume
// the variables all have the same attributes. This isn't exactly true
// after type-checking, but it's close enough for now.
if (anyVar) {
printAttributes(anyVar);
printAccessibility(anyVar);
Printer << (anyVar->isSettable(anyVar->getDeclContext()) ? "var " : "let ");
} else {
Printer << "let ";
}
bool isFirst = true;
for (auto entry : decl->getPatternList()) {
if (!shouldPrintPattern(entry.getPattern()))
continue;
if (isFirst)
isFirst = false;
else
Printer << ", ";
printPattern(entry.getPattern());
// We also try to print type for named patterns, e.g. var Field = 10;
// and tuple patterns, e.g. var (T1, T2) = (10, 10)
if (isa<NamedPattern>(entry.getPattern()) ||
isa<TuplePattern>(entry.getPattern())) {
printPatternType(entry.getPattern());
}
if (Options.VarInitializers) {
// FIXME: Implement once we can pretty-print expressions.
}
}
}
void PrintAST::visitTopLevelCodeDecl(TopLevelCodeDecl *decl) {
printASTNodes(decl->getBody()->getElements(), /*NeedIndent=*/false);
}
void PrintAST::visitIfConfigDecl(IfConfigDecl *ICD) {
// FIXME: Pretty print #if decls
}
void PrintAST::visitTypeAliasDecl(TypeAliasDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (!Options.SkipIntroducerKeywords)
Printer << "typealias ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
bool ShouldPrint = true;
Type Ty;
if (decl->hasUnderlyingType())
Ty = decl->getUnderlyingType();
// If the underlying type is private, don't print it.
if (Options.SkipPrivateStdlibDecls && Ty && Ty.isPrivateStdlibType())
ShouldPrint = false;
if (ShouldPrint) {
Printer << " = ";
printTypeLoc(decl->getUnderlyingTypeLoc());
}
}
void PrintAST::visitGenericTypeParamDecl(GenericTypeParamDecl *decl) {
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
printInherited(decl, decl->getInherited(), { });
}
void PrintAST::visitAssociatedTypeDecl(AssociatedTypeDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
if (!Options.SkipIntroducerKeywords)
Printer << "typealias ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
printInherited(decl, decl->getInherited(), { });
if (!decl->getDefaultDefinitionLoc().isNull()) {
Printer << " = ";
decl->getDefaultDefinitionLoc().getType().print(Printer, Options);
}
}
void PrintAST::visitEnumDecl(EnumDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << "enum ";
recordDeclLoc(decl,
[&]{
printNominalDeclName(decl);
});
printInherited(decl);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitStructDecl(StructDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << "struct ";
recordDeclLoc(decl,
[&]{
printNominalDeclName(decl);
});
printInherited(decl);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitClassDecl(ClassDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << "class ";
recordDeclLoc(decl,
[&]{
printNominalDeclName(decl);
});
printInherited(decl);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitProtocolDecl(ProtocolDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << "protocol ";
recordDeclLoc(decl,
[&]{
printNominalDeclName(decl);
});
// Figure out whether we need an explicit 'class' in the inheritance.
bool explicitClass = false;
if (decl->requiresClass() && !decl->isObjC()) {
bool inheritsRequiresClass = false;
for (auto proto : decl->getLocalProtocols(
ConformanceLookupKind::OnlyExplicit)) {
if (proto->requiresClass()) {
inheritsRequiresClass = true;
break;
}
}
if (!inheritsRequiresClass)
explicitClass = true;
}
printInherited(decl, explicitClass);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
static bool isStructOrClassContext(DeclContext *dc) {
if (auto ctx = dc->getDeclaredTypeInContext())
return ctx->getClassOrBoundGenericClass() ||
ctx->getStructOrBoundGenericStruct();
return false;
}
void PrintAST::visitVarDecl(VarDecl *decl) {
printDocumentationComment(decl);
// Print @sil_stored when the attribute is not already
// on, decl has storage and it is on a class.
if (Options.PrintForSIL && decl->hasStorage() &&
isStructOrClassContext(decl->getDeclContext()) &&
!decl->getAttrs().hasAttribute<SILStoredAttr>())
Printer << "@sil_stored ";
printAttributes(decl);
printAccessibility(decl);
if (!Options.SkipIntroducerKeywords) {
if (decl->isStatic())
printStaticKeyword(decl->getCorrectStaticSpelling());
Printer << (decl->isLet() ? "let " : "var ");
}
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
if (decl->hasType()) {
Printer << ": ";
decl->getType().print(Printer, Options);
}
printAccessors(decl);
}
void PrintAST::visitParamDecl(ParamDecl *decl) {
return visitVarDecl(decl);
}
void PrintAST::printOneParameter(const ParamDecl *param, bool Curried,
bool ArgNameIsAPIByDefault) {
auto printArgName = [&]() {
// Print argument name.
auto ArgName = param->getArgumentName();
auto BodyName = param->getName();
switch (Options.ArgAndParamPrinting) {
case PrintOptions::ArgAndParamPrintingMode::ArgumentOnly:
Printer.printName(ArgName, PrintNameContext::FunctionParameter);
if (!ArgNameIsAPIByDefault && !ArgName.empty())
Printer << " _";
break;
case PrintOptions::ArgAndParamPrintingMode::MatchSource:
if (ArgName == BodyName && ArgNameIsAPIByDefault) {
Printer.printName(ArgName, PrintNameContext::FunctionParameter);
break;
}
if (ArgName.empty() && !ArgNameIsAPIByDefault) {
Printer.printName(BodyName, PrintNameContext::FunctionParameter);
break;
}
SWIFT_FALLTHROUGH;
case PrintOptions::ArgAndParamPrintingMode::BothAlways:
Printer.printName(ArgName, PrintNameContext::FunctionParameter);
Printer << " ";
Printer.printName(BodyName, PrintNameContext::FunctionParameter);
break;
}
Printer << ": ";
};
auto TheTypeLoc = param->getTypeLoc();
if (TheTypeLoc.getTypeRepr()) {
// If the outer typeloc is an InOutTypeRepr, print the 'inout' before the
// subpattern.
if (auto *IOTR = dyn_cast<InOutTypeRepr>(TheTypeLoc.getTypeRepr())) {
TheTypeLoc = TypeLoc(IOTR->getBase());
if (Type T = TheTypeLoc.getType()) {
if (auto *IOT = T->getAs<InOutType>()) {
TheTypeLoc.setType(IOT->getObjectType());
}
}
Printer << "inout ";
}
} else {
if (param->hasType())
TheTypeLoc = TypeLoc::withoutLoc(param->getType());
if (Type T = TheTypeLoc.getType()) {
if (auto *IOT = T->getAs<InOutType>()) {
Printer << "inout ";
TheTypeLoc.setType(IOT->getObjectType());
}
}
}
// If the parameter is autoclosure, or noescape, print it. This is stored
// on the type of the decl, not on the typerepr.
if (param->hasType()) {
auto bodyCanType = param->getType()->getCanonicalType();
if (auto patternType = dyn_cast<AnyFunctionType>(bodyCanType)) {
switch (patternType->isAutoClosure()*2 + patternType->isNoEscape()) {
case 0: break; // neither.
case 1: Printer << "@noescape "; break;
case 2: Printer << "@autoclosure(escaping) "; break;
case 3: Printer << "@autoclosure "; break;
}
}
}
printArgName();
auto ContainsFunc = [&] (DeclAttrKind Kind) {
return Options.ExcludeAttrList.end() != std::find(Options.ExcludeAttrList.
begin(), Options.ExcludeAttrList.end(), Kind);
};
auto RemoveFunc = [&] (DeclAttrKind Kind) {
Options.ExcludeAttrList.erase(std::find(Options.ExcludeAttrList.begin(),
Options.ExcludeAttrList.end(), Kind));
};
// Since we have already printed @noescape and @autoclosure, we exclude them
// when printing the type.
auto hasNoEscape = ContainsFunc(DAK_NoEscape);
auto hasAutoClosure = ContainsFunc(DAK_AutoClosure);
if (!hasNoEscape)
Options.ExcludeAttrList.push_back(DAK_NoEscape);
if (!hasAutoClosure)
Options.ExcludeAttrList.push_back(DAK_AutoClosure);
// If the parameter is variadic, we will print the "..." after it, but we have
// to strip off the added array type.
if (param->isVariadic() && TheTypeLoc.getType()) {
if (auto *BGT = TheTypeLoc.getType()->getAs<BoundGenericType>())
TheTypeLoc.setType(BGT->getGenericArgs()[0]);
}
printTypeLoc(TheTypeLoc);
if (param->isVariadic())
Printer << "...";
// After printing the type, we need to restore what the option used to be.
if (!hasNoEscape)
RemoveFunc(DAK_NoEscape);
if (!hasAutoClosure)
RemoveFunc(DAK_AutoClosure);
if (Options.PrintDefaultParameterPlaceholder &&
param->isDefaultArgument()) {
// For Clang declarations, figure out the default we're using.
auto AFD = dyn_cast<AbstractFunctionDecl>(param->getDeclContext());
if (AFD && AFD->getClangDecl() && param->hasType()) {
auto CurrType = param->getType();
Printer << " = " << CurrType->getInferredDefaultArgString();
} else {
// Use placeholder anywhere else.
Printer << " = default";
}
}
}
void PrintAST::printParameterList(ParameterList *PL, bool isCurried,
std::function<bool(unsigned)> isAPINameByDefault) {
Printer << "(";
for (unsigned i = 0, e = PL->size(); i != e; ++i) {
if (i > 0)
Printer << ", ";
printOneParameter(PL->get(i), isCurried, isAPINameByDefault(i));
}
Printer << ")";
}
void PrintAST::printFunctionParameters(AbstractFunctionDecl *AFD) {
auto BodyParams = AFD->getParameterLists();
// Skip over the implicit 'self'.
if (AFD->getImplicitSelfDecl())
BodyParams = BodyParams.slice(1);
for (unsigned CurrPattern = 0, NumPatterns = BodyParams.size();
CurrPattern != NumPatterns; ++CurrPattern) {
printParameterList(BodyParams[CurrPattern], /*Curried=*/CurrPattern > 0,
[&](unsigned argNo)->bool {
return CurrPattern > 0 || AFD->argumentNameIsAPIByDefault(argNo);
});
}
if (AFD->isBodyThrowing()) {
if (AFD->getAttrs().hasAttribute<RethrowsAttr>())
Printer << " rethrows";
else
Printer << " throws";
}
}
bool PrintAST::printASTNodes(const ArrayRef<ASTNode> &Elements,
bool NeedIndent) {
IndentRAII IndentMore(*this, NeedIndent);
bool PrintedSomething = false;
for (auto element : Elements) {
PrintedSomething = true;
Printer.printNewline();
indent();
if (auto decl = element.dyn_cast<Decl*>()) {
if (decl->shouldPrintInContext(Options))
visit(decl);
} else if (auto stmt = element.dyn_cast<Stmt*>()) {
visit(stmt);
} else {
// FIXME: print expression
// visit(element.get<Expr*>());
}
}
return PrintedSomething;
}
void PrintAST::visitFuncDecl(FuncDecl *decl) {
if (decl->isAccessor()) {
printDocumentationComment(decl);
printAttributes(decl);
switch (auto kind = decl->getAccessorKind()) {
case AccessorKind::NotAccessor: break;
case AccessorKind::IsGetter:
case AccessorKind::IsAddressor:
recordDeclLoc(decl,
[&]{
if (decl->isMutating())
Printer << "mutating ";
Printer << (kind == AccessorKind::IsGetter
? "get" : getAddressorLabel(decl));
});
Printer << " {";
break;
case AccessorKind::IsDidSet:
case AccessorKind::IsMaterializeForSet:
case AccessorKind::IsMutableAddressor:
recordDeclLoc(decl,
[&]{
if (decl->isExplicitNonMutating())
Printer << "nonmutating ";
Printer << (kind == AccessorKind::IsDidSet ? "didSet" :
kind == AccessorKind::IsMaterializeForSet
? "materializeForSet"
: getMutableAddressorLabel(decl));
});
Printer << " {";
break;
case AccessorKind::IsSetter:
case AccessorKind::IsWillSet:
recordDeclLoc(decl,
[&]{
if (decl->isExplicitNonMutating())
Printer << "nonmutating ";
Printer << (decl->isSetter() ? "set" : "willSet");
auto params = decl->getParameterLists().back();
if (params->size() != 0 && !params->get(0)->isImplicit()) {
auto Name = params->get(0)->getName();
if (!Name.empty()) {
Printer << "(";
Printer.printName(Name);
Printer << ")";
}
}
});
Printer << " {";
}
if (Options.FunctionDefinitions && decl->getBody()) {
if (printASTNodes(decl->getBody()->getElements())) {
Printer.printNewline();
indent();
}
}
Printer << "}";
} else {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
SourceLoc StartLoc = decl->getStartLoc();
SourceLoc EndLoc;
if (!decl->getBodyResultTypeLoc().isNull()) {
EndLoc = decl->getBodyResultTypeLoc().getSourceRange().End;
} else {
EndLoc = decl->getSignatureSourceRange().End;
}
CharSourceRange Range =
Lexer::getCharSourceRangeFromSourceRange(Ctx.SourceMgr,
SourceRange(StartLoc, EndLoc));
printSourceRange(Range, Ctx);
} else {
if (!Options.SkipIntroducerKeywords) {
if (decl->isStatic() && !decl->isOperator())
printStaticKeyword(decl->getCorrectStaticSpelling());
if (decl->isMutating() && !decl->getAttrs().hasAttribute<MutatingAttr>())
Printer << "mutating ";
Printer << "func ";
}
recordDeclLoc(decl,
[&]{
if (!decl->hasName())
Printer << "<anonymous>";
else
Printer.printName(decl->getName());
if (decl->isGeneric()) {
printGenericParams(decl->getGenericParams());
}
printFunctionParameters(decl);
});
auto &Context = decl->getASTContext();
Type ResultTy = decl->getResultType();
if (ResultTy && !ResultTy->isEqual(TupleType::getEmpty(Context))) {
Printer << " -> ";
if (Options.pTransformer) {
ResultTy = Options.pTransformer->transformByName(ResultTy);
PrintOptions FreshOptions;
ResultTy->print(Printer, FreshOptions);
} else
ResultTy->print(Printer, Options);
}
}
if (!Options.FunctionDefinitions || !decl->getBody()) {
return;
}
Printer << " ";
visit(decl->getBody());
}
}
void PrintAST::printEnumElement(EnumElementDecl *elt) {
recordDeclLoc(elt,
[&]{
Printer.printName(elt->getName());
});
if (elt->hasArgumentType()) {
Type Ty = elt->getArgumentType();
if (!Options.SkipPrivateStdlibDecls || !Ty.isPrivateStdlibType())
Ty.print(Printer, Options);
}
}
void PrintAST::visitEnumCaseDecl(EnumCaseDecl *decl) {
auto elems = decl->getElements();
if (!elems.empty()) {
// Documentation comments over the case are attached to the enum elements.
printDocumentationComment(elems[0]);
}
printAttributes(decl);
Printer << "case ";
interleave(elems.begin(), elems.end(),
[&](EnumElementDecl *elt) {
printEnumElement(elt);
},
[&] { Printer << ", "; });
}
void PrintAST::visitEnumElementDecl(EnumElementDecl *decl) {
if (!decl->shouldPrintInContext(Options))
return;
printDocumentationComment(decl);
// In cases where there is no parent EnumCaseDecl (such as imported or
// deserialized elements), print the element independently.
printAttributes(decl);
Printer << "case ";
printEnumElement(decl);
}
void PrintAST::visitSubscriptDecl(SubscriptDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
recordDeclLoc(decl, [&]{
Printer << "subscript ";
printParameterList(decl->getIndices(), /*Curried=*/false,
/*isAPINameByDefault*/[](unsigned)->bool{return false;});
});
Printer << " -> ";
decl->getElementType().print(Printer, Options);
printAccessors(decl);
}
void PrintAST::visitConstructorDecl(ConstructorDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if ((decl->getInitKind() == CtorInitializerKind::Convenience ||
decl->getInitKind() == CtorInitializerKind::ConvenienceFactory) &&
!decl->getAttrs().hasAttribute<ConvenienceAttr>())
Printer << "convenience ";
else
if (decl->getInitKind() == CtorInitializerKind::Factory)
Printer << "/*not inherited*/ ";
recordDeclLoc(decl,
[&]{
Printer << "init";
switch (decl->getFailability()) {
case OTK_None:
break;
case OTK_Optional:
Printer << "?";
break;
case OTK_ImplicitlyUnwrappedOptional:
Printer << "!";
break;
}
if (decl->isGeneric())
printGenericParams(decl->getGenericParams());
printFunctionParameters(decl);
});
if (!Options.FunctionDefinitions || !decl->getBody()) {
return;
}
Printer << " ";
visit(decl->getBody());
}
void PrintAST::visitDestructorDecl(DestructorDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
recordDeclLoc(decl,
[&]{
Printer << "deinit ";
});
if (!Options.FunctionDefinitions || !decl->getBody()) {
return;
}
Printer << " ";
visit(decl->getBody());
}
void PrintAST::visitInfixOperatorDecl(InfixOperatorDecl *decl) {
Printer << "infix operator ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
Printer << " {";
Printer.printNewline();
{
IndentRAII indentMore(*this);
if (!decl->isAssociativityImplicit()) {
indent();
Printer << "associativity ";
switch (decl->getAssociativity()) {
case Associativity::None:
Printer << "none";
break;
case Associativity::Left:
Printer << "left";
break;
case Associativity::Right:
Printer << "right";
break;
}
Printer.printNewline();
}
if (!decl->isPrecedenceImplicit()) {
indent();
Printer << "precedence " << decl->getPrecedence();
Printer.printNewline();
}
if (!decl->isAssignmentImplicit()) {
indent();
if (decl->isAssignment())
Printer << "assignment";
else
Printer << "/* not assignment */";
Printer.printNewline();
}
}
indent();
Printer << "}";
}
void PrintAST::visitPrefixOperatorDecl(PrefixOperatorDecl *decl) {
Printer << "prefix operator ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
Printer << " {";
Printer.printNewline();
Printer << "}";
}
void PrintAST::visitPostfixOperatorDecl(PostfixOperatorDecl *decl) {
Printer << "postfix operator ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
Printer << " {";
Printer.printNewline();
Printer << "}";
}
void PrintAST::visitModuleDecl(ModuleDecl *decl) { }
void PrintAST::visitBraceStmt(BraceStmt *stmt) {
Printer << "{";
printASTNodes(stmt->getElements());
Printer.printNewline();
indent();
Printer << "}";
}
void PrintAST::visitReturnStmt(ReturnStmt *stmt) {
Printer << "return";
if (stmt->hasResult()) {
Printer << " ";
// FIXME: print expression.
}
}
void PrintAST::visitThrowStmt(ThrowStmt *stmt) {
Printer << "throw ";
// FIXME: print expression.
}
void PrintAST::visitDeferStmt(DeferStmt *stmt) {
Printer << "defer ";
visit(stmt->getBodyAsWritten());
}
void PrintAST::visitIfStmt(IfStmt *stmt) {
Printer << "if ";
// FIXME: print condition
Printer << " ";
visit(stmt->getThenStmt());
if (auto elseStmt = stmt->getElseStmt()) {
Printer << " else ";
visit(elseStmt);
}
}
void PrintAST::visitGuardStmt(GuardStmt *stmt) {
Printer << "guard ";
// FIXME: print condition
Printer << " ";
visit(stmt->getBody());
}
void PrintAST::visitIfConfigStmt(IfConfigStmt *stmt) {
if (!Options.PrintIfConfig)
return;
for (auto &Clause : stmt->getClauses()) {
if (&Clause == &*stmt->getClauses().begin())
Printer << "#if "; // FIXME: print condition
else if (Clause.Cond)
Printer << "#elseif"; // FIXME: print condition
else
Printer << "#else";
Printer.printNewline();
if (printASTNodes(Clause.Elements)) {
Printer.printNewline();
indent();
}
}
Printer.printNewline();
Printer << "#endif";
}
void PrintAST::visitWhileStmt(WhileStmt *stmt) {
Printer << "while ";
// FIXME: print condition
Printer << " ";
visit(stmt->getBody());
}
void PrintAST::visitRepeatWhileStmt(RepeatWhileStmt *stmt) {
Printer << "do ";
visit(stmt->getBody());
Printer << " while ";
// FIXME: print condition
}
void PrintAST::visitDoStmt(DoStmt *stmt) {
Printer << "do ";
visit(stmt->getBody());
}
void PrintAST::visitDoCatchStmt(DoCatchStmt *stmt) {
Printer << "do ";
visit(stmt->getBody());
for (auto clause : stmt->getCatches()) {
visitCatchStmt(clause);
}
}
void PrintAST::visitCatchStmt(CatchStmt *stmt) {
Printer << "catch ";
printPattern(stmt->getErrorPattern());
if (auto guard = stmt->getGuardExpr()) {
Printer << " where ";
// FIXME: print guard expression
(void) guard;
}
Printer << ' ';
visit(stmt->getBody());
}
void PrintAST::visitForStmt(ForStmt *stmt) {
Printer << "for (";
// FIXME: print initializer
Printer << "; ";
if (stmt->getCond().isNonNull()) {
// FIXME: print cond
}
Printer << "; ";
// FIXME: print increment
Printer << ") ";
visit(stmt->getBody());
}
void PrintAST::visitForEachStmt(ForEachStmt *stmt) {
Printer << "for ";
printPattern(stmt->getPattern());
Printer << " in ";
// FIXME: print container
Printer << " ";
visit(stmt->getBody());
}
void PrintAST::visitBreakStmt(BreakStmt *stmt) {
Printer << "break";
}
void PrintAST::visitContinueStmt(ContinueStmt *stmt) {
Printer << "continue";
}
void PrintAST::visitFallthroughStmt(FallthroughStmt *stmt) {
Printer << "fallthrough";
}
void PrintAST::visitSwitchStmt(SwitchStmt *stmt) {
Printer << "switch ";
// FIXME: print subject
Printer << "{";
Printer.printNewline();
for (CaseStmt *C : stmt->getCases()) {
visit(C);
}
Printer.printNewline();
indent();
Printer << "}";
}
void PrintAST::visitCaseStmt(CaseStmt *CS) {
if (CS->isDefault()) {
Printer << "default";
} else {
auto PrintCaseLabelItem = [&](const CaseLabelItem &CLI) {
if (auto *P = CLI.getPattern())
printPattern(P);
if (CLI.getGuardExpr()) {
Printer << " where ";
// FIXME: print guard expr
}
};
Printer << "case ";
interleave(CS->getCaseLabelItems(), PrintCaseLabelItem,
[&] { Printer << ", "; });
}
Printer << ":";
Printer.printNewline();
printASTNodes((cast<BraceStmt>(CS->getBody())->getElements()));
}
void PrintAST::visitFailStmt(FailStmt *stmt) {
Printer << "return nil";
}
void Decl::print(raw_ostream &os) const {
PrintOptions options;
options.FunctionDefinitions = true;
options.TypeDefinitions = true;
options.VarInitializers = true;
print(os, options);
}
void Decl::print(raw_ostream &OS, const PrintOptions &Opts) const {
StreamPrinter Printer(OS);
print(Printer, Opts);
}
bool Decl::print(ASTPrinter &Printer, const PrintOptions &Opts) const {
PrintAST printer(Printer, Opts);
return printer.visit(const_cast<Decl *>(this));
}
bool Decl::shouldPrintInContext(const PrintOptions &PO) const {
// Skip getters/setters. They are part of the variable or subscript.
if (isa<FuncDecl>(this) && cast<FuncDecl>(this)->isAccessor())
return false;
if (PO.ExplodePatternBindingDecls) {
if (isa<VarDecl>(this))
return true;
if (isa<PatternBindingDecl>(this))
return false;
} else {
// Try to preserve the PatternBindingDecl structure.
// Skip stored variables, unless they came from a Clang module.
// Stored variables in Swift source will be picked up by the
// PatternBindingDecl.
if (auto *VD = dyn_cast<VarDecl>(this)) {
if (!VD->hasClangNode() && VD->hasStorage() &&
VD->getStorageKind() != VarDecl::StoredWithObservers)
return false;
}
// Skip pattern bindings that consist of just one computed variable.
if (auto pbd = dyn_cast<PatternBindingDecl>(this)) {
if (pbd->getPatternList().size() == 1) {
auto pattern =
pbd->getPatternList()[0].getPattern()->getSemanticsProvidingPattern();
if (auto named = dyn_cast<NamedPattern>(pattern)) {
auto StorageKind = named->getDecl()->getStorageKind();
if (StorageKind == VarDecl::Computed ||
StorageKind == VarDecl::StoredWithObservers)
return false;
}
}
}
}
if (auto EED = dyn_cast<EnumElementDecl>(this)) {
// Enum elements are printed as part of the EnumCaseDecl, unless they were
// imported without source info.
return !EED->getSourceRange().isValid();
} else if (isa<IfConfigDecl>(this)) {
return PO.PrintIfConfig;
}
// Print everything else.
return true;
}
void Pattern::print(llvm::raw_ostream &OS, const PrintOptions &Options) const {
StreamPrinter StreamPrinter(OS);
PrintAST Printer(StreamPrinter, Options);
Printer.printPattern(this);
}
//===----------------------------------------------------------------------===//
// Type Printing
//===----------------------------------------------------------------------===//
namespace {
class TypePrinter : public TypeVisitor<TypePrinter> {
using super = TypeVisitor;
ASTPrinter &Printer;
const PrintOptions &Options;
Optional<std::vector<GenericParamList *>> UnwrappedGenericParams;
void printDeclContext(DeclContext *DC) {
switch (DC->getContextKind()) {
case DeclContextKind::Module: {
Module *M = cast<Module>(DC);
if (auto Parent = M->getParent())
printDeclContext(Parent);
Printer.printModuleRef(M, M->getName());
return;
}
case DeclContextKind::FileUnit:
printDeclContext(DC->getParent());
return;
case DeclContextKind::AbstractClosureExpr:
// FIXME: print closures somehow.
return;
case DeclContextKind::NominalTypeDecl:
visit(cast<NominalTypeDecl>(DC)->getType());
return;
case DeclContextKind::ExtensionDecl:
visit(cast<ExtensionDecl>(DC)->getExtendedType());
return;
case DeclContextKind::Initializer:
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::SerializedLocal:
llvm_unreachable("bad decl context");
case DeclContextKind::AbstractFunctionDecl:
visit(cast<AbstractFunctionDecl>(DC)->getType());
return;
case DeclContextKind::SubscriptDecl:
visit(cast<SubscriptDecl>(DC)->getType());
return;
}
}
void printGenericArgs(ArrayRef<Type> Args) {
if (Args.empty())
return;
Printer << "<";
bool First = true;
for (Type Arg : Args) {
if (First)
First = false;
else
Printer << ", ";
visit(Arg);
}
Printer << ">";
}
static bool isSimple(Type type) {
switch (type->getKind()) {
case TypeKind::Function:
case TypeKind::PolymorphicFunction:
case TypeKind::GenericFunction:
return false;
case TypeKind::Metatype:
case TypeKind::ExistentialMetatype:
return !cast<AnyMetatypeType>(type.getPointer())->hasRepresentation();
case TypeKind::Archetype: {
auto arch = type->getAs<ArchetypeType>();
return !arch->isOpenedExistential();
}
default:
return true;
}
}
/// Helper function for printing a type that is embedded within a larger type.
///
/// This is necessary whenever the inner type may not normally be represented
/// as a 'type-simple' production in the type grammar.
void printWithParensIfNotSimple(Type T) {
if (T.isNull()) {
visit(T);
return;
}
if (!isSimple(T)) {
Printer << "(";
visit(T);
Printer << ")";
} else {
visit(T);
}
}
void printGenericParams(GenericParamList *Params) {
PrintAST(Printer, Options).printGenericParams(Params);
}
template <typename T>
void printModuleContext(T *Ty) {
Module *Mod = Ty->getDecl()->getModuleContext();
Printer.printModuleRef(Mod, Mod->getName());
Printer << ".";
}
template <typename T>
void printTypeDeclName(T *Ty) {
TypeDecl *TD = Ty->getDecl();
Printer.printTypeRef(TD, TD->getName());
}
// FIXME: we should have a callback that would tell us
// whether it's kosher to print a module name or not
bool isLLDBExpressionModule(Module *M) {
if (!M)
return false;
return M->getName().str().startswith(LLDB_EXPRESSIONS_MODULE_NAME_PREFIX);
}
bool shouldPrintFullyQualified(TypeBase *T) {
if (Options.FullyQualifiedTypes)
return true;
if (!Options.FullyQualifiedTypesIfAmbiguous)
return false;
Decl *D = nullptr;
if (auto *NAT = dyn_cast<NameAliasType>(T))
D = NAT->getDecl();
else
D = T->getAnyNominal();
// If we cannot find the declaration, be extra careful and print
// the type qualified.
if (!D)
return true;
Module *M = D->getDeclContext()->getParentModule();
// Don't print qualifiers for types from the standard library.
if (M->isStdlibModule() ||
M->getName() == M->getASTContext().Id_ObjectiveC ||
M->isSystemModule() ||
isLLDBExpressionModule(M))
return false;
// Don't print qualifiers for imported types.
for (auto File : M->getFiles()) {
if (File->getKind() == FileUnitKind::ClangModule)
return false;
}
return true;
}
public:
TypePrinter(ASTPrinter &Printer, const PrintOptions &PO)
: Printer(Printer), Options(PO) {}
void visit(Type T) {
// If we have an alternate name for this type, use it.
if (Options.AlternativeTypeNames) {
auto found = Options.AlternativeTypeNames->find(T.getCanonicalTypeOrNull());
if (found != Options.AlternativeTypeNames->end()) {
Printer << found->second.str();
return;
}
}
super::visit(T);
}
void visitErrorType(ErrorType *T) {
Printer << "<<error type>>";
}
void visitUnresolvedType(UnresolvedType *T) {
if (T->getASTContext().LangOpts.DebugConstraintSolver)
Printer << "<<unresolvedtype>>";
else
Printer << "_";
}
void visitBuiltinRawPointerType(BuiltinRawPointerType *T) {
Printer << "Builtin.RawPointer";
}
void visitBuiltinNativeObjectType(BuiltinNativeObjectType *T) {
Printer << "Builtin.NativeObject";
}
void visitBuiltinUnknownObjectType(BuiltinUnknownObjectType *T) {
Printer << "Builtin.UnknownObject";
}
void visitBuiltinBridgeObjectType(BuiltinBridgeObjectType *T) {
Printer << "Builtin.BridgeObject";
}
void visitBuiltinUnsafeValueBufferType(BuiltinUnsafeValueBufferType *T) {
Printer << "Builtin.UnsafeValueBuffer";
}
void visitBuiltinVectorType(BuiltinVectorType *T) {
llvm::SmallString<32> UnderlyingStrVec;
StringRef UnderlyingStr;
{
// FIXME: Ugly hack: remove the .Builtin from the element type.
{
llvm::raw_svector_ostream UnderlyingOS(UnderlyingStrVec);
T->getElementType().print(UnderlyingOS);
}
if (UnderlyingStrVec.startswith("Builtin."))
UnderlyingStr = UnderlyingStrVec.substr(8);
else
UnderlyingStr = UnderlyingStrVec;
}
Printer << "Builtin.Vec" << T->getNumElements() << "x" << UnderlyingStr;
}
void visitBuiltinIntegerType(BuiltinIntegerType *T) {
auto width = T->getWidth();
if (width.isFixedWidth()) {
Printer << "Builtin.Int" << width.getFixedWidth();
} else if (width.isPointerWidth()) {
Printer << "Builtin.Word";
} else {
llvm_unreachable("impossible bit width");
}
}
void visitBuiltinFloatType(BuiltinFloatType *T) {
switch (T->getFPKind()) {
case BuiltinFloatType::IEEE16: Printer << "Builtin.FPIEEE16"; return;
case BuiltinFloatType::IEEE32: Printer << "Builtin.FPIEEE32"; return;
case BuiltinFloatType::IEEE64: Printer << "Builtin.FPIEEE64"; return;
case BuiltinFloatType::IEEE80: Printer << "Builtin.FPIEEE80"; return;
case BuiltinFloatType::IEEE128: Printer << "Builtin.FPIEEE128"; return;
case BuiltinFloatType::PPC128: Printer << "Builtin.FPPPC128"; return;
}
}
void visitNameAliasType(NameAliasType *T) {
if (Options.PrintForSIL) {
visit(T->getSinglyDesugaredType());
return;
}
if (shouldPrintFullyQualified(T)) {
if (auto ParentDC = T->getDecl()->getDeclContext()) {
printDeclContext(ParentDC);
Printer << ".";
}
}
printTypeDeclName(T);
}
void visitParenType(ParenType *T) {
Printer << "(";
visit(T->getUnderlyingType());
Printer << ")";
}
void visitTupleType(TupleType *T) {
Printer << "(";
auto Fields = T->getElements();
for (unsigned i = 0, e = Fields.size(); i != e; ++i) {
if (i)
Printer << ", ";
const TupleTypeElt &TD = Fields[i];
Type EltType = TD.getType();
if (auto *IOT = EltType->getAs<InOutType>()) {
Printer << "inout ";
EltType = IOT->getObjectType();
}
if (TD.hasName()) {
Printer.printName(TD.getName(), PrintNameContext::FunctionParameter);
Printer << ": ";
}
if (TD.isVararg()) {
visit(TD.getVarargBaseTy());
Printer << "...";
} else
visit(EltType);
}
Printer << ")";
}
void visitUnboundGenericType(UnboundGenericType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitBoundGenericType(BoundGenericType *T) {
if (Options.SynthesizeSugarOnTypes) {
auto *NT = T->getDecl();
auto &Ctx = T->getASTContext();
if (NT == Ctx.getArrayDecl()) {
Printer << "[";
visit(T->getGenericArgs()[0]);
Printer << "]";
return;
}
if (NT == Ctx.getDictionaryDecl()) {
Printer << "[";
visit(T->getGenericArgs()[0]);
Printer << " : ";
visit(T->getGenericArgs()[1]);
Printer << "]";
return;
}
if (NT == Ctx.getOptionalDecl()) {
printWithParensIfNotSimple(T->getGenericArgs()[0]);
Printer << "?";
return;
}
if (NT == Ctx.getImplicitlyUnwrappedOptionalDecl()) {
printWithParensIfNotSimple(T->getGenericArgs()[0]);
Printer << "!";
return;
}
}
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
printGenericArgs(T->getGenericArgs());
}
void visitEnumType(EnumType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitStructType(StructType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitClassType(ClassType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitAnyMetatypeType(AnyMetatypeType *T) {
if (T->hasRepresentation()) {
switch (T->getRepresentation()) {
case MetatypeRepresentation::Thin: Printer << "@thin "; break;
case MetatypeRepresentation::Thick: Printer << "@thick "; break;
case MetatypeRepresentation::ObjC: Printer << "@objc_metatype "; break;
}
}
printWithParensIfNotSimple(T->getInstanceType());
// We spell normal metatypes of existential types as .Protocol.
if (isa<MetatypeType>(T) &&
// Special case AssociatedTypeType's here, since they may not be fully
// set up within the type checker (preventing getCanonicalType from
// working), and we want type printing to always work even in malformed
// programs half way through the type checker.
!isa<AssociatedTypeType>(T->getInstanceType().getPointer()) &&
T->getInstanceType()->isAnyExistentialType()) {
Printer << ".Protocol";
} else {
Printer << ".Type";
}
}
void visitModuleType(ModuleType *T) {
Printer << "module<";
Printer.printModuleRef(T->getModule(), T->getModule()->getName());
Printer << ">";
}
void visitDynamicSelfType(DynamicSelfType *T) {
Printer << "Self";
}
void printFunctionExtInfo(AnyFunctionType::ExtInfo info) {
if(Options.SkipAttributes)
return;
auto IsAttrExcluded = [&](DeclAttrKind Kind) {
return Options.ExcludeAttrList.end() != std::find(Options.ExcludeAttrList.
begin(), Options.ExcludeAttrList.end(), Kind);
};
if (info.isAutoClosure() && !IsAttrExcluded(DAK_AutoClosure))
Printer << "@autoclosure ";
else if (info.isNoEscape() && !IsAttrExcluded(DAK_NoEscape))
// autoclosure implies noescape.
Printer << "@noescape ";
if (Options.PrintFunctionRepresentationAttrs) {
// TODO: coalesce into a single convention attribute.
switch (info.getSILRepresentation()) {
case SILFunctionType::Representation::Thick:
break;
case SILFunctionType::Representation::Thin:
Printer << "@convention(thin) ";
break;
case SILFunctionType::Representation::Block:
Printer << "@convention(block) ";
break;
case SILFunctionType::Representation::CFunctionPointer:
Printer << "@convention(c) ";
break;
case SILFunctionType::Representation::Method:
Printer << "@convention(method) ";
break;
case SILFunctionType::Representation::ObjCMethod:
Printer << "@convention(objc_method) ";
break;
case SILFunctionType::Representation::WitnessMethod:
Printer << "@convention(witness_method) ";
break;
}
}
if (info.isNoReturn())
Printer << "@noreturn ";
}
void printFunctionExtInfo(SILFunctionType::ExtInfo info) {
if(Options.SkipAttributes)
return;
if (Options.PrintFunctionRepresentationAttrs) {
// TODO: coalesce into a single convention attribute.
switch (info.getRepresentation()) {
case SILFunctionType::Representation::Thick:
break;
case SILFunctionType::Representation::Thin:
Printer << "@convention(thin) ";
break;
case SILFunctionType::Representation::Block:
Printer << "@convention(block) ";
break;
case SILFunctionType::Representation::CFunctionPointer:
Printer << "@convention(c) ";
break;
case SILFunctionType::Representation::Method:
Printer << "@convention(method) ";
break;
case SILFunctionType::Representation::ObjCMethod:
Printer << "@convention(objc_method) ";
break;
case SILFunctionType::Representation::WitnessMethod:
Printer << "@convention(witness_method) ";
break;
}
}
if (info.isNoReturn())
Printer << "@noreturn ";
}
void visitFunctionType(FunctionType *T) {
printFunctionExtInfo(T->getExtInfo());
printWithParensIfNotSimple(T->getInput());
if (T->throws())
Printer << " throws";
Printer << " -> ";
T->getResult().print(Printer, Options);
}
void visitPolymorphicFunctionType(PolymorphicFunctionType *T) {
printFunctionExtInfo(T->getExtInfo());
printGenericParams(&T->getGenericParams());
Printer << " ";
printWithParensIfNotSimple(T->getInput());
if (T->throws())
Printer << " throws";
Printer << " -> ";
T->getResult().print(Printer, Options);
}
/// If we can't find the depth of a type, return ErrorDepth.
const unsigned ErrorDepth = ~0U;
/// A helper function to return the depth of a type.
unsigned getDepthOfType(Type ty) {
if (auto paramTy = ty->getAs<GenericTypeParamType>())
return paramTy->getDepth();
if (auto depMemTy = dyn_cast<DependentMemberType>(ty->getCanonicalType())) {
CanType rootTy;
do {
rootTy = depMemTy.getBase();
} while ((depMemTy = dyn_cast<DependentMemberType>(rootTy)));
if (auto rootParamTy = dyn_cast<GenericTypeParamType>(rootTy))
return rootParamTy->getDepth();
return ErrorDepth;
}
return ErrorDepth;
}
/// A helper function to return the depth of a requirement.
unsigned getDepthOfRequirement(const Requirement &req) {
switch (req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::WitnessMarker:
return getDepthOfType(req.getFirstType());
case RequirementKind::SameType: {
// Return the max valid depth of firstType and secondType.
unsigned firstDepth = getDepthOfType(req.getFirstType());
unsigned secondDepth = getDepthOfType(req.getSecondType());
unsigned maxDepth;
if (firstDepth == ErrorDepth && secondDepth != ErrorDepth)
maxDepth = secondDepth;
else if (firstDepth != ErrorDepth && secondDepth == ErrorDepth)
maxDepth = firstDepth;
else
maxDepth = std::max(firstDepth, secondDepth);
return maxDepth;
}
}
llvm_unreachable("bad RequirementKind");
}
void printGenericSignature(ArrayRef<GenericTypeParamType *> genericParams,
ArrayRef<Requirement> requirements) {
if (!Options.PrintInSILBody) {
printSingleDepthOfGenericSignature(genericParams, requirements);
return;
}
// In order to recover the nested GenericParamLists, we divide genericParams
// and requirements according to depth.
unsigned paramIdx = 0, numParam = genericParams.size();
while (paramIdx < numParam) {
unsigned depth = genericParams[paramIdx]->getDepth();
// Move index to genericParams.
unsigned lastParamIdx = paramIdx;
do {
lastParamIdx++;
} while (lastParamIdx < numParam &&
genericParams[lastParamIdx]->getDepth() == depth);
// Collect requirements for this level.
// Because of same-type requirements, these aren't well-ordered.
SmallVector<Requirement, 2> requirementsAtDepth;
for (auto reqt : requirements) {
unsigned currentDepth = getDepthOfRequirement(reqt);
// Collect requirements at the current depth.
if (currentDepth == depth)
requirementsAtDepth.push_back(reqt);
// If we're at the bottom-most level, collect depthless requirements.
if (currentDepth == ErrorDepth && lastParamIdx == numParam)
requirementsAtDepth.push_back(reqt);
}
printSingleDepthOfGenericSignature(
genericParams.slice(paramIdx, lastParamIdx - paramIdx),
requirementsAtDepth);
paramIdx = lastParamIdx;
}
}
void printSingleDepthOfGenericSignature(
ArrayRef<GenericTypeParamType *> genericParams,
ArrayRef<Requirement> requirements) {
// Print the generic parameters.
Printer << "<";
bool isFirstParam = true;
for (auto param : genericParams) {
if (isFirstParam)
isFirstParam = false;
else
Printer << ", ";
visit(param);
}
// Print the requirements.
bool isFirstReq = true;
for (const auto &req : requirements) {
if (req.getKind() == RequirementKind::WitnessMarker)
continue;
if (isFirstReq) {
Printer << " where ";
isFirstReq = false;
} else {
Printer << ", ";
}
visit(req.getFirstType());
switch (req.getKind()) {
case RequirementKind::Conformance:
Printer << " : ";
break;
case RequirementKind::SameType:
Printer << " == ";
break;
case RequirementKind::WitnessMarker:
llvm_unreachable("Handled above");
}
visit(req.getSecondType());
}
Printer << ">";
}
void visitGenericFunctionType(GenericFunctionType *T) {
printFunctionExtInfo(T->getExtInfo());
printGenericSignature(T->getGenericParams(), T->getRequirements());
Printer << " ";
printWithParensIfNotSimple(T->getInput());
if (T->throws())
Printer << " throws";
Printer << " -> ";
T->getResult().print(Printer, Options);
}
void printCalleeConvention(ParameterConvention conv) {
switch (conv) {
case ParameterConvention::Direct_Unowned:
return;
case ParameterConvention::Direct_Owned:
Printer << "@callee_owned ";
return;
case ParameterConvention::Direct_Guaranteed:
Printer << "@callee_guaranteed ";
return;
case ParameterConvention::Direct_Deallocating:
// Closures do not have destructors.
llvm_unreachable("callee convention cannot be deallocating");
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_Out:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Indirect_In_Guaranteed:
llvm_unreachable("callee convention cannot be indirect");
}
llvm_unreachable("bad convention");
}
void visitSILFunctionType(SILFunctionType *T) {
printFunctionExtInfo(T->getExtInfo());
printCalleeConvention(T->getCalleeConvention());
if (auto sig = T->getGenericSignature()) {
printGenericSignature(sig->getGenericParams(), sig->getRequirements());
Printer << " ";
}
Printer << "(";
bool first = true;
for (auto param : T->getParameters()) {
if (first) {
first = false;
} else {
Printer << ", ";
}
param.print(Printer, Options);
}
Printer << ") -> ";
if (T->hasErrorResult()) {
// The error result is implicitly @owned; don't print that.
assert(T->getErrorResult().getConvention() == ResultConvention::Owned);
if (T->getResult().getType()->isVoid()) {
Printer << "@error ";
T->getErrorResult().getType().print(Printer, Options);
} else {
Printer << "(";
T->getResult().print(Printer, Options);
Printer << ", @error ";
T->getErrorResult().getType().print(Printer, Options);
Printer << ")";
}
} else {
T->getResult().print(Printer, Options);
}
}
void visitSILBlockStorageType(SILBlockStorageType *T) {
Printer << "@block_storage ";
printWithParensIfNotSimple(T->getCaptureType());
}
void visitSILBoxType(SILBoxType *T) {
Printer << "@box ";
printWithParensIfNotSimple(T->getBoxedType());
}
void visitArraySliceType(ArraySliceType *T) {
Printer << "[";
visit(T->getBaseType());
Printer << "]";
}
void visitDictionaryType(DictionaryType *T) {
Printer << "[";
visit(T->getKeyType());
Printer << " : ";
visit(T->getValueType());
Printer << "]";
}
void visitOptionalType(OptionalType *T) {
printWithParensIfNotSimple(T->getBaseType());
Printer << "?";
}
void visitImplicitlyUnwrappedOptionalType(ImplicitlyUnwrappedOptionalType *T) {
printWithParensIfNotSimple(T->getBaseType());
Printer << "!";
}
void visitProtocolType(ProtocolType *T) {
printTypeDeclName(T);
}
void visitProtocolCompositionType(ProtocolCompositionType *T) {
Printer << "protocol<";
bool First = true;
for (auto Proto : T->getProtocols()) {
if (First)
First = false;
else
Printer << ", ";
visit(Proto);
}
Printer << ">";
}
void visitLValueType(LValueType *T) {
Printer << "@lvalue ";
visit(T->getObjectType());
}
void visitInOutType(InOutType *T) {
Printer << "inout ";
visit(T->getObjectType());
}
void visitArchetypeType(ArchetypeType *T) {
if (auto existentialTy = T->getOpenedExistentialType()) {
if (Options.PrintForSIL)
Printer << "@opened(\"" << T->getOpenedExistentialID() << "\") ";
visit(existentialTy);
} else {
if (auto parent = T->getParent()) {
visit(parent);
Printer << ".";
}
if (T->getName().empty())
Printer << "<anonymous>";
else {
PrintNameContext context = PrintNameContext::Normal;
if (T->getSelfProtocol())
context = PrintNameContext::GenericParameter;
Printer.printName(T->getName(), context);
}
}
}
GenericParamList *getGenericParamListAtDepth(unsigned depth) {
assert(Options.ContextGenericParams);
if (!UnwrappedGenericParams) {
std::vector<GenericParamList *> paramLists;
for (auto *params = Options.ContextGenericParams;
params;
params = params->getOuterParameters()) {
paramLists.push_back(params);
}
UnwrappedGenericParams = std::move(paramLists);
}
return UnwrappedGenericParams->rbegin()[depth];
}
void visitGenericTypeParamType(GenericTypeParamType *T) {
// Substitute a context archetype if we have context generic params.
if (Options.ContextGenericParams) {
return visit(getGenericParamListAtDepth(T->getDepth())
->getPrimaryArchetypes()[T->getIndex()]);
}
auto Name = T->getName();
if (Name.empty())
Printer << "<anonymous>";
else {
PrintNameContext context = PrintNameContext::Normal;
if (T->getDecl() && T->getDecl()->isProtocolSelf())
context = PrintNameContext::GenericParameter;
Printer.printName(Name, context);
}
}
void visitAssociatedTypeType(AssociatedTypeType *T) {
auto Name = T->getDecl()->getName();
if (Name.empty())
Printer << "<anonymous>";
else
Printer.printName(Name);
}
void visitSubstitutedType(SubstitutedType *T) {
visit(T->getReplacementType());
}
void visitDependentMemberType(DependentMemberType *T) {
visit(T->getBase());
Printer << ".";
Printer.printName(T->getName());
}
void visitUnownedStorageType(UnownedStorageType *T) {
if (Options.PrintStorageRepresentationAttrs)
Printer << "@sil_unowned ";
visit(T->getReferentType());
}
void visitUnmanagedStorageType(UnmanagedStorageType *T) {
if (Options.PrintStorageRepresentationAttrs)
Printer << "@sil_unmanaged ";
visit(T->getReferentType());
}
void visitWeakStorageType(WeakStorageType *T) {
if (Options.PrintStorageRepresentationAttrs)
Printer << "@sil_weak ";
visit(T->getReferentType());
}
void visitTypeVariableType(TypeVariableType *T) {
auto Base = T->getBaseBeingSubstituted();
if (T->getASTContext().LangOpts.DebugConstraintSolver) {
Printer << "$T" << T->getID();
return;
}
if (T->isEqual(Base) || T->isPrinting) {
Printer << "_";
return;
}
llvm::SaveAndRestore<bool> isPrinting(T->isPrinting, true);
visit(Base);
}
};
} // unnamed namespace
void Type::print(raw_ostream &OS, const PrintOptions &PO) const {
StreamPrinter Printer(OS);
print(Printer, PO);
}
void Type::print(ASTPrinter &Printer, const PrintOptions &PO) const {
if (isNull())
Printer << "<null>";
else
TypePrinter(Printer, PO).visit(*this);
}
void GenericSignature::print(raw_ostream &OS) const {
StreamPrinter Printer(OS);
TypePrinter(Printer, PrintOptions())
.printGenericSignature(getGenericParams(), getRequirements());
}
void GenericSignature::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
std::string GenericSignature::getAsString() const {
std::string result;
llvm::raw_string_ostream out(result);
print(out);
return out.str();
}
static StringRef getStringForParameterConvention(ParameterConvention conv) {
switch (conv) {
case ParameterConvention::Indirect_In: return "@in ";
case ParameterConvention::Indirect_Out: return "@out ";
case ParameterConvention::Indirect_In_Guaranteed: return "@in_guaranteed ";
case ParameterConvention::Indirect_Inout: return "@inout ";
case ParameterConvention::Indirect_InoutAliasable: return "@inout_aliasable ";
case ParameterConvention::Direct_Owned: return "@owned ";
case ParameterConvention::Direct_Unowned: return "";
case ParameterConvention::Direct_Guaranteed: return "@guaranteed ";
case ParameterConvention::Direct_Deallocating: return "@deallocating ";
}
llvm_unreachable("bad parameter convention");
}
StringRef swift::getCheckedCastKindName(CheckedCastKind kind) {
switch (kind) {
case CheckedCastKind::Unresolved:
return "unresolved";
case CheckedCastKind::Coercion:
return "coercion";
case CheckedCastKind::ValueCast:
return "value_cast";
case CheckedCastKind::ArrayDowncast:
return "array_downcast";
case CheckedCastKind::DictionaryDowncast:
return "dictionary_downcast";
case CheckedCastKind::DictionaryDowncastBridged:
return "dictionary_downcast_bridged";
case CheckedCastKind::SetDowncast:
return "set_downcast";
case CheckedCastKind::SetDowncastBridged:
return "set_downcast_bridged";
case CheckedCastKind::BridgeFromObjectiveC:
return "bridge_from_objc";
}
llvm_unreachable("bad checked cast name");
}
void SILParameterInfo::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
void SILParameterInfo::print(raw_ostream &OS, const PrintOptions &Opts) const {
StreamPrinter Printer(OS);
print(Printer, Opts);
}
void SILParameterInfo::print(ASTPrinter &Printer,
const PrintOptions &Opts) const {
Printer << getStringForParameterConvention(getConvention());
getType().print(Printer, Opts);
}
static StringRef getStringForResultConvention(ResultConvention conv) {
switch (conv) {
case ResultConvention::Owned: return "@owned ";
case ResultConvention::Unowned: return "";
case ResultConvention::UnownedInnerPointer: return "@unowned_inner_pointer ";
case ResultConvention::Autoreleased: return "@autoreleased ";
}
llvm_unreachable("bad result convention");
}
void SILResultInfo::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
void SILResultInfo::print(raw_ostream &OS, const PrintOptions &Opts) const {
StreamPrinter Printer(OS);
print(Printer, Opts);
}
void SILResultInfo::print(ASTPrinter &Printer, const PrintOptions &Opts) const {
Printer << getStringForResultConvention(getConvention());
getType().print(Printer, Opts);
}
std::string Type::getString(const PrintOptions &PO) const {
std::string Result;
llvm::raw_string_ostream OS(Result);
print(OS, PO);
return OS.str();
}
std::string TypeBase::getString(const PrintOptions &PO) const {
std::string Result;
llvm::raw_string_ostream OS(Result);
print(OS, PO);
return OS.str();
}
void TypeBase::dumpPrint() const {
print(llvm::errs());
llvm::errs() << '\n';
}
void TypeBase::print(raw_ostream &OS, const PrintOptions &PO) const {
Type(const_cast<TypeBase *>(this)).print(OS, PO);
}
void TypeBase::print(ASTPrinter &Printer, const PrintOptions &PO) const {
Type(const_cast<TypeBase *>(this)).print(Printer, PO);
}
void ProtocolConformance::printName(llvm::raw_ostream &os,
const PrintOptions &PO) const {
if (getKind() == ProtocolConformanceKind::Normal) {
if (PO.PrintForSIL) {
if (auto genericSig = getGenericSignature()) {
StreamPrinter sPrinter(os);
TypePrinter typePrinter(sPrinter, PO);
typePrinter.printGenericSignature(genericSig->getGenericParams(),
genericSig->getRequirements());
os << ' ';
}
} else if (auto gp = getGenericParams()) {
StreamPrinter SPrinter(os);
PrintAST Printer(SPrinter, PO);
Printer.printGenericParams(gp);
os << ' ';
}
}
getType()->print(os, PO);
os << ": ";
switch (getKind()) {
case ProtocolConformanceKind::Normal: {
auto normal = cast<NormalProtocolConformance>(this);
os << normal->getProtocol()->getName()
<< " module " << normal->getDeclContext()->getParentModule()->getName();
break;
}
case ProtocolConformanceKind::Specialized: {
auto spec = cast<SpecializedProtocolConformance>(this);
os << "specialize <";
interleave(spec->getGenericSubstitutions(),
[&](const Substitution &s) { s.print(os, PO); },
[&] { os << ", "; });
os << "> (";
spec->getGenericConformance()->printName(os, PO);
os << ")";
break;
}
case ProtocolConformanceKind::Inherited: {
auto inherited = cast<InheritedProtocolConformance>(this);
os << "inherit (";
inherited->getInheritedConformance()->printName(os, PO);
os << ")";
break;
}
}
}
void Substitution::print(llvm::raw_ostream &os,
const PrintOptions &PO) const {
Archetype->print(os, PO);
os << " = ";
Replacement->print(os, PO);
}