blob: ecdd37f137a8326bc91413bb72042e132cf40140 [file] [log] [blame]
//===--- TaskQueue.inc - Unix-specific TaskQueue ----------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/TaskQueue.h"
#include "swift/Basic/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/ErrorHandling.h"
#include <string>
#include <cerrno>
#if HAVE_POSIX_SPAWN
#include <spawn.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#if defined(HAVE_GETRUSAGE) && !defined(__HAIKU__)
#include <sys/resource.h>
#endif
#include <poll.h>
#include <sys/types.h>
#include <sys/wait.h>
#if !defined(__APPLE__)
extern char **environ;
#else
extern "C" {
// _NSGetEnviron is from crt_externs.h which is missing in the iOS SDK.
extern char ***_NSGetEnviron(void);
}
#endif
namespace swift {
namespace sys {
#if defined(HAVE_GETRUSAGE) && !defined(__HAIKU__)
TaskProcessInformation::TaskProcessInformation(ProcessId Pid, struct rusage Usage)
: TaskProcessInformation(Pid,
uint64_t(Usage.ru_utime.tv_sec) * 1000000 +
uint64_t(Usage.ru_utime.tv_usec),
uint64_t(Usage.ru_stime.tv_sec) * 1000000 +
uint64_t(Usage.ru_stime.tv_usec),
Usage.ru_maxrss) {
#ifndef __APPLE__
// Apple systems report bytes; everything else appears to report KB.
this->ProcessUsage.getValue().Maxrss <<= 10;
#endif // __APPLE__
}
#endif // defined(HAVE_GETRUSAGE) && !defined(__HAIKU__)
class Task {
/// The path to the executable which this Task will execute.
const char *ExecPath;
/// Any arguments which should be passed during execution.
ArrayRef<const char *> Args;
/// The environment which will be used during execution. If empty, uses
/// this process's environment.
ArrayRef<const char *> Env;
/// Context which should be associated with this task.
void *Context;
/// True if the errors of the Task should be stored in Errors instead of Output.
bool SeparateErrors;
/// The pid of this Task when executing.
pid_t Pid;
/// A pipe for reading output from the child process.
int Pipe;
/// A pipe for reading errors from the child prcess, if SeparateErrors is true.
int ErrorPipe;
/// The current state of the Task.
enum class TaskState { Preparing, Executing, Finished } State;
/// Once the Task has finished, this contains the buffered output of the Task.
std::string Output;
/// Once the Task has finished, if SeparateErrors is true, this contains the
/// errors from the Task.
std::string Errors;
/// Optional place to count I/O and subprocess events.
UnifiedStatsReporter *Stats;
public:
Task(const char *ExecPath, ArrayRef<const char *> Args,
ArrayRef<const char *> Env, void *Context, bool SeparateErrors,
UnifiedStatsReporter *USR)
: ExecPath(ExecPath), Args(Args), Env(Env), Context(Context),
SeparateErrors(SeparateErrors), Pid(-1), Pipe(-1), ErrorPipe(-1),
State(TaskState::Preparing), Stats(USR) {
assert((Env.empty() || Env.back() == nullptr) &&
"Env must either be empty or null-terminated!");
}
const char *getExecPath() const { return ExecPath; }
ArrayRef<const char *> getArgs() const { return Args; }
StringRef getOutput() const { return Output; }
StringRef getErrors() const { return Errors; }
void *getContext() const { return Context; }
pid_t getPid() const { return Pid; }
int getPipe() const { return Pipe; }
int getErrorPipe() const { return ErrorPipe; }
/// \brief Begins execution of this Task.
/// \returns true on error.
bool execute();
/// \brief Reads data from the pipes, if any is available.
///
/// If \p UntilEnd is true, reads until the end of the stream; otherwise reads
/// once (possibly with a retry on EINTR), and returns.
/// \returns true on error.
bool readFromPipes(bool UntilEnd);
/// \brief Performs any post-execution work for this Task, such as reading
/// piped output and closing the pipe.
void finishExecution();
};
} // end namespace sys
} // end namespace swift
bool Task::execute() {
assert(State < TaskState::Executing && "This Task cannot be executed twice!");
State = TaskState::Executing;
// Construct argv.
SmallVector<const char *, 128> Argv;
Argv.push_back(ExecPath);
Argv.append(Args.begin(), Args.end());
Argv.push_back(0); // argv is expected to be null-terminated.
// Set up the pipe.
int FullPipe[2];
pipe(FullPipe);
Pipe = FullPipe[0];
int FullErrorPipe[2];
if (SeparateErrors) {
pipe(FullErrorPipe);
ErrorPipe = FullErrorPipe[0];
}
// Get the environment to pass down to the subtask.
const char *const *envp = Env.empty() ? nullptr : Env.data();
if (!envp) {
#if __APPLE__
envp = *_NSGetEnviron();
#else
envp = environ;
#endif
}
const char **argvp = Argv.data();
#if HAVE_POSIX_SPAWN
posix_spawn_file_actions_t FileActions;
posix_spawn_file_actions_init(&FileActions);
posix_spawn_file_actions_adddup2(&FileActions, FullPipe[1], STDOUT_FILENO);
if (SeparateErrors) {
posix_spawn_file_actions_adddup2(&FileActions, FullErrorPipe[1],
STDERR_FILENO);
} else {
posix_spawn_file_actions_adddup2(&FileActions, STDOUT_FILENO,
STDERR_FILENO);
}
posix_spawn_file_actions_addclose(&FileActions, FullPipe[0]);
if (SeparateErrors) {
posix_spawn_file_actions_addclose(&FileActions, FullErrorPipe[0]);
}
// Spawn the subtask.
int spawnErr =
posix_spawn(&Pid, ExecPath, &FileActions, nullptr,
const_cast<char **>(argvp), const_cast<char **>(envp));
posix_spawn_file_actions_destroy(&FileActions);
close(FullPipe[1]);
if (SeparateErrors) {
close(FullErrorPipe[1]);
}
if (spawnErr != 0 || Pid == 0) {
close(FullPipe[0]);
if (SeparateErrors) {
close(FullErrorPipe[0]);
}
State = TaskState::Finished;
return true;
}
#else
Pid = fork();
switch (Pid) {
case -1: {
close(FullPipe[0]);
if (SeparateErrors) {
close(FullErrorPipe[0]);
}
State = TaskState::Finished;
Pid = 0;
break;
}
case 0: {
// Child process: Execute the program.
dup2(FullPipe[1], STDOUT_FILENO);
if (SeparateErrors) {
dup2(FullErrorPipe[1], STDERR_FILENO);
} else {
dup2(STDOUT_FILENO, STDERR_FILENO);
}
close(FullPipe[0]);
if (SeparateErrors) {
close(FullErrorPipe[0]);
}
execve(ExecPath, const_cast<char **>(argvp), const_cast<char **>(envp));
// If the execve() failed, we should exit. Follow Unix protocol and
// return 127 if the executable was not found, and 126 otherwise.
// Use _exit rather than exit so that atexit functions and static
// object destructors cloned from the parent process aren't
// redundantly run, and so that any data buffered in stdio buffers
// cloned from the parent aren't redundantly written out.
_exit(errno == ENOENT ? 127 : 126);
}
default:
// Parent process: Break out of the switch to do our processing.
break;
}
close(FullPipe[1]);
if (SeparateErrors) {
close(FullErrorPipe[1]);
}
if (Pid == 0)
return true;
#endif
return false;
}
/// Read the data in \p Pipe, and append it to \p Output.
/// \p Pipe must be in blocking mode, and must contain unread data.
/// If \p UntilEnd is true, keep reading, and possibly blocking, till the pipe
/// is closed. If \p UntilEnd is false, just read once. Return true if error
static bool readFromAPipe(std::string &Output, int Pipe,
UnifiedStatsReporter *Stats, bool UntilEnd) {
char outputBuffer[1024];
ssize_t readBytes = 0;
while ((readBytes = read(Pipe, outputBuffer, sizeof(outputBuffer))) != 0) {
if (readBytes < 0) {
if (errno == EINTR)
// read() was interrupted, so try again.
// Q: Why isn't there a counter to break out of this loop if there are
// more than some number of EINTRs?
// A: EINTR on a blocking read means only one thing: the syscall was
// interrupted and the program should retry. So there is no need to
// stop retrying after any particular number of interruptions (any
// more than the program would stop reading after a particular number
// of bytes or whatever).
continue;
return true;
}
Output.append(outputBuffer, readBytes);
if (Stats)
Stats->getDriverCounters().NumDriverPipeReads++;
if (!UntilEnd)
break;
}
return false;
}
bool Task::readFromPipes(bool UntilEnd) {
bool Ret = readFromAPipe(Output, Pipe, Stats, UntilEnd);
if (SeparateErrors) {
Ret |= readFromAPipe(Errors, ErrorPipe, Stats, UntilEnd);
}
return Ret;
}
void Task::finishExecution() {
assert(State == TaskState::Executing &&
"This Task must be executing to finish execution!");
State = TaskState::Finished;
// Read the output of the command, so we can use it later.
readFromPipes(/*UntilEnd*/ false);
close(Pipe);
if (SeparateErrors) {
close(ErrorPipe);
}
}
bool TaskQueue::supportsBufferingOutput() {
// The Unix implementation supports buffering output.
return true;
}
bool TaskQueue::supportsParallelExecution() {
// The Unix implementation supports parallel execution.
return true;
}
unsigned TaskQueue::getNumberOfParallelTasks() const {
// TODO: add support for choosing a better default value for
// MaxNumberOfParallelTasks if NumberOfParallelTasks is 0. (Optimally, this
// should choose a value > 1 tailored to the current system.)
return NumberOfParallelTasks > 0 ? NumberOfParallelTasks : 1;
}
void TaskQueue::addTask(const char *ExecPath, ArrayRef<const char *> Args,
ArrayRef<const char *> Env, void *Context,
bool SeparateErrors) {
std::unique_ptr<Task> T(
new Task(ExecPath, Args, Env, Context, SeparateErrors, Stats));
QueuedTasks.push(std::move(T));
}
/// Owns Tasks, handles correspondence between Tasks, file descriptors, and
/// process IDs.
/// FIXME: only handles stdout pipes, ignores stderr pipes.
class TaskMap {
using PidToTaskMap = llvm::DenseMap<pid_t, std::unique_ptr<Task>>;
PidToTaskMap TasksByPid;
public:
TaskMap() = default;
bool empty() const { return TasksByPid.empty(); }
unsigned size() const { return TasksByPid.size(); }
void add(std::unique_ptr<Task> T) { TasksByPid[T->getPid()] = std::move(T); }
Task &findTaskForFd(const int fd) {
auto predicate = [&fd](PidToTaskMap::value_type &value) -> bool {
return value.second->getPipe() == fd;
};
auto iter = std::find_if(TasksByPid.begin(), TasksByPid.end(), predicate);
assert(iter != TasksByPid.end() &&
"All outstanding fds must be associated with a Task");
return *iter->second;
}
void destroyTask(Task &T) { TasksByPid.erase(T.getPid()); }
};
/// Concurrently execute the tasks in the TaskQueue, collecting the outputs from
/// each task.
/// Maintain invarients connecting tasks to execute, tasks currently executing,
/// and fds being polled. These invarients include:
/// A task is not in both TasksToBeExecuted and TasksBeingExecuted,
/// A task is executing iff it is in TasksBeingExecuted,
/// A task is executing iff any of its fds being polled are in FdsBeingPolled
/// (These should be all of its output fds, but today is only stdout.)
/// When a task has finished executing, wait for it to die, takes
/// action appropriate to the cause of death, then reclaim its
/// storage.
class TaskMonitor {
std::queue<std::unique_ptr<Task>> &TasksToBeExecuted;
TaskMap TasksBeingExecuted;
std::vector<struct pollfd> FdsBeingPolled;
const unsigned MaxNumberOfParallelTasks;
public:
struct Callbacks {
const TaskQueue::TaskBeganCallback TaskBegan;
const TaskQueue::TaskFinishedCallback TaskFinished;
const TaskQueue::TaskSignalledCallback TaskSignalled;
const std::function<void()> PolledAnFd;
};
private:
Callbacks callbacks;
public:
TaskMonitor(std::queue<std::unique_ptr<Task>> &TasksToBeExecuted,
const unsigned NumberOfParallelTasks, const Callbacks &callbacks)
: TasksToBeExecuted(TasksToBeExecuted),
MaxNumberOfParallelTasks(
NumberOfParallelTasks == 0 ? 1 : NumberOfParallelTasks),
callbacks(callbacks) {}
/// Run the tasks to be executed.
/// \return true on error.
bool executeTasks();
private:
bool isFinishedExecutingTasks() const {
return TasksBeingExecuted.empty() && TasksToBeExecuted.empty();
}
/// Start up tasks if we aren't already at the parallel limit, and no earlier
/// subtasks have failed.
/// \return true on error.
bool startUpSomeTasks();
/// \return true on error.
bool beginExecutingATask(Task &T);
/// Enter the task and its outputs in this TaskMonitor's data structures so
/// it can be polled.
void startPollingFdsOfTask(const Task &T);
void stopPolling(ArrayRef<int> FinishedFds);
enum class PollResult { HardError, SoftError, NoError };
PollResult pollTheFds();
/// \return None on error.
Optional<std::vector<int>> readFromReadyFdsReturningFinishedOnes();
/// Ensure that events bits returned from polling are what's expected.
void verifyEvents(short events) const;
void readDataIfAvailable(short events, int fd, Task &T) const;
bool didTaskHangup(short events) const;
};
bool TaskMonitor::executeTasks() {
while (!isFinishedExecutingTasks()) {
if (startUpSomeTasks())
return true;
switch (pollTheFds()) {
case PollResult::HardError:
return true;
case PollResult::SoftError:
continue;
case PollResult::NoError:
break;
}
Optional<std::vector<int>> FinishedFds =
readFromReadyFdsReturningFinishedOnes();
if (!FinishedFds)
return true;
stopPolling(*FinishedFds);
}
return false;
}
bool TaskMonitor::startUpSomeTasks() {
while (!TasksToBeExecuted.empty() &&
TasksBeingExecuted.size() < MaxNumberOfParallelTasks) {
std::unique_ptr<Task> T(TasksToBeExecuted.front().release());
TasksToBeExecuted.pop();
if (beginExecutingATask(*T))
return true;
startPollingFdsOfTask(*T);
TasksBeingExecuted.add(std::move(T));
}
return false;
}
void TaskMonitor::startPollingFdsOfTask(const Task &T) {
FdsBeingPolled.push_back({T.getPipe(), POLLIN | POLLPRI | POLLHUP, 0});
// We should also poll T->getErrorPipe(), but this introduces timing
// issues with shutting down the task after reading getPipe().
}
TaskMonitor::PollResult TaskMonitor::pollTheFds() {
assert(!FdsBeingPolled.empty() &&
"We should only call poll() if we have fds to watch!");
int ReadyFdCount = poll(FdsBeingPolled.data(), FdsBeingPolled.size(), -1);
if (callbacks.PolledAnFd)
callbacks.PolledAnFd();
if (ReadyFdCount != -1)
return PollResult::NoError;
return errno == EAGAIN || errno == EINTR ? PollResult::SoftError
: PollResult::HardError;
}
bool TaskMonitor::beginExecutingATask(Task &T) {
if (T.execute())
return true;
if (callbacks.TaskBegan)
callbacks.TaskBegan(T.getPid(), T.getContext());
return false;
}
static bool
cleanUpAHungUpTask(Task &T,
const TaskQueue::TaskFinishedCallback FinishedCallback,
TaskQueue::TaskSignalledCallback SignalledCallback);
/**
Wait for the process with a given pid to finish.
@param pidToWaitFor the pid of the process to wait for
@return Status information of the wait call and information about process
*/
static std::pair<Optional<int>, TaskProcessInformation> waitForPid(const pid_t pidToWaitFor);
static bool
cleanUpAfterSignal(int Status, const Task &T, TaskProcessInformation ProcInfo,
const TaskQueue::TaskSignalledCallback SignalledCallback);
static bool
cleanUpAfterExit(int Status, const Task &T, TaskProcessInformation ProcInfo,
const TaskQueue::TaskFinishedCallback FinishedCallback);
Optional<std::vector<int>>
TaskMonitor::readFromReadyFdsReturningFinishedOnes() {
std::vector<int> finishedFds;
for (struct pollfd &fd : FdsBeingPolled) {
const int fileDes = fd.fd;
const short receivedEvents = fd.revents;
fd.revents = 0;
verifyEvents(receivedEvents);
Task &T = TasksBeingExecuted.findTaskForFd(fileDes);
readDataIfAvailable(receivedEvents, fileDes, T);
if (!didTaskHangup(receivedEvents))
continue;
finishedFds.push_back(fileDes);
const bool hadError =
cleanUpAHungUpTask(T, callbacks.TaskFinished, callbacks.TaskSignalled);
TasksBeingExecuted.destroyTask(T);
if (hadError)
return None;
}
return finishedFds;
}
void TaskMonitor::verifyEvents(const short events) const {
// We passed an invalid fd; this should never happen,
// since we always mark fds as finished after calling
// Task::finishExecution() (which closes the Task's fd).
assert((events & POLLNVAL) == 0 && "Asked poll() to watch a closed fd");
const short expectedEvents = POLLIN | POLLPRI | POLLHUP | POLLERR;
assert((events & ~expectedEvents) == 0 && "Received unexpected event");
}
void TaskMonitor::readDataIfAvailable(const short events, const int fd,
Task &T) const {
if (events & (POLLIN | POLLPRI)) {
// There's data available to read. Read _some_ of it here, but not
// necessarily _all_, since the pipe is in blocking mode and we might
// have other input pending (or soon -- before this subprocess is done
// writing) from other subprocesses.
//
// FIXME: longer term, this should probably either be restructured to
// use O_NONBLOCK, or at very least poll the stderr file descriptor as
// well; the whole loop here is a bit of a mess.
T.readFromPipes(/*UntilEnd*/ false);
}
}
bool TaskMonitor::didTaskHangup(const short events) const {
return (events & (POLLHUP | POLLERR)) != 0;
}
static bool
cleanUpAHungUpTask(Task &T,
const TaskQueue::TaskFinishedCallback FinishedCallback,
const TaskQueue::TaskSignalledCallback SignalledCallback) {
const auto StatusAndProcessInformation = waitForPid(T.getPid());
if (!StatusAndProcessInformation.first)
return true;
T.finishExecution();
int Status = *(StatusAndProcessInformation.first);
TaskProcessInformation ProcInfo = StatusAndProcessInformation.second;
return WIFEXITED(Status)
? cleanUpAfterExit(Status, T, ProcInfo, FinishedCallback)
: WIFSIGNALED(Status)
? cleanUpAfterSignal(Status, T, ProcInfo, SignalledCallback)
: false /* Can this case ever happen? */;
}
static std::pair<Optional<int>, TaskProcessInformation> waitForPid(const pid_t pidToWaitFor) {
for (;;) {
int Status = 0;
#if defined(HAVE_GETRUSAGE) && !defined(__HAIKU__) && defined(HAVE_WAIT4)
struct rusage Usage;
const pid_t pidFromWait = wait4(pidToWaitFor, &Status, 0, &Usage);
TaskProcessInformation ProcInfo(pidToWaitFor, Usage);
#else
const pid_t pidFromWait = waitpid(pidToWaitFor, &Status, 0);
TaskProcessInformation ProcInfo(pidToWaitFor);
#endif
if (pidFromWait == pidToWaitFor)
return std::make_pair(Status, ProcInfo);
assert(pidFromWait == -1 &&
"Did not pass WNOHANG, should only get pidToWaitFor or -1");
if (errno == ECHILD || errno == EINVAL)
return std::make_pair(None, TaskProcessInformation(pidToWaitFor));
}
}
static bool
cleanUpAfterExit(int Status, const Task &T, TaskProcessInformation ProcInfo,
const TaskQueue::TaskFinishedCallback FinishedCallback) {
const int Result = WEXITSTATUS(Status);
if (!FinishedCallback) {
// Since we don't have a TaskFinishedCallback, treat a subtask
// which returned a nonzero exit code as having failed.
return Result != 0;
}
// If we have a TaskFinishedCallback, only have an error if the callback
// returns StopExecution.
return TaskFinishedResponse::StopExecution ==
FinishedCallback(T.getPid(), Result, T.getOutput(), T.getErrors(), ProcInfo,
T.getContext());
}
static bool
cleanUpAfterSignal(int Status, const Task &T, TaskProcessInformation ProcInfo,
const TaskQueue::TaskSignalledCallback SignalledCallback) {
// The process exited due to a signal.
const int Signal = WTERMSIG(Status);
StringRef ErrorMsg = strsignal(Signal);
if (!SignalledCallback) {
// Since we don't have a TaskCrashedCallback, treat a crashing
// subtask as having failed.
return true;
}
// If we have a TaskCrashedCallback, only return an error if the callback
// returns StopExecution.
return TaskFinishedResponse::StopExecution ==
SignalledCallback(T.getPid(), ErrorMsg, T.getOutput(), T.getErrors(),
T.getContext(), Signal, ProcInfo);
}
void TaskMonitor::stopPolling(ArrayRef<int> FinishedFds) {
// Remove any fds which we've closed from FdsBeingPolled.
for (int fd : FinishedFds) {
auto predicate = [&fd](struct pollfd &i) { return i.fd == fd; };
auto iter =
std::find_if(FdsBeingPolled.begin(), FdsBeingPolled.end(), predicate);
assert(iter != FdsBeingPolled.end() &&
"The finished fd must be in FdsBeingPolled!");
FdsBeingPolled.erase(iter);
}
}
bool TaskQueue::execute(TaskBeganCallback BeganCallback,
TaskFinishedCallback FinishedCallback,
TaskSignalledCallback SignalledCallback) {
TaskMonitor::Callbacks callbacks{
BeganCallback, FinishedCallback, SignalledCallback, [&] {
if (Stats)
++Stats->getDriverCounters().NumDriverPipePolls;
}};
TaskMonitor TE(QueuedTasks, getNumberOfParallelTasks(), callbacks);
return TE.executeTasks();
}