blob: 62da9a5f159122cca8803b8ce98ad1d35c961801 [file] [log] [blame]
//===--- Dominance.h - SIL dominance analysis -------------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides interfaces for computing and working with
// control-flow dominance in SIL.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_DOMINANCE_H
#define SWIFT_SIL_DOMINANCE_H
#include "llvm/Support/GenericDomTree.h"
#include "swift/SIL/CFG.h"
extern template class llvm::DominatorTreeBase<swift::SILBasicBlock>;
extern template class llvm::DominatorBase<swift::SILBasicBlock>;
extern template class llvm::DomTreeNodeBase<swift::SILBasicBlock>;
namespace swift {
using DominanceInfoNode = llvm::DomTreeNodeBase<SILBasicBlock>;
/// A class for computing basic dominance information.
class DominanceInfo : public llvm::DominatorTreeBase<SILBasicBlock> {
public:
DominanceInfo(SILFunction *F);
/// Does instruction A properly dominate instruction B?
bool properlyDominates(SILInstruction *a, SILInstruction *b);
void verify() const;
/// Return true if the other dominator tree does not match this dominator
/// tree.
inline bool errorOccurredOnComparison(const DominanceInfo &Other) const {
const auto *R = getRootNode();
const auto *OtherR = Other.getRootNode();
if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
return true;
// Returns *false* if they match.
if (compare(Other))
return true;
return false;
}
using DominatorTreeBase::properlyDominates;
bool isValid(SILFunction *F) const {
return getNode(&F->front()) != nullptr;
}
void reset() {
llvm::DominatorTreeBase<SILBasicBlock>::reset();
}
};
/// Helper class for visiting basic blocks in dominance order, based on a
/// worklist algorithm. Example usage:
/// \code
/// DominanceOrder DomOrder(Function->front(), DominanceInfo);
/// while (SILBasicBlock *block = DomOrder.getNext()) {
/// doSomething(block);
/// domOrder.pushChildren(block);
/// }
/// \endcode
class DominanceOrder {
SmallVector<SILBasicBlock *, 16> buffer;
DominanceInfo *DT;
size_t srcIdx = 0;
public:
/// Constructor.
/// \p entry The root of the dominator (sub-)tree.
/// \p DT The dominance info of the function.
/// \p capacity Should be the number of basic blocks in the dominator tree to
/// reduce memory allocation.
DominanceOrder(SILBasicBlock *root, DominanceInfo *DT, int capacity = 0) :
DT(DT) {
buffer.reserve(capacity);
buffer.push_back(root);
}
/// Gets the next block from the worklist.
///
SILBasicBlock *getNext() {
if (srcIdx == buffer.size())
return nullptr;
return buffer[srcIdx++];
}
/// Pushes the dominator children of a block onto the worklist.
void pushChildren(SILBasicBlock *block) {
pushChildrenIf(block, [] (SILBasicBlock *) { return true; });
}
/// Conditionally pushes the dominator children of a block onto the worklist.
/// \p pred Takes a block (= a dominator child) as argument and returns true
/// if it should be added to the worklist.
///
template <typename Pred> void pushChildrenIf(SILBasicBlock *block, Pred pred) {
DominanceInfoNode *DINode = DT->getNode(block);
for (auto *DIChild : *DINode) {
SILBasicBlock *child = DIChild->getBlock();
if (pred(child))
buffer.push_back(DIChild->getBlock());
}
}
};
/// A class for computing basic post-dominance information.
class PostDominanceInfo : public llvm::DominatorTreeBase<SILBasicBlock> {
public:
PostDominanceInfo(SILFunction *F);
bool properlyDominates(SILInstruction *A, SILInstruction *B);
void verify() const;
/// Return true if the other dominator tree does not match this dominator
/// tree.
inline bool errorOccurredOnComparison(const PostDominanceInfo &Other) const {
const auto *R = getRootNode();
const auto *OtherR = Other.getRootNode();
if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
return true;
if (!R->getBlock()) {
// The post dom-tree has multiple roots. The compare() function can not
// cope with multiple roots if at least one of the roots is caused by
// an infinite loop in the CFG (it crashes because no nodes are allocated
// for the blocks in the infinite loop).
// So we return a conservative false in this case.
// TODO: eventually fix the DominatorTreeBase::compare() function.
return false;
}
// Returns *false* if they match.
if (compare(Other))
return true;
return false;
}
bool isValid(SILFunction *F) const { return getNode(&F->front()) != nullptr; }
using DominatorTreeBase::properlyDominates;
};
} // end namespace swift
namespace llvm {
/// DominatorTree GraphTraits specialization so the DominatorTree can be
/// iterable by generic graph iterators.
template <> struct GraphTraits<swift::DominanceInfoNode *> {
using NodeType = swift::DominanceInfoNode;
using ChildIteratorType = NodeType::iterator;
static NodeType *getEntryNode(NodeType *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->begin();
}
static inline ChildIteratorType child_end(NodeType *N) { return N->end(); }
};
template <> struct GraphTraits<const swift::DominanceInfoNode *> {
using NodeType = const swift::DominanceInfoNode;
using ChildIteratorType = NodeType::const_iterator;
static NodeType *getEntryNode(NodeType *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->begin();
}
static inline ChildIteratorType child_end(NodeType *N) { return N->end(); }
};
} // end namespace llvm
#endif