blob: a0b6b10179df9b73db02d90314205a16d93bd958 [file] [log] [blame]
//===--- DerivedConformanceCodable.cpp - Derived Codable ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements explicit derivation of the Encodable and Decodable
// protocols for a struct or class.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "DerivedConformances.h"
using namespace swift;
using namespace DerivedConformance;
/// Returns whether the type represented by the given ClassDecl inherits from a
/// type which conforms to the given protocol.
///
/// \param target The \c ClassDecl whose superclass to look up.
///
/// \param proto The protocol to check conformance for.
static bool inheritsConformanceTo(ClassDecl *target, ProtocolDecl *proto) {
if (!target->hasSuperclass())
return false;
auto *superclassDecl = target->getSuperclassDecl();
auto *superclassModule = superclassDecl->getModuleContext();
return (bool)superclassModule->lookupConformance(target->getSuperclass(),
proto);
}
/// Returns whether the superclass of the given class conforms to Encodable.
///
/// \param target The \c ClassDecl whose superclass to check.
static bool superclassIsEncodable(ClassDecl *target) {
auto &C = target->getASTContext();
return inheritsConformanceTo(target,
C.getProtocol(KnownProtocolKind::Encodable));
}
/// Returns whether the superclass of the given class conforms to Decodable.
///
/// \param target The \c ClassDecl whose superclass to check.
static bool superclassIsDecodable(ClassDecl *target) {
auto &C = target->getASTContext();
return inheritsConformanceTo(target,
C.getProtocol(KnownProtocolKind::Decodable));
}
/// Represents the possible outcomes of checking whether a decl conforms to
/// Encodable or Decodable.
enum CodableConformanceType {
TypeNotValidated,
DoesNotConform,
Conforms
};
/// Returns whether the given type conforms to the given {En,De}codable
/// protocol.
///
/// \param tc The typechecker to use in validating {En,De}codable conformance.
///
/// \param context The \c DeclContext the var declarations belong to.
///
/// \param target The \c Type to validate.
///
/// \param proto The \c ProtocolDecl to check conformance to.
static CodableConformanceType typeConformsToCodable(TypeChecker &tc,
DeclContext *context,
Type target,
ProtocolDecl *proto) {
// Some generic types need to be introspected to get at their "true" Codable
// conformance.
if (auto referenceType = target->getAs<ReferenceStorageType>()) {
// This is a weak/unowned/unmanaged var. Get the inner type before checking
// conformance.
target = referenceType->getReferentType();
}
if (auto genericType = target->getAs<BoundGenericType>()) {
auto *nominalTypeDecl = genericType->getAnyNominal();
// Implicitly unwrapped optionals need to be unwrapped;
// ImplicitlyUnwrappedOptional does not need to conform to Codable directly
// -- only its inner type does.
if (nominalTypeDecl == tc.Context.getImplicitlyUnwrappedOptionalDecl() ||
// FIXME: Remove the following when conditional conformance lands.
// Some generic types in the stdlib currently conform to Codable even
// when the type they are generic on does not [Optional, Array, Set,
// Dictionary]. For synthesizing conformance, we don't want to
// consider these types as Codable if the nested type is not Codable.
// Look through the generic type parameters of these types recursively
// to avoid synthesizing code that will crash at runtime.
//
// We only want to look through generic params for these types; other
// types may validly conform to Codable even if their generic param
// types do not.
nominalTypeDecl == tc.Context.getOptionalDecl() ||
nominalTypeDecl == tc.Context.getArrayDecl() ||
nominalTypeDecl == tc.Context.getSetDecl() ||
nominalTypeDecl == tc.Context.getDictionaryDecl()) {
for (auto paramType : genericType->getGenericArgs()) {
if (typeConformsToCodable(tc, context, paramType, proto) != Conforms)
return DoesNotConform;
}
return Conforms;
}
}
return tc.conformsToProtocol(target, proto, context,
ConformanceCheckFlags::Used) ? Conforms
: DoesNotConform;
}
/// Returns whether the given variable conforms to the given {En,De}codable
/// protocol.
///
/// \param tc The typechecker to use in validating {En,De}codable conformance.
///
/// \param context The \c DeclContext the var declarations belong to.
///
/// \param varDecl The \c VarDecl to validate.
///
/// \param proto The \c ProtocolDecl to check conformance to.
static CodableConformanceType varConformsToCodable(TypeChecker &tc,
DeclContext *context,
VarDecl *varDecl,
ProtocolDecl *proto) {
// If the decl doesn't yet have a type, we may be seeing it before the type
// checker has gotten around to evaluating its type. For example:
//
// func foo() {
// let b = Bar(from: decoder) // <- evaluates Bar conformance to Codable,
// // forcing derivation
// }
//
// struct Bar : Codable {
// var x: Int // <- we get to valuate x's var decl here, but its type
// // hasn't yet been evaluated
// }
//
// Validate the decl eagerly.
if (!varDecl->hasType())
tc.validateDecl(varDecl);
// If the var decl didn't validate, it may still not have a type; confirm it
// has a type before ensuring the type conforms to Codable.
if (!varDecl->hasType())
return TypeNotValidated;
return typeConformsToCodable(tc, context, varDecl->getType(), proto);
}
/// Validates the given CodingKeys enum decl by ensuring its cases are a 1-to-1
/// match with the stored vars of the given type.
///
/// \param tc The typechecker to use in validating {En,De}codable conformance.
///
/// \param codingKeysDecl The \c CodingKeys enum decl to validate.
///
/// \param target The nominal type decl to validate the \c CodingKeys against.
///
/// \param proto The {En,De}codable protocol to validate all the keys conform
/// to.
static bool
validateCodingKeysEnum(TypeChecker &tc, EnumDecl *codingKeysDecl,
NominalTypeDecl *target, ProtocolDecl *proto) {
// Look through all var decls in the given type.
// * Filter out lazy/computed vars.
// * Filter out ones which are present in the given decl (by name).
//
// If any of the entries in the CodingKeys decl are not present in the type
// by name, then this decl doesn't match.
// If there are any vars left in the type which don't have a default value
// (for Decodable), then this decl doesn't match.
// Here we'll hold on to properties by name -- when we've validated a property
// against its CodingKey entry, it will get removed.
llvm::SmallDenseMap<Identifier, VarDecl *, 8> properties;
for (auto *varDecl : target->getStoredProperties(/*skipInaccessible=*/true)) {
if (varDecl->getAttrs().hasAttribute<LazyAttr>())
continue;
properties[varDecl->getName()] = varDecl;
}
bool propertiesAreValid = true;
for (auto elt : codingKeysDecl->getAllElements()) {
auto it = properties.find(elt->getName());
if (it == properties.end()) {
tc.diagnose(elt->getLoc(), diag::codable_extraneous_codingkey_case_here,
elt->getName());
// TODO: Investigate typo-correction here; perhaps the case name was
// misspelled and we can provide a fix-it.
propertiesAreValid = false;
continue;
}
// We have a property to map to. Ensure it's {En,De}codable.
auto conformance = varConformsToCodable(tc, target->getDeclContext(),
it->second, proto);
switch (conformance) {
case Conforms:
// The property was valid. Remove it from the list.
properties.erase(it);
break;
case DoesNotConform:
tc.diagnose(it->second->getLoc(),
diag::codable_non_conforming_property_here,
proto->getDeclaredType(), it->second->getType());
LLVM_FALLTHROUGH;
case TypeNotValidated:
// We don't produce a diagnostic for a type which failed to validate.
// This will produce a diagnostic elsewhere anyway.
propertiesAreValid = false;
continue;
}
}
if (!propertiesAreValid)
return false;
// If there are any remaining properties which the CodingKeys did not cover,
// we can skip them on encode. On decode, though, we can only skip them if
// they have a default value.
if (!properties.empty() &&
proto->isSpecificProtocol(KnownProtocolKind::Decodable)) {
for (auto it = properties.begin(); it != properties.end(); ++it) {
auto *varDecl = it->second;
// Optional vars (not lets!) have an implicit default value of nil.
if (!varDecl->isLet()) {
if (!varDecl->hasType())
tc.validateDecl(varDecl);
if (varDecl->hasType()) {
auto varTypeDecl = varDecl->getType()->getAnyNominal();
if (varTypeDecl == tc.Context.getOptionalDecl() ||
varTypeDecl == tc.Context.getImplicitlyUnwrappedOptionalDecl())
continue;
}
}
if (varDecl->getParentInitializer() != nullptr) {
// Var has a default value.
continue;
}
propertiesAreValid = false;
tc.diagnose(it->second->getLoc(), diag::codable_non_decoded_property_here,
proto->getDeclaredType(), it->first);
}
}
return propertiesAreValid;
}
/// A type which has information about the validity of an encountered
/// CodingKeys type.
struct CodingKeysValidity {
bool hasType;
bool isValid;
CodingKeysValidity(bool ht, bool iv) : hasType(ht), isValid(iv) {}
};
/// Returns whether the given type has a valid nested \c CodingKeys enum.
///
/// If the type has an invalid \c CodingKeys entity, produces diagnostics to
/// complain about the error. In this case, the error result will be true -- in
/// the case where we don't have a valid CodingKeys enum and have produced
/// diagnostics here, we don't want to then attempt to synthesize a CodingKeys
/// enum.
///
/// \param tc The typechecker to use in validating {En,Decodable} conformance.
///
/// \param target The type decl whose nested \c CodingKeys type to validate.
///
/// \param proto The {En,De}codable protocol to ensure the properties matching
/// the keys conform to.
///
/// \returns A \c CodingKeysValidity value representing the result of the check.
static CodingKeysValidity hasValidCodingKeysEnum(TypeChecker &tc,
NominalTypeDecl *target,
ProtocolDecl *proto) {
auto &C = tc.Context;
auto codingKeysDecls = target->lookupDirect(DeclName(C.Id_CodingKeys));
if (codingKeysDecls.empty())
return CodingKeysValidity(/*hasType=*/false, /*isValid=*/true);
// Only ill-formed code would produce multiple results for this lookup.
// This would get diagnosed later anyway, so we're free to only look at the
// first result here.
auto result = codingKeysDecls.front();
auto *codingKeysTypeDecl = dyn_cast<TypeDecl>(result);
if (!codingKeysTypeDecl) {
tc.diagnose(result->getLoc(),
diag::codable_codingkeys_type_is_not_an_enum_here,
proto->getDeclaredType());
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/false);
}
// If the decl hasn't been validated yet, do so.
tc.validateDecl(codingKeysTypeDecl);
// CodingKeys may be a typealias. If so, follow the alias to its canonical
// type.
auto codingKeysType = codingKeysTypeDecl->getDeclaredInterfaceType();
if (isa<TypeAliasDecl>(codingKeysTypeDecl))
codingKeysTypeDecl = codingKeysType->getAnyNominal();
// Ensure that the type we found conforms to the CodingKey protocol.
auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
if (!tc.conformsToProtocol(codingKeysType, codingKeyProto,
target->getDeclContext(),
ConformanceCheckFlags::Used)) {
tc.diagnose(codingKeysTypeDecl->getLoc(),
diag::codable_codingkeys_type_does_not_conform_here,
proto->getDeclaredType());
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/false);
}
// CodingKeys must be an enum for synthesized conformance.
auto *codingKeysEnum = dyn_cast<EnumDecl>(codingKeysTypeDecl);
if (!codingKeysEnum) {
tc.diagnose(codingKeysTypeDecl->getLoc(),
diag::codable_codingkeys_type_is_not_an_enum_here,
proto->getDeclaredType());
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/false);
}
bool valid = validateCodingKeysEnum(tc, codingKeysEnum, target, proto);
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/valid);
}
/// Synthesizes a new \c CodingKeys enum based on the {En,De}codable members of
/// the given type (\c nullptr if unable to synthesize).
///
/// If able to synthesize the enum, adds it directly to \c type.
///
/// \param tc The typechecker to use in validating {En,De}codable conformance.
///
/// \param target The nominal type decl whose nested \c CodingKeys type to
/// synthesize.
///
/// \param proto The {En,De}codable protocol to validate all the keys conform
/// to.
static EnumDecl *synthesizeCodingKeysEnum(TypeChecker &tc,
NominalTypeDecl *target,
ProtocolDecl *proto) {
auto &C = tc.Context;
// We want to look through all the var declarations of this type to create
// enum cases based on those var names.
auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
auto *codingKeyType = codingKeyProto->getDeclaredType();
TypeLoc protoTypeLoc[1] = {TypeLoc::withoutLoc(codingKeyType)};
MutableArrayRef<TypeLoc> inherited = C.AllocateCopy(protoTypeLoc);
auto *enumDecl = new (C) EnumDecl(SourceLoc(), C.Id_CodingKeys, SourceLoc(),
inherited, nullptr, target);
enumDecl->setImplicit();
enumDecl->setAccess(AccessLevel::Private);
// For classes which inherit from something Encodable or Decodable, we
// provide case `super` as the first key (to be used in encoding super).
auto *classDecl = dyn_cast<ClassDecl>(target);
if (classDecl &&
(superclassIsEncodable(classDecl) || superclassIsDecodable(classDecl))) {
// TODO: Ensure the class doesn't already have or inherit a variable named
// "`super`"; otherwise we will generate an invalid enum. In that case,
// diagnose and bail.
auto *super = new (C) EnumElementDecl(SourceLoc(), C.Id_super, TypeLoc(),
/*HasArgumentType=*/false,
SourceLoc(), nullptr, enumDecl);
super->setImplicit();
enumDecl->addMember(super);
}
// Each of these vars needs a case in the enum. For each var decl, if the type
// conforms to {En,De}codable, add it to the enum.
bool allConform = true;
for (auto *varDecl : target->getStoredProperties(/*skipInaccessible=*/true)) {
if (varDecl->getAttrs().hasAttribute<LazyAttr>())
continue;
auto conformance = varConformsToCodable(tc, target->getDeclContext(),
varDecl, proto);
switch (conformance) {
case Conforms:
{
auto *elt = new (C) EnumElementDecl(SourceLoc(), varDecl->getName(),
TypeLoc(),
/*HasArgumentType=*/false,
SourceLoc(), nullptr, enumDecl);
elt->setImplicit();
enumDecl->addMember(elt);
break;
}
case DoesNotConform:
tc.diagnose(varDecl->getLoc(),
diag::codable_non_conforming_property_here,
proto->getDeclaredType(), varDecl->getType());
LLVM_FALLTHROUGH;
case TypeNotValidated:
// We don't produce a diagnostic for a type which failed to validate.
// This will produce a diagnostic elsewhere anyway.
allConform = false;
continue;
}
}
if (!allConform)
return nullptr;
// Forcibly derive conformance to CodingKey.
tc.checkConformancesInContext(enumDecl, enumDecl);
// Add to the type.
target->addMember(enumDecl);
return enumDecl;
}
/// Fetches the \c CodingKeys enum nested in \c target, potentially reaching
/// through a typealias if the "CodingKeys" entity is a typealias.
///
/// This is only useful once a \c CodingKeys enum has been validated (via \c
/// hasValidCodingKeysEnum) or synthesized (via \c synthesizeCodingKeysEnum).
///
/// \param C The \c ASTContext to perform the lookup in.
///
/// \param target The target type to look in.
///
/// \return A retrieved canonical \c CodingKeys enum if \c target has a valid
/// one; \c nullptr otherwise.
static EnumDecl *lookupEvaluatedCodingKeysEnum(ASTContext &C,
NominalTypeDecl *target) {
auto codingKeyDecls = target->lookupDirect(DeclName(C.Id_CodingKeys));
if (codingKeyDecls.empty())
return nullptr;
auto *codingKeysDecl = codingKeyDecls.front();
if (auto *typealiasDecl = dyn_cast<TypeAliasDecl>(codingKeysDecl))
codingKeysDecl = typealiasDecl->getDeclaredInterfaceType()->getAnyNominal();
return dyn_cast<EnumDecl>(codingKeysDecl);
}
/// Creates a new var decl representing
///
/// var/let container : containerBase<keyType>
///
/// \c containerBase is the name of the type to use as the base (either
/// \c KeyedEncodingContainer or \c KeyedDecodingContainer).
///
/// \param C The AST context to create the decl in.
///
/// \param DC The \c DeclContext to create the decl in.
///
/// \param keyedContainerDecl The generic type to bind the key type in.
///
/// \param keyType The key type to bind to the container type.
///
/// \param spec Whether to declare the variable as immutable.
static VarDecl *createKeyedContainer(ASTContext &C, DeclContext *DC,
NominalTypeDecl *keyedContainerDecl,
Type keyType, VarDecl::Specifier spec) {
// Bind Keyed*Container to Keyed*Container<KeyType>
Type boundType[1] = {keyType};
auto containerType = BoundGenericType::get(keyedContainerDecl, Type(),
C.AllocateCopy(boundType));
// let container : Keyed*Container<KeyType>
auto *containerDecl = new (C) VarDecl(/*IsStatic=*/false, spec,
/*IsCaptureList=*/false, SourceLoc(),
C.Id_container, containerType, DC);
containerDecl->setImplicit();
containerDecl->setInterfaceType(containerType);
return containerDecl;
}
/// Creates a new \c CallExpr representing
///
/// base.container(keyedBy: CodingKeys.self)
///
/// \param C The AST context to create the expression in.
///
/// \param DC The \c DeclContext to create any decls in.
///
/// \param base The base expression to make the call on.
///
/// \param returnType The return type of the call.
///
/// \param param The parameter to the call.
static CallExpr *createContainerKeyedByCall(ASTContext &C, DeclContext *DC,
Expr *base, Type returnType,
NominalTypeDecl *param) {
// (keyedBy:)
auto *keyedByDecl = new (C) ParamDecl(VarDecl::Specifier::Owned, SourceLoc(),
SourceLoc(), C.Id_keyedBy, SourceLoc(),
C.Id_keyedBy, returnType, DC);
keyedByDecl->setImplicit();
keyedByDecl->setInterfaceType(returnType);
// container(keyedBy:) method name
auto *paramList = ParameterList::createWithoutLoc(keyedByDecl);
DeclName callName(C, C.Id_container, paramList);
// base.container(keyedBy:) expr
auto *unboundCall = new (C) UnresolvedDotExpr(base, SourceLoc(), callName,
DeclNameLoc(),
/*Implicit=*/true);
// CodingKeys.self expr
auto *codingKeysExpr = TypeExpr::createForDecl(SourceLoc(),
param,
param->getDeclContext(),
/*Implicit=*/true);
auto *codingKeysMetaTypeExpr = new (C) DotSelfExpr(codingKeysExpr,
SourceLoc(), SourceLoc());
// Full bound base.container(keyedBy: CodingKeys.self) call
Expr *args[1] = {codingKeysMetaTypeExpr};
Identifier argLabels[1] = {C.Id_keyedBy};
return CallExpr::createImplicit(C, unboundCall, C.AllocateCopy(args),
C.AllocateCopy(argLabels));
}
/// Synthesizes the body for `func encode(to encoder: Encoder) throws`.
///
/// \param encodeDecl The function decl whose body to synthesize.
static void deriveBodyEncodable_encode(AbstractFunctionDecl *encodeDecl) {
// struct Foo : Codable {
// var x: Int
// var y: String
//
// // Already derived by this point if possible.
// @derived enum CodingKeys : CodingKey {
// case x
// case y
// }
//
// @derived func encode(to encoder: Encoder) throws {
// var container = encoder.container(keyedBy: CodingKeys.self)
// try container.encode(x, forKey: .x)
// try container.encode(y, forKey: .y)
// }
// }
// The enclosing type decl.
auto *targetDecl = cast<NominalTypeDecl>(encodeDecl->getDeclContext());
auto *funcDC = cast<DeclContext>(encodeDecl);
auto &C = funcDC->getASTContext();
// We'll want the CodingKeys enum for this type, potentially looking through
// a typealias.
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetDecl);
// We should have bailed already if:
// a) The type does not have CodingKeys
// b) The type is not an enum
assert(codingKeysEnum && "Missing CodingKeys decl.");
SmallVector<ASTNode, 5> statements;
// Generate a reference to containerExpr ahead of time in case there are no
// properties to encode or decode, but the type is a class which inherits from
// something Codable and needs to encode super.
// let container : KeyedEncodingContainer<CodingKeys>
auto codingKeysType = codingKeysEnum->getDeclaredType();
auto *containerDecl = createKeyedContainer(C, funcDC,
C.getKeyedEncodingContainerDecl(),
codingKeysType,
VarDecl::Specifier::Var);
auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
DeclNameLoc(), /*Implicit=*/true,
AccessSemantics::DirectToStorage);
// Need to generate
// `let container = encoder.container(keyedBy: CodingKeys.self)`
// This is unconditional because a type with no properties should encode as an
// empty container.
//
// `let container` (containerExpr) is generated above.
// encoder
auto encoderParam = encodeDecl->getParameterList(1)->get(0);
auto *encoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(encoderParam),
DeclNameLoc(), /*Implicit=*/true);
// Bound encoder.container(keyedBy: CodingKeys.self) call
auto containerType = containerDecl->getInterfaceType();
auto *callExpr = createContainerKeyedByCall(C, funcDC, encoderExpr,
containerType, codingKeysEnum);
// Full `let container = encoder.container(keyedBy: CodingKeys.self)`
// binding.
auto *containerPattern = new (C) NamedPattern(containerDecl,
/*implicit=*/true);
auto *bindingDecl = PatternBindingDecl::create(C, SourceLoc(),
StaticSpellingKind::None,
SourceLoc(),
containerPattern, callExpr,
funcDC);
statements.push_back(bindingDecl);
statements.push_back(containerDecl);
// Now need to generate `try container.encode(x, forKey: .x)` for all
// existing properties. Optional properties get `encodeIfPresent`.
for (auto *elt : codingKeysEnum->getAllElements()) {
// Only ill-formed code would produce multiple results for this lookup.
// This would get diagnosed later anyway, so we're free to only look at
// the first result here.
auto matchingVars = targetDecl->lookupDirect(DeclName(elt->getName()));
// self.x
auto *selfRef = createSelfDeclRef(encodeDecl);
auto *varExpr = new (C) MemberRefExpr(selfRef, SourceLoc(),
ConcreteDeclRef(matchingVars[0]),
DeclNameLoc(), /*Implicit=*/true);
// CodingKeys.x
auto *eltRef = new (C) DeclRefExpr(elt, DeclNameLoc(), /*implicit=*/true);
auto *metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
auto *keyExpr = new (C) DotSyntaxCallExpr(eltRef, SourceLoc(), metaTyRef);
// encode(_:forKey:)/encodeIfPresent(_:forKey:)
auto methodName = C.Id_encode;
auto varType = cast<VarDecl>(matchingVars[0])->getType();
if (auto referenceType = varType->getAs<ReferenceStorageType>()) {
// This is a weak/unowned/unmanaged var. Get the inner type before
// checking optionality.
varType = referenceType->getReferentType();
}
if (varType->getAnyNominal() == C.getOptionalDecl() ||
varType->getAnyNominal() == C.getImplicitlyUnwrappedOptionalDecl()) {
methodName = C.Id_encodeIfPresent;
}
SmallVector<Identifier, 2> argNames{Identifier(), C.Id_forKey};
DeclName name(C, methodName, argNames);
auto *encodeCall = new (C) UnresolvedDotExpr(containerExpr, SourceLoc(),
name, DeclNameLoc(),
/*Implicit=*/true);
// container.encode(self.x, forKey: CodingKeys.x)
Expr *args[2] = {varExpr, keyExpr};
auto *callExpr = CallExpr::createImplicit(C, encodeCall,
C.AllocateCopy(args),
C.AllocateCopy(argNames));
// try container.encode(self.x, forKey: CodingKeys.x)
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*Implicit=*/true);
statements.push_back(tryExpr);
}
// Classes which inherit from something Codable should encode super as well.
auto *classDecl = dyn_cast<ClassDecl>(targetDecl);
if (classDecl && superclassIsEncodable(classDecl)) {
// Need to generate `try super.encode(to: container.superEncoder())`
// superEncoder()
auto *method = new (C) UnresolvedDeclRefExpr(DeclName(C.Id_superEncoder),
DeclRefKind::Ordinary,
DeclNameLoc());
// container.superEncoder()
auto *superEncoderRef = new (C) DotSyntaxCallExpr(containerExpr,
SourceLoc(), method);
// encode(to:) expr
auto *encodeDeclRef = new (C) DeclRefExpr(ConcreteDeclRef(encodeDecl),
DeclNameLoc(), /*Implicit=*/true);
// super
auto *superRef = new (C) SuperRefExpr(encodeDecl->getImplicitSelfDecl(),
SourceLoc(), /*Implicit=*/true);
// super.encode(to:)
auto *encodeCall = new (C) DotSyntaxCallExpr(superRef, SourceLoc(),
encodeDeclRef);
// super.encode(to: container.superEncoder())
Expr *args[1] = {superEncoderRef};
Identifier argLabels[1] = {C.Id_to};
auto *callExpr = CallExpr::createImplicit(C, encodeCall,
C.AllocateCopy(args),
C.AllocateCopy(argLabels));
// try super.encode(to: container.superEncoder())
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*Implicit=*/true);
statements.push_back(tryExpr);
}
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
/*implicit=*/true);
encodeDecl->setBody(body);
}
/// Synthesizes a function declaration for `encode(to: Encoder) throws` with a
/// lazily synthesized body for the given type.
///
/// Adds the function declaration to the given type before returning it.
///
/// \param tc The type checker whose AST context to synthesize the decl in.
///
/// \param parentDecl The parent declaration of the type.
///
/// \param target The nominal type to synthesize the function for.
static FuncDecl *deriveEncodable_encode(TypeChecker &tc, Decl *parentDecl,
NominalTypeDecl *target) {
auto &C = tc.Context;
// Expected type: (Self) -> (Encoder) throws -> ()
// Constructed as: func type
// input: Self
// throws
// output: function type
// input: Encoder
// output: ()
// Create from the inside out:
// (to: Encoder)
auto encoderType = C.getEncoderDecl()->getDeclaredInterfaceType();
auto inputTypeElt = TupleTypeElt(encoderType, C.Id_to);
auto inputType = TupleType::get(ArrayRef<TupleTypeElt>(inputTypeElt), C);
// throws
auto extInfo = FunctionType::ExtInfo(FunctionTypeRepresentation::Swift,
/*Throws=*/true);
// ()
auto returnType = TupleType::getEmpty(C);
// (to: Encoder) throws -> ()
auto innerType = FunctionType::get(inputType, returnType, extInfo);
// Params: (self [implicit], Encoder)
auto *selfDecl = ParamDecl::createSelf(SourceLoc(), target);
auto *encoderParam = new (C) ParamDecl(VarDecl::Specifier::Owned, SourceLoc(),
SourceLoc(), C.Id_to, SourceLoc(),
C.Id_encoder, encoderType, target);
encoderParam->setInterfaceType(encoderType);
ParameterList *params[] = {ParameterList::createWithoutLoc(selfDecl),
ParameterList::createWithoutLoc(encoderParam)};
// Func name: encode(to: Encoder)
DeclName name(C, C.Id_encode, params[1]);
auto *encodeDecl = FuncDecl::create(C, SourceLoc(), StaticSpellingKind::None,
SourceLoc(), name, SourceLoc(),
/*Throws=*/true, SourceLoc(), SourceLoc(),
nullptr, params,
TypeLoc::withoutLoc(returnType),
target);
encodeDecl->setImplicit();
encodeDecl->setBodySynthesizer(deriveBodyEncodable_encode);
// This method should be marked as 'override' for classes inheriting Encodable
// conformance from a parent class.
auto *classDecl = dyn_cast<ClassDecl>(target);
if (classDecl && superclassIsEncodable(classDecl)) {
auto *attr = new (C) SimpleDeclAttr<DAK_Override>(/*IsImplicit=*/true);
encodeDecl->getAttrs().add(attr);
}
// Evaluate the type of Self in (Self) -> (Encoder) throws -> ().
Type selfType = target->getDeclaredInterfaceType();
Type interfaceType;
if (auto sig = target->getGenericSignatureOfContext()) {
// Evaluate the below, but in a generic environment (if Self is generic).
encodeDecl->setGenericEnvironment(target->getGenericEnvironmentOfContext());
interfaceType = GenericFunctionType::get(sig, selfType, innerType,
FunctionType::ExtInfo());
} else {
// (Self) -> innerType == (Encoder) throws -> ()
interfaceType = FunctionType::get(selfType, innerType);
}
encodeDecl->setInterfaceType(interfaceType);
encodeDecl->setAccess(target->getFormalAccess());
// If the type was not imported, the derived conformance is either from the
// type itself or an extension, in which case we will emit the declaration
// normally.
if (target->hasClangNode())
tc.Context.addExternalDecl(encodeDecl);
target->addMember(encodeDecl);
return encodeDecl;
}
/// Synthesizes the body for `init(from decoder: Decoder) throws`.
///
/// \param initDecl The function decl whose body to synthesize.
static void deriveBodyDecodable_init(AbstractFunctionDecl *initDecl) {
// struct Foo : Codable {
// var x: Int
// var y: String
//
// // Already derived by this point if possible.
// @derived enum CodingKeys : CodingKey {
// case x
// case y
// }
//
// @derived init(from decoder: Decoder) throws {
// let container = try decoder.container(keyedBy: CodingKeys.self)
// x = try container.decode(Type.self, forKey: .x)
// y = try container.decode(Type.self, forKey: .y)
// }
// }
// The enclosing type decl.
auto *targetDecl = cast<NominalTypeDecl>(initDecl->getDeclContext());
auto *funcDC = cast<DeclContext>(initDecl);
auto &C = funcDC->getASTContext();
// We'll want the CodingKeys enum for this type, potentially looking through
// a typealias.
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetDecl);
// We should have bailed already if:
// a) The type does not have CodingKeys
// b) The type is not an enum
assert(codingKeysEnum && "Missing CodingKeys decl.");
// Generate a reference to containerExpr ahead of time in case there are no
// properties to encode or decode, but the type is a class which inherits from
// something Codable and needs to decode super.
// let container : KeyedDecodingContainer<CodingKeys>
auto codingKeysType = codingKeysEnum->getDeclaredType();
auto *containerDecl = createKeyedContainer(C, funcDC,
C.getKeyedDecodingContainerDecl(),
codingKeysType,
VarDecl::Specifier::Let);
auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
DeclNameLoc(), /*Implicit=*/true,
AccessSemantics::DirectToStorage);
SmallVector<ASTNode, 5> statements;
auto enumElements = codingKeysEnum->getAllElements();
if (!enumElements.empty()) {
// Need to generate
// `let container = try decoder.container(keyedBy: CodingKeys.self)`
// `let container` (containerExpr) is generated above.
// decoder
auto decoderParam = initDecl->getParameterList(1)->get(0);
auto *decoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(decoderParam),
DeclNameLoc(), /*Implicit=*/true);
// Bound decoder.container(keyedBy: CodingKeys.self) call
auto containerType = containerDecl->getInterfaceType();
auto *callExpr = createContainerKeyedByCall(C, funcDC, decoderExpr,
containerType, codingKeysEnum);
// try decoder.container(keyedBy: CodingKeys.self)
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*implicit=*/true);
// Full `let container = decoder.container(keyedBy: CodingKeys.self)`
// binding.
auto *containerPattern = new (C) NamedPattern(containerDecl,
/*implicit=*/true);
auto *bindingDecl = PatternBindingDecl::create(C, SourceLoc(),
StaticSpellingKind::None,
SourceLoc(),
containerPattern, tryExpr,
funcDC);
statements.push_back(bindingDecl);
statements.push_back(containerDecl);
// Now need to generate `x = try container.decode(Type.self, forKey: .x)`
// for all existing properties. Optional properties get `decodeIfPresent`.
for (auto *elt : enumElements) {
// Only ill-formed code would produce multiple results for this lookup.
// This would get diagnosed later anyway, so we're free to only look at
// the first result here.
auto matchingVars = targetDecl->lookupDirect(DeclName(elt->getName()));
auto *varDecl = cast<VarDecl>(matchingVars[0]);
// Don't output a decode statement for a var let with a default value.
if (varDecl->isLet() && varDecl->getParentInitializer() != nullptr)
continue;
// Potentially unwrap a layer of optionality from the var type. If the var
// is Optional<T>, we want to decodeIfPresent(T.self, forKey: ...);
// otherwise, we can just decode(T.self, forKey: ...).
// This is also true if the type is an ImplicitlyUnwrappedOptional.
auto varType = varDecl->getType();
auto methodName = C.Id_decode;
if (auto referenceType = varType->getAs<ReferenceStorageType>()) {
// This is a weak/unowned/unmanaged var. Get the inner type before
// checking optionality.
varType = referenceType->getReferentType();
}
if (varType->getAnyNominal() == C.getOptionalDecl() ||
varType->getAnyNominal() == C.getImplicitlyUnwrappedOptionalDecl()) {
methodName = C.Id_decodeIfPresent;
// The type we request out of decodeIfPresent needs to be unwrapped
// one level.
// e.g. String? => decodeIfPresent(String.self, forKey: ...), not
// decodeIfPresent(String?.self, forKey: ...)
auto boundOptionalType =
dyn_cast<BoundGenericType>(varType->getCanonicalType());
varType = boundOptionalType->getGenericArgs()[0];
}
// Type.self (where Type === type(of: x))
// Calculating the metatype needs to happen after potential Optional
// unwrapping above.
auto *metaTyRef = TypeExpr::createImplicit(varType, C);
auto *targetExpr = new (C) DotSelfExpr(metaTyRef, SourceLoc(),
SourceLoc(), varType);
// CodingKeys.x
auto *eltRef = new (C) DeclRefExpr(elt, DeclNameLoc(), /*implicit=*/true);
metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
auto *keyExpr = new (C) DotSyntaxCallExpr(eltRef, SourceLoc(), metaTyRef);
// decode(_:forKey:)/decodeIfPresent(_:forKey:)
SmallVector<Identifier, 2> argNames{Identifier(), C.Id_forKey};
DeclName name(C, methodName, argNames);
auto *decodeCall = new (C) UnresolvedDotExpr(containerExpr, SourceLoc(),
name, DeclNameLoc(),
/*Implicit=*/true);
// container.decode(Type.self, forKey: CodingKeys.x)
Expr *args[2] = {targetExpr, keyExpr};
auto *callExpr = CallExpr::createImplicit(C, decodeCall,
C.AllocateCopy(args),
C.AllocateCopy(argNames));
// try container.decode(Type.self, forKey: CodingKeys.x)
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*Implicit=*/true);
auto *selfRef = createSelfDeclRef(initDecl);
auto *varExpr = new (C) UnresolvedDotExpr(selfRef, SourceLoc(),
DeclName(varDecl->getName()),
DeclNameLoc(),
/*implicit=*/true);
auto *assignExpr = new (C) AssignExpr(varExpr, SourceLoc(), tryExpr,
/*Implicit=*/true);
statements.push_back(assignExpr);
}
}
// Classes which have a superclass must call super.init(from:) if the
// superclass is Decodable, or super.init() if it is not.
if (auto *classDecl = dyn_cast<ClassDecl>(targetDecl)) {
if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
if (superclassIsDecodable(classDecl)) {
// Need to generate `try super.init(from: container.superDecoder())`
// container.superDecoder
auto *superDecoderRef =
new (C) UnresolvedDotExpr(containerExpr, SourceLoc(),
DeclName(C.Id_superDecoder),
DeclNameLoc(), /*Implicit=*/true);
// container.superDecoder()
auto *superDecoderCall =
CallExpr::createImplicit(C, superDecoderRef, ArrayRef<Expr *>(),
ArrayRef<Identifier>());
// super
auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
SourceLoc(), /*Implicit=*/true);
// super.init(from:)
auto initName = DeclName(C, C.Id_init, C.Id_from);
auto *initCall = new (C) UnresolvedDotExpr(superRef, SourceLoc(),
initName, DeclNameLoc(),
/*Implicit=*/true);
// super.decode(from: container.superDecoder())
Expr *args[1] = {superDecoderCall};
Identifier argLabels[1] = {C.Id_from};
auto *callExpr = CallExpr::createImplicit(C, initCall,
C.AllocateCopy(args),
C.AllocateCopy(argLabels));
// try super.init(from: container.superDecoder())
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*Implicit=*/true);
statements.push_back(tryExpr);
} else {
// The explicit constructor name is a compound name taking no arguments.
DeclName initName(C, C.Id_init, ArrayRef<Identifier>());
// We need to look this up in the superclass to see if it throws.
auto result = superclassDecl->lookupDirect(initName);
// We should have bailed one level up if this were not available.
assert(!result.empty());
// If the init is failable, we should have already bailed one level
// above.
ConstructorDecl *superInitDecl = cast<ConstructorDecl>(result.front());
assert(superInitDecl->getFailability() == OTK_None);
// super
auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
SourceLoc(), /*Implicit=*/true);
// super.init()
auto *superInitRef = new (C) UnresolvedDotExpr(superRef, SourceLoc(),
initName, DeclNameLoc(),
/*Implicit=*/true);
// super.init() call
Expr *callExpr = CallExpr::createImplicit(C, superInitRef,
ArrayRef<Expr *>(),
ArrayRef<Identifier>());
// If super.init throws, try super.init()
if (superInitDecl->hasThrows())
callExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*Implicit=*/true);
statements.push_back(callExpr);
}
}
}
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
/*implicit=*/true);
initDecl->setBody(body);
}
/// Synthesizes a function declaration for `init(from: Decoder) throws` with a
/// lazily synthesized body for the given type.
///
/// Adds the function declaration to the given type before returning it.
///
/// \param tc The type checker whose AST context to synthesize the decl in.
///
/// \param parentDecl The parent declaration of the type.
///
/// \param target The nominal type to synthesize the function for.
static ValueDecl *deriveDecodable_init(TypeChecker &tc, Decl *parentDecl,
NominalTypeDecl *target) {
auto &C = tc.Context;
// Expected type: (Self) -> (Decoder) throws -> (Self)
// Constructed as: func type
// input: Self
// throws
// output: function type
// input: Encoder
// output: Self
// Compute from the inside out:
// (from: Decoder)
auto decoderType = C.getDecoderDecl()->getDeclaredInterfaceType();
auto inputTypeElt = TupleTypeElt(decoderType, C.Id_from);
auto inputType = TupleType::get(ArrayRef<TupleTypeElt>(inputTypeElt), C);
// throws
auto extInfo = FunctionType::ExtInfo(FunctionTypeRepresentation::Swift,
/*Throws=*/true);
// (Self)
auto returnType = target->getDeclaredInterfaceType();
// (from: Decoder) throws -> (Self)
Type innerType = FunctionType::get(inputType, returnType, extInfo);
// Params: (self [implicit], Decoder)
// self should be inout if the type is a value type; not inout otherwise.
auto inOut = !isa<ClassDecl>(target);
auto *selfDecl = ParamDecl::createSelf(SourceLoc(), target,
/*isStatic=*/false,
/*isInOut=*/inOut);
auto *decoderParamDecl = new (C) ParamDecl(VarDecl::Specifier::Owned,
SourceLoc(),
SourceLoc(), C.Id_from,
SourceLoc(), C.Id_decoder,
decoderType, target);
decoderParamDecl->setImplicit();
decoderParamDecl->setInterfaceType(decoderType);
auto *paramList = ParameterList::createWithoutLoc(decoderParamDecl);
// Func name: init(from: Decoder)
DeclName name(C, C.Id_init, paramList);
auto *initDecl = new (C) ConstructorDecl(name, SourceLoc(), OTK_None,
SourceLoc(), /*Throws=*/true,
SourceLoc(), selfDecl, paramList,
/*GenericParams=*/nullptr, target);
initDecl->setImplicit();
initDecl->setBodySynthesizer(deriveBodyDecodable_init);
// This constructor should be marked as `required` for non-final classes.
if (isa<ClassDecl>(target) && !target->getAttrs().hasAttribute<FinalAttr>()) {
auto *reqAttr = new (C) SimpleDeclAttr<DAK_Required>(/*IsImplicit=*/true);
initDecl->getAttrs().add(reqAttr);
}
auto selfParam = computeSelfParam(initDecl);
auto initSelfParam = computeSelfParam(initDecl, /*init=*/true);
Type interfaceType;
Type initializerType;
if (auto sig = target->getGenericSignatureOfContext()) {
// Evaluate the below, but in a generic environment (if Self is generic).
initDecl->setGenericEnvironment(target->getGenericEnvironmentOfContext());
interfaceType = GenericFunctionType::get(sig, {selfParam}, innerType,
FunctionType::ExtInfo());
initializerType = GenericFunctionType::get(sig, {initSelfParam}, innerType,
FunctionType::ExtInfo());
} else {
// (Self) -> (Decoder) throws -> (Self)
interfaceType = FunctionType::get({selfParam}, innerType,
FunctionType::ExtInfo());
initializerType = FunctionType::get({initSelfParam}, innerType,
FunctionType::ExtInfo());
}
initDecl->setInterfaceType(interfaceType);
initDecl->setInitializerInterfaceType(initializerType);
initDecl->setAccess(target->getFormalAccess());
// If the type was not imported, the derived conformance is either from the
// type itself or an extension, in which case we will emit the declaration
// normally.
if (target->hasClangNode())
tc.Context.addExternalDecl(initDecl);
target->addMember(initDecl);
return initDecl;
}
/// Returns whether the given type is valid for synthesizing {En,De}codable.
///
/// Checks to see whether the given type has a valid \c CodingKeys enum, and if
/// not, attempts to synthesize one for it.
///
/// \param tc The typechecker to use in validating {En,Decodable} conformance.
///
/// \param target The type to validate.
///
/// \param requirement The requirement we want to synthesize.
///
/// \param proto The *codable protocol to check for validity.
static bool canSynthesize(TypeChecker &tc, NominalTypeDecl *target,
ValueDecl *requirement, ProtocolDecl *proto) {
// Before we attempt to look up (or more importantly, synthesize) a CodingKeys
// entity on target, we need to make sure the type is otherwise valid.
//
// If we are synthesizing Decodable and the target is a class with a
// superclass, our synthesized init(from:) will need to call either
// super.init(from:) or super.init() depending on whether the superclass is
// Decodable itself.
//
// If the required initializer is not available, we shouldn't attempt to
// synthesize CodingKeys.
ASTContext &C = tc.Context;
auto *classDecl = dyn_cast<ClassDecl>(target);
if (proto->isSpecificProtocol(KnownProtocolKind::Decodable) && classDecl) {
if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
DeclName memberName;
auto superType = superclassDecl->getDeclaredInterfaceType();
if (tc.conformsToProtocol(superType, proto, superclassDecl,
ConformanceCheckFlags::Used)) {
// super.init(from:) must be accessible.
memberName = cast<ConstructorDecl>(requirement)->getFullName();
} else {
// super.init() must be accessible.
// Passing an empty params array constructs a compound name with no
// arguments (as opposed to a simple name when omitted).
memberName = DeclName(C, DeclBaseName(C.Id_init),
ArrayRef<Identifier>());
}
auto result = tc.lookupMember(superclassDecl, superType, memberName);
if (result.empty()) {
// No super initializer for us to call.
tc.diagnose(superclassDecl, diag::decodable_no_super_init_here,
requirement->getFullName(), memberName);
return false;
} else if (result.size() > 1) {
// There are multiple results for this lookup. We'll end up producing a
// diagnostic later complaining about duplicate methods (if we haven't
// already), so just bail with a general error.
return false;
} else {
auto *initializer =
cast<ConstructorDecl>(result.front().getValueDecl());
if (!initializer->isDesignatedInit()) {
// We must call a superclass's designated initializer.
tc.diagnose(initializer,
diag::decodable_super_init_not_designated_here,
requirement->getFullName(), memberName);
return false;
} else if (!initializer->isAccessibleFrom(target)) {
// Cannot call an inaccessible method.
auto accessScope = initializer->getFormalAccessScope(target);
tc.diagnose(initializer, diag::decodable_inaccessible_super_init_here,
requirement->getFullName(), memberName,
accessScope.accessLevelForDiagnostics());
return false;
} else if (initializer->getFailability() != OTK_None) {
// We can't call super.init() if it's failable, since init(from:)
// isn't failable.
tc.diagnose(initializer, diag::decodable_super_init_is_failable_here,
requirement->getFullName(), memberName);
return false;
}
}
}
}
// If the target already has a valid CodingKeys enum, we won't need to
// synthesize one.
auto validity = hasValidCodingKeysEnum(tc, target, proto);
// We found a type, but it wasn't valid.
if (!validity.isValid)
return false;
// We can try to synthesize a type here.
if (!validity.hasType) {
auto *synthesizedEnum = synthesizeCodingKeysEnum(tc, target, proto);
if (!synthesizedEnum)
return false;
}
return true;
}
ValueDecl *DerivedConformance::deriveEncodable(TypeChecker &tc,
Decl *parentDecl,
NominalTypeDecl *target,
ValueDecl *requirement) {
// We can only synthesize Encodable for structs and classes.
if (!isa<StructDecl>(target) && !isa<ClassDecl>(target))
return nullptr;
if (requirement->getBaseName() != tc.Context.Id_encode) {
// Unknown requirement.
tc.diagnose(requirement->getLoc(), diag::broken_encodable_requirement);
return nullptr;
}
// Conformance can't be synthesized in an extension.
auto encodableProto = tc.Context.getProtocol(KnownProtocolKind::Encodable);
auto encodableType = encodableProto->getDeclaredType();
if (target != parentDecl) {
tc.diagnose(parentDecl->getLoc(), diag::cannot_synthesize_in_extension,
encodableType);
return nullptr;
}
// We're about to try to synthesize Encodable. If something goes wrong,
// we'll have to output at least one error diagnostic because we returned
// true from NominalTypeDecl::derivesProtocolConformance; if we don't, we're
// expected to return a witness here later (and we crash on an assertion).
// Producing a diagnostic stops compilation before then.
//
// A synthesis attempt will produce NOTE diagnostics throughout, but we'll
// want to collect them before displaying -- we want NOTEs to display
// _after_ a main diagnostic so we don't get a NOTE before the error it
// relates to.
//
// We can do this with a diagnostic transaction -- first collect failure
// diagnostics, then potentially collect notes. If we succeed in
// synthesizing Encodable, we can cancel the transaction and get rid of the
// fake failures.
auto diagnosticTransaction = DiagnosticTransaction(tc.Context.Diags);
tc.diagnose(target, diag::type_does_not_conform, target->getDeclaredType(),
encodableType);
tc.diagnose(requirement, diag::no_witnesses, diag::RequirementKind::Func,
requirement->getFullName(), encodableType, /*AddFixIt=*/false);
// Check other preconditions for synthesized conformance.
// This synthesizes a CodingKeys enum if possible.
if (canSynthesize(tc, target, requirement, encodableProto)) {
diagnosticTransaction.abort();
return deriveEncodable_encode(tc, parentDecl, target);
}
return nullptr;
}
ValueDecl *DerivedConformance::deriveDecodable(TypeChecker &tc,
Decl *parentDecl,
NominalTypeDecl *target,
ValueDecl *requirement) {
// We can only synthesize Encodable for structs and classes.
if (!isa<StructDecl>(target) && !isa<ClassDecl>(target))
return nullptr;
if (requirement->getBaseName() != tc.Context.Id_init) {
// Unknown requirement.
tc.diagnose(requirement->getLoc(), diag::broken_decodable_requirement);
return nullptr;
}
// Conformance can't be synthesized in an extension.
auto decodableProto = tc.Context.getProtocol(KnownProtocolKind::Decodable);
auto decodableType = decodableProto->getDeclaredType();
if (target != parentDecl) {
tc.diagnose(parentDecl->getLoc(), diag::cannot_synthesize_in_extension,
decodableType);
return nullptr;
}
// We're about to try to synthesize Decodable. If something goes wrong,
// we'll have to output at least one error diagnostic. We need to collate
// diagnostics produced by canSynthesize and deriveDecodable_init to produce
// them in the right order -- see the comment in deriveEncodable for
// background on this transaction.
auto diagnosticTransaction = DiagnosticTransaction(tc.Context.Diags);
tc.diagnose(target, diag::type_does_not_conform, target->getDeclaredType(),
decodableType);
tc.diagnose(requirement, diag::no_witnesses,
diag::RequirementKind::Constructor, requirement->getFullName(),
decodableType, /*AddFixIt=*/false);
// Check other preconditions for synthesized conformance.
// This synthesizes a CodingKeys enum if possible.
if (canSynthesize(tc, target, requirement, decodableProto)) {
diagnosticTransaction.abort();
return deriveDecodable_init(tc, parentDecl, target);
}
return nullptr;
}