blob: 82c443de478e0a8bb89c704c48978bfe38082999 [file] [log] [blame]
//===--- Serialization.cpp - Read and write Swift modules -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "Serialization.h"
#include "SILFormat.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/RawComment.h"
#include "swift/AST/USRGeneration.h"
#include "swift/Basic/Dwarf.h"
#include "swift/Basic/FileSystem.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Timer.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Serialization/SerializationOptions.h"
// FIXME: We're just using CompilerInstance::createOutputFile.
// This API should be sunk down to LLVM.
#include "clang/Frontend/CompilerInstance.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Bitcode/RecordLayout.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/YAMLParser.h"
#include <vector>
using namespace swift;
using namespace swift::serialization;
using namespace llvm::support;
using swift::version::Version;
using llvm::BCBlockRAII;
/// Used for static_assert.
static constexpr bool declIDFitsIn32Bits() {
using Int32Info = std::numeric_limits<uint32_t>;
using PtrIntInfo = std::numeric_limits<uintptr_t>;
using DeclIDTraits = llvm::PointerLikeTypeTraits<DeclID>;
return PtrIntInfo::digits - DeclIDTraits::NumLowBitsAvailable <= Int32Info::digits;
}
namespace {
/// Used to serialize the on-disk decl hash table.
class DeclTableInfo {
public:
using key_type = DeclBaseName;
using key_type_ref = key_type;
using data_type = Serializer::DeclTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
switch (key.getKind()) {
case DeclBaseName::Kind::Normal:
assert(!key.empty());
return llvm::HashString(key.getIdentifier().str());
case DeclBaseName::Kind::Subscript:
return static_cast<uint8_t>(DeclNameKind::Subscript);
case DeclBaseName::Kind::Destructor:
return static_cast<uint8_t>(DeclNameKind::Destructor);
}
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = sizeof(uint8_t); // For the flag of the name's kind
if (key.getKind() == DeclBaseName::Kind::Normal) {
keyLength += key.getIdentifier().str().size(); // The name's length
}
uint32_t dataLength = (sizeof(uint32_t) + 1) * data.size();
endian::Writer<little> writer(out);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
endian::Writer<little> writer(out);
switch (key.getKind()) {
case DeclBaseName::Kind::Normal:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Normal));
writer.OS << key.getIdentifier().str();
break;
case DeclBaseName::Kind::Subscript:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Subscript));
break;
case DeclBaseName::Kind::Destructor:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Destructor));
break;
}
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer<little> writer(out);
for (auto entry : data) {
writer.write<uint8_t>(entry.first);
writer.write<uint32_t>(entry.second);
}
}
};
class ExtensionTableInfo {
serialization::Serializer &Serializer;
llvm::SmallDenseMap<const NominalTypeDecl *,std::string,4> MangledNameCache;
public:
explicit ExtensionTableInfo(serialization::Serializer &serializer)
: Serializer(serializer) {}
using key_type = Identifier;
using key_type_ref = key_type;
using data_type = Serializer::ExtensionTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::HashString(key.str());
}
int32_t getNameDataForBase(const NominalTypeDecl *nominal,
StringRef *dataToWrite = nullptr) {
if (nominal->getDeclContext()->isModuleScopeContext())
return -Serializer.addModuleRef(nominal->getParentModule());
auto &mangledName = MangledNameCache[nominal];
if (mangledName.empty())
mangledName = Mangle::ASTMangler().mangleNominalType(nominal);
assert(llvm::isUInt<31>(mangledName.size()));
if (dataToWrite)
*dataToWrite = mangledName;
return mangledName.size();
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.str().size();
uint32_t dataLength = (sizeof(uint32_t) * 2) * data.size();
for (auto dataPair : data) {
int32_t nameData = getNameDataForBase(dataPair.first);
if (nameData > 0)
dataLength += nameData;
}
endian::Writer<little> writer(out);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key.str();
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer<little> writer(out);
for (auto entry : data) {
StringRef dataToWrite;
writer.write<uint32_t>(entry.second);
writer.write<int32_t>(getNameDataForBase(entry.first, &dataToWrite));
out << dataToWrite;
}
}
};
class LocalDeclTableInfo {
public:
using key_type = std::string;
using key_type_ref = StringRef;
using data_type = std::pair<DeclID, unsigned>; // ID, local discriminator
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::HashString(key);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.size();
uint32_t dataLength = sizeof(uint32_t) + sizeof(unsigned);
endian::Writer<little> writer(out);
writer.write<uint16_t>(keyLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key;
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer<little> writer(out);
writer.write<uint32_t>(data.first);
writer.write<unsigned>(data.second);
}
};
using LocalTypeHashTableGenerator =
llvm::OnDiskChainedHashTableGenerator<LocalDeclTableInfo>;
class NestedTypeDeclsTableInfo {
public:
using key_type = Identifier;
using key_type_ref = const key_type &;
using data_type = Serializer::NestedTypeDeclsData; // (parent, child) pairs
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::HashString(key.str());
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.str().size();
uint32_t dataLength = (sizeof(uint32_t) * 2) * data.size();
endian::Writer<little> writer(out);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
// FIXME: Avoid writing string data for identifiers here.
out << key.str();
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer<little> writer(out);
for (auto entry : data) {
writer.write<uint32_t>(entry.first);
writer.write<uint32_t>(entry.second);
}
}
};
} // end anonymous namespace
namespace llvm {
template<> struct DenseMapInfo<Serializer::DeclTypeUnion> {
using DeclTypeUnion = Serializer::DeclTypeUnion;
static inline DeclTypeUnion getEmptyKey() { return nullptr; }
static inline DeclTypeUnion getTombstoneKey() { return swift::Type(); }
static unsigned getHashValue(const DeclTypeUnion &val) {
return DenseMapInfo<const void *>::getHashValue(val.getOpaqueValue());
}
static bool isEqual(const DeclTypeUnion &lhs, const DeclTypeUnion &rhs) {
return lhs == rhs;
}
};
} // namespace llvm
static ModuleDecl *getModule(ModuleOrSourceFile DC) {
if (auto M = DC.dyn_cast<ModuleDecl *>())
return M;
return DC.get<SourceFile *>()->getParentModule();
}
static ASTContext &getContext(ModuleOrSourceFile DC) {
return getModule(DC)->getASTContext();
}
static bool shouldSerializeAsLocalContext(const DeclContext *DC) {
return DC->isLocalContext() && !isa<AbstractFunctionDecl>(DC) &&
!isa<SubscriptDecl>(DC);
}
static const Decl *getDeclForContext(const DeclContext *DC) {
switch (DC->getContextKind()) {
case DeclContextKind::Module:
// Use a null decl to represent the module.
return nullptr;
case DeclContextKind::FileUnit:
return getDeclForContext(DC->getParent());
case DeclContextKind::SerializedLocal:
llvm_unreachable("Serialized local contexts should only come from deserialization");
case DeclContextKind::Initializer:
case DeclContextKind::AbstractClosureExpr:
// FIXME: What about default functions?
llvm_unreachable("shouldn't serialize decls from anonymous closures");
case DeclContextKind::GenericTypeDecl:
return cast<GenericTypeDecl>(DC);
case DeclContextKind::ExtensionDecl:
return cast<ExtensionDecl>(DC);
case DeclContextKind::TopLevelCodeDecl:
llvm_unreachable("shouldn't serialize the main module");
case DeclContextKind::AbstractFunctionDecl:
return cast<AbstractFunctionDecl>(DC);
case DeclContextKind::SubscriptDecl:
return cast<SubscriptDecl>(DC);
}
llvm_unreachable("Unhandled DeclContextKind in switch.");
}
namespace {
struct Accessors {
StorageKind Kind;
FuncDecl *Get = nullptr, *Set = nullptr, *MaterializeForSet = nullptr;
FuncDecl *Address = nullptr, *MutableAddress = nullptr;
FuncDecl *WillSet = nullptr, *DidSet = nullptr;
};
} // end anonymous namespace
static StorageKind getRawStorageKind(AbstractStorageDecl::StorageKindTy kind) {
switch (kind) {
#define CASE(KIND) case AbstractStorageDecl::KIND: return StorageKind::KIND
CASE(Stored);
CASE(StoredWithTrivialAccessors);
CASE(StoredWithObservers);
CASE(InheritedWithObservers);
CASE(Computed);
CASE(ComputedWithMutableAddress);
CASE(Addressed);
CASE(AddressedWithTrivialAccessors);
CASE(AddressedWithObservers);
#undef CASE
}
llvm_unreachable("bad storage kind");
}
static Accessors getAccessors(const AbstractStorageDecl *storage) {
Accessors accessors;
accessors.Kind = getRawStorageKind(storage->getStorageKind());
switch (auto storageKind = storage->getStorageKind()) {
case AbstractStorageDecl::Stored:
return accessors;
case AbstractStorageDecl::Addressed:
case AbstractStorageDecl::AddressedWithTrivialAccessors:
case AbstractStorageDecl::ComputedWithMutableAddress:
accessors.Address = storage->getAddressor();
accessors.MutableAddress = storage->getMutableAddressor();
if (storageKind == AbstractStorageDecl::Addressed)
return accessors;
goto getset;
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
case AbstractStorageDecl::AddressedWithObservers:
accessors.WillSet = storage->getWillSetFunc();
accessors.DidSet = storage->getDidSetFunc();
goto getset;
case AbstractStorageDecl::StoredWithTrivialAccessors:
case AbstractStorageDecl::Computed:
getset:
accessors.Get = storage->getGetter();
accessors.Set = storage->getSetter();
accessors.MaterializeForSet = storage->getMaterializeForSetFunc();
return accessors;
}
llvm_unreachable("bad storage kind");
}
DeclID Serializer::addLocalDeclContextRef(const DeclContext *DC) {
assert(DC->isLocalContext() && "Expected a local DeclContext");
auto &id = LocalDeclContextIDs[DC];
if (id != 0)
return id;
id = ++LastLocalDeclContextID;
LocalDeclContextsToWrite.push(DC);
return id;
}
GenericEnvironmentID Serializer::addGenericEnvironmentRef(
const GenericEnvironment *env) {
if (!env) return 0;
auto &id = GenericEnvironmentIDs[env];
if (id != 0)
return id;
id = ++LastGenericEnvironmentID;
GenericEnvironmentsToWrite.push(env);
return id;
}
DeclContextID Serializer::addDeclContextRef(const DeclContext *DC) {
switch (DC->getContextKind()) {
case DeclContextKind::Module:
case DeclContextKind::FileUnit: // Skip up to the module
return 0;
default:
break;
}
// If this decl context is a plain old serializable decl, queue it up for
// normal serialization.
if (shouldSerializeAsLocalContext(DC))
addLocalDeclContextRef(DC);
else
addDeclRef(getDeclForContext(DC));
auto &id = DeclContextIDs[DC];
if (id)
return id;
id = ++LastDeclContextID;
DeclContextsToWrite.push(DC);
return id;
}
DeclID Serializer::addDeclRef(const Decl *D, bool forceSerialization,
bool allowTypeAliasXRef) {
if (!D)
return 0;
DeclIDAndForce &id = DeclAndTypeIDs[D];
if (id.first != 0) {
if (forceSerialization && !id.second)
id.second = true;
return id.first;
}
assert((!isDeclXRef(D) || isa<ValueDecl>(D) || isa<OperatorDecl>(D) ||
isa<PrecedenceGroupDecl>(D)) &&
"cannot cross-reference this decl");
assert((allowTypeAliasXRef || !isa<TypeAliasDecl>(D) ||
D->getModuleContext() == M) &&
"cannot cross-reference typealiases directly (use the NameAliasType)");
id = { ++LastDeclID, forceSerialization };
DeclsAndTypesToWrite.push(D);
return id.first;
}
TypeID Serializer::addTypeRef(Type ty) {
if (!ty)
return 0;
#ifndef NDEBUG
PrettyStackTraceType trace(M->getASTContext(), "serializing", ty);
assert(!ty->hasError() && "Serializing error type");
#endif
auto &id = DeclAndTypeIDs[ty];
if (id.first != 0)
return id.first;
id = { ++LastTypeID, true };
DeclsAndTypesToWrite.push(ty);
return id.first;
}
IdentifierID Serializer::addDeclBaseNameRef(DeclBaseName ident) {
switch (ident.getKind()) {
case DeclBaseName::Kind::Normal: {
if (ident.empty())
return 0;
IdentifierID &id = IdentifierIDs[ident.getIdentifier()];
if (id != 0)
return id;
id = ++LastIdentifierID;
IdentifiersToWrite.push_back(ident.getIdentifier());
return id;
}
case DeclBaseName::Kind::Subscript:
return SUBSCRIPT_ID;
case DeclBaseName::Kind::Destructor:
return DESTRUCTOR_ID;
}
}
IdentifierID Serializer::addModuleRef(const ModuleDecl *M) {
if (M == this->M)
return CURRENT_MODULE_ID;
if (M == this->M->getASTContext().TheBuiltinModule)
return BUILTIN_MODULE_ID;
auto clangImporter =
static_cast<ClangImporter *>(
this->M->getASTContext().getClangModuleLoader());
if (M == clangImporter->getImportedHeaderModule())
return OBJC_HEADER_MODULE_ID;
// If we're referring to a member of a private module that will be
// re-exported via a public module, record the public module's name.
if (auto clangModuleUnit =
dyn_cast<ClangModuleUnit>(M->getFiles().front())) {
auto exportedModuleName =
M->getASTContext().getIdentifier(
clangModuleUnit->getExportedModuleName());
return addDeclBaseNameRef(exportedModuleName);
}
assert(!M->getName().empty());
return addDeclBaseNameRef(M->getName());
}
SILLayoutID Serializer::addSILLayoutRef(SILLayout *layout) {
auto &id = SILLayouts[layout];
if (id != 0)
return id;
id = ++LastSILLayoutID;
SILLayoutsToWrite.push(layout);
return id;
}
NormalConformanceID Serializer::addConformanceRef(
const NormalProtocolConformance *conformance) {
assert(conformance->getDeclContext()->getParentModule() == M &&
"cannot reference conformance from another module");
auto &conformanceID = NormalConformances[conformance];
if (conformanceID)
return conformanceID;
conformanceID = ++LastNormalConformanceID;
NormalConformancesToWrite.push(conformance);
return conformanceID;
}
/// Record the name of a block.
static void emitBlockID(llvm::BitstreamWriter &out, unsigned ID,
StringRef name,
SmallVectorImpl<unsigned char> &nameBuffer) {
SmallVector<unsigned, 1> idBuffer;
idBuffer.push_back(ID);
out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, idBuffer);
// Emit the block name if present.
if (name.empty())
return;
nameBuffer.resize(name.size());
memcpy(nameBuffer.data(), name.data(), name.size());
out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, nameBuffer);
}
/// Record the name of a record within a block.
static void emitRecordID(llvm::BitstreamWriter &out, unsigned ID,
StringRef name,
SmallVectorImpl<unsigned char> &nameBuffer) {
assert(ID < 256 && "can't fit record ID in next to name");
nameBuffer.resize(name.size()+1);
nameBuffer[0] = ID;
memcpy(nameBuffer.data()+1, name.data(), name.size());
out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, nameBuffer);
}
void Serializer::writeBlockInfoBlock() {
BCBlockRAII restoreBlock(Out, llvm::bitc::BLOCKINFO_BLOCK_ID, 2);
SmallVector<unsigned char, 64> nameBuffer;
#define BLOCK(X) emitBlockID(Out, X ## _ID, #X, nameBuffer)
#define BLOCK_RECORD(K, X) emitRecordID(Out, K::X, #X, nameBuffer)
BLOCK(MODULE_BLOCK);
BLOCK(CONTROL_BLOCK);
BLOCK_RECORD(control_block, METADATA);
BLOCK_RECORD(control_block, MODULE_NAME);
BLOCK_RECORD(control_block, TARGET);
BLOCK(OPTIONS_BLOCK);
BLOCK_RECORD(options_block, SDK_PATH);
BLOCK_RECORD(options_block, XCC);
BLOCK_RECORD(options_block, IS_SIB);
BLOCK_RECORD(options_block, IS_TESTABLE);
BLOCK_RECORD(options_block, RESILIENCE_STRATEGY);
BLOCK(INPUT_BLOCK);
BLOCK_RECORD(input_block, IMPORTED_MODULE);
BLOCK_RECORD(input_block, LINK_LIBRARY);
BLOCK_RECORD(input_block, IMPORTED_HEADER);
BLOCK_RECORD(input_block, IMPORTED_HEADER_CONTENTS);
BLOCK_RECORD(input_block, MODULE_FLAGS);
BLOCK_RECORD(input_block, SEARCH_PATH);
BLOCK(DECLS_AND_TYPES_BLOCK);
#define RECORD(X) BLOCK_RECORD(decls_block, X);
#include "swift/Serialization/DeclTypeRecordNodes.def"
BLOCK(IDENTIFIER_DATA_BLOCK);
BLOCK_RECORD(identifier_block, IDENTIFIER_DATA);
BLOCK(INDEX_BLOCK);
BLOCK_RECORD(index_block, TYPE_OFFSETS);
BLOCK_RECORD(index_block, DECL_OFFSETS);
BLOCK_RECORD(index_block, IDENTIFIER_OFFSETS);
BLOCK_RECORD(index_block, TOP_LEVEL_DECLS);
BLOCK_RECORD(index_block, OPERATORS);
BLOCK_RECORD(index_block, EXTENSIONS);
BLOCK_RECORD(index_block, CLASS_MEMBERS);
BLOCK_RECORD(index_block, OPERATOR_METHODS);
BLOCK_RECORD(index_block, OBJC_METHODS);
BLOCK_RECORD(index_block, ENTRY_POINT);
BLOCK_RECORD(index_block, LOCAL_DECL_CONTEXT_OFFSETS);
BLOCK_RECORD(index_block, GENERIC_ENVIRONMENT_OFFSETS);
BLOCK_RECORD(index_block, DECL_CONTEXT_OFFSETS);
BLOCK_RECORD(index_block, LOCAL_TYPE_DECLS);
BLOCK_RECORD(index_block, GENERIC_ENVIRONMENT_OFFSETS);
BLOCK_RECORD(index_block, NORMAL_CONFORMANCE_OFFSETS);
BLOCK_RECORD(index_block, SIL_LAYOUT_OFFSETS);
BLOCK_RECORD(index_block, PRECEDENCE_GROUPS);
BLOCK_RECORD(index_block, NESTED_TYPE_DECLS);
BLOCK(SIL_BLOCK);
BLOCK_RECORD(sil_block, SIL_FUNCTION);
BLOCK_RECORD(sil_block, SIL_BASIC_BLOCK);
BLOCK_RECORD(sil_block, SIL_ONE_VALUE_ONE_OPERAND);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE);
BLOCK_RECORD(sil_block, SIL_ONE_OPERAND);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE_ONE_OPERAND);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE_VALUES);
BLOCK_RECORD(sil_block, SIL_TWO_OPERANDS);
BLOCK_RECORD(sil_block, SIL_TAIL_ADDR);
BLOCK_RECORD(sil_block, SIL_INST_APPLY);
BLOCK_RECORD(sil_block, SIL_INST_NO_OPERAND);
BLOCK_RECORD(sil_block, SIL_VTABLE);
BLOCK_RECORD(sil_block, SIL_VTABLE_ENTRY);
BLOCK_RECORD(sil_block, SIL_GLOBALVAR);
BLOCK_RECORD(sil_block, SIL_INST_CAST);
BLOCK_RECORD(sil_block, SIL_INIT_EXISTENTIAL);
BLOCK_RECORD(sil_block, SIL_WITNESS_TABLE);
BLOCK_RECORD(sil_block, SIL_WITNESS_METHOD_ENTRY);
BLOCK_RECORD(sil_block, SIL_WITNESS_BASE_ENTRY);
BLOCK_RECORD(sil_block, SIL_WITNESS_ASSOC_PROTOCOL);
BLOCK_RECORD(sil_block, SIL_WITNESS_ASSOC_ENTRY);
BLOCK_RECORD(sil_block, SIL_DEFAULT_WITNESS_TABLE);
BLOCK_RECORD(sil_block, SIL_DEFAULT_WITNESS_TABLE_ENTRY);
BLOCK_RECORD(sil_block, SIL_DEFAULT_WITNESS_TABLE_NO_ENTRY);
BLOCK_RECORD(sil_block, SIL_INST_WITNESS_METHOD);
BLOCK_RECORD(sil_block, SIL_SPECIALIZE_ATTR);
// These layouts can exist in both decl blocks and sil blocks.
#define BLOCK_RECORD_WITH_NAMESPACE(K, X) emitRecordID(Out, X, #X, nameBuffer)
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::BOUND_GENERIC_SUBSTITUTION);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::ABSTRACT_PROTOCOL_CONFORMANCE);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::NORMAL_PROTOCOL_CONFORMANCE);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::SPECIALIZED_PROTOCOL_CONFORMANCE);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::INHERITED_PROTOCOL_CONFORMANCE);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::NORMAL_PROTOCOL_CONFORMANCE_ID);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::PROTOCOL_CONFORMANCE_XREF);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::GENERIC_PARAM_LIST);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::GENERIC_PARAM);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::GENERIC_REQUIREMENT);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::LAYOUT_REQUIREMENT);
BLOCK(SIL_INDEX_BLOCK);
BLOCK_RECORD(sil_index_block, SIL_FUNC_NAMES);
BLOCK_RECORD(sil_index_block, SIL_FUNC_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_VTABLE_NAMES);
BLOCK_RECORD(sil_index_block, SIL_VTABLE_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_GLOBALVAR_NAMES);
BLOCK_RECORD(sil_index_block, SIL_GLOBALVAR_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_WITNESS_TABLE_NAMES);
BLOCK_RECORD(sil_index_block, SIL_WITNESS_TABLE_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_DEFAULT_WITNESS_TABLE_NAMES);
BLOCK_RECORD(sil_index_block, SIL_DEFAULT_WITNESS_TABLE_OFFSETS);
#undef BLOCK
#undef BLOCK_RECORD
}
void Serializer::writeDocBlockInfoBlock() {
BCBlockRAII restoreBlock(Out, llvm::bitc::BLOCKINFO_BLOCK_ID, 2);
SmallVector<unsigned char, 64> nameBuffer;
#define BLOCK(X) emitBlockID(Out, X ## _ID, #X, nameBuffer)
#define BLOCK_RECORD(K, X) emitRecordID(Out, K::X, #X, nameBuffer)
BLOCK(MODULE_DOC_BLOCK);
BLOCK(CONTROL_BLOCK);
BLOCK_RECORD(control_block, METADATA);
BLOCK_RECORD(control_block, MODULE_NAME);
BLOCK_RECORD(control_block, TARGET);
BLOCK(COMMENT_BLOCK);
BLOCK_RECORD(comment_block, DECL_COMMENTS);
BLOCK_RECORD(comment_block, GROUP_NAMES);
#undef BLOCK
#undef BLOCK_RECORD
}
void Serializer::writeHeader(const SerializationOptions &options) {
{
BCBlockRAII restoreBlock(Out, CONTROL_BLOCK_ID, 3);
control_block::ModuleNameLayout ModuleName(Out);
control_block::MetadataLayout Metadata(Out);
control_block::TargetLayout Target(Out);
ModuleName.emit(ScratchRecord, M->getName().str());
SmallString<32> versionStringBuf;
llvm::raw_svector_ostream versionString(versionStringBuf);
versionString << Version::getCurrentLanguageVersion();
size_t shortVersionStringLength = versionString.tell();
versionString << '('
<< M->getASTContext().LangOpts.EffectiveLanguageVersion;
size_t compatibilityVersionStringLength =
versionString.tell() - shortVersionStringLength - 1;
versionString << ")/" << version::getSwiftFullVersion();
Metadata.emit(ScratchRecord,
VERSION_MAJOR, VERSION_MINOR, shortVersionStringLength,
compatibilityVersionStringLength,
versionString.str());
Target.emit(ScratchRecord, M->getASTContext().LangOpts.Target.str());
{
llvm::BCBlockRAII restoreBlock(Out, OPTIONS_BLOCK_ID, 3);
options_block::IsSIBLayout IsSIB(Out);
IsSIB.emit(ScratchRecord, options.IsSIB);
if (M->isTestingEnabled()) {
options_block::IsTestableLayout IsTestable(Out);
IsTestable.emit(ScratchRecord);
}
if (M->getResilienceStrategy() != ResilienceStrategy::Default) {
options_block::ResilienceStrategyLayout Strategy(Out);
Strategy.emit(ScratchRecord, unsigned(M->getResilienceStrategy()));
}
if (options.SerializeOptionsForDebugging) {
options_block::SDKPathLayout SDKPath(Out);
options_block::XCCLayout XCC(Out);
SDKPath.emit(ScratchRecord, M->getASTContext().SearchPathOpts.SDKPath);
auto &Opts = options.ExtraClangOptions;
for (auto Arg = Opts.begin(), E = Opts.end(); Arg != E; ++Arg) {
// FIXME: This is a hack and calls for a better design.
//
// Filter out any -ivfsoverlay options that include an
// unextended-module-overlay.yaml overlay. By convention the Xcode
// buildsystem uses these while *building* mixed Objective-C and Swift
// frameworks; but they should never be used to *import* the module
// defined in the framework.
if (StringRef(*Arg).startswith("-ivfsoverlay")) {
auto Next = std::next(Arg);
if (Next != E &&
StringRef(*Next).endswith("unextended-module-overlay.yaml")) {
++Arg;
continue;
}
}
XCC.emit(ScratchRecord, *Arg);
}
}
}
}
}
void Serializer::writeDocHeader() {
{
BCBlockRAII restoreBlock(Out, CONTROL_BLOCK_ID, 3);
control_block::ModuleNameLayout ModuleName(Out);
control_block::MetadataLayout Metadata(Out);
control_block::TargetLayout Target(Out);
auto& LangOpts = M->getASTContext().LangOpts;
Metadata.emit(ScratchRecord,
VERSION_MAJOR, VERSION_MINOR,
/*short version string length*/0, /*compatibility length*/0,
version::getSwiftFullVersion(
LangOpts.EffectiveLanguageVersion));
Target.emit(ScratchRecord, LangOpts.Target.str());
}
}
static void
removeDuplicateImports(SmallVectorImpl<ModuleDecl::ImportedModule> &imports) {
std::sort(imports.begin(), imports.end(),
[](const ModuleDecl::ImportedModule &lhs,
const ModuleDecl::ImportedModule &rhs) -> bool {
// Arbitrarily sort by name to get a deterministic order.
// FIXME: Submodules don't get sorted properly here.
if (lhs.second != rhs.second)
return lhs.second->getName().str() < rhs.second->getName().str();
using AccessPathElem = std::pair<Identifier, SourceLoc>;
return std::lexicographical_compare(lhs.first.begin(), lhs.first.end(),
rhs.first.begin(), rhs.first.end(),
[](const AccessPathElem &lElem,
const AccessPathElem &rElem) {
return lElem.first.str() < rElem.first.str();
});
});
auto last = std::unique(imports.begin(), imports.end(),
[](const ModuleDecl::ImportedModule &lhs,
const ModuleDecl::ImportedModule &rhs) -> bool {
if (lhs.second != rhs.second)
return false;
return ModuleDecl::isSameAccessPath(lhs.first, rhs.first);
});
imports.erase(last, imports.end());
}
using ImportPathBlob = llvm::SmallString<64>;
static void flattenImportPath(const ModuleDecl::ImportedModule &import,
ImportPathBlob &out) {
ArrayRef<FileUnit *> files = import.second->getFiles();
if (auto clangModule = dyn_cast<ClangModuleUnit>(files.front())) {
// FIXME: This is an awful hack to handle Clang submodules.
// Once Swift has a native notion of submodules, this can go away.
const clang::Module *submodule = clangModule->getClangModule();
SmallVector<StringRef, 4> submoduleNames;
do {
submoduleNames.push_back(submodule->Name);
submodule = submodule->Parent;
} while (submodule);
interleave(submoduleNames.rbegin(), submoduleNames.rend(),
[&out](StringRef next) { out.append(next); },
[&out] { out.push_back('\0'); });
} else {
out.append(import.second->getName().str());
}
if (import.first.empty())
return;
out.push_back('\0');
assert(import.first.size() == 1 && "can only handle top-level decl imports");
auto accessPathElem = import.first.front();
out.append(accessPathElem.first.str());
}
void Serializer::writeInputBlock(const SerializationOptions &options) {
BCBlockRAII restoreBlock(Out, INPUT_BLOCK_ID, 4);
input_block::ImportedModuleLayout ImportedModule(Out);
input_block::LinkLibraryLayout LinkLibrary(Out);
input_block::ImportedHeaderLayout ImportedHeader(Out);
input_block::ImportedHeaderContentsLayout ImportedHeaderContents(Out);
input_block::ModuleFlagsLayout ModuleFlags(Out);
input_block::SearchPathLayout SearchPath(Out);
if (options.SerializeOptionsForDebugging) {
const SearchPathOptions &searchPathOpts = M->getASTContext().SearchPathOpts;
// Put the framework search paths first so that they'll be preferred upon
// deserialization.
for (auto &framepath : searchPathOpts.FrameworkSearchPaths)
SearchPath.emit(ScratchRecord, /*framework=*/true, framepath.IsSystem,
framepath.Path);
for (auto &path : searchPathOpts.ImportSearchPaths)
SearchPath.emit(ScratchRecord, /*framework=*/false, /*system=*/false, path);
}
// FIXME: Having to deal with private imports as a superset of public imports
// is inefficient.
SmallVector<ModuleDecl::ImportedModule, 8> publicImports;
SmallVector<ModuleDecl::ImportedModule, 8> allImports;
for (auto file : M->getFiles()) {
file->getImportedModules(publicImports, ModuleDecl::ImportFilter::Public);
file->getImportedModules(allImports, ModuleDecl::ImportFilter::All);
}
llvm::SmallSet<ModuleDecl::ImportedModule, 8, ModuleDecl::OrderImportedModules>
publicImportSet;
publicImportSet.insert(publicImports.begin(), publicImports.end());
removeDuplicateImports(allImports);
auto clangImporter =
static_cast<ClangImporter *>(M->getASTContext().getClangModuleLoader());
ModuleDecl *importedHeaderModule = clangImporter->getImportedHeaderModule();
ModuleDecl *theBuiltinModule = M->getASTContext().TheBuiltinModule;
for (auto import : allImports) {
if (import.second == theBuiltinModule)
continue;
if (import.second == importedHeaderModule) {
off_t importedHeaderSize = 0;
time_t importedHeaderModTime = 0;
std::string contents;
if (!options.ImportedHeader.empty())
contents = clangImporter->getBridgingHeaderContents(
options.ImportedHeader, importedHeaderSize, importedHeaderModTime);
ImportedHeader.emit(ScratchRecord, publicImportSet.count(import),
importedHeaderSize, importedHeaderModTime,
options.ImportedHeader);
if (!contents.empty()) {
contents.push_back('\0');
ImportedHeaderContents.emit(ScratchRecord, contents);
}
continue;
}
ImportPathBlob importPath;
flattenImportPath(import, importPath);
ImportedModule.emit(ScratchRecord, publicImportSet.count(import),
!import.first.empty(), importPath);
}
if (!options.ModuleLinkName.empty()) {
LinkLibrary.emit(ScratchRecord, serialization::LibraryKind::Library,
options.AutolinkForceLoad, options.ModuleLinkName);
}
}
/// Translate AST default argument kind to the Serialization enum values, which
/// are guaranteed to be stable.
static uint8_t getRawStableDefaultArgumentKind(swift::DefaultArgumentKind kind) {
switch (kind) {
#define CASE(X) \
case swift::DefaultArgumentKind::X: \
return static_cast<uint8_t>(serialization::DefaultArgumentKind::X);
CASE(None)
CASE(Normal)
CASE(Inherited)
CASE(Column)
CASE(File)
CASE(Line)
CASE(Function)
CASE(DSOHandle)
CASE(NilLiteral)
CASE(EmptyArray)
CASE(EmptyDictionary)
#undef CASE
}
llvm_unreachable("Unhandled DefaultArgumentKind in switch.");
}
static uint8_t getRawStableMetatypeRepresentation(AnyMetatypeType *metatype) {
if (!metatype->hasRepresentation()) {
return serialization::MetatypeRepresentation::MR_None;
}
switch (metatype->getRepresentation()) {
case swift::MetatypeRepresentation::Thin:
return serialization::MetatypeRepresentation::MR_Thin;
case swift::MetatypeRepresentation::Thick:
return serialization::MetatypeRepresentation::MR_Thick;
case swift::MetatypeRepresentation::ObjC:
return serialization::MetatypeRepresentation::MR_ObjC;
}
llvm_unreachable("bad representation");
}
static uint8_t getRawStableAddressorKind(swift::AddressorKind kind) {
switch (kind) {
case swift::AddressorKind::NotAddressor:
return uint8_t(serialization::AddressorKind::NotAddressor);
case swift::AddressorKind::Unsafe:
return uint8_t(serialization::AddressorKind::Unsafe);
case swift::AddressorKind::Owning:
return uint8_t(serialization::AddressorKind::Owning);
case swift::AddressorKind::NativeOwning:
return uint8_t(serialization::AddressorKind::NativeOwning);
case swift::AddressorKind::NativePinning:
return uint8_t(serialization::AddressorKind::NativePinning);
}
llvm_unreachable("bad addressor kind");
}
static uint8_t getRawStableResilienceExpansion(swift::ResilienceExpansion e) {
switch (e) {
case swift::ResilienceExpansion::Minimal:
return uint8_t(serialization::ResilienceExpansion::Minimal);
case swift::ResilienceExpansion::Maximal:
return uint8_t(serialization::ResilienceExpansion::Maximal);
}
}
void Serializer::writeParameterList(const ParameterList *PL) {
using namespace decls_block;
unsigned abbrCode = DeclTypeAbbrCodes[ParameterListLayout::Code];
ParameterListLayout::emitRecord(Out, ScratchRecord, abbrCode,
PL->size());
abbrCode = DeclTypeAbbrCodes[ParameterListEltLayout::Code];
for (auto &param : *PL) {
// FIXME: Default argument expressions?
auto defaultArg =
getRawStableDefaultArgumentKind(param->getDefaultArgumentKind());
ParameterListEltLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(param),
param->isVariadic(),
defaultArg);
}
}
void Serializer::writePattern(const Pattern *pattern, DeclContext *owningDC) {
using namespace decls_block;
// Retrieve the type of the pattern.
auto getPatternType = [&] {
Type type = pattern->getType();
// If we have an owning context and a contextual type, map out to an
// interface type.
if (owningDC && type->hasArchetype()) {
type = owningDC->getGenericEnvironmentOfContext()
->mapTypeOutOfContext(type);
}
return type;
};
assert(pattern && "null pattern");
switch (pattern->getKind()) {
case PatternKind::Paren: {
unsigned abbrCode = DeclTypeAbbrCodes[ParenPatternLayout::Code];
ParenPatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
pattern->isImplicit());
writePattern(cast<ParenPattern>(pattern)->getSubPattern(), owningDC);
break;
}
case PatternKind::Tuple: {
auto tuple = cast<TuplePattern>(pattern);
unsigned abbrCode = DeclTypeAbbrCodes[TuplePatternLayout::Code];
TuplePatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(getPatternType()),
tuple->getNumElements(),
tuple->isImplicit());
abbrCode = DeclTypeAbbrCodes[TuplePatternEltLayout::Code];
for (auto &elt : tuple->getElements()) {
// FIXME: Default argument expressions?
TuplePatternEltLayout::emitRecord(
Out, ScratchRecord, abbrCode, addDeclBaseNameRef(elt.getLabel()));
writePattern(elt.getPattern(), owningDC);
}
break;
}
case PatternKind::Named: {
auto named = cast<NamedPattern>(pattern);
unsigned abbrCode = DeclTypeAbbrCodes[NamedPatternLayout::Code];
NamedPatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(named->getDecl()),
addTypeRef(getPatternType()),
named->isImplicit());
break;
}
case PatternKind::Any: {
unsigned abbrCode = DeclTypeAbbrCodes[AnyPatternLayout::Code];
AnyPatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(getPatternType()),
pattern->isImplicit());
break;
}
case PatternKind::Typed: {
auto typed = cast<TypedPattern>(pattern);
unsigned abbrCode = DeclTypeAbbrCodes[TypedPatternLayout::Code];
TypedPatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(getPatternType()),
typed->isImplicit());
writePattern(typed->getSubPattern(), owningDC);
break;
}
case PatternKind::Is:
case PatternKind::EnumElement:
case PatternKind::OptionalSome:
case PatternKind::Bool:
case PatternKind::Expr:
llvm_unreachable("Refutable patterns cannot be serialized");
case PatternKind::Var: {
auto var = cast<VarPattern>(pattern);
unsigned abbrCode = DeclTypeAbbrCodes[VarPatternLayout::Code];
VarPatternLayout::emitRecord(Out, ScratchRecord, abbrCode, var->isLet(),
var->isImplicit());
writePattern(var->getSubPattern(), owningDC);
break;
}
}
}
/// Translate from the requirement kind to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableRequirementKind(RequirementKind kind) {
#define CASE(KIND) \
case RequirementKind::KIND: \
return GenericRequirementKind::KIND;
switch (kind) {
CASE(Conformance)
CASE(Superclass)
CASE(SameType)
CASE(Layout)
}
#undef CASE
llvm_unreachable("Unhandled RequirementKind in switch.");
}
void Serializer::writeGenericRequirements(ArrayRef<Requirement> requirements,
const std::array<unsigned, 256> &abbrCodes) {
using namespace decls_block;
if (requirements.empty())
return;
auto reqAbbrCode = abbrCodes[GenericRequirementLayout::Code];
auto layoutReqAbbrCode = abbrCodes[LayoutRequirementLayout::Code];
for (const auto &req : requirements) {
if (req.getKind() != RequirementKind::Layout)
GenericRequirementLayout::emitRecord(
Out, ScratchRecord, reqAbbrCode,
getRawStableRequirementKind(req.getKind()),
addTypeRef(req.getFirstType()), addTypeRef(req.getSecondType()));
else {
// Write layout requirement.
auto layout = req.getLayoutConstraint();
unsigned size = 0;
unsigned alignment = 0;
if (layout->isKnownSizeTrivial()) {
size = layout->getTrivialSizeInBits();
alignment = layout->getAlignment();
}
LayoutRequirementKind rawKind = LayoutRequirementKind::UnknownLayout;
switch (layout->getKind()) {
case LayoutConstraintKind::NativeRefCountedObject:
rawKind = LayoutRequirementKind::NativeRefCountedObject;
break;
case LayoutConstraintKind::RefCountedObject:
rawKind = LayoutRequirementKind::RefCountedObject;
break;
case LayoutConstraintKind::Trivial:
rawKind = LayoutRequirementKind::Trivial;
break;
case LayoutConstraintKind::TrivialOfExactSize:
rawKind = LayoutRequirementKind::TrivialOfExactSize;
break;
case LayoutConstraintKind::TrivialOfAtMostSize:
rawKind = LayoutRequirementKind::TrivialOfAtMostSize;
break;
case LayoutConstraintKind::Class:
rawKind = LayoutRequirementKind::Class;
break;
case LayoutConstraintKind::NativeClass:
rawKind = LayoutRequirementKind::NativeClass;
break;
case LayoutConstraintKind::UnknownLayout:
rawKind = LayoutRequirementKind::UnknownLayout;
break;
}
LayoutRequirementLayout::emitRecord(
Out, ScratchRecord, layoutReqAbbrCode, rawKind,
addTypeRef(req.getFirstType()), size, alignment);
}
}
}
bool Serializer::writeGenericParams(const GenericParamList *genericParams) {
using namespace decls_block;
// Don't write anything if there are no generic params.
if (!genericParams)
return true;
unsigned abbrCode = DeclTypeAbbrCodes[GenericParamListLayout::Code];
GenericParamListLayout::emitRecord(Out, ScratchRecord, abbrCode);
abbrCode = DeclTypeAbbrCodes[GenericParamLayout::Code];
for (auto next : genericParams->getParams()) {
GenericParamLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(next));
}
return true;
}
void Serializer::writeGenericEnvironment(const GenericEnvironment *env) {
using namespace decls_block;
// Record the offset of this generic environment.
auto id = GenericEnvironmentIDs[env];
assert(id != 0 && "generic environment not referenced properly");
(void)id;
assert((id - 1) == GenericEnvironmentOffsets.size());
GenericEnvironmentOffsets.push_back(Out.GetCurrentBitNo());
if (env == nullptr)
return;
// Determine whether we must use SIL mode, because one of the generic
// parameters has a declaration with module context.
bool SILMode = false;
for (auto *paramTy : env->getGenericParams()) {
if (auto *decl = paramTy->getDecl()) {
if (decl->getDeclContext()->isModuleScopeContext()) {
SILMode = true;
break;
}
}
}
// Record the generic parameters.
SmallVector<uint64_t, 4> rawParamIDs;
for (auto *paramTy : env->getGenericParams()) {
auto *decl = paramTy->getDecl();
// In SIL mode, add the name and canonicalize the parameter type.
if (SILMode) {
if (decl)
rawParamIDs.push_back(addDeclBaseNameRef(decl->getName()));
else
rawParamIDs.push_back(addDeclBaseNameRef(Identifier()));
paramTy = paramTy->getCanonicalType()->castTo<GenericTypeParamType>();
}
rawParamIDs.push_back(addTypeRef(paramTy));
}
if (SILMode) {
auto envAbbrCode = DeclTypeAbbrCodes[SILGenericEnvironmentLayout::Code];
SILGenericEnvironmentLayout::emitRecord(Out, ScratchRecord, envAbbrCode,
rawParamIDs);
} else {
auto envAbbrCode = DeclTypeAbbrCodes[GenericEnvironmentLayout::Code];
GenericEnvironmentLayout::emitRecord(Out, ScratchRecord, envAbbrCode,
rawParamIDs);
}
writeGenericRequirements(env->getGenericSignature()->getRequirements(),
DeclTypeAbbrCodes);
}
void Serializer::writeSILLayout(SILLayout *layout) {
using namespace decls_block;
auto foundLayoutID = SILLayouts.find(layout);
assert(foundLayoutID != SILLayouts.end() && "layout not referenced properly");
assert(foundLayoutID->second - 1 == SILLayoutOffsets.size());
(void) foundLayoutID;
SILLayoutOffsets.push_back(Out.GetCurrentBitNo());
SmallVector<unsigned, 16> data;
// Save field types.
for (auto &field : layout->getFields()) {
unsigned typeRef = addTypeRef(field.getLoweredType());
// Set the high bit if mutable.
if (field.isMutable())
typeRef |= 0x80000000U;
data.push_back(typeRef);
}
// Save generic params.
if (auto sig = layout->getGenericSignature()) {
for (auto param : sig->getGenericParams()) {
data.push_back(addTypeRef(param));
}
}
unsigned abbrCode
= DeclTypeAbbrCodes[SILLayoutLayout::Code];
SILLayoutLayout::emitRecord(Out, ScratchRecord, abbrCode,
layout->getFields().size(),
data);
// Emit requirements.
if (auto sig = layout->getGenericSignature())
writeGenericRequirements(sig->getRequirements(), DeclTypeAbbrCodes);
}
void Serializer::writeNormalConformance(
const NormalProtocolConformance *conformance) {
using namespace decls_block;
// The conformance must be complete, or we can't serialize it.
assert(conformance->isComplete());
auto conformanceID = NormalConformances[conformance];
assert(conformanceID != 0 && "normal conformance not referenced properly");
(void)conformanceID;
assert((conformanceID - 1) == NormalConformanceOffsets.size());
NormalConformanceOffsets.push_back(Out.GetCurrentBitNo());
auto protocol = conformance->getProtocol();
SmallVector<DeclID, 32> data;
unsigned numValueWitnesses = 0;
unsigned numTypeWitnesses = 0;
conformance->forEachValueWitness(nullptr,
[&](ValueDecl *req, Witness witness) {
++numValueWitnesses;
data.push_back(addDeclRef(req));
data.push_back(addDeclRef(witness.getDecl()));
assert(witness.getDecl() || req->getAttrs().hasAttribute<OptionalAttr>()
|| req->getAttrs().isUnavailable(req->getASTContext()));
// If there is no witness, we're done.
if (!witness.getDecl()) return;
if (auto genericEnv = witness.requiresSubstitution()
? witness.getSyntheticEnvironment()
: nullptr) {
auto *genericSig = genericEnv->getGenericSignature();
// Generic parameters.
data.push_back(genericSig->getGenericParams().size());
for (auto gp : genericSig->getGenericParams())
data.push_back(addTypeRef(gp));
auto reqToSyntheticSubs = witness.getRequirementToSyntheticSubs();
data.push_back(reqToSyntheticSubs.size());
// Requirements come at the end.
} else {
data.push_back(/*number of generic parameters*/0);
}
data.push_back(witness.getSubstitutions().size());
});
conformance->forEachTypeWitness(/*resolver=*/nullptr,
[&](AssociatedTypeDecl *assocType,
Type type, TypeDecl *typeDecl) {
data.push_back(addDeclRef(assocType));
data.push_back(addTypeRef(type));
data.push_back(addDeclRef(typeDecl, /*forceSerialization*/false,
/*allowTypeAliasXRef*/true));
++numTypeWitnesses;
return false;
});
unsigned numSignatureConformances =
conformance->getSignatureConformances().size();
unsigned abbrCode
= DeclTypeAbbrCodes[NormalProtocolConformanceLayout::Code];
auto ownerID = addDeclContextRef(conformance->getDeclContext());
NormalProtocolConformanceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(protocol), ownerID,
numValueWitnesses,
numTypeWitnesses,
numSignatureConformances,
data);
// Write requirement signature conformances.
for (auto reqConformance : conformance->getSignatureConformances())
writeConformance(reqConformance, DeclTypeAbbrCodes);
conformance->forEachValueWitness(nullptr,
[&](ValueDecl *req, Witness witness) {
// Bail out early for simple witnesses.
if (!witness.getDecl()) return;
if (auto genericEnv = witness.requiresSubstitution()
? witness.getSyntheticEnvironment()
: nullptr) {
auto *genericSig = genericEnv->getGenericSignature();
// Write the generic requirements of the synthetic environment.
writeGenericRequirements(genericSig->getRequirements(),
DeclTypeAbbrCodes);
// Write requirement-to-synthetic substitutions.
writeSubstitutions(witness.getRequirementToSyntheticSubs(),
DeclTypeAbbrCodes,
nullptr);
}
// Write the witness substitutions.
writeSubstitutions(witness.getSubstitutions(),
DeclTypeAbbrCodes,
witness.requiresSubstitution()
? witness.getSyntheticEnvironment()
: nullptr);
});
}
void
Serializer::writeConformance(ProtocolConformance *conformance,
const std::array<unsigned, 256> &abbrCodes,
GenericEnvironment *genericEnv) {
writeConformance(ProtocolConformanceRef(conformance), abbrCodes, genericEnv);
}
void
Serializer::writeConformance(ProtocolConformanceRef conformanceRef,
const std::array<unsigned, 256> &abbrCodes,
GenericEnvironment *genericEnv) {
using namespace decls_block;
if (conformanceRef.isAbstract()) {
unsigned abbrCode = abbrCodes[AbstractProtocolConformanceLayout::Code];
AbstractProtocolConformanceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(conformanceRef.getAbstract()));
return;
}
auto conformance = conformanceRef.getConcrete();
switch (conformance->getKind()) {
case ProtocolConformanceKind::Normal: {
auto normal = cast<NormalProtocolConformance>(conformance);
if (!isDeclXRef(getDeclForContext(normal->getDeclContext()))) {
// A normal conformance in this module file.
unsigned abbrCode = abbrCodes[NormalProtocolConformanceIdLayout::Code];
NormalProtocolConformanceIdLayout::emitRecord(Out, ScratchRecord,
abbrCode,
addConformanceRef(normal));
} else {
// A conformance in a different module file.
unsigned abbrCode = abbrCodes[ProtocolConformanceXrefLayout::Code];
ProtocolConformanceXrefLayout::emitRecord(
Out, ScratchRecord,
abbrCode,
addDeclRef(normal->getProtocol()),
addDeclRef(normal->getType()->getAnyNominal()),
addModuleRef(normal->getDeclContext()->getParentModule()));
}
break;
}
case ProtocolConformanceKind::Specialized: {
auto conf = cast<SpecializedProtocolConformance>(conformance);
auto substitutions = conf->getGenericSubstitutions();
unsigned abbrCode = abbrCodes[SpecializedProtocolConformanceLayout::Code];
auto type = conf->getType();
if (genericEnv && type->hasArchetype())
type = genericEnv->mapTypeOutOfContext(type);
SpecializedProtocolConformanceLayout::emitRecord(Out, ScratchRecord,
abbrCode,
addTypeRef(type),
substitutions.size());
writeSubstitutions(substitutions, abbrCodes, genericEnv);
writeConformance(conf->getGenericConformance(), abbrCodes, genericEnv);
break;
}
case ProtocolConformanceKind::Inherited: {
auto conf = cast<InheritedProtocolConformance>(conformance);
unsigned abbrCode
= abbrCodes[InheritedProtocolConformanceLayout::Code];
auto type = conf->getType();
if (genericEnv && type->hasArchetype())
type = genericEnv->mapTypeOutOfContext(type);
InheritedProtocolConformanceLayout::emitRecord(
Out, ScratchRecord, abbrCode, addTypeRef(type));
writeConformance(conf->getInheritedConformance(), abbrCodes, genericEnv);
break;
}
}
}
void
Serializer::writeConformances(ArrayRef<ProtocolConformanceRef> conformances,
const std::array<unsigned, 256> &abbrCodes) {
using namespace decls_block;
for (auto conformance : conformances)
writeConformance(conformance, abbrCodes);
}
void
Serializer::writeConformances(ArrayRef<ProtocolConformance*> conformances,
const std::array<unsigned, 256> &abbrCodes) {
using namespace decls_block;
for (auto conformance : conformances)
writeConformance(conformance, abbrCodes);
}
void
Serializer::writeSubstitutions(SubstitutionList substitutions,
const std::array<unsigned, 256> &abbrCodes,
GenericEnvironment *genericEnv) {
using namespace decls_block;
auto abbrCode = abbrCodes[BoundGenericSubstitutionLayout::Code];
for (auto &sub : substitutions) {
auto replacementType = sub.getReplacement();
if (genericEnv && replacementType->hasArchetype()) {
replacementType =
genericEnv->mapTypeOutOfContext(replacementType);
}
BoundGenericSubstitutionLayout::emitRecord(
Out, ScratchRecord, abbrCode,
addTypeRef(replacementType),
sub.getConformances().size());
for (auto conformance : sub.getConformances()) {
writeConformance(conformance, abbrCodes, genericEnv);
}
}
}
static uint8_t getRawStableOptionalTypeKind(swift::OptionalTypeKind kind) {
switch (kind) {
case swift::OTK_None:
return static_cast<uint8_t>(serialization::OptionalTypeKind::None);
case swift::OTK_Optional:
return static_cast<uint8_t>(serialization::OptionalTypeKind::Optional);
case swift::OTK_ImplicitlyUnwrappedOptional:
return static_cast<uint8_t>(
serialization::OptionalTypeKind::ImplicitlyUnwrappedOptional);
}
llvm_unreachable("Unhandled OptionalTypeKind in switch.");
}
static bool shouldSerializeMember(Decl *D) {
switch (D->getKind()) {
case DeclKind::Import:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::TopLevelCode:
case DeclKind::Extension:
case DeclKind::Module:
case DeclKind::PrecedenceGroup:
llvm_unreachable("decl should never be a member");
case DeclKind::MissingMember:
llvm_unreachable("should never need to reserialize a member placeholder");
case DeclKind::IfConfig:
return false;
case DeclKind::EnumCase:
return false;
case DeclKind::EnumElement:
case DeclKind::Protocol:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::PatternBinding:
case DeclKind::Subscript:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
case DeclKind::Enum:
case DeclKind::Struct:
case DeclKind::Class:
case DeclKind::Var:
case DeclKind::Param:
case DeclKind::Func:
return true;
}
llvm_unreachable("Unhandled DeclKind in switch.");
}
void Serializer::writeMembers(DeclRange members, bool isClass) {
using namespace decls_block;
unsigned abbrCode = DeclTypeAbbrCodes[MembersLayout::Code];
SmallVector<DeclID, 16> memberIDs;
for (auto member : members) {
if (!shouldSerializeMember(member))
continue;
DeclID memberID = addDeclRef(member);
memberIDs.push_back(memberID);
if (isClass) {
if (auto VD = dyn_cast<ValueDecl>(member)) {
if (VD->canBeAccessedByDynamicLookup()) {
auto &list = ClassMembersByName[VD->getBaseName()];
list.push_back({getKindForTable(VD), memberID});
}
}
}
}
MembersLayout::emitRecord(Out, ScratchRecord, abbrCode, memberIDs);
}
void Serializer::writeDefaultWitnessTable(const ProtocolDecl *proto,
const std::array<unsigned, 256> &abbrCodes) {
using namespace decls_block;
SmallVector<DeclID, 16> witnessIDs;
unsigned abbrCode = abbrCodes[DefaultWitnessTableLayout::Code];
for (auto member : proto->getMembers()) {
if (auto *value = dyn_cast<ValueDecl>(member)) {
ConcreteDeclRef witness = proto->getDefaultWitness(value);
if (!witness)
continue;
DeclID requirementID = addDeclRef(value);
DeclID witnessID = addDeclRef(witness.getDecl());
witnessIDs.push_back(requirementID);
witnessIDs.push_back(witnessID);
// FIXME: Substitutions
}
}
DefaultWitnessTableLayout::emitRecord(Out, ScratchRecord,
abbrCode, witnessIDs);
}
static serialization::AccessorKind getStableAccessorKind(swift::AccessorKind K){
switch (K) {
case swift::AccessorKind::NotAccessor:
llvm_unreachable("should only be called for actual accessors");
#define CASE(NAME) \
case swift::AccessorKind::Is##NAME: return serialization::NAME;
CASE(Getter)
CASE(Setter)
CASE(WillSet)
CASE(DidSet)
CASE(MaterializeForSet)
CASE(Addressor)
CASE(MutableAddressor)
#undef CASE
}
llvm_unreachable("Unhandled AccessorKind in switch.");
}
static serialization::CtorInitializerKind
getStableCtorInitializerKind(swift::CtorInitializerKind K){
switch (K) {
#define CASE(NAME) \
case swift::CtorInitializerKind::NAME: return serialization::NAME;
CASE(Designated)
CASE(Convenience)
CASE(Factory)
CASE(ConvenienceFactory)
#undef CASE
}
llvm_unreachable("Unhandled CtorInitializerKind in switch.");
}
void Serializer::writeCrossReference(const DeclContext *DC, uint32_t pathLen) {
using namespace decls_block;
unsigned abbrCode;
switch (DC->getContextKind()) {
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::Initializer:
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::SerializedLocal:
llvm_unreachable("cannot cross-reference this context");
case DeclContextKind::FileUnit:
DC = cast<FileUnit>(DC)->getParentModule();
LLVM_FALLTHROUGH;
case DeclContextKind::Module:
abbrCode = DeclTypeAbbrCodes[XRefLayout::Code];
XRefLayout::emitRecord(Out, ScratchRecord, abbrCode,
addModuleRef(cast<ModuleDecl>(DC)), pathLen);
break;
case DeclContextKind::GenericTypeDecl: {
writeCrossReference(DC->getParent(), pathLen + 1);
auto generic = cast<GenericTypeDecl>(DC);
abbrCode = DeclTypeAbbrCodes[XRefTypePathPieceLayout::Code];
XRefTypePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(generic->getName()),
false);
break;
}
case DeclContextKind::ExtensionDecl: {
auto ext = cast<ExtensionDecl>(DC);
Type baseTy = ext->getExtendedType();
assert(!baseTy->hasUnboundGenericType());
writeCrossReference(baseTy->getAnyNominal(), pathLen + 1);
abbrCode = DeclTypeAbbrCodes[XRefExtensionPathPieceLayout::Code];
SmallVector<TypeID, 4> genericParams;
CanGenericSignature genericSig(nullptr);
if (ext->isConstrainedExtension()) {
genericSig = ext->getGenericSignature()->getCanonicalSignature();
for (auto param : genericSig->getGenericParams())
genericParams.push_back(addTypeRef(param));
}
XRefExtensionPathPieceLayout::emitRecord(
Out, ScratchRecord, abbrCode, addModuleRef(DC->getParentModule()),
genericParams);
if (genericSig) {
writeGenericRequirements(genericSig->getRequirements(),
DeclTypeAbbrCodes);
}
break;
}
case DeclContextKind::SubscriptDecl: {
auto SD = cast<SubscriptDecl>(DC);
writeCrossReference(DC->getParent(), pathLen + 1);
Type ty = SD->getInterfaceType()->getCanonicalType();
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
bool isProtocolExt = SD->getDeclContext()->getAsProtocolExtensionContext();
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty), SUBSCRIPT_ID,
isProtocolExt, SD->isStatic());
break;
}
case DeclContextKind::AbstractFunctionDecl: {
if (auto fn = dyn_cast<FuncDecl>(DC)) {
if (auto storage = fn->getAccessorStorageDecl()) {
writeCrossReference(storage->getDeclContext(), pathLen + 2);
Type ty = storage->getInterfaceType()->getCanonicalType();
IdentifierID nameID = addDeclBaseNameRef(storage->getBaseName());
bool isProtocolExt = fn->getDeclContext()->getAsProtocolExtensionContext();
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty), nameID,
isProtocolExt,
storage->isStatic());
abbrCode =
DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto emptyID = addDeclBaseNameRef(Identifier());
auto accessorKind = getStableAccessorKind(fn->getAccessorKind());
assert(!fn->isObservingAccessor() &&
"cannot form cross-reference to observing accessors");
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, emptyID,
accessorKind);
break;
}
}
auto fn = cast<AbstractFunctionDecl>(DC);
writeCrossReference(DC->getParent(), pathLen + 1 + fn->isOperator());
Type ty = fn->getInterfaceType()->getCanonicalType();
if (auto ctor = dyn_cast<ConstructorDecl>(DC)) {
abbrCode = DeclTypeAbbrCodes[XRefInitializerPathPieceLayout::Code];
XRefInitializerPathPieceLayout::emitRecord(
Out, ScratchRecord, abbrCode, addTypeRef(ty),
(bool)ctor->getDeclContext()->getAsProtocolExtensionContext(),
getStableCtorInitializerKind(ctor->getInitKind()));
break;
}
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
bool isProtocolExt = fn->getDeclContext()->getAsProtocolExtensionContext();
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty),
addDeclBaseNameRef(fn->getBaseName()),
isProtocolExt,
fn->isStatic());
if (fn->isOperator()) {
// Encode the fixity as a filter on the func decls, to distinguish prefix
// and postfix operators.
auto op = cast<FuncDecl>(fn)->getOperatorDecl();
assert(op);
abbrCode = DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto emptyID = addDeclBaseNameRef(Identifier());
auto fixity = getStableFixity(op->getKind());
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, emptyID,
fixity);
}
break;
}
}
}
void Serializer::writeCrossReference(const Decl *D) {
using namespace decls_block;
unsigned abbrCode;
if (auto op = dyn_cast<OperatorDecl>(D)) {
writeCrossReference(op->getModuleContext(), 1);
abbrCode = DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto nameID = addDeclBaseNameRef(op->getName());
auto fixity = getStableFixity(op->getKind());
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, nameID,
fixity);
return;
}
if (auto prec = dyn_cast<PrecedenceGroupDecl>(D)) {
writeCrossReference(prec->getModuleContext(), 1);
abbrCode = DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto nameID = addDeclBaseNameRef(prec->getName());
uint8_t fixity = OperatorKind::PrecedenceGroup;
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, nameID,
fixity);
return;
}
if (auto fn = dyn_cast<AbstractFunctionDecl>(D)) {
// Functions are special because they might be operators.
writeCrossReference(fn, 0);
return;
}
writeCrossReference(D->getDeclContext());
if (auto genericParam = dyn_cast<GenericTypeParamDecl>(D)) {
assert(!D->getDeclContext()->isModuleScopeContext() &&
"Cannot cross reference a generic type decl at module scope.");
abbrCode = DeclTypeAbbrCodes[XRefGenericParamPathPieceLayout::Code];
XRefGenericParamPathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
genericParam->getIndex());
return;
}
bool isProtocolExt = D->getDeclContext()->getAsProtocolExtensionContext();
if (auto type = dyn_cast<TypeDecl>(D)) {
abbrCode = DeclTypeAbbrCodes[XRefTypePathPieceLayout::Code];
XRefTypePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(type->getName()),
isProtocolExt);
return;
}
auto val = cast<ValueDecl>(D);
auto ty = val->getInterfaceType()->getCanonicalType();
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
IdentifierID iid = addDeclBaseNameRef(val->getBaseName());
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty),
iid,
isProtocolExt,
val->isStatic());
}
/// Translate from the AST associativity enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableAssociativity(swift::Associativity assoc) {
switch (assoc) {
case swift::Associativity::Left:
return serialization::Associativity::LeftAssociative;
case swift::Associativity::Right:
return serialization::Associativity::RightAssociative;
case swift::Associativity::None:
return serialization::Associativity::NonAssociative;
}
llvm_unreachable("Unhandled Associativity in switch.");
}
static serialization::StaticSpellingKind
getStableStaticSpelling(swift::StaticSpellingKind SS) {
switch (SS) {
case swift::StaticSpellingKind::None:
return serialization::StaticSpellingKind::None;
case swift::StaticSpellingKind::KeywordStatic:
return serialization::StaticSpellingKind::KeywordStatic;
case swift::StaticSpellingKind::KeywordClass:
return serialization::StaticSpellingKind::KeywordClass;
}
llvm_unreachable("Unhandled StaticSpellingKind in switch.");
}
static uint8_t getRawStableAccessLevel(swift::AccessLevel access) {
switch (access) {
#define CASE(NAME) \
case swift::AccessLevel::NAME: \
return static_cast<uint8_t>(serialization::AccessLevel::NAME);
CASE(Private)
CASE(FilePrivate)
CASE(Internal)
CASE(Public)
CASE(Open)
#undef CASE
}
llvm_unreachable("Unhandled AccessLevel in switch.");
}
static serialization::SelfAccessKind
getStableSelfAccessKind(swift::SelfAccessKind MM) {
switch (MM) {
case swift::SelfAccessKind::NonMutating:
return serialization::SelfAccessKind::NonMutating;
case swift::SelfAccessKind::Mutating:
return serialization::SelfAccessKind::Mutating;
case swift::SelfAccessKind::__Consuming:
return serialization::SelfAccessKind::__Consuming;
}
llvm_unreachable("Unhandled StaticSpellingKind in switch.");
}
#ifndef NDEBUG
#define DEF_VERIFY_ATTR(DECL)\
static void verifyAttrSerializable(const DECL ## Decl *D) {\
for (auto Attr : D->getAttrs()) {\
assert(Attr->canAppearOnDecl(D) && "attribute cannot appear on a " #DECL);\
}\
}
DEF_VERIFY_ATTR(Func)
DEF_VERIFY_ATTR(Extension)
DEF_VERIFY_ATTR(PatternBinding)
DEF_VERIFY_ATTR(Operator)
DEF_VERIFY_ATTR(PrecedenceGroup)
DEF_VERIFY_ATTR(TypeAlias)
DEF_VERIFY_ATTR(Type)
DEF_VERIFY_ATTR(Struct)
DEF_VERIFY_ATTR(Enum)
DEF_VERIFY_ATTR(Class)
DEF_VERIFY_ATTR(Protocol)
DEF_VERIFY_ATTR(Var)
DEF_VERIFY_ATTR(Subscript)
DEF_VERIFY_ATTR(Constructor)
DEF_VERIFY_ATTR(Destructor)
#undef DEF_VERIFY_ATTR
#else
static void verifyAttrSerializable(const Decl *D) {}
#endif
static bool isForced(const Decl *D,
const llvm::DenseMap<Serializer::DeclTypeUnion,
Serializer::DeclIDAndForce> &table) {
if (table.lookup(D).second)
return true;
for (const DeclContext *DC = D->getDeclContext(); !DC->isModuleScopeContext();
DC = DC->getParent())
if (table.lookup(getDeclForContext(DC)).second)
return true;
return false;
}
static inline unsigned getOptionalOrZero(const llvm::Optional<unsigned> &X) {
if (X.hasValue())
return X.getValue();
return 0;
}
void Serializer::writeDeclAttribute(const DeclAttribute *DA) {
using namespace decls_block;
// Completely ignore attributes that aren't serialized.
if (DA->isNotSerialized())
return;
switch (DA->getKind()) {
case DAK_RawDocComment:
case DAK_Ownership: // Serialized as part of the type.
case DAK_AccessControl:
case DAK_SetterAccess:
case DAK_ObjCBridged:
case DAK_SynthesizedProtocol:
case DAK_Implements:
case DAK_ObjCRuntimeName:
case DAK_RestatedObjCConformance:
llvm_unreachable("cannot serialize attribute");
case DAK_Count:
llvm_unreachable("not a real attribute");
#define SIMPLE_DECL_ATTR(_, CLASS, ...)\
case DAK_##CLASS: { \
auto abbrCode = DeclTypeAbbrCodes[CLASS##DeclAttrLayout::Code]; \
CLASS##DeclAttrLayout::emitRecord(Out, ScratchRecord, abbrCode, \
DA->isImplicit()); \
return; \
}
#include "swift/AST/Attr.def"
case DAK_SILGenName: {
auto *theAttr = cast<SILGenNameAttr>(DA);
auto abbrCode = DeclTypeAbbrCodes[SILGenNameDeclAttrLayout::Code];
SILGenNameDeclAttrLayout::emitRecord(Out, ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->Name);
return;
}
case DAK_CDecl: {
auto *theAttr = cast<CDeclAttr>(DA);
auto abbrCode = DeclTypeAbbrCodes[CDeclDeclAttrLayout::Code];
CDeclDeclAttrLayout::emitRecord(Out, ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->Name);
return;
}
case DAK_Alignment: {
auto *theAlignment = cast<AlignmentAttr>(DA);
auto abbrCode = DeclTypeAbbrCodes[AlignmentDeclAttrLayout::Code];
AlignmentDeclAttrLayout::emitRecord(Out, ScratchRecord, abbrCode,
theAlignment->isImplicit(),
theAlignment->Value);
return;
}
case DAK_SwiftNativeObjCRuntimeBase: {
auto *theBase = cast<SwiftNativeObjCRuntimeBaseAttr>(DA);
auto abbrCode
= DeclTypeAbbrCodes[SwiftNativeObjCRuntimeBaseDeclAttrLayout::Code];
auto nameID = addDeclBaseNameRef(theBase->BaseClassName);
SwiftNativeObjCRuntimeBaseDeclAttrLayout::emitRecord(Out, ScratchRecord,
abbrCode,
theBase->isImplicit(),
nameID);
return;
}
case DAK_Semantics: {
auto *theAttr = cast<SemanticsAttr>(DA);
auto abbrCode = DeclTypeAbbrCodes[SemanticsDeclAttrLayout::Code];
SemanticsDeclAttrLayout::emitRecord(Out, ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->Value);
return;
}
case DAK_Inline: {
auto *theAttr = cast<InlineAttr>(DA);
auto abbrCode = DeclTypeAbbrCodes[InlineDeclAttrLayout::Code];
InlineDeclAttrLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)theAttr->getKind());
return;
}
case DAK_Effects: {
auto *theAttr = cast<EffectsAttr>(DA);
auto abbrCode = DeclTypeAbbrCodes[EffectsDeclAttrLayout::Code];
EffectsDeclAttrLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)theAttr->getKind());
return;
}
case DAK_Available: {
#define LIST_VER_TUPLE_PIECES(X)\
X##_Major, X##_Minor, X##_Subminor, X##_HasMinor, X##_HasSubminor
#define DEF_VER_TUPLE_PIECES(X, X_Expr)\
unsigned X##_Major = 0, X##_Minor = 0, X##_Subminor = 0,\
X##_HasMinor = 0, X##_HasSubminor = 0;\
const auto &X##_Val = X_Expr;\
if (X##_Val.hasValue()) {\
const auto &Y = X##_Val.getValue();\
X##_Major = Y.getMajor();\
X##_Minor = getOptionalOrZero(Y.getMinor());\
X##_Subminor = getOptionalOrZero(Y.getSubminor());\
X##_HasMinor = Y.getMinor().hasValue();\
X##_HasSubminor = Y.getSubminor().hasValue();\
}
auto *theAttr = cast<AvailableAttr>(DA);
DEF_VER_TUPLE_PIECES(Introduced, theAttr->Introduced)
DEF_VER_TUPLE_PIECES(Deprecated, theAttr->Deprecated)
DEF_VER_TUPLE_PIECES(Obsoleted, theAttr->Obsoleted)
llvm::SmallString<32> blob;
blob.append(theAttr->Message);
blob.append(theAttr->Rename);
auto abbrCode = DeclTypeAbbrCodes[AvailableDeclAttrLayout::Code];
AvailableDeclAttrLayout::emitRecord(
Out, ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->isUnconditionallyUnavailable(),
theAttr->isUnconditionallyDeprecated(),
LIST_VER_TUPLE_PIECES(Introduced),
LIST_VER_TUPLE_PIECES(Deprecated),
LIST_VER_TUPLE_PIECES(Obsoleted),
static_cast<unsigned>(theAttr->Platform),
theAttr->Message.size(),
theAttr->Rename.size(),
blob);
return;
#undef LIST_VER_TUPLE_PIECES
#undef DEF_VER_TUPLE_PIECES
}
case DAK_ObjC: {
auto *theAttr = cast<ObjCAttr>(DA);
SmallVector<IdentifierID, 4> pieces;
unsigned numArgs = 0;
if (auto name = theAttr->getName()) {
numArgs = name->getNumArgs() + 1;
for (auto piece : name->getSelectorPieces()) {
pieces.push_back(addDeclBaseNameRef(piece));
}
}
auto abbrCode = DeclTypeAbbrCodes[ObjCDeclAttrLayout::Code];
ObjCDeclAttrLayout::emitRecord(Out, ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->isSwift3Inferred(),
theAttr->isNameImplicit(), numArgs, pieces);
return;
}
case DAK_Specialize: {
auto abbrCode = DeclTypeAbbrCodes[SpecializeDeclAttrLayout::Code];
auto SA = cast<SpecializeAttr>(DA);
SpecializeDeclAttrLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SA->isExported(),
(unsigned)SA->getSpecializationKind());
writeGenericRequirements(SA->getRequirements(), DeclTypeAbbrCodes);
return;
}
}
}
bool Serializer::isDeclXRef(const Decl *D) const {
const DeclContext *topLevel = D->getDeclContext()->getModuleScopeContext();
if (topLevel->getParentModule() != M)
return true;
if (!SF || topLevel == SF)
return false;
// Special-case for SIL generic parameter decls, which don't have a real
// DeclContext.
if (!isa<FileUnit>(topLevel)) {
assert(isa<GenericTypeParamDecl>(D) && "unexpected decl kind");
return false;
}
return !isForced(D, DeclAndTypeIDs);
}
void Serializer::writeDeclContext(const DeclContext *DC) {
using namespace decls_block;
auto isDecl = false;
auto id = DeclContextIDs[DC];
assert(id != 0 && "decl context not referenced properly");
(void)id;
assert((id - 1) == DeclContextOffsets.size());
DeclContextOffsets.push_back(Out.GetCurrentBitNo());
auto abbrCode = DeclTypeAbbrCodes[DeclContextLayout::Code];
DeclContextID declOrDeclContextID = 0;
switch (DC->getContextKind()) {
case DeclContextKind::AbstractFunctionDecl:
case DeclContextKind::SubscriptDecl:
case DeclContextKind::GenericTypeDecl:
case DeclContextKind::ExtensionDecl:
declOrDeclContextID = addDeclRef(getDeclForContext(DC));
isDecl = true;
break;
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::Initializer:
case DeclContextKind::SerializedLocal:
declOrDeclContextID = addLocalDeclContextRef(DC);
break;
case DeclContextKind::Module:
llvm_unreachable("References to the module are serialized implicitly");
case DeclContextKind::FileUnit:
llvm_unreachable("Can't serialize a FileUnit");
}
DeclContextLayout::emitRecord(Out, ScratchRecord, abbrCode,
declOrDeclContextID, isDecl);
}
void Serializer::writePatternBindingInitializer(PatternBindingDecl *binding,
unsigned bindingIndex) {
using namespace decls_block;
auto abbrCode = DeclTypeAbbrCodes[PatternBindingInitializerLayout::Code];
PatternBindingInitializerLayout::emitRecord(Out, ScratchRecord,
abbrCode, addDeclRef(binding),
bindingIndex);
}
void
Serializer::writeDefaultArgumentInitializer(const DeclContext *parentContext,
unsigned index) {
using namespace decls_block;
auto abbrCode = DeclTypeAbbrCodes[DefaultArgumentInitializerLayout::Code];
DefaultArgumentInitializerLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclContextRef(parentContext),
index);
}
void Serializer::writeAbstractClosureExpr(const DeclContext *parentContext,
Type Ty, bool isImplicit,
unsigned discriminator) {
using namespace decls_block;
auto abbrCode = DeclTypeAbbrCodes[AbstractClosureExprLayout::Code];
AbstractClosureExprLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(Ty), isImplicit,
discriminator,
addDeclContextRef(parentContext));
}
void Serializer::writeLocalDeclContext(const DeclContext *DC) {
using namespace decls_block;
assert(shouldSerializeAsLocalContext(DC) &&
"Can't serialize as local context");
auto id = LocalDeclContextIDs[DC];
assert(id != 0 && "decl context not referenced properly");
(void)id;
assert((id - 1)== LocalDeclContextOffsets.size());
LocalDeclContextOffsets.push_back(Out.GetCurrentBitNo());
switch (DC->getContextKind()) {
case DeclContextKind::AbstractClosureExpr: {
auto ACE = cast<AbstractClosureExpr>(DC);
writeAbstractClosureExpr(ACE->getParent(), ACE->getType(),
ACE->isImplicit(), ACE->getDiscriminator());
break;
}
case DeclContextKind::Initializer: {
if (auto PBI = dyn_cast<PatternBindingInitializer>(DC)) {
writePatternBindingInitializer(PBI->getBinding(), PBI->getBindingIndex());
} else if (auto DAI = dyn_cast<DefaultArgumentInitializer>(DC)) {
writeDefaultArgumentInitializer(DAI->getParent(), DAI->getIndex());
}
break;
}
case DeclContextKind::TopLevelCodeDecl: {
auto abbrCode = DeclTypeAbbrCodes[TopLevelCodeDeclContextLayout::Code];
TopLevelCodeDeclContextLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclContextRef(DC->getParent()));
break;
}
// If we are merging already serialized modules with local decl contexts,
// we handle them here in a similar fashion.
case DeclContextKind::SerializedLocal: {
auto local = cast<SerializedLocalDeclContext>(DC);
switch (local->getLocalDeclContextKind()) {
case LocalDeclContextKind::AbstractClosure: {
auto SACE = cast<SerializedAbstractClosureExpr>(local);
writeAbstractClosureExpr(SACE->getParent(), SACE->getType(),
SACE->isImplicit(), SACE->getDiscriminator());
return;
}
case LocalDeclContextKind::DefaultArgumentInitializer: {
auto DAI = cast<SerializedDefaultArgumentInitializer>(local);
writeDefaultArgumentInitializer(DAI->getParent(), DAI->getIndex());
return;
}
case LocalDeclContextKind::PatternBindingInitializer: {
auto PBI = cast<SerializedPatternBindingInitializer>(local);
writePatternBindingInitializer(PBI->getBinding(), PBI->getBindingIndex());
return;
}
case LocalDeclContextKind::TopLevelCodeDecl: {
auto abbrCode = DeclTypeAbbrCodes[TopLevelCodeDeclContextLayout::Code];
TopLevelCodeDeclContextLayout::emitRecord(Out, ScratchRecord,
abbrCode, addDeclContextRef(DC->getParent()));
return;
}
}
}
default:
llvm_unreachable("Trying to write a DeclContext that isn't local");
}
}
static ForeignErrorConventionKind getRawStableForeignErrorConventionKind(
ForeignErrorConvention::Kind kind) {
switch (kind) {
case ForeignErrorConvention::ZeroResult:
return ForeignErrorConventionKind::ZeroResult;
case ForeignErrorConvention::NonZeroResult:
return ForeignErrorConventionKind::NonZeroResult;
case ForeignErrorConvention::ZeroPreservedResult:
return ForeignErrorConventionKind::ZeroPreservedResult;
case ForeignErrorConvention::NilResult:
return ForeignErrorConventionKind::NilResult;
case ForeignErrorConvention::NonNilError:
return ForeignErrorConventionKind::NonNilError;
}
llvm_unreachable("Unhandled ForeignErrorConvention in switch.");
}
/// Translate from the AST VarDeclSpecifier enum to the
/// Serialization enum values, which are guaranteed to be stable.
static uint8_t getRawStableVarDeclSpecifier(swift::VarDecl::Specifier sf) {
switch (sf) {
case swift::VarDecl::Specifier::Let:
return uint8_t(serialization::VarDeclSpecifier::Let);
case swift::VarDecl::Specifier::Var:
return uint8_t(serialization::VarDeclSpecifier::Var);
case swift::VarDecl::Specifier::InOut:
return uint8_t(serialization::VarDeclSpecifier::InOut);
case swift::VarDecl::Specifier::Shared:
return uint8_t(serialization::VarDeclSpecifier::Shared);
}
llvm_unreachable("bad variable decl specifier kind");
}
void Serializer::writeForeignErrorConvention(const ForeignErrorConvention &fec){
using namespace decls_block;
auto kind = getRawStableForeignErrorConventionKind(fec.getKind());
uint8_t isOwned = fec.isErrorOwned() == ForeignErrorConvention::IsOwned;
uint8_t isReplaced = bool(fec.isErrorParameterReplacedWithVoid());
TypeID errorParameterTypeID = addTypeRef(fec.getErrorParameterType());
TypeID resultTypeID;
switch (fec.getKind()) {
case ForeignErrorConvention::ZeroResult:
case ForeignErrorConvention::NonZeroResult:
resultTypeID = addTypeRef(fec.getResultType());
break;
case ForeignErrorConvention::ZeroPreservedResult:
case ForeignErrorConvention::NilResult:
case ForeignErrorConvention::NonNilError:
resultTypeID = 0;
break;
}
auto abbrCode = DeclTypeAbbrCodes[ForeignErrorConventionLayout::Code];
ForeignErrorConventionLayout::emitRecord(Out, ScratchRecord, abbrCode,
static_cast<uint8_t>(kind),
isOwned,
isReplaced,
fec.getErrorParameterIndex(),
errorParameterTypeID,
resultTypeID);
}
/// Returns true if the declaration of \p decl depends on \p problemContext
/// based on lexical nesting.
///
/// - \p decl is \p problemContext
/// - \p decl is declared within \p problemContext
/// - \p decl is declared in an extension of a type that depends on
/// \p problemContext
static bool contextDependsOn(const NominalTypeDecl *decl,
const ModuleDecl *problemModule) {
return decl->getParentModule() == problemModule;
}
static void collectDependenciesFromType(llvm::SmallSetVector<Type, 4> &seen,
Type ty,
const ModuleDecl *excluding) {
ty.visit([&](Type next) {
auto *nominal = next->getAnyNominal();
if (!nominal)
return;
// FIXME: Types in the same module are still important for enums. It's
// possible an enum element has a payload that references a type declaration
// from the same module that can't be imported (for whatever reason).
// However, we need a more robust handling of deserialization dependencies
// that can handle circularities. rdar://problem/32359173
if (contextDependsOn(nominal, excluding))
return;
seen.insert(nominal->getDeclaredInterfaceType());
});
}
static SmallVector<Type, 4> collectDependenciesFromType(Type ty) {
llvm::SmallSetVector<Type, 4> result;
collectDependenciesFromType(result, ty, /*excluding*/nullptr);
return result.takeVector();
}
void Serializer::writeDecl(const Decl *D) {
using namespace decls_block;
PrettyStackTraceDecl trace("serializing", D);
auto id = DeclAndTypeIDs[D].first;
assert(id != 0 && "decl or type not referenced properly");
(void)id;
assert((id - 1) == DeclOffsets.size());
DeclOffsets.push_back(Out.GetCurrentBitNo());
assert(!D->isInvalid() && "cannot create a module with an invalid decl");
if (isDeclXRef(D)) {
writeCrossReference(D);
return;
}
assert(!D->hasClangNode() && "imported decls should use cross-references");
// Emit attributes (if any).
auto &Attrs = D->getAttrs();
if (Attrs.begin() != Attrs.end()) {
for (auto Attr : Attrs)
writeDeclAttribute(Attr);
}
if (auto *value = dyn_cast<ValueDecl>(D)) {
if (value->hasAccess() &&
value->getFormalAccess() <= swift::AccessLevel::FilePrivate &&
!value->getDeclContext()->isLocalContext()) {
// FIXME: We shouldn't need to encode this for /all/ private decls.
// In theory we can follow the same rules as mangling and only include
// the outermost private context.
auto topLevelContext = value->getDeclContext()->getModuleScopeContext();
if (auto *enclosingFile = dyn_cast<FileUnit>(topLevelContext)) {
Identifier discriminator =
enclosingFile->getDiscriminatorForPrivateValue(value);
unsigned abbrCode =
DeclTypeAbbrCodes[PrivateDiscriminatorLayout::Code];
PrivateDiscriminatorLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(discriminator));
}
}
if (value->getDeclContext()->isLocalContext()) {
auto discriminator = value->getLocalDiscriminator();
auto abbrCode = DeclTypeAbbrCodes[LocalDiscriminatorLayout::Code];
LocalDiscriminatorLayout::emitRecord(Out, ScratchRecord, abbrCode,
discriminator);
}
}
switch (D->getKind()) {
case DeclKind::Import:
llvm_unreachable("import decls should not be serialized");
case DeclKind::IfConfig:
llvm_unreachable("#if block declarations should not be serialized");
case DeclKind::Extension: {
auto extension = cast<ExtensionDecl>(D);
verifyAttrSerializable(extension);
auto contextID = addDeclContextRef(extension->getDeclContext());
Type baseTy = extension->getExtendedType();
assert(!baseTy->hasUnboundGenericType());
// FIXME: Use the canonical type here in order to minimize circularity
// issues at deserialization time. A known problematic case here is
// "extension of typealias Foo"; "typealias Foo = SomeKit.Bar"; and then
// trying to import Bar accidentally asking for all of its extensions
// (perhaps because we're searching for a conformance).
//
// We could limit this to only the problematic cases, but it seems like a
// simpler user model to just always desugar extension types.
baseTy = baseTy->getCanonicalType();
// Make sure the base type has registered itself as a provider of generic
// parameters.
auto baseNominal = baseTy->getAnyNominal();
(void)addDeclRef(baseNominal);
auto conformances = extension->getLocalConformances(
ConformanceLookupKind::All,
nullptr, /*sorted=*/true);
SmallVector<TypeID, 8> inheritedAndDependencyTypes;
for (auto inherited : extension->getInherited())
inheritedAndDependencyTypes.push_back(addTypeRef(inherited.getType()));
size_t numInherited = inheritedAndDependencyTypes.size();
// FIXME: Figure out what to do with requirements and such, which the
// extension also depends on. Right now just do what is safe to drop, which
// is the base declaration.
auto dependencies = collectDependenciesFromType(baseTy);
for (auto dependencyTy : dependencies)
inheritedAndDependencyTypes.push_back(addTypeRef(dependencyTy));
unsigned abbrCode = DeclTypeAbbrCodes[ExtensionLayout::Code];
ExtensionLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(baseTy),
contextID,
extension->isImplicit(),
addGenericEnvironmentRef(
extension->getGenericEnvironment()),
conformances.size(),
numInherited,
inheritedAndDependencyTypes);
bool isClassExtension = false;
if (baseNominal) {
isClassExtension = isa<ClassDecl>(baseNominal) ||
isa<ProtocolDecl>(baseNominal);
}
// Extensions of nested generic types have multiple generic parameter
// lists. Collect them all, from the innermost to outermost.
SmallVector<GenericParamList *, 2> allGenericParams;
for (auto *genericParams = extension->getGenericParams();
genericParams != nullptr;
genericParams = genericParams->getOuterParameters()) {
allGenericParams.push_back(genericParams);
}
// Reverse the list, and write the parameter lists, from outermost
// to innermost.
std::reverse(allGenericParams.begin(), allGenericParams.end());
for (auto *genericParams : allGenericParams)
writeGenericParams(genericParams);
writeMembers(extension->getMembers(), isClassExtension);
writeConformances(conformances, DeclTypeAbbrCodes);
break;
}
case DeclKind::EnumCase:
llvm_unreachable("enum case decls should not be serialized");
case DeclKind::PatternBinding: {
auto binding = cast<PatternBindingDecl>(D);
verifyAttrSerializable(binding);
auto contextID = addDeclContextRef(binding->getDeclContext());
SmallVector<uint64_t, 2> initContextIDs;
for (unsigned i : range(binding->getNumPatternEntries())) {
auto initContextID =
addDeclContextRef(binding->getPatternList()[i].getInitContext());
if (!initContextIDs.empty()) {
initContextIDs.push_back(initContextID);
} else if (initContextID) {
initContextIDs.append(i, 0);
initContextIDs.push_back(initContextID);
}
}
unsigned abbrCode = DeclTypeAbbrCodes[PatternBindingLayout::Code];
PatternBindingLayout::emitRecord(
Out, ScratchRecord, abbrCode, contextID, binding->isImplicit(),
binding->isStatic(),
uint8_t(getStableStaticSpelling(binding->getStaticSpelling())),
binding->getNumPatternEntries(),
initContextIDs);
DeclContext *owningDC = nullptr;
if (binding->getDeclContext()->isTypeContext())
owningDC = binding->getDeclContext();
for (auto entry : binding->getPatternList()) {
writePattern(entry.getPattern(), owningDC);
// Ignore initializer; external clients don't need to know about it.
}
break;
}
case DeclKind::TopLevelCode:
// Top-level code is ignored; external clients don't need to know about it.
break;
case DeclKind::PrecedenceGroup: {
auto group = cast<PrecedenceGroupDecl>(D);
verifyAttrSerializable(group);
auto contextID = addDeclContextRef(group->getDeclContext());
auto nameID = addDeclBaseNameRef(group->getName());
auto associativity = getRawStableAssociativity(group->getAssociativity());
SmallVector<DeclID, 8> relations;
for (auto &rel : group->getHigherThan())
relations.push_back(addDeclRef(rel.Group));
for (auto &rel : group->getLowerThan())
relations.push_back(addDeclRef(rel.Group));
unsigned abbrCode = DeclTypeAbbrCodes[PrecedenceGroupLayout::Code];
PrecedenceGroupLayout::emitRecord(Out, ScratchRecord, abbrCode,
nameID, contextID, associativity,
group->isAssignment(),
group->getHigherThan().size(),
relations);
break;
}
case DeclKind::MissingMember:
llvm_unreachable("member placeholders shouldn't be serialized");
case DeclKind::InfixOperator: {
auto op = cast<InfixOperatorDecl>(D);
verifyAttrSerializable(op);
auto contextID = addDeclContextRef(op->getDeclContext());
auto nameID = addDeclBaseNameRef(op->getName());
auto groupID = addDeclRef(op->getPrecedenceGroup());
unsigned abbrCode = DeclTypeAbbrCodes[InfixOperatorLayout::Code];
InfixOperatorLayout::emitRecord(Out, ScratchRecord, abbrCode,
nameID, contextID, groupID);
break;
}
case DeclKind::PrefixOperator: {
auto op = cast<PrefixOperatorDecl>(D);
verifyAttrSerializable(op);
auto contextID = addDeclContextRef(op->getDeclContext());
unsigned abbrCode = DeclTypeAbbrCodes[PrefixOperatorLayout::Code];
PrefixOperatorLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(op->getName()),
contextID);
break;
}
case DeclKind::PostfixOperator: {
auto op = cast<PostfixOperatorDecl>(D);
verifyAttrSerializable(op);
auto contextID = addDeclContextRef(op->getDeclContext());
unsigned abbrCode = DeclTypeAbbrCodes[PostfixOperatorLayout::Code];
PostfixOperatorLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(op->getName()),
contextID);
break;
}
case DeclKind::TypeAlias: {
auto typeAlias = cast<TypeAliasDecl>(D);
assert(!typeAlias->isObjC() && "ObjC typealias is not meaningful");
verifyAttrSerializable(typeAlias);
auto contextID = addDeclContextRef(typeAlias->getDeclContext());
auto underlying = typeAlias->getUnderlyingTypeLoc().getType();
uint8_t rawAccessLevel =
getRawStableAccessLevel(typeAlias->getFormalAccess());
unsigned abbrCode = DeclTypeAbbrCodes[TypeAliasLayout::Code];
TypeAliasLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(typeAlias->getName()),
contextID,
addTypeRef(underlying),
/*no longer used*/TypeID(),
typeAlias->isImplicit(),
addGenericEnvironmentRef(
typeAlias->getGenericEnvironment()),
rawAccessLevel);
writeGenericParams(typeAlias->getGenericParams());
break;
}
case DeclKind::GenericTypeParam: {
auto genericParam = cast<GenericTypeParamDecl>(D);
verifyAttrSerializable(genericParam);
auto contextID = addDeclContextRef(genericParam->getDeclContext());
unsigned abbrCode = DeclTypeAbbrCodes[GenericTypeParamDeclLayout::Code];
GenericTypeParamDeclLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(genericParam->getName()),
contextID,
genericParam->isImplicit(),
genericParam->getDepth(),
genericParam->getIndex());
break;
}
case DeclKind::AssociatedType: {
auto assocType = cast<AssociatedTypeDecl>(D);
verifyAttrSerializable(assocType);
auto contextID = addDeclContextRef(assocType->getDeclContext());
unsigned abbrCode = DeclTypeAbbrCodes[AssociatedTypeDeclLayout::Code];
AssociatedTypeDeclLayout::emitRecord(
Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(assocType->getName()),
contextID,
addTypeRef(assocType->getDefaultDefinitionType()),
assocType->isImplicit());
break;
}
case DeclKind::Struct: {
auto theStruct = cast<StructDecl>(D);
verifyAttrSerializable(theStruct);
auto contextID = addDeclContextRef(theStruct->getDeclContext());
auto conformances = theStruct->getLocalConformances(
ConformanceLookupKind::All,
nullptr, /*sorted=*/true);
SmallVector<TypeID, 4> inheritedTypes;
for (auto inherited : theStruct->getInherited())
inheritedTypes.push_back(addTypeRef(inherited.getType()));
uint8_t rawAccessLevel =
getRawStableAccessLevel(theStruct->getFormalAccess());
unsigned abbrCode = DeclTypeAbbrCodes[StructLayout::Code];
StructLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(theStruct->getName()),
contextID,
theStruct->isImplicit(),
addGenericEnvironmentRef(
theStruct->getGenericEnvironment()),
rawAccessLevel,
conformances.size(),
inheritedTypes);
writeGenericParams(theStruct->getGenericParams());
writeMembers(theStruct->getMembers(), false);
writeConformances(conformances, DeclTypeAbbrCodes);
break;
}
case DeclKind::Enum: {
auto theEnum = cast<EnumDecl>(D);
verifyAttrSerializable(theEnum);
auto contextID = addDeclContextRef(theEnum->getDeclContext());
auto conformances = theEnum->getLocalConformances(
ConformanceLookupKind::All,
nullptr, /*sorted=*/true);
SmallVector<TypeID, 4> inheritedAndDependencyTypes;
for (auto inherited : theEnum->getInherited())
inheritedAndDependencyTypes.push_back(addTypeRef(inherited.getType()));
llvm::SmallSetVector<Type, 4> dependencyTypes;
for (const EnumElementDecl *nextElt : theEnum->getAllElements()) {
if (!nextElt->hasAssociatedValues())
continue;
collectDependenciesFromType(dependencyTypes,
nextElt->getArgumentInterfaceType(),
/*excluding*/theEnum->getParentModule());
}
for (Type ty : dependencyTypes)
inheritedAndDependencyTypes.push_back(addTypeRef(ty));
uint8_t rawAccessLevel =
getRawStableAccessLevel(theEnum->getFormalAccess());
unsigned abbrCode = DeclTypeAbbrCodes[EnumLayout::Code];
EnumLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(theEnum->getName()),
contextID,
theEnum->isImplicit(),
addGenericEnvironmentRef(
theEnum->getGenericEnvironment()),
addTypeRef(theEnum->getRawType()),
rawAccessLevel,
conformances.size(),
theEnum->getInherited().size(),
inheritedAndDependencyTypes);
writeGenericParams(theEnum->getGenericParams());
writeMembers(theEnum->getMembers(), false);
writeConformances(conformances, DeclTypeAbbrCodes);
break;
}
case DeclKind::Class: {
auto theClass = cast<ClassDecl>(D);
verifyAttrSerializable(theClass);
assert(!theClass->isForeign());
auto contextID = addDeclContextRef(theClass->getDeclContext());
auto conformances = theClass->getLocalConformances(
ConformanceLookupKind::All,
nullptr, /*sorted=*/true);
SmallVector<TypeID, 4> inheritedTypes;
for (auto inherited : theClass->getInherited())
inheritedTypes.push_back(addTypeRef(inherited.getType()));
uint8_t rawAccessLevel =
getRawStableAccessLevel(theClass->getFormalAccess());
unsigned abbrCode = DeclTypeAbbrCodes[ClassLayout::Code];
ClassLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(theClass->getName()),
contextID,
theClass->isImplicit(),
theClass->isObjC(),
theClass->requiresStoredPropertyInits(),
addGenericEnvironmentRef(
theClass->getGenericEnvironment()),
addTypeRef(theClass->getSuperclass()),
rawAccessLevel,
conformances.size(),
inheritedTypes);
writeGenericParams(theClass->getGenericParams());
writeMembers(theClass->getMembers(), true);
writeConformances(conformances, DeclTypeAbbrCodes);
break;
}
case DeclKind::Protocol: {
auto proto = cast<ProtocolDecl>(D);
verifyAttrSerializable(proto);
auto contextID = addDeclContextRef(proto->getDeclContext());
SmallVector<DeclID, 8> inherited;
for (auto element : proto->getInherited())
inherited.push_back(addTypeRef(element.getType()));
uint8_t rawAccessLevel = getRawStableAccessLevel(proto->getFormalAccess());
unsigned abbrCode = DeclTypeAbbrCodes[ProtocolLayout::Code];
ProtocolLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(proto->getName()),
contextID,
proto->isImplicit(),
const_cast<ProtocolDecl *>(proto)
->requiresClass(),
proto->isObjC(),
addGenericEnvironmentRef(
proto->getGenericEnvironment()),
rawAccessLevel,
inherited);
writeGenericParams(proto->getGenericParams());
writeGenericRequirements(
proto->getRequirementSignature(), DeclTypeAbbrCodes);
writeMembers(proto->getMembers(), true);
writeDefaultWitnessTable(proto, DeclTypeAbbrCodes);
break;
}
case DeclKind::Var: {
auto var = cast<VarDecl>(D);
verifyAttrSerializable(var);
auto contextID = addDeclContextRef(var->getDeclContext());
Accessors accessors = getAccessors(var);
uint8_t rawAccessLevel = getRawStableAccessLevel(var->getFormalAccess());
uint8_t rawSetterAccessLevel = rawAccessLevel;
if (var->isSettable(nullptr))
rawSetterAccessLevel =
getRawStableAccessLevel(var->getSetterFormalAccess());
Type ty = var->getInterfaceType();
SmallVector<TypeID, 2> dependencies;
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
dependencies.push_back(addTypeRef(dependency));
unsigned abbrCode = DeclTypeAbbrCodes[VarLayout::Code];
VarLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(var->getName()),
contextID,
var->isImplicit(),
var->isObjC(),
var->isStatic(),
getRawStableVarDeclSpecifier(var->getSpecifier()),
var->hasNonPatternBindingInit(),
var->isGetterMutating(),
var->isSetterMutating(),
(unsigned) accessors.Kind,
addTypeRef(ty),
addDeclRef(accessors.Get),
addDeclRef(accessors.Set),
addDeclRef(accessors.MaterializeForSet),
addDeclRef(accessors.Address),
addDeclRef(accessors.MutableAddress),
addDeclRef(accessors.WillSet),
addDeclRef(accessors.DidSet),
addDeclRef(var->getOverriddenDecl()),
rawAccessLevel, rawSetterAccessLevel,
dependencies);
break;
}
case DeclKind::Param: {
auto param = cast<ParamDecl>(D);
verifyAttrSerializable(param);
auto contextID = addDeclContextRef(param->getDeclContext());
Type interfaceType = param->getInterfaceType();
unsigned abbrCode = DeclTypeAbbrCodes[ParamLayout::Code];
ParamLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(param->getArgumentName()),
addDeclBaseNameRef(param->getName()),
contextID,
getRawStableVarDeclSpecifier(param->getSpecifier()),
addTypeRef(interfaceType));
if (interfaceType->hasError()) {
param->getDeclContext()->dumpContext();
interfaceType->dump();
llvm_unreachable("error in interface type of parameter");
}
break;
}
case DeclKind::Func: {
auto fn = cast<FuncDecl>(D);
verifyAttrSerializable(fn);
auto contextID = addDeclContextRef(fn->getDeclContext());
unsigned abbrCode = DeclTypeAbbrCodes[FuncLayout::Code];
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
nameComponentsAndDependencies.push_back(
addDeclBaseNameRef(fn->getFullName().getBaseName()));
for (auto argName : fn->getFullName().getArgumentNames())
nameComponentsAndDependencies.push_back(addDeclBaseNameRef(argName));
uint8_t rawAccessLevel = getRawStableAccessLevel(fn->getFormalAccess());
uint8_t rawAddressorKind =
getRawStableAddressorKind(fn->getAddressorKind());
uint8_t rawDefaultArgumentResilienceExpansion =
getRawStableResilienceExpansion(
fn->getDefaultArgumentResilienceExpansion());
Type ty = fn->getInterfaceType();
for (auto dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(addTypeRef(dependency));
FuncLayout::emitRecord(Out, ScratchRecord, abbrCode,
contextID,
fn->isImplicit(),
fn->isStatic(),
uint8_t(
getStableStaticSpelling(fn->getStaticSpelling())),
fn->isObjC(),
uint8_t(
getStableSelfAccessKind(fn->getSelfAccessKind())),
fn->hasDynamicSelf(),
fn->hasThrows(),
fn->getParameterLists().size(),
addGenericEnvironmentRef(
fn->getGenericEnvironment()),
addTypeRef(ty),
addDeclRef(fn->getOperatorDecl()),
addDeclRef(fn->getOverriddenDecl()),
addDeclRef(fn->getAccessorStorageDecl()),
fn->getFullName().getArgumentNames().size() +
fn->getFullName().isCompoundName(),
rawAddressorKind,
rawAccessLevel,
fn->needsNewVTableEntry(),
rawDefaultArgumentResilienceExpansion,
nameComponentsAndDependencies);
writeGenericParams(fn->getGenericParams());
// Write the body parameters.
for (auto pattern : fn->getParameterLists())
writeParameterList(pattern);
if (auto errorConvention = fn->getForeignErrorConvention())
writeForeignErrorConvention(*errorConvention);
break;
}
case DeclKind::EnumElement: {
auto elem = cast<EnumElementDecl>(D);
auto contextID = addDeclContextRef(elem->getDeclContext());
// We only serialize the raw values of @objc enums, because they're part
// of the ABI. That isn't the case for Swift enums.
auto RawValueKind = EnumElementRawValueKind::None;
bool Negative = false;
StringRef RawValueText;
if (elem->getParentEnum()->isObjC()) {
// Currently ObjC enums always have integer raw values.
RawValueKind = EnumElementRawValueKind::IntegerLiteral;
auto ILE = cast<IntegerLiteralExpr>(elem->getRawValueExpr());
RawValueText = ILE->getDigitsText();
Negative = ILE->isNegative();
}
unsigned abbrCode = DeclTypeAbbrCodes[EnumElementLayout::Code];
EnumElementLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(elem->getName()),
contextID,
addTypeRef(elem->getInterfaceType()),
elem->hasAssociatedValues(),
elem->isImplicit(),
(unsigned)RawValueKind,
Negative,
RawValueText);
break;
}
case DeclKind::Subscript: {
auto subscript = cast<SubscriptDecl>(D);
verifyAttrSerializable(subscript);
auto contextID = addDeclContextRef(subscript->getDeclContext());
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
for (auto argName : subscript->getFullName().getArgumentNames())
nameComponentsAndDependencies.push_back(addDeclBaseNameRef(argName));
Type ty = subscript->getInterfaceType();
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(addTypeRef(dependency));
Accessors accessors = getAccessors(subscript);
uint8_t rawAccessLevel =
getRawStableAccessLevel(subscript->getFormalAccess());
uint8_t rawSetterAccessLevel = rawAccessLevel;
if (subscript->isSettable())
rawSetterAccessLevel =
getRawStableAccessLevel(subscript->getSetterFormalAccess());
unsigned abbrCode = DeclTypeAbbrCodes[SubscriptLayout::Code];
SubscriptLayout::emitRecord(Out, ScratchRecord, abbrCode,
contextID,
subscript->isImplicit(),
subscript->isObjC(),
subscript->isGetterMutating(),
subscript->isSetterMutating(),
(unsigned) accessors.Kind,
addGenericEnvironmentRef(
subscript->getGenericEnvironment()),
addTypeRef(ty),
addDeclRef(accessors.Get),
addDeclRef(accessors.Set),
addDeclRef(accessors.MaterializeForSet),
addDeclRef(accessors.Address),
addDeclRef(accessors.MutableAddress),
addDeclRef(accessors.WillSet),
addDeclRef(accessors.DidSet),
addDeclRef(subscript->getOverriddenDecl()),
rawAccessLevel,
rawSetterAccessLevel,
subscript->
getFullName().getArgumentNames().size(),
nameComponentsAndDependencies);
writeGenericParams(subscript->getGenericParams());
writeParameterList(subscript->getIndices());
break;
}
case DeclKind::Constructor: {
auto ctor = cast<ConstructorDecl>(D);
verifyAttrSerializable(ctor);
auto contextID = addDeclContextRef(ctor->getDeclContext());
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
for (auto argName : ctor->getFullName().getArgumentNames())
nameComponentsAndDependencies.push_back(addDeclBaseNameRef(argName));
Type ty = ctor->getInterfaceType();
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(addTypeRef(dependency));
uint8_t rawAccessLevel = getRawStableAccessLevel(ctor->getFormalAccess());
uint8_t rawDefaultArgumentResilienceExpansion =
getRawStableResilienceExpansion(
ctor->getDefaultArgumentResilienceExpansion());
bool firstTimeRequired = ctor->isRequired();
if (auto *overridden = ctor->getOverriddenDecl())
if (firstTimeRequired && overridden->isRequired())
firstTimeRequired = false;
unsigned abbrCode = DeclTypeAbbrCodes[ConstructorLayout::Code];
ConstructorLayout::emitRecord(Out, ScratchRecord, abbrCode,
contextID,
getRawStableOptionalTypeKind(
ctor->getFailability()),
ctor->isImplicit(),
ctor->isObjC(),
ctor->hasStubImplementation(),
ctor->hasThrows(),
getStableCtorInitializerKind(
ctor->getInitKind()),
addGenericEnvironmentRef(
ctor->getGenericEnvironment()),
addTypeRef(ty),
addDeclRef(ctor->getOverriddenDecl()),
rawAccessLevel,
ctor->needsNewVTableEntry(),
rawDefaultArgumentResilienceExpansion,
firstTimeRequired,
ctor->getFullName().getArgumentNames().size(),
nameComponentsAndDependencies);
writeGenericParams(ctor->getGenericParams());
assert(ctor->getParameterLists().size() == 2);
// Why is this writing out the param list for self?
for (auto paramList : ctor->getParameterLists())
writeParameterList(paramList);
if (auto errorConvention = ctor->getForeignErrorConvention())
writeForeignErrorConvention(*errorConvention);
break;
}
case DeclKind::Destructor: {
auto dtor = cast<DestructorDecl>(D);
verifyAttrSerializable(dtor);
auto contextID = addDeclContextRef(dtor->getDeclContext());
unsigned abbrCode = DeclTypeAbbrCodes[DestructorLayout::Code];
DestructorLayout::emitRecord(Out, ScratchRecord, abbrCode,
contextID,
dtor->isImplicit(),
dtor->isObjC(),
addGenericEnvironmentRef(
dtor->getGenericEnvironment()),
addTypeRef(dtor->getInterfaceType()));
assert(dtor->getParameterLists().size() == 1);
// Why is this writing out the param list for self?
writeParameterList(dtor->getParameterLists()[0]);
break;
}
case DeclKind::Module: {
llvm_unreachable("FIXME: serialize these");
}
}
}
#define SIMPLE_CASE(TYPENAME, VALUE) \
case swift::TYPENAME::VALUE: return uint8_t(serialization::TYPENAME::VALUE);
/// Translate from the AST function representation enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableFunctionTypeRepresentation(
swift::FunctionType::Representation cc) {
switch (cc) {
SIMPLE_CASE(FunctionTypeRepresentation, Swift)
SIMPLE_CASE(FunctionTypeRepresentation, Block)
SIMPLE_CASE(FunctionTypeRepresentation, Thin)
SIMPLE_CASE(FunctionTypeRepresentation, CFunctionPointer)
}
llvm_unreachable("bad calling convention");
}
/// Translate from the AST function representation enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableSILFunctionTypeRepresentation(
swift::SILFunctionType::Representation cc) {
switch (cc) {
SIMPLE_CASE(SILFunctionTypeRepresentation, Thick)
SIMPLE_CASE(SILFunctionTypeRepresentation, Block)
SIMPLE_CASE(SILFunctionTypeRepresentation, Thin)
SIMPLE_CASE(SILFunctionTypeRepresentation, CFunctionPointer)
SIMPLE_CASE(SILFunctionTypeRepresentation, Method)
SIMPLE_CASE(SILFunctionTypeRepresentation, ObjCMethod)
SIMPLE_CASE(SILFunctionTypeRepresentation, WitnessMethod)
SIMPLE_CASE(SILFunctionTypeRepresentation, Closure)
}
llvm_unreachable("bad calling convention");
}
/// Translate from the AST ownership enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableOwnership(swift::Ownership ownership) {
switch (ownership) {
SIMPLE_CASE(Ownership, Strong)
SIMPLE_CASE(Ownership, Weak)
SIMPLE_CASE(Ownership, Unowned)
SIMPLE_CASE(Ownership, Unmanaged)
}
llvm_unreachable("bad ownership kind");
}
/// Translate from the AST ParameterConvention enum to the
/// Serialization enum values, which are guaranteed to be stable.
static uint8_t getRawStableParameterConvention(swift::ParameterConvention pc) {
switch (pc) {
SIMPLE_CASE(ParameterConvention, Indirect_In)
SIMPLE_CASE(ParameterConvention, Indirect_In_Constant)
SIMPLE_CASE(ParameterConvention, Indirect_In_Guaranteed)
SIMPLE_CASE(ParameterConvention, Indirect_Inout)
SIMPLE_CASE(ParameterConvention, Indirect_InoutAliasable)
SIMPLE_CASE(ParameterConvention, Direct_Owned)
SIMPLE_CASE(ParameterConvention, Direct_Unowned)
SIMPLE_CASE(ParameterConvention, Direct_Guaranteed)
}
llvm_unreachable("bad parameter convention kind");
}
/// Translate from the AST ResultConvention enum to the
/// Serialization enum values, which are guaranteed to be stable.
static uint8_t getRawStableResultConvention(swift::ResultConvention rc) {
switch (rc) {
SIMPLE_CASE(ResultConvention, Indirect)
SIMPLE_CASE(ResultConvention, Owned)
SIMPLE_CASE(ResultConvention, Unowned)
SIMPLE_CASE(ResultConvention, UnownedInnerPointer)
SIMPLE_CASE(ResultConvention, Autoreleased)
}
llvm_unreachable("bad result convention kind");
}
#undef SIMPLE_CASE
/// Find the typealias given a builtin type.
static TypeAliasDecl *findTypeAliasForBuiltin(ASTContext &Ctx,
BuiltinType *Bt) {
/// Get the type name by chopping off "Builtin.".
llvm::SmallString<32> FullName;
llvm::raw_svector_ostream OS(FullName);
Bt->print(OS);
assert(FullName.startswith("Builtin."));
StringRef TypeName = FullName.substr(8);
SmallVector<ValueDecl*, 4> CurModuleResults;
Ctx.TheBuiltinModule->lookupValue(ModuleDecl::AccessPathTy(),
Ctx.getIdentifier(TypeName),
NLKind::QualifiedLookup,
CurModuleResults);
assert(CurModuleResults.size() == 1);
return cast<TypeAliasDecl>(CurModuleResults[0]);
}
void Serializer::writeType(Type ty) {
using namespace decls_block;
auto id = DeclAndTypeIDs[ty].first;
assert(id != 0 && "type not referenced properly");
(void)id;
assert((id - 1) == TypeOffsets.size());
TypeOffsets.push_back(Out.GetCurrentBitNo());
switch (ty.getPointer()->getKind()) {
case TypeKind::Error:
case TypeKind::Unresolved:
llvm_unreachable("should not serialize an invalid type");
case TypeKind::BuiltinInteger:
case TypeKind::BuiltinFloat:
case TypeKind::BuiltinRawPointer:
case TypeKind::BuiltinNativeObject:
case TypeKind::BuiltinBridgeObject:
case TypeKind::BuiltinUnknownObject:
case TypeKind::BuiltinUnsafeValueBuffer:
case TypeKind::BuiltinVector: {
TypeAliasDecl *typeAlias =
findTypeAliasForBuiltin(M->getASTContext(), ty->castTo<BuiltinType>());
unsigned abbrCode = DeclTypeAbbrCodes[NameAliasTypeLayout::Code];
NameAliasTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(typeAlias,
/*forceSerialization*/false,
/*allowTypeAliasXRef*/true),
TypeID());
break;
}
case TypeKind::NameAlias: {
auto nameAlias = cast<NameAliasType>(ty.getPointer());
const TypeAliasDecl *typeAlias = nameAlias->getDecl();
unsigned abbrCode = DeclTypeAbbrCodes[NameAliasTypeLayout::Code];
NameAliasTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(typeAlias,
/*forceSerialization*/false,
/*allowTypeAliasXRef*/true),
addTypeRef(ty->getCanonicalType()));
break;
}
case TypeKind::Paren: {
auto parenTy = cast<ParenType>(ty.getPointer());
auto paramFlags = parenTy->getParameterFlags();
unsigned abbrCode = DeclTypeAbbrCodes[ParenTypeLayout::Code];
ParenTypeLayout::emitRecord(
Out, ScratchRecord, abbrCode, addTypeRef(parenTy->getUnderlyingType()),
paramFlags.isVariadic(), paramFlags.isAutoClosure(),
paramFlags.isEscaping(), paramFlags.isInOut(), paramFlags.isShared());
break;
}
case TypeKind::Tuple: {
auto tupleTy = cast<TupleType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[TupleTypeLayout::Code];
TupleTypeLayout::emitRecord(Out, ScratchRecord, abbrCode);
abbrCode = DeclTypeAbbrCodes[TupleTypeEltLayout::Code];
for (auto &elt : tupleTy->getElements()) {
auto paramFlags = elt.getParameterFlags();
TupleTypeEltLayout::emitRecord(
Out, ScratchRecord, abbrCode, addDeclBaseNameRef(elt.getName()),
addTypeRef(elt.getType()), paramFlags.isVariadic(),
paramFlags.isAutoClosure(), paramFlags.isEscaping(),
paramFlags.isInOut(), paramFlags.isShared());
}
break;
}
case TypeKind::Struct:
case TypeKind::Enum:
case TypeKind::Class:
case TypeKind::Protocol: {
auto nominalTy = cast<NominalType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[NominalTypeLayout::Code];
NominalTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(nominalTy->getDecl()),
addTypeRef(nominalTy->getParent()));
break;
}
case TypeKind::ExistentialMetatype: {
auto metatypeTy = cast<ExistentialMetatypeType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[ExistentialMetatypeTypeLayout::Code];
// Map the metatype representation.
auto repr = getRawStableMetatypeRepresentation(metatypeTy);
ExistentialMetatypeTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(metatypeTy->getInstanceType()),
static_cast<uint8_t>(repr));
break;
}
case TypeKind::Metatype: {
auto metatypeTy = cast<MetatypeType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[MetatypeTypeLayout::Code];
// Map the metatype representation.
auto repr = getRawStableMetatypeRepresentation(metatypeTy);
MetatypeTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(metatypeTy->getInstanceType()),
static_cast<uint8_t>(repr));
break;
}
case TypeKind::Module:
llvm_unreachable("modules are currently not first-class values");
case TypeKind::DynamicSelf: {
auto dynamicSelfTy = cast<DynamicSelfType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[DynamicSelfTypeLayout::Code];
DynamicSelfTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(dynamicSelfTy->getSelfType()));
break;
}
case TypeKind::Archetype: {
auto archetypeTy = cast<ArchetypeType>(ty.getPointer());
// Opened existential types use a separate layout.
if (auto existentialTy = archetypeTy->getOpenedExistentialType()) {
unsigned abbrCode = DeclTypeAbbrCodes[OpenedExistentialTypeLayout::Code];
OpenedExistentialTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(existentialTy));
break;
}
auto env = archetypeTy->getGenericEnvironment();
assert(env && "Primary archetype without generic environment?");
GenericEnvironmentID envID = addGenericEnvironmentRef(env);
Type interfaceType = env->mapTypeOutOfContext(archetypeTy);
unsigned abbrCode = DeclTypeAbbrCodes[ArchetypeTypeLayout::Code];
ArchetypeTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
envID, addTypeRef(interfaceType));
break;
}
case TypeKind::GenericTypeParam: {
auto genericParam = cast<GenericTypeParamType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[GenericTypeParamTypeLayout::Code];
DeclID declIDOrDepth;
unsigned indexPlusOne;
if (genericParam->getDecl() &&
!(genericParam->getDecl()->getDeclContext()->isModuleScopeContext() &&
isDeclXRef(genericParam->getDecl()))) {
declIDOrDepth = addDeclRef(genericParam->getDecl());
indexPlusOne = 0;
} else {
declIDOrDepth = genericParam->getDepth();
indexPlusOne = genericParam->getIndex() + 1;
}
GenericTypeParamTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
declIDOrDepth, indexPlusOne);
break;
}
case TypeKind::DependentMember: {
auto dependent = cast<DependentMemberType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[DependentMemberTypeLayout::Code];
assert(dependent->getAssocType() && "Unchecked dependent member type");
DependentMemberTypeLayout::emitRecord(
Out, ScratchRecord, abbrCode,
addTypeRef(dependent->getBase()),
addDeclRef(dependent->getAssocType()));
break;
}
case TypeKind::Function: {
auto fnTy = cast<FunctionType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[FunctionTypeLayout::Code];
FunctionTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(fnTy->getInput()),
addTypeRef(fnTy->getResult()),
getRawStableFunctionTypeRepresentation(fnTy->getRepresentation()),
fnTy->isAutoClosure(),
fnTy->isNoEscape(),
fnTy->throws());
break;
}
case TypeKind::GenericFunction: {
auto fnTy = cast<GenericFunctionType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[GenericFunctionTypeLayout::Code];
SmallVector<TypeID, 4> genericParams;
for (auto param : fnTy->getGenericParams())
genericParams.push_back(addTypeRef(param));
GenericFunctionTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(fnTy->getInput()),
addTypeRef(fnTy->getResult()),
getRawStableFunctionTypeRepresentation(fnTy->getRepresentation()),
fnTy->throws(),
genericParams);
// Write requirements.
writeGenericRequirements(fnTy->getRequirements(),
DeclTypeAbbrCodes);
break;
}
case TypeKind::SILBlockStorage: {
auto storageTy = cast<SILBlockStorageType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[SILBlockStorageTypeLayout::Code];
SILBlockStorageTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(storageTy->getCaptureType()));
break;
}
case TypeKind::SILBox: {
auto boxTy = cast<SILBoxType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[SILBoxTypeLayout::Code];
SILLayoutID layoutRef = addSILLayoutRef(boxTy->getLayout());
#ifndef NDEBUG
if (auto sig = boxTy->getLayout()->getGenericSignature()) {
assert(sig->getSubstitutionListSize()
== boxTy->getGenericArgs().size());
}
#endif
SILBoxTypeLayout::emitRecord(Out, ScratchRecord, abbrCode, layoutRef);
// Write the set of substitutions.
writeSubstitutions(boxTy->getGenericArgs(), DeclTypeAbbrCodes);
break;
}
case TypeKind::SILFunction: {
auto fnTy = cast<SILFunctionType>(ty.getPointer());
auto representation = fnTy->getRepresentation();
auto stableRepresentation =
getRawStableSILFunctionTypeRepresentation(representation);
SmallVector<TypeID, 8> variableData;
for (auto param : fnTy->getParameters()) {
variableData.push_back(addTypeRef(param.getType()));
unsigned conv = getRawStableParameterConvention(param.getConvention());
variableData.push_back(TypeID(conv));
}
for (auto result : fnTy->getResults()) {
variableData.push_back(addTypeRef(result.getType()));
unsigned conv = getRawStableResultConvention(result.getConvention());
variableData.push_back(TypeID(conv));
}
if (fnTy->hasErrorResult()) {
auto abResult = fnTy->getErrorResult();
variableData.push_back(addTypeRef(abResult.getType()));
unsigned conv = getRawStableResultConvention(abResult.getConvention());
variableData.push_back(TypeID(conv));
}
auto sig = fnTy->getGenericSignature();
if (sig) {
for (auto param : sig->getGenericParams())
variableData.push_back(addTypeRef(param));
}
auto stableCalleeConvention =
getRawStableParameterConvention(fnTy->getCalleeConvention());
unsigned abbrCode = DeclTypeAbbrCodes[SILFunctionTypeLayout::Code];
SILFunctionTypeLayout::emitRecord(
Out, ScratchRecord, abbrCode, stableCalleeConvention,
stableRepresentation, fnTy->isPseudogeneric(), fnTy->hasErrorResult(),
fnTy->getParameters().size(), fnTy->getNumResults(), variableData);
if (sig)
writeGenericRequirements(sig->getRequirements(),
DeclTypeAbbrCodes);
break;
}
case TypeKind::ArraySlice: {
auto sliceTy = cast<ArraySliceType>(ty.getPointer());
Type base = sliceTy->getBaseType();
unsigned abbrCode = DeclTypeAbbrCodes[ArraySliceTypeLayout::Code];
ArraySliceTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(base));
break;
}
case TypeKind::Dictionary: {
auto dictTy = cast<DictionaryType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[DictionaryTypeLayout::Code];
DictionaryTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(dictTy->getKeyType()),
addTypeRef(dictTy->getValueType()));
break;
}
case TypeKind::Optional: {
auto optionalTy = cast<OptionalType>(ty.getPointer());
Type base = optionalTy->getBaseType();
unsigned abbrCode = DeclTypeAbbrCodes[OptionalTypeLayout::Code];
OptionalTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(base));
break;
}
case TypeKind::ImplicitlyUnwrappedOptional: {
auto optionalTy = cast<ImplicitlyUnwrappedOptionalType>(ty.getPointer());
Type base = optionalTy->getBaseType();
unsigned abbrCode = DeclTypeAbbrCodes[ImplicitlyUnwrappedOptionalTypeLayout::Code];
ImplicitlyUnwrappedOptionalTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(base));
break;
}
case TypeKind::ProtocolComposition: {
auto composition = cast<ProtocolCompositionType>(ty.getPointer());
SmallVector<TypeID, 4> protocols;
for (auto proto : composition->getMembers())
protocols.push_back(addTypeRef(proto));
unsigned abbrCode = DeclTypeAbbrCodes[ProtocolCompositionTypeLayout::Code];
ProtocolCompositionTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
composition->hasExplicitAnyObject(),
protocols);
break;
}
case TypeKind::InOut: {
auto iotTy = cast<InOutType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[InOutTypeLayout::Code];
InOutTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(iotTy->getObjectType()));
break;
}
case TypeKind::UnownedStorage:
case TypeKind::UnmanagedStorage:
case TypeKind::WeakStorage: {
auto refTy = cast<ReferenceStorageType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[ReferenceStorageTypeLayout::Code];
auto stableOwnership = getRawStableOwnership(refTy->getOwnership());
ReferenceStorageTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
stableOwnership,
addTypeRef(refTy->getReferentType()));
break;
}
case TypeKind::UnboundGeneric: {
auto generic = cast<UnboundGenericType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[UnboundGenericTypeLayout::Code];
UnboundGenericTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(generic->getDecl()),
addTypeRef(generic->getParent()));
break;
}
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericEnum:
case TypeKind::BoundGenericStruct: {
auto generic = cast<BoundGenericType>(ty.getPointer());
SmallVector<TypeID, 8> genericArgIDs;
for (auto next : generic->getGenericArgs())
genericArgIDs.push_back(addTypeRef(next));
unsigned abbrCode = DeclTypeAbbrCodes[BoundGenericTypeLayout::Code];
BoundGenericTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(generic->getDecl()),
addTypeRef(generic->getParent()),
genericArgIDs);
break;
}
case TypeKind::LValue:
llvm_unreachable("lvalue types are only used in function bodies");
case TypeKind::TypeVariable:
llvm_unreachable("type variables should not escape the type checker");
}
}
void Serializer::writeAllDeclsAndTypes() {
BCBlockRAII restoreBlock(Out, DECLS_AND_TYPES_BLOCK_ID, 8);
using namespace decls_block;
registerDeclTypeAbbr<NameAliasTypeLayout>();
registerDeclTypeAbbr<GenericTypeParamDeclLayout>();
registerDeclTypeAbbr<AssociatedTypeDeclLayout>();
registerDeclTypeAbbr<NominalTypeLayout>();
registerDeclTypeAbbr<ParenTypeLayout>();
registerDeclTypeAbbr<TupleTypeLayout>();
registerDeclTypeAbbr<TupleTypeEltLayout>();
registerDeclTypeAbbr<FunctionTypeLayout>();
registerDeclTypeAbbr<MetatypeTypeLayout>();
registerDeclTypeAbbr<ExistentialMetatypeTypeLayout>();
registerDeclTypeAbbr<InOutTypeLayout>();
registerDeclTypeAbbr<ArchetypeTypeLayout>();
registerDeclTypeAbbr<ProtocolCompositionTypeLayout>();
registerDeclTypeAbbr<BoundGenericTypeLayout>();
registerDeclTypeAbbr<BoundGenericSubstitutionLayout>();
registerDeclTypeAbbr<GenericFunctionTypeLayout>();
registerDeclTypeAbbr<SILBlockStorageTypeLayout>();
registerDeclTypeAbbr<SILBoxTypeLayout>();
registerDeclTypeAbbr<SILFunctionTypeLayout>();
registerDeclTypeAbbr<ArraySliceTypeLayout>();
registerDeclTypeAbbr<DictionaryTypeLayout>();
registerDeclTypeAbbr<ReferenceStorageTypeLayout>();
registerDeclTypeAbbr<UnboundGenericTypeLayout>();
registerDeclTypeAbbr<OptionalTypeLayout>();
registerDeclTypeAbbr<ImplicitlyUnwrappedOptionalTypeLayout>();
registerDeclTypeAbbr<DynamicSelfTypeLayout>();
registerDeclTypeAbbr<OpenedExistentialTypeLayout>();
registerDeclTypeAbbr<TypeAliasLayout>();
registerDeclTypeAbbr<GenericTypeParamTypeLayout>();
registerDeclTypeAbbr<DependentMemberTypeLayout>();
registerDeclTypeAbbr<StructLayout>();
registerDeclTypeAbbr<ConstructorLayout>();
registerDeclTypeAbbr<VarLayout>();
registerDeclTypeAbbr<ParamLayout>();
registerDeclTypeAbbr<FuncLayout>();
registerDeclTypeAbbr<PatternBindingLayout>();
registerDeclTypeAbbr<ProtocolLayout>();
registerDeclTypeAbbr<DefaultWitnessTableLayout>();
registerDeclTypeAbbr<PrefixOperatorLayout>();
registerDeclTypeAbbr<PostfixOperatorLayout>();
registerDeclTypeAbbr<InfixOperatorLayout>();
registerDeclTypeAbbr<PrecedenceGroupLayout>();
registerDeclTypeAbbr<ClassLayout>();
registerDeclTypeAbbr<EnumLayout>();
registerDeclTypeAbbr<EnumElementLayout>();
registerDeclTypeAbbr<SubscriptLayout>();
registerDeclTypeAbbr<ExtensionLayout>();
registerDeclTypeAbbr<DestructorLayout>();
registerDeclTypeAbbr<ParameterListLayout>();
registerDeclTypeAbbr<ParameterListEltLayout>();
registerDeclTypeAbbr<ParenPatternLayout>();
registerDeclTypeAbbr<TuplePatternLayout>();
registerDeclTypeAbbr<TuplePatternEltLayout>();
registerDeclTypeAbbr<NamedPatternLayout>();
registerDeclTypeAbbr<VarPatternLayout>();
registerDeclTypeAbbr<AnyPatternLayout>();
registerDeclTypeAbbr<TypedPatternLayout>();
registerDeclTypeAbbr<GenericParamListLayout>();
registerDeclTypeAbbr<GenericParamLayout>();
registerDeclTypeAbbr<GenericRequirementLayout>();
registerDeclTypeAbbr<LayoutRequirementLayout>();
registerDeclTypeAbbr<GenericEnvironmentLayout>();
registerDeclTypeAbbr<SILGenericEnvironmentLayout>();
registerDeclTypeAbbr<ForeignErrorConventionLayout>();
registerDeclTypeAbbr<DeclContextLayout>();
registerDeclTypeAbbr<AbstractClosureExprLayout>();
registerDeclTypeAbbr<PatternBindingInitializerLayout>();
registerDeclTypeAbbr<DefaultArgumentInitializerLayout>();
registerDeclTypeAbbr<TopLevelCodeDeclContextLayout>();
registerDeclTypeAbbr<XRefTypePathPieceLayout>();
registerDeclTypeAbbr<XRefValuePathPieceLayout>();
registerDeclTypeAbbr<XRefExtensionPathPieceLayout>();
registerDeclTypeAbbr<XRefOperatorOrAccessorPathPieceLayout>();
registerDeclTypeAbbr<XRefGenericParamPathPieceLayout>();
registerDeclTypeAbbr<XRefInitializerPathPieceLayout>();
registerDeclTypeAbbr<AbstractProtocolConformanceLayout>();
registerDeclTypeAbbr<NormalProtocolConformanceLayout>();
registerDeclTypeAbbr<SpecializedProtocolConformanceLayout>();
registerDeclTypeAbbr<InheritedProtocolConformanceLayout>();
registerDeclTypeAbbr<NormalProtocolConformanceIdLayout>();
registerDeclTypeAbbr<ProtocolConformanceXrefLayout>();
registerDeclTypeAbbr<SILLayoutLayout>();
registerDeclTypeAbbr<LocalDiscriminatorLayout>();
registerDeclTypeAbbr<PrivateDiscriminatorLayout>();
registerDeclTypeAbbr<MembersLayout>();
registerDeclTypeAbbr<XRefLayout>();
#define DECL_ATTR(X, NAME, ...) \
registerDeclTypeAbbr<NAME##DeclAttrLayout>();
#include "swift/AST/Attr.def"
do {
// Each of these loops can trigger the others to execute again, so repeat
// until /all/ of the pending lists are empty.
while (!DeclsAndTypesToWrite.empty()) {
auto next = DeclsAndTypesToWrite.front();
DeclsAndTypesToWrite.pop();
if (next.isDecl())
writeDecl(next.getDecl());
else
writeType(next.getType());
}
while (!LocalDeclContextsToWrite.empty()) {
auto next = LocalDeclContextsToWrite.front();
LocalDeclContextsToWrite.pop();
writeLocalDeclContext(next);
}
while (!DeclContextsToWrite.empty()) {
auto next = DeclContextsToWrite.front();
DeclContextsToWrite.pop();
writeDeclContext(next);
}
while (!GenericEnvironmentsToWrite.empty()) {
auto next = GenericEnvironmentsToWrite.front();
GenericEnvironmentsToWrite.pop();
writeGenericEnvironment(next);
}
while (!NormalConformancesToWrite.empty()) {
auto next = NormalConformancesToWrite.front();
NormalConformancesToWrite.pop();
writeNormalConformance(next);
}
while (!SILLayoutsToWrite.empty()) {
auto next = SILLayoutsToWrite.front();
SILLayoutsToWrite.pop();
writeSILLayout(next);
}
} while (!DeclsAndTypesToWrite.empty() ||
!LocalDeclContextsToWrite.empty() ||
!DeclContextsToWrite.empty() ||
!SILLayoutsToWrite.empty() ||
!GenericEnvironmentsToWrite.empty() ||
!NormalConformancesToWrite.empty());
}
void Serializer::writeAllIdentifiers() {
BCBlockRAII restoreBlock(Out, IDENTIFIER_DATA_BLOCK_ID, 3);
identifier_block::IdentifierDataLayout IdentifierData(Out);
llvm::SmallString<4096> stringData;
// Make sure no identifier has an offset of 0.
stringData.push_back('\0');
for (Identifier ident : IdentifiersToWrite) {
IdentifierOffsets.push_back(stringData.size());
stringData.append(ident.get());
stringData.push_back('\0');
}
IdentifierData.emit(ScratchRecord, stringData.str());
}
void Serializer::writeOffsets(const index_block::OffsetsLayout &Offsets,
const std::vector<BitOffset> &values) {
Offsets.emit(ScratchRecord, getOffsetRecordCode(values), values);
}
/// Writes an in-memory decl table to an on-disk representation, using the
/// given layout.
static void writeDeclTable(const index_block::DeclListLayout &DeclList,
index_block::RecordKind kind,
const Serializer::DeclTable &table) {
if (table.empty())
return;
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<DeclTableInfo> generator;
for (auto &entry : table)
generator.insert(entry.first, entry.second);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::Writer<little>(blobStream).write<uint32_t>(0);
tableOffset = generator.Emit(blobStream);
}
DeclList.emit(scratch, kind, tableOffset, hashTableBlob);
}
static void
writeExtensionTable(const index_block::ExtensionTableLayout &ExtensionTable,
const Serializer::ExtensionTable &table,
Serializer &serializer) {
if (table.empty())
return;
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<ExtensionTableInfo> generator;
ExtensionTableInfo info{serializer};
for (auto &entry : table) {
generator.insert(entry.first, entry.second, info);
}
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::Writer<little>(blobStream).write<uint32_t>(0);
tableOffset = generator.Emit(blobStream, info);
}
ExtensionTable.emit(scratch, tableOffset, hashTableBlob);
}
static void writeLocalDeclTable(const index_block::DeclListLayout &DeclList,
index_block::RecordKind kind,
LocalTypeHashTableGenerator &generator) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::Writer<little>(blobStream).write<uint32_t>(0);
tableOffset = generator.Emit(blobStream);
}
DeclList.emit(scratch, kind, tableOffset, hashTableBlob);
}
static void
writeNestedTypeDeclsTable(const index_block::NestedTypeDeclsLayout &declList,
const Serializer::NestedTypeDeclsTable &table) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<NestedTypeDeclsTableInfo> generator;
for (auto &entry : table)
generator.insert(entry.first, entry.second);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::Writer<little>(blobStream).write<uint32_t>(0);
tableOffset = generator.Emit(blobStream);
}
declList.emit(scratch, tableOffset, hashTableBlob);
}
namespace {
struct DeclCommentTableData {
StringRef Brief;
RawComment Raw;
uint32_t Group;
uint32_t Order;
};
class DeclCommentTableInfo {
public:
using key_type = StringRef;
using key_type_ref = key_type;
using data_type = DeclCommentTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::HashString(key);
}
std::pair<unsigned, unsigned>
EmitKeyDataLength(raw_ostream &out, key_type_ref key, data_type_ref data) {
uint32_t keyLength = key.size();
const unsigned numLen = 4;
// Data consists of brief comment length and brief comment text,
uint32_t dataLength = numLen + data.Brief.size();
// number of raw comments,
dataLength += numLen;
// for each raw comment: column number of the first line, length of each
// raw comment and its text.
for (auto C : data.Raw.Comments)
dataLength += numLen + numLen + C.RawText.size();
// Group Id.
dataLength += numLen;
// Source order.
dataLength += numLen;
endian::Writer<little> writer(out);
writer.write<uint32_t>(keyLength);
writer.write<uint32_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key;
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
endian::Writer<little> writer(out);
writer.write<uint32_t>(data.Brief.size());
out << data.Brief;
writer.write<uint32_t>(data.Raw.Comments.size());
for (auto C : data.Raw.Comments) {
writer.write<uint32_t>(C.StartColumn);
writer.write<uint32_t>(C.RawText.size());
out << C.RawText;
}
writer.write<uint32_t>(data.Group);
writer.write<uint32_t>(data.Order);
}
};
} // end unnamed namespace
typedef llvm::StringMap<std::string> FileNameToGroupNameMap;
typedef std::unique_ptr<FileNameToGroupNameMap> pFileNameToGroupNameMap;
class YamlGroupInputParser {
StringRef RecordPath;
std::string Separator = "/";
static llvm::StringMap<pFileNameToGroupNameMap> AllMaps;
bool parseRoot(FileNameToGroupNameMap &Map, llvm::yaml::Node *Root,
StringRef ParentName) {
auto *MapNode = dyn_cast<llvm::yaml::MappingNode>(Root);
if (!MapNode) {
return true;
}
for (auto Pair : *MapNode) {
auto *Key = dyn_cast_or_null<llvm::yaml::ScalarNode>(Pair.getKey());
auto *Value = dyn_cast_or_null<llvm::yaml::SequenceNode>(Pair.getValue());
if (!Key || !Value) {
return true;
}
llvm::SmallString<16> GroupNameStorage;
StringRef GroupName = Key->getValue(GroupNameStorage);
std::string CombinedName;
if (!ParentName.empty()) {
CombinedName = (llvm::Twine(ParentName) + Separator + GroupName).str();
} else {
CombinedName = GroupName;
}
for (llvm::yaml::Node &Entry : *Value) {
if (auto *FileEntry= dyn_cast<llvm::yaml::ScalarNode>(&Entry)) {
llvm::SmallString<16> FileNameStorage;
StringRef FileName = FileEntry->getValue(FileNameStorage);
llvm::SmallString<32> GroupNameAndFileName;
GroupNameAndFileName.append(CombinedName);
GroupNameAndFileName.append(Separator);
GroupNameAndFileName.append(llvm::sys::path::stem(FileName));
Map[FileName] = GroupNameAndFileName.str();
} else if (Entry.getType() == llvm::yaml::Node::NodeKind::NK_Mapping) {
if (parseRoot(Map, &Entry, CombinedName))
return true;
} else
return true;
}
}
return false;
}
public:
YamlGroupInputParser(StringRef RecordPath): RecordPath(RecordPath) {}
FileNameToGroupNameMap* getParsedMap() {
return AllMaps[RecordPath].get();
}
// Parse the Yaml file that contains the group information.
// True on failure; false on success.
bool parse() {
// If we have already parsed this group info file, return false;
auto FindMap = AllMaps.find(RecordPath);
if (FindMap != AllMaps.end())
return false;
auto Buffer = llvm::MemoryBuffer::getFile(RecordPath);
if (!Buffer) {
// The group info file does not exist.
return true;
}
llvm::SourceMgr SM;
llvm::yaml::Stream YAMLStream(Buffer.get()->getMemBufferRef(), SM);
llvm::yaml::document_iterator I = YAMLStream.begin();
if (I == YAMLStream.end()) {
// Cannot parse correctly.
return true;
}
llvm::yaml::Node *Root = I->getRoot();
if (!Root) {
// Cannot parse correctly.
return true;
}
// The format is a map of ("group0" : ["file1", "file2"]), meaning all
// symbols from file1 and file2 belong to "group0".
auto *Map = dyn_cast<llvm::yaml::MappingNode>(Root);
if (!Map) {
return true;
}
pFileNameToGroupNameMap pMap(new FileNameToGroupNameMap());
std::string Empty;
if (parseRoot(*pMap, Root, Empty))
return true;
// Save the parsed map to the owner.
AllMaps[RecordPath] = std::move(pMap);
return false;
}
};
llvm::StringMap<pFileNameToGroupNameMap> YamlGroupInputParser::AllMaps;
class DeclGroupNameContext {
struct GroupNameCollector {
const std::string NullGroupName = "";
const bool Enable;
GroupNameCollector(bool Enable) : Enable(Enable) {}
virtual ~GroupNameCollector() = default;
virtual StringRef getGroupNameInternal(const Decl *VD) = 0;
StringRef getGroupName(const Decl *VD) {
return Enable ? getGroupNameInternal(VD) : StringRef(NullGroupName);
};
};
class GroupNameCollectorFromJson : public GroupNameCollector {
StringRef RecordPath;
FileNameToGroupNameMap* pMap = nullptr;
ASTContext &Ctx;
public:
GroupNameCollectorFromJson(StringRef RecordPath, ASTContext &Ctx) :
GroupNameCollector(!RecordPath.empty()), RecordPath(RecordPath),
Ctx(Ctx) {}
StringRef getGroupNameInternal(const Decl *VD) override {
// We need the file path, so there has to be a location.
if (VD->getLoc().isInvalid())
return NullGroupName;
auto PathOp = VD->getDeclContext()->getParentSourceFile()->getBufferID();
if (!PathOp.hasValue())
return NullGroupName;
StringRef FullPath =
VD->getASTContext().SourceMgr.getIdentifierForBuffer(PathOp.getValue());
if (!pMap) {
YamlGroupInputParser Parser(RecordPath);
if (!Parser.parse()) {
// Get the file-name to group map if parsing correctly.
pMap = Parser.getParsedMap();
}
}
if (!pMap)
return NullGroupName;
StringRef FileName = llvm::sys::path::filename(FullPath);
auto Found = pMap->find(FileName);
if (Found == pMap->end()) {
Ctx.Diags.diagnose(SourceLoc(), diag::error_no_group_info, FileName);
return NullGroupName;
}
return Found->second;
}
};
llvm::MapVector<StringRef, unsigned> Map;
std::vector<StringRef> ViewBuffer;
std::unique_ptr<GroupNameCollector> pNameCollector;
public:
DeclGroupNameContext(StringRef RecordPath, ASTContext &Ctx) :
pNameCollector(new GroupNameCollectorFromJson(RecordPath, Ctx)) {}
uint32_t getGroupSequence(const Decl *VD) {
return Map.insert(std::make_pair(pNameCollector->getGroupName(VD),
Map.size())).first->second;
}
ArrayRef<StringRef> getOrderedGroupNames() {
ViewBuffer.clear();
for (auto It = Map.begin(); It != Map.end(); ++ It) {
ViewBuffer.push_back(It->first);
}
return llvm::makeArrayRef(ViewBuffer);
}
bool isEnable() {
return pNameCollector->Enable;
}
};
static void writeGroupNames(const comment_block::GroupNamesLayout &GroupNames,
ArrayRef<StringRef> Names) {
llvm::SmallString<32> Blob;
llvm::raw_svector_ostream BlobStream(Blob);
endian::Writer<little> Writer(BlobStream);
Writer.write<uint32_t>(Names.size());
for (auto N : Names) {
Writer.write<uint32_t>(N.size());
BlobStream << N;
}
SmallVector<uint64_t, 8> Scratch;
GroupNames.emit(Scratch, BlobStream.str());
}
static void writeDeclCommentTable(
const comment_block::DeclCommentListLayout &DeclCommentList,
const SourceFile *SF, const ModuleDecl *M,
DeclGroupNameContext &GroupContext) {
struct DeclCommentTableWriter : public ASTWalker {
llvm::BumpPtrAllocator Arena;
llvm::SmallString<512> USRBuffer;
llvm::OnDiskChainedHashTableGenerator<DeclCommentTableInfo> generator;
DeclGroupNameContext &GroupContext;
unsigned SourceOrder;
DeclCommentTableWriter(DeclGroupNameContext &GroupContext) :
GroupContext(GroupContext) {}
void resetSourceOrder() {
SourceOrder = 0;
}
StringRef copyString(StringRef String) {
char *Mem = static_cast<char *>(Arena.Allocate(String.size(), 1));
std::copy(String.begin(), String.end(), Mem);
return StringRef(Mem, String.size());
}
void writeDocForExtensionDecl(ExtensionDecl *ED) {
RawComment Raw = ED->getRawComment();
if (Raw.Comments.empty() && !GroupContext.isEnable())
return;
// Compute USR.
{
USRBuffer.clear();
llvm::raw_svector_ostream OS(USRBuffer);
if (ide::printExtensionUSR(ED, OS))
return;
}
generator.insert(copyString(USRBuffer.str()),
{ ED->getBriefComment(), Raw,
GroupContext.getGroupSequence(ED),
SourceOrder++ });
}
bool walkToDeclPre(Decl *D) override {
if (auto *ED = dyn_cast<ExtensionDecl>(D)) {
writeDocForExtensionDecl(ED);
return true;
}
auto *VD = dyn_cast<ValueDecl>(D);
if (!VD)
return true;
RawComment Raw = VD->getRawComment();
// When building the stdlib we intend to
// serialize unusual comments. This situation is represented by
// GroupContext.isEnable(). In that case, we perform fewer serialization checks.
if (!GroupContext.isEnable()) {
// Skip the decl if it cannot have a comment.
if (!VD->canHaveComment()) {
return true;
}
// Skip the decl if it does not have a comment.
if (Raw.Comments.empty())
return true;
// Skip the decl if it's not visible to clients.
// The use of getEffectiveAccess is unusual here;
// we want to take the testability state into account
// and emit documentation if and only if they are visible to clients
// (which means public ordinarily, but public+internal when testing enabled).
if (VD->getEffectiveAccess() < swift::AccessLevel::Public)
return true;
}
// Compute USR.
{
USRBuffer.clear();
llvm::raw_svector_ostream OS(USRBuffer);
if (ide::printDeclUSR(VD, OS))
return true;
}
generator.insert(copyString(USRBuffer.str()),
{ VD->getBriefComment(), Raw,
GroupContext.getGroupSequence(VD),
SourceOrder++ });
return true;
}
};
DeclCommentTableWriter Writer(GroupContext);
ArrayRef<const FileUnit *> files;
SmallVector<const FileUnit *, 1> Scratch;
if (SF) {
Scratch.push_back(SF);
files = llvm::makeArrayRef(Scratch);
} else {
files = M->getFiles();
}
for (auto nextFile : files) {
Writer.resetSourceOrder();
const_cast<FileUnit *>(nextFile)->walk(Writer);
}
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<32> hashTableBlob;
uint32_t tableOffset;
{
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::Writer<little>(blobStream).write<uint32_t>(0);
tableOffset = Writer.generator.Emit(blobStream);
}
DeclCommentList.emit(scratch, tableOffset, hashTableBlob);
}
namespace {
/// Used to serialize the on-disk Objective-C method hash table.
class ObjCMethodTableInfo {
public:
using key_type = ObjCSelector;
using key_type_ref = key_type;
using data_type = Serializer::ObjCMethodTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
llvm::SmallString<32> scratch;
return llvm::HashString(key.getString(scratch));
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
llvm::SmallString<32> scratch;
auto keyLength = key.getString(scratch).size();
assert(keyLength <= std::numeric_limits<uint16_t>::max() &&
"selector too long");
uint32_t dataLength = 0;
for (const auto &entry : data) {
dataLength += sizeof(uint32_t) + 1 + sizeof(uint32_t);
dataLength += std::get<0>(entry).size();
}
endian::Writer<little> writer(out);
writer.write<uint16_t>(keyLength);
writer.write<uint32_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
#ifndef NDEBUG
uint64_t start = out.tell();
#endif
out << key;
assert((out.tell() - start == len) && "measured key length incorrectly");
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer<little> writer(out);
for (const auto &entry : data) {
writer.write<uint32_t>(std::get<0>(entry).size());
writer.write<uint8_t>(std::get<1>(entry));
writer.write<uint32_t>(std::get<2>(entry));
out.write(std::get<0>(entry).c_str(), std::get<0>(entry).size());
}
}
};
} // end anonymous namespace
static void writeObjCMethodTable(const index_block::ObjCMethodTableLayout &out,
Serializer::ObjCMethodTable &objcMethods) {
// Collect all of the Objective-C selectors in the method table.
std::vector<ObjCSelector> selectors;
for (const auto &entry : objcMethods) {
selectors.push_back(entry.first);
}
// Sort the Objective-C selectors so we emit them in a stable order.
llvm::array_pod_sort(selectors.begin(), selectors.end());
// Create the on-disk hash table.
llvm::OnDiskChainedHashTableGenerator<ObjCMethodTableInfo> generator;
llvm::SmallString<32> hashTableBlob;
uint32_t tableOffset;
{
llvm::raw_svector_ostream blobStream(hashTableBlob);
for (auto selector : selectors) {
generator.insert(selector, objcMethods[selector]);
}
// Make sure that no bucket is at offset 0
endian::Writer<little>(blobStream).write<uint32_t>(0);
tableOffset = generator.Emit(blobStream);
}
SmallVector<uint64_t, 8> scratch;
out.emit(scratch, tableOffset, hashTableBlob);
}
/// Recursively walks the members and derived global decls of any nominal types
/// to build up global tables.
template<typename Range>
static void collectInterestingNestedDeclarations(
Serializer &S,
Range members,
Serializer::DeclTable &operatorMethodDecls,
Serializer::ObjCMethodTable &objcMethods,
Serializer::NestedTypeDeclsTable &nestedTypeDecls,
bool isLocal = false) {
const NominalTypeDecl *nominalParent = nullptr;
for (const Decl *member : members) {
if (auto memberValue = dyn_cast<ValueDecl>(member)) {
if (!memberValue->hasName())
continue;
if (memberValue->isOperator()) {
// Add operator methods.
// Note that we don't have to add operators that are already in the
// top-level list.
operatorMethodDecls[memberValue->getBaseName()].push_back({
/*ignored*/0,
S.addDeclRef(memberValue)
});
}
}
if (auto nestedType = dyn_cast<TypeDecl>(member)) {
if (nestedType->getEffectiveAccess() > swift::AccessLevel::FilePrivate) {
if (!nominalParent) {
const DeclContext *DC = member->getDeclContext();
nominalParent = DC->getAsNominalTypeOrNominalTypeExtensionContext();
assert(nominalParent && "parent context is not a type or extension");
}
nestedTypeDecls[nestedType->getName()].push_back({
S.addDeclRef(nominalParent),
S.addDeclRef(nestedType)
});
}
}
// Recurse into nested declarations.
if (auto iterable = dyn_cast<IterableDeclContext>(member)) {
collectInterestingNestedDeclarations(S, iterable->getMembers(),
operatorMethodDecls,
objcMethods, nestedTypeDecls,
isLocal);
}
// Record Objective-C methods.
if (!isLocal) {
if (auto func = dyn_cast<AbstractFunctionDecl>(member)) {
if (func->isObjC()) {
if (auto owningClass =
func->getDeclContext()->getAsClassOrClassExtensionContext()) {
Mangle::ASTMangler mangler;
std::string ownerName = mangler.mangleNominalType(owningClass);
assert(!ownerName.empty() && "Mangled type came back empty!");
objcMethods[func->getObjCSelector()].push_back(
std::make_tuple(ownerName,
func->isObjCInstanceMethod(),
S.addDeclRef(func)));
}
}
}
}
}
}
void Serializer::writeAST(ModuleOrSourceFile DC,
bool enableNestedTypeLookupTable) {
DeclTable topLevelDecls, operatorDecls, operatorMethodDecls;
DeclTable precedenceGroupDecls;
ObjCMethodTable objcMethods;
NestedTypeDeclsTable nestedTypeDecls;
LocalTypeHashTableGenerator localTypeGenerator;
ExtensionTable extensionDecls;
bool hasLocalTypes = false;
Optional<DeclID> entryPointClassID;
ArrayRef<const FileUnit *> files;
SmallVector<const FileUnit *, 1> Scratch;
if (SF) {
Scratch.push_back(SF);
files = llvm::makeArrayRef(Scratch);
} else {
files = M->getFiles();
}
for (auto nextFile : files) {
if (nextFile->hasEntryPoint())
entryPointClassID = addDeclRef(nextFile->getMainClass());
// FIXME: Switch to a visitor interface?
SmallVector<Decl *, 32> fileDecls;
nextFile->getTopLevelDecls(fileDecls);
for (auto D : fileDecls) {
if (isa<ImportDecl>(D))
continue;
if (auto VD = dyn_cast<ValueDecl>(D)) {
if (!VD->hasName())
continue;
topLevelDecls[VD->getBaseName()]
.push_back({ getKindForTable(D), addDeclRef(D) });
} else if (auto ED = dyn_cast<ExtensionDecl>(D)) {
Type extendedTy = ED->getExtendedType();
assert(!extendedTy->hasUnboundGenericType());
const NominalTypeDecl *extendedNominal = extendedTy->getAnyNominal();
extensionDecls[extendedNominal->getName()]
.push_back({ extendedNominal, addDeclRef(D) });
} else if (auto OD = dyn_cast<OperatorDecl>(D)) {
operatorDecls[OD->getName()]
.push_back({ getStableFixity(OD->getKind()), addDeclRef(D) });
} else if (auto PGD = dyn_cast<PrecedenceGroupDecl>(D)) {
precedenceGroupDecls[PGD->getName()]
.push_back({ decls_block::PRECEDENCE_GROUP_DECL, addDeclRef(D) });
}
// If this is a global variable, force the accessors to be
// serialized.
if (auto VD = dyn_cast<VarDecl>(D)) {
if (VD->getGetter())
addDeclRef(VD->getGetter());
if (VD->getSetter())
addDeclRef(VD->getSetter());
}
// If this nominal type has associated top-level decls for a
// derived conformance (for example, ==), force them to be
// serialized.
if (auto IDC = dyn_cast<IterableDeclContext>(D)) {
collectInterestingNestedDeclarations(*this, IDC->getMembers(),
operatorMethodDecls, objcMethods,
nestedTypeDecls);
}
}
SmallVector<TypeDecl *, 16> localTypeDecls;
nextFile->getLocalTypeDecls(localTypeDecls);
for (auto TD : localTypeDecls) {
hasLocalTypes = true;
Mangle::ASTMangler Mangler;
std::string MangledName = Mangler.mangleDeclAsUSR(TD, /*USRPrefix*/"");
assert(!MangledName.empty() && "Mangled type came back empty!");
localTypeGenerator.insert(MangledName, {
addDeclRef(TD), TD->getLocalDiscriminator()
});
if (auto IDC = dyn_cast<IterableDeclContext>(TD)) {
collectInterestingNestedDeclarations(*this, IDC->getMembers(),
operatorMethodDecls, objcMethods,
nestedTypeDecls, /*isLocal=*/true);
}
}
}
writeAllDeclsAndTypes();
writeAllIdentifiers();
{
BCBlockRAII restoreBlock(Out, INDEX_BLOCK_ID, 4);
index_block::OffsetsLayout Offsets(Out);
writeOffsets(Offsets, DeclOffsets);
writeOffsets(Offsets, TypeOffsets);
writeOffsets(Offsets, IdentifierOffsets);
writeOffsets(Offsets, DeclContextOffsets);
writeOffsets(Offsets, LocalDeclContextOffsets);
writeOffsets(Offsets, GenericEnvironmentOffsets);
writeOffsets(Offsets, NormalConformanceOffsets);
writeOffsets(Offsets, SILLayoutOffsets);
index_block::DeclListLayout DeclList(Out);
writeDeclTable(DeclList, index_block::TOP_LEVEL_DECLS, topLevelDecls);
writeDeclTable(DeclList, index_block::OPERATORS, operatorDecls);
writeDeclTable(DeclList, index_block::PRECEDENCE_GROUPS, precedenceGroupDecls);
writeDeclTable(DeclList, index_block::CLASS_MEMBERS, ClassMembersByName);
writeDeclTable(DeclList, index_block::OPERATOR_METHODS, operatorMethodDecls);
if (hasLocalTypes)
writeLocalDeclTable(DeclList, index_block::LOCAL_TYPE_DECLS,
localTypeGenerator);
if (!extensionDecls.empty()) {
index_block::ExtensionTableLayout ExtensionTable(Out);
writeExtensionTable(ExtensionTable, extensionDecls, *this);
}
index_block::ObjCMethodTableLayout ObjCMethodTable(Out);
writeObjCMethodTable(ObjCMethodTable, objcMethods);
if (enableNestedTypeLookupTable &&
!nestedTypeDecls.empty()) {
index_block::NestedTypeDeclsLayout NestedTypeDeclsTable(Out);
writeNestedTypeDeclsTable(NestedTypeDeclsTable, nestedTypeDecls);
}
if (entryPointClassID.hasValue()) {
index_block::EntryPointLayout EntryPoint(Out);
EntryPoint.emit(ScratchRecord, entryPointClassID.getValue());
}
}
}
void Serializer::writeToStream(raw_ostream &os) {
os.write(Buffer.data(), Buffer.size());
os.flush();
}
template <size_t N>
Serializer::Serializer(const unsigned char (&signature)[N],
ModuleOrSourceFile DC) {
for (unsigned char byte : signature)
Out.Emit(byte, 8);
this->M = getModule(DC);
this->SF = DC.dyn_cast<SourceFile *>();
}
void Serializer::writeToStream(raw_ostream &os, ModuleOrSourceFile DC,
const SILModule *SILMod,
const SerializationOptions &options) {
Serializer S{MODULE_SIGNATURE, DC};
// FIXME: This is only really needed for debugging. We don't actually use it.
S.writeBlockInfoBlock();
{
BCBlockRAII moduleBlock(S.Out, MODULE_BLOCK_ID, 2);
S.writeHeader(options);
S.writeInputBlock(options);
S.writeSIL(SILMod, options.SerializeAllSIL);
S.writeAST(DC, options.EnableNestedTypeLookupTable);
}
S.writeToStream(os);
}
void Serializer::writeDocToStream(raw_ostream &os, ModuleOrSourceFile DC,
StringRef GroupInfoPath, ASTContext &Ctx) {
Serializer S{MODULE_DOC_SIGNATURE, DC};
// FIXME: This is only really needed for debugging. We don't actually use it.
S.writeDocBlockInfoBlock();
{
BCBlockRAII moduleBlock(S.Out, MODULE_DOC_BLOCK_ID, 2);
S.writeDocHeader();
{
BCBlockRAII restoreBlock(S.Out, COMMENT_BLOCK_ID, 4);
DeclGroupNameContext GroupContext(GroupInfoPath, Ctx);
comment_block::DeclCommentListLayout DeclCommentList(S.Out);
writeDeclCommentTable(DeclCommentList, S.SF, S.M, GroupContext);
comment_block::GroupNamesLayout GroupNames(S.Out);
// FIXME: Multi-file compilation may cause group id collision.
writeGroupNames(GroupNames, GroupContext.getOrderedGroupNames());
}
}
S.writeToStream(os);
}
static inline bool
withOutputFile(ASTContext &ctx, StringRef outputPath,
llvm::function_ref<void(raw_ostream &)> action){
namespace path = llvm::sys::path;
clang::CompilerInstance Clang;
std::string tmpFilePath;
{
std::error_code EC;
std::unique_ptr<llvm::raw_pwrite_stream> out =
Clang.createOutputFile(outputPath, EC,
/*Binary=*/true,
/*RemoveFileOnSignal=*/true,
/*BaseInput=*/"",
path::extension(outputPath),
/*UseTemporary=*/true,
/*CreateMissingDirectories=*/false,
/*ResultPathName=*/nullptr,
&tmpFilePath);
if (!out) {
StringRef problematicPath =
tmpFilePath.empty() ? outputPath : StringRef(tmpFilePath);
ctx.Diags.diagnose(SourceLoc(), diag::error_opening_output,
problematicPath, EC.message());
return true;
}
action(*out);
}
if (!tmpFilePath.empty()) {
std::error_code EC = swift::moveFileIfDifferent(tmpFilePath, outputPath);
if (EC) {
ctx.Diags.diagnose(SourceLoc(), diag::error_opening_output,
outputPath, EC.message());
return true;
}
}
return false;
}
void swift::serialize(ModuleOrSourceFile DC,
const SerializationOptions &options,
const SILModule *M) {
assert(options.OutputPath && options.OutputPath[0] != '\0');
if (strcmp("-", options.OutputPath) == 0) {
// Special-case writing to stdout.
Serializer::writeToStream(llvm::outs(), DC, M, options);
assert(!options.DocOutputPath || options.DocOutputPath[0] == '\0');
return;
}
bool hadError = withOutputFile(getContext(DC), options.OutputPath,
[&](raw_ostream &out) {
SharedTimer timer("Serialization, swiftmodule");
Serializer::writeToStream(out, DC, M, options);
});
if (hadError)
return;
if (options.DocOutputPath && options.DocOutputPath[0] != '\0') {
(void)withOutputFile(getContext(DC), options.DocOutputPath,
[&](raw_ostream &out) {
SharedTimer timer("Serialization, swiftdoc");
Serializer::writeDocToStream(out, DC, options.GroupInfoPath,
getContext(DC));
});
}
}