blob: a90895fd88a0635e93b776f658ea8282e8e2b19c [file] [log] [blame]
//===--- GenCall.cpp - Swift IR Generation for Function Calls -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for function signature lowering
// in Swift. This includes creating the IR type, collecting IR attributes,
// performing calls, and supporting prologue and epilogue emission.
//
//===----------------------------------------------------------------------===//
#include "GenCall.h"
#include "Signature.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/SIL/SILType.h"
#include "swift/ABI/MetadataValues.h"
#include "swift/Runtime/Config.h"
#include "llvm/IR/CallSite.h"
#include "llvm/Support/Compiler.h"
#include "CallEmission.h"
#include "Explosion.h"
#include "GenObjC.h"
#include "GenPoly.h"
#include "GenProto.h"
#include "GenType.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
#include "NativeConventionSchema.h"
using namespace swift;
using namespace irgen;
static Size getYieldOnceCoroutineBufferSize(IRGenModule &IGM) {
return NumWords_YieldOnceBuffer * IGM.getPointerSize();
}
static Alignment getYieldOnceCoroutineBufferAlignment(IRGenModule &IGM) {
return IGM.getPointerAlignment();
}
static Size getYieldManyCoroutineBufferSize(IRGenModule &IGM) {
return NumWords_YieldManyBuffer * IGM.getPointerSize();
}
static Alignment getYieldManyCoroutineBufferAlignment(IRGenModule &IGM) {
return IGM.getPointerAlignment();
}
static Size getCoroutineContextSize(IRGenModule &IGM,
CanSILFunctionType fnType) {
switch (fnType->getCoroutineKind()) {
case SILCoroutineKind::None:
llvm_unreachable("expand a coroutine");
case SILCoroutineKind::YieldOnce:
return getYieldOnceCoroutineBufferSize(IGM);
case SILCoroutineKind::YieldMany:
return getYieldManyCoroutineBufferSize(IGM);
}
llvm_unreachable("bad kind");
}
llvm::Type *ExplosionSchema::getScalarResultType(IRGenModule &IGM) const {
if (size() == 0) {
return IGM.VoidTy;
} else if (size() == 1) {
return begin()->getScalarType();
} else {
SmallVector<llvm::Type*, 16> elts;
for (auto &elt : *this) elts.push_back(elt.getScalarType());
return llvm::StructType::get(IGM.getLLVMContext(), elts);
}
}
static void addDereferenceableAttributeToBuilder(IRGenModule &IGM,
llvm::AttrBuilder &b,
const TypeInfo &ti) {
// The addresses of empty values are undefined, so we can't safely mark them
// dereferenceable.
if (ti.isKnownEmpty(ResilienceExpansion::Maximal))
return;
// If we know the type to have a fixed nonempty size, then the pointer is
// dereferenceable to at least that size.
// TODO: Would be nice to have a "getMinimumKnownSize" on TypeInfo for
// dynamic-layout aggregates.
if (auto fixedTI = dyn_cast<FixedTypeInfo>(&ti)) {
b.addAttribute(
llvm::Attribute::getWithDereferenceableBytes(IGM.LLVMContext,
fixedTI->getFixedSize().getValue()));
}
}
static void addIndirectValueParameterAttributes(IRGenModule &IGM,
llvm::AttributeList &attrs,
const TypeInfo &ti,
unsigned argIndex) {
llvm::AttrBuilder b;
// Value parameter pointers can't alias or be captured.
b.addAttribute(llvm::Attribute::NoAlias);
b.addAttribute(llvm::Attribute::NoCapture);
// The parameter must reference dereferenceable memory of the type.
addDereferenceableAttributeToBuilder(IGM, b, ti);
attrs = attrs.addAttributes(IGM.LLVMContext,
argIndex + llvm::AttributeList::FirstArgIndex, b);
}
static void addInoutParameterAttributes(IRGenModule &IGM,
llvm::AttributeList &attrs,
const TypeInfo &ti, unsigned argIndex,
bool aliasable) {
llvm::AttrBuilder b;
// Aliasing inouts is unspecified, but we still want aliasing to be memory-
// safe, so we can't mark inouts as noalias at the LLVM level.
// They still can't be captured without doing unsafe stuff, though.
b.addAttribute(llvm::Attribute::NoCapture);
// The inout must reference dereferenceable memory of the type.
addDereferenceableAttributeToBuilder(IGM, b, ti);
attrs = attrs.addAttributes(IGM.LLVMContext,
argIndex + llvm::AttributeList::FirstArgIndex, b);
}
static llvm::CallingConv::ID getFreestandingConvention(IRGenModule &IGM) {
// TODO: use a custom CC that returns three scalars efficiently
return IGM.SwiftCC;
}
/// Expand the requirements of the given abstract calling convention
/// into a "physical" calling convention.
llvm::CallingConv::ID irgen::expandCallingConv(IRGenModule &IGM,
SILFunctionTypeRepresentation convention) {
switch (convention) {
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::ObjCMethod:
case SILFunctionTypeRepresentation::Block:
return llvm::CallingConv::C;
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::WitnessMethod:
case SILFunctionTypeRepresentation::Closure:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Thick:
return getFreestandingConvention(IGM);
}
llvm_unreachable("bad calling convention!");
}
static void addIndirectResultAttributes(IRGenModule &IGM,
llvm::AttributeList &attrs,
unsigned paramIndex, bool allowSRet) {
llvm::AttrBuilder b;
b.addAttribute(llvm::Attribute::NoAlias);
b.addAttribute(llvm::Attribute::NoCapture);
if (allowSRet)
b.addAttribute(llvm::Attribute::StructRet);
attrs = attrs.addAttributes(IGM.LLVMContext,
paramIndex + llvm::AttributeList::FirstArgIndex,
b);
}
void IRGenModule::addSwiftSelfAttributes(llvm::AttributeList &attrs,
unsigned argIndex) {
llvm::AttrBuilder b;
b.addAttribute(llvm::Attribute::SwiftSelf);
attrs = attrs.addAttributes(this->LLVMContext,
argIndex + llvm::AttributeList::FirstArgIndex, b);
}
void IRGenModule::addSwiftErrorAttributes(llvm::AttributeList &attrs,
unsigned argIndex) {
// Don't add the swifterror attribute on ABI that don't pass it in a register.
// We create a shadow stack location of the swifterror parameter for the
// debugger on such platforms and so we can't mark the parameter with a
// swifterror attribute.
if (!this->IsSwiftErrorInRegister)
return;
llvm::AttrBuilder b;
b.addAttribute(llvm::Attribute::SwiftError);
attrs = attrs.addAttributes(this->LLVMContext,
argIndex + llvm::AttributeList::FirstArgIndex, b);
}
void irgen::addByvalArgumentAttributes(IRGenModule &IGM,
llvm::AttributeList &attrs,
unsigned argIndex, Alignment align) {
llvm::AttrBuilder b;
b.addAttribute(llvm::Attribute::ByVal);
b.addAttribute(llvm::Attribute::getWithAlignment(IGM.LLVMContext,
align.getValue()));
attrs = attrs.addAttributes(IGM.LLVMContext,
argIndex + llvm::AttributeList::FirstArgIndex, b);
}
void irgen::addExtendAttribute(IRGenModule &IGM, llvm::AttributeList &attrs,
unsigned index, bool signExtend) {
llvm::AttrBuilder b;
if (signExtend)
b.addAttribute(llvm::Attribute::SExt);
else
b.addAttribute(llvm::Attribute::ZExt);
attrs = attrs.addAttributes(IGM.LLVMContext, index, b);
}
namespace swift {
namespace irgen {
namespace {
class SignatureExpansion {
IRGenModule &IGM;
CanSILFunctionType FnType;
public:
SmallVector<llvm::Type*, 8> ParamIRTypes;
llvm::Type *ResultIRType = nullptr;
llvm::AttributeList Attrs;
ForeignFunctionInfo ForeignInfo;
CoroutineInfo CoroInfo;
bool CanUseSRet = true;
bool CanUseError = true;
bool CanUseSelf = true;
SignatureExpansion(IRGenModule &IGM, CanSILFunctionType fnType)
: IGM(IGM), FnType(fnType) {}
/// Expand the components of the primary entrypoint of the function type.
void expandFunctionType();
/// Expand the components of the continuation entrypoint of the
/// function type.
void expandCoroutineContinuationType();
Signature getSignature();
private:
void expand(SILParameterInfo param);
llvm::Type *addIndirectResult();
SILFunctionConventions getSILFuncConventions() const {
return SILFunctionConventions(FnType, IGM.getSILModule());
}
unsigned getCurParamIndex() {
return ParamIRTypes.size();
}
bool claimSRet() {
bool result = CanUseSRet;
CanUseSRet = false;
return result;
}
bool claimSelf() {
auto Ret = CanUseSelf;
assert(CanUseSelf && "Multiple self parameters?!");
CanUseSelf = false;
return Ret;
}
bool claimError() {
auto Ret = CanUseError;
assert(CanUseError && "Multiple error parameters?!");
CanUseError = false;
return Ret;
}
/// Add a pointer to the given type as the next parameter.
void addPointerParameter(llvm::Type *storageType) {
ParamIRTypes.push_back(storageType->getPointerTo());
}
void addCoroutineContextParameter();
void expandResult();
llvm::Type *expandDirectResult();
void expandParameters();
void expandExternalSignatureTypes();
void expandCoroutineResult(bool forContinuation);
void expandCoroutineContinuationParameters();
};
} // end anonymous namespace
} // end namespace irgen
} // end namespace swift
llvm::Type *SignatureExpansion::addIndirectResult() {
auto resultType = getSILFuncConventions().getSILResultType();
const TypeInfo &resultTI = IGM.getTypeInfo(resultType);
addIndirectResultAttributes(IGM, Attrs, ParamIRTypes.size(), claimSRet());
addPointerParameter(resultTI.getStorageType());
return IGM.VoidTy;
}
/// Expand all of the direct and indirect result types.
void SignatureExpansion::expandResult() {
if (FnType->isCoroutine()) {
// This should be easy enough to support if we need to: use the
// same algorithm but add the direct results to the results as if
// they were unioned in.
return expandCoroutineResult(/*for continuation*/ false);
}
auto fnConv = getSILFuncConventions();
// Disable the use of sret if we have multiple indirect results.
if (fnConv.getNumIndirectSILResults() > 1)
CanUseSRet = false;
// Expand the direct result.
ResultIRType = expandDirectResult();
// Expand the indirect results.
for (auto indirectResultType : fnConv.getIndirectSILResultTypes()) {
addIndirectResultAttributes(IGM, Attrs, ParamIRTypes.size(), claimSRet());
addPointerParameter(IGM.getStorageType(indirectResultType));
}
}
namespace {
class YieldSchema {
SILType YieldTy;
const TypeInfo &YieldTI;
Optional<NativeConventionSchema> NativeSchema;
bool IsIndirect;
public:
YieldSchema(IRGenModule &IGM, SILFunctionConventions fnConv,
SILYieldInfo yield)
: YieldTy(fnConv.getSILType(yield)),
YieldTI(IGM.getTypeInfo(YieldTy)) {
if (isFormalIndirect()) {
IsIndirect = true;
} else {
NativeSchema.emplace(IGM, &YieldTI, /*result*/ true);
IsIndirect = NativeSchema->requiresIndirect();
}
}
SILType getSILType() const {
return YieldTy;
}
const TypeInfo &getTypeInfo() const {
return YieldTI;
}
/// Should the yielded value be yielded as a pointer?
bool isIndirect() const { return IsIndirect; }
/// Is the yielded value formally indirect?
bool isFormalIndirect() const { return YieldTy.isAddress(); }
llvm::PointerType *getIndirectPointerType() const {
assert(isIndirect());
return YieldTI.getStorageType()->getPointerTo();
}
const NativeConventionSchema &getDirectSchema() const {
assert(!isIndirect());
return *NativeSchema;
}
void enumerateDirectComponents(llvm::function_ref<void(llvm::Type*)> fn) {
getDirectSchema().enumerateComponents([&](clang::CharUnits begin,
clang::CharUnits end,
llvm::Type *componentTy) {
fn(componentTy);
});
}
};
}
void SignatureExpansion::expandCoroutineResult(bool forContinuation) {
assert(FnType->getNumResults() == 0 &&
"having both normal and yield results is currently unsupported");
// The return type may be different for the ramp function vs. the
// continuations.
if (forContinuation) {
switch (FnType->getCoroutineKind()) {
case SILCoroutineKind::None:
llvm_unreachable("should have been filtered out before here");
// Yield-once coroutines just return void from the continuation.
case SILCoroutineKind::YieldOnce:
ResultIRType = IGM.VoidTy;
return;
// Yield-many coroutines yield the same types from the continuation
// as they do from the ramp function.
case SILCoroutineKind::YieldMany:
break;
}
}
SmallVector<llvm::Type*, 8> components;
// The continuation pointer.
components.push_back(IGM.Int8PtrTy);
auto fnConv = getSILFuncConventions();
for (auto yield : FnType->getYields()) {
YieldSchema schema(IGM, fnConv, yield);
// If the individual value must be yielded indirectly, add a pointer.
if (schema.isIndirect()) {
components.push_back(schema.getIndirectPointerType());
continue;
}
// Otherwise, collect all the component types.
schema.enumerateDirectComponents([&](llvm::Type *type) {
components.push_back(type);
});
}
// Find the maximal sequence of the component types that we can
// convince the ABI to pass directly.
// When counting components, ignore the continuation pointer.
unsigned numDirectComponents = components.size() - 1;
SmallVector<llvm::Type*, 8> overflowTypes;
while (clang::CodeGen::swiftcall::
shouldPassIndirectly(IGM.ClangCodeGen->CGM(), components,
/*asReturnValue*/ true)) {
// If we added a pointer to the end of components, remove it.
if (!overflowTypes.empty()) components.pop_back();
// Remove the last component and add it as an overflow type.
overflowTypes.push_back(components.pop_back_val());
numDirectComponents--;
// Add a pointer to the end of components.
components.push_back(IGM.Int8PtrTy);
}
// We'd better have been able to pass at least two pointers.
assert(components.size() >= 2 || overflowTypes.empty());
CoroInfo.NumDirectYieldComponents = numDirectComponents;
// Replace the pointer type we added to components with the real
// pointer-to-overflow type.
if (!overflowTypes.empty()) {
std::reverse(overflowTypes.begin(), overflowTypes.end());
// TODO: should we use some sort of real layout here instead of
// trusting LLVM's?
components.back() =
llvm::StructType::get(IGM.getLLVMContext(), overflowTypes)
->getPointerTo();
}
ResultIRType = components.size() == 1
? components.front()
: llvm::StructType::get(IGM.getLLVMContext(), components);
}
void SignatureExpansion::expandCoroutineContinuationParameters() {
// The coroutine context.
addCoroutineContextParameter();
// Whether this is an unwind resumption.
ParamIRTypes.push_back(IGM.Int1Ty);
}
void SignatureExpansion::addCoroutineContextParameter() {
// Flag that the context is dereferenceable and unaliased.
auto contextSize = getCoroutineContextSize(IGM, FnType);
Attrs = Attrs.addDereferenceableParamAttr(IGM.getLLVMContext(),
getCurParamIndex(),
contextSize.getValue());
Attrs = Attrs.addParamAttribute(IGM.getLLVMContext(),
getCurParamIndex(),
llvm::Attribute::NoAlias);
ParamIRTypes.push_back(IGM.Int8PtrTy);
}
NativeConventionSchema::NativeConventionSchema(IRGenModule &IGM,
const TypeInfo *ti,
bool IsResult)
: Lowering(IGM.ClangCodeGen->CGM()) {
if (auto *loadable = dyn_cast<LoadableTypeInfo>(ti)) {
// Lower the type according to the Swift ABI.
loadable->addToAggLowering(IGM, Lowering, Size(0));
Lowering.finish();
// Should we pass indirectly according to the ABI?
RequiresIndirect = Lowering.shouldPassIndirectly(IsResult);
} else {
Lowering.finish();
RequiresIndirect = true;
}
}
llvm::Type *NativeConventionSchema::getExpandedType(IRGenModule &IGM) const {
if (empty())
return IGM.VoidTy;
SmallVector<llvm::Type *, 8> elts;
Lowering.enumerateComponents([&](clang::CharUnits offset,
clang::CharUnits end,
llvm::Type *type) { elts.push_back(type); });
if (elts.size() == 1)
return elts[0];
auto &ctx = IGM.getLLVMContext();
return llvm::StructType::get(ctx, elts, /*packed*/ false);
}
std::pair<llvm::StructType *, llvm::StructType *>
NativeConventionSchema::getCoercionTypes(
IRGenModule &IGM, SmallVectorImpl<unsigned> &expandedTyIndicesMap) const {
auto &ctx = IGM.getLLVMContext();
if (empty()) {
auto type = llvm::StructType::get(ctx);
return {type, type};
}
clang::CharUnits lastEnd = clang::CharUnits::Zero();
llvm::SmallSet<unsigned, 8> overlappedWithSuccessor;
unsigned idx = 0;
// Mark overlapping ranges.
Lowering.enumerateComponents(
[&](clang::CharUnits offset, clang::CharUnits end, llvm::Type *type) {
if (offset < lastEnd) {
overlappedWithSuccessor.insert(idx);
}
lastEnd = end;
++idx;
});
// Create the coercion struct with only the integer portion of overlapped
// components and non-overlapped components.
idx = 0;
lastEnd = clang::CharUnits::Zero();
SmallVector<llvm::Type *, 8> elts;
bool packed = false;
Lowering.enumerateComponents(
[&](clang::CharUnits begin, clang::CharUnits end, llvm::Type *type) {
bool overlapped = overlappedWithSuccessor.count(idx) ||
(idx && overlappedWithSuccessor.count(idx - 1));
++idx;
if (overlapped && !isa<llvm::IntegerType>(type)) {
// keep the old lastEnd for padding.
return;
}
// Add padding (which may include padding for overlapped non-integer
// components).
if (begin != lastEnd) {
auto paddingSize = begin - lastEnd;
assert(!paddingSize.isNegative());
auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
paddingSize.getQuantity());
elts.push_back(padding);
}
if (!packed &&
!begin.isMultipleOf(clang::CharUnits::fromQuantity(
IGM.DataLayout.getABITypeAlignment(type))))
packed = true;
elts.push_back(type);
expandedTyIndicesMap.push_back(idx - 1);
lastEnd = begin + clang::CharUnits::fromQuantity(
IGM.DataLayout.getTypeAllocSize(type));
assert(end <= lastEnd);
});
auto *coercionType = llvm::StructType::get(ctx, elts, packed);
if (overlappedWithSuccessor.empty())
return {coercionType, llvm::StructType::get(ctx)};
// Create the coercion struct with only the non-integer overlapped
// components.
idx = 0;
lastEnd = clang::CharUnits::Zero();
elts.clear();
packed = false;
Lowering.enumerateComponents(
[&](clang::CharUnits begin, clang::CharUnits end, llvm::Type *type) {
bool overlapped = overlappedWithSuccessor.count(idx) ||
(idx && overlappedWithSuccessor.count(idx - 1));
++idx;
if (!overlapped || (overlapped && isa<llvm::IntegerType>(type))) {
// Ignore and keep the old lastEnd for padding.
return;
}
// Add padding.
if (begin != lastEnd) {
auto paddingSize = begin - lastEnd;
assert(!paddingSize.isNegative());
auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
paddingSize.getQuantity());
elts.push_back(padding);
}
if (!packed &&
!begin.isMultipleOf(clang::CharUnits::fromQuantity(
IGM.DataLayout.getABITypeAlignment(type))))
packed = true;
elts.push_back(type);
expandedTyIndicesMap.push_back(idx - 1);
lastEnd = begin + clang::CharUnits::fromQuantity(
IGM.DataLayout.getTypeAllocSize(type));
assert(end <= lastEnd);
});
auto *overlappedCoercionType = llvm::StructType::get(ctx, elts, packed);
return {coercionType, overlappedCoercionType};
}
// TODO: Direct to Indirect result conversion could be handled in a SIL
// AddressLowering pass.
llvm::Type *SignatureExpansion::expandDirectResult() {
// Handle the direct result type, checking for supposedly scalar
// result types that we actually want to return indirectly.
auto resultType = getSILFuncConventions().getSILResultType();
// Fast-path the empty tuple type.
if (auto tuple = resultType.getAs<TupleType>())
if (tuple->getNumElements() == 0)
return IGM.VoidTy;
switch (FnType->getLanguage()) {
case SILFunctionLanguage::C:
llvm_unreachable("Expanding C/ObjC parameters in the wrong place!");
break;
case SILFunctionLanguage::Swift: {
auto &ti = IGM.getTypeInfo(resultType);
auto &native = ti.nativeReturnValueSchema(IGM);
if (native.requiresIndirect())
return addIndirectResult();
// Disable the use of sret if we have a non-trivial direct result.
if (!native.empty()) CanUseSRet = false;
return native.getExpandedType(IGM);
}
}
llvm_unreachable("Not a valid SILFunctionLanguage.");
}
static const clang::FieldDecl *
getLargestUnionField(const clang::RecordDecl *record,
const clang::ASTContext &ctx) {
const clang::FieldDecl *largestField = nullptr;
clang::CharUnits unionSize = clang::CharUnits::Zero();
for (auto field : record->fields()) {
assert(!field->isBitField());
clang::CharUnits fieldSize = ctx.getTypeSizeInChars(field->getType());
if (unionSize < fieldSize) {
unionSize = fieldSize;
largestField = field;
}
}
assert(largestField && "empty union?");
return largestField;
}
namespace {
/// A CRTP class for working with Clang's ABIArgInfo::Expand
/// argument type expansions.
template <class Impl, class... Args> struct ClangExpand {
IRGenModule &IGM;
const clang::ASTContext &Ctx;
ClangExpand(IRGenModule &IGM) : IGM(IGM), Ctx(IGM.getClangASTContext()) {}
Impl &asImpl() { return *static_cast<Impl*>(this); }
void visit(clang::CanQualType type, Args... args) {
switch (type->getTypeClass()) {
#define TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) \
case clang::Type::Class:
#define DEPENDENT_TYPE(Class, Base) \
case clang::Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
case clang::Type::Class:
#include "clang/AST/TypeNodes.def"
llvm_unreachable("canonical or dependent type in ABI lowering");
// These shouldn't occur in expandable struct types.
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
llvm_unreachable("variable-sized or incomplete array in ABI lowering");
// We should only ever get ObjC pointers, not underlying objects.
case clang::Type::ObjCInterface:
case clang::Type::ObjCObject:
llvm_unreachable("ObjC object type in ABI lowering");
// We should only ever get function pointers.
case clang::Type::FunctionProto:
case clang::Type::FunctionNoProto:
llvm_unreachable("non-pointer function type in ABI lowering");
// We currently never import C++ code, and we should be able to
// kill Expand before we do.
case clang::Type::LValueReference:
case clang::Type::RValueReference:
case clang::Type::MemberPointer:
case clang::Type::Auto:
case clang::Type::DeducedTemplateSpecialization:
llvm_unreachable("C++ type in ABI lowering?");
case clang::Type::Pipe:
llvm_unreachable("OpenCL type in ABI lowering?");
case clang::Type::ConstantArray: {
auto array = Ctx.getAsConstantArrayType(type);
auto elt = Ctx.getCanonicalType(array->getElementType());
auto &&context = asImpl().beginArrayElements(elt);
uint64_t n = array->getSize().getZExtValue();
for (uint64_t i = 0; i != n; ++i) {
asImpl().visitArrayElement(elt, i, context, args...);
}
return;
}
case clang::Type::Record: {
auto record = cast<clang::RecordType>(type)->getDecl();
if (record->isUnion()) {
auto largest = getLargestUnionField(record, Ctx);
asImpl().visitUnionField(record, largest, args...);
} else {
auto &&context = asImpl().beginStructFields(record);
for (auto field : record->fields()) {
asImpl().visitStructField(record, field, context, args...);
}
}
return;
}
case clang::Type::Complex: {
auto elt = type.castAs<clang::ComplexType>().getElementType();
asImpl().visitComplexElement(elt, 0, args...);
asImpl().visitComplexElement(elt, 1, args...);
return;
}
// Just handle this types as opaque integers.
case clang::Type::Enum:
case clang::Type::Atomic:
asImpl().visitScalar(convertTypeAsInteger(type), args...);
return;
case clang::Type::Builtin:
asImpl().visitScalar(
convertBuiltinType(type.castAs<clang::BuiltinType>()),
args...);
return;
case clang::Type::Vector:
case clang::Type::ExtVector:
asImpl().visitScalar(
convertVectorType(type.castAs<clang::VectorType>()),
args...);
return;
case clang::Type::Pointer:
case clang::Type::BlockPointer:
case clang::Type::ObjCObjectPointer:
asImpl().visitScalar(IGM.Int8PtrTy, args...);
return;
}
llvm_unreachable("bad type kind");
}
Size getSizeOfType(clang::QualType type) {
auto clangSize = Ctx.getTypeSizeInChars(type);
return Size(clangSize.getQuantity());
}
private:
llvm::Type *convertVectorType(clang::CanQual<clang::VectorType> type) {
auto eltTy =
convertBuiltinType(type->getElementType().castAs<clang::BuiltinType>());
return llvm::VectorType::get(eltTy, type->getNumElements());
}
llvm::Type *convertBuiltinType(clang::CanQual<clang::BuiltinType> type) {
switch (type.getTypePtr()->getKind()) {
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
case clang::BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case clang::BuiltinType::Dependent:
llvm_unreachable("placeholder type in ABI lowering");
// We should never see these unadorned.
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
llvm_unreachable("bare Objective-C object type in ABI lowering");
// This should never be the type of an argument or field.
case clang::BuiltinType::Void:
llvm_unreachable("bare void type in ABI lowering");
// We should never see the OpenCL builtin types at all.
case clang::BuiltinType::OCLImage1dRO:
case clang::BuiltinType::OCLImage1dRW:
case clang::BuiltinType::OCLImage1dWO:
case clang::BuiltinType::OCLImage1dArrayRO:
case clang::BuiltinType::OCLImage1dArrayRW:
case clang::BuiltinType::OCLImage1dArrayWO:
case clang::BuiltinType::OCLImage1dBufferRO:
case clang::BuiltinType::OCLImage1dBufferRW:
case clang::BuiltinType::OCLImage1dBufferWO:
case clang::BuiltinType::OCLImage2dRO:
case clang::BuiltinType::OCLImage2dRW:
case clang::BuiltinType::OCLImage2dWO:
case clang::BuiltinType::OCLImage2dArrayRO:
case clang::BuiltinType::OCLImage2dArrayRW:
case clang::BuiltinType::OCLImage2dArrayWO:
case clang::BuiltinType::OCLImage2dDepthRO:
case clang::BuiltinType::OCLImage2dDepthRW:
case clang::BuiltinType::OCLImage2dDepthWO:
case clang::BuiltinType::OCLImage2dArrayDepthRO:
case clang::BuiltinType::OCLImage2dArrayDepthRW:
case clang::BuiltinType::OCLImage2dArrayDepthWO:
case clang::BuiltinType::OCLImage2dMSAARO:
case clang::BuiltinType::OCLImage2dMSAARW:
case clang::BuiltinType::OCLImage2dMSAAWO:
case clang::BuiltinType::OCLImage2dArrayMSAARO:
case clang::BuiltinType::OCLImage2dArrayMSAARW:
case clang::BuiltinType::OCLImage2dArrayMSAAWO:
case clang::BuiltinType::OCLImage2dMSAADepthRO:
case clang::BuiltinType::OCLImage2dMSAADepthRW:
case clang::BuiltinType::OCLImage2dMSAADepthWO:
case clang::BuiltinType::OCLImage2dArrayMSAADepthRO:
case clang::BuiltinType::OCLImage2dArrayMSAADepthRW:
case clang::BuiltinType::OCLImage2dArrayMSAADepthWO:
case clang::BuiltinType::OCLImage3dRO:
case clang::BuiltinType::OCLImage3dRW:
case clang::BuiltinType::OCLImage3dWO:
case clang::BuiltinType::OCLSampler:
case clang::BuiltinType::OCLEvent:
case clang::BuiltinType::OCLClkEvent:
case clang::BuiltinType::OCLQueue:
case clang::BuiltinType::OCLReserveID:
llvm_unreachable("OpenCL type in ABI lowering");
// Handle all the integer types as opaque values.
#define BUILTIN_TYPE(Id, SingletonId)
#define SIGNED_TYPE(Id, SingletonId) \
case clang::BuiltinType::Id:
#define UNSIGNED_TYPE(Id, SingletonId) \
case clang::BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
return convertTypeAsInteger(type);
// Lower all the floating-point values by their semantics.
case clang::BuiltinType::Half:
return convertFloatingType(Ctx.getTargetInfo().getHalfFormat());
case clang::BuiltinType::Float:
return convertFloatingType(Ctx.getTargetInfo().getFloatFormat());
case clang::BuiltinType::Double:
return convertFloatingType(Ctx.getTargetInfo().getDoubleFormat());
case clang::BuiltinType::LongDouble:
return convertFloatingType(Ctx.getTargetInfo().getLongDoubleFormat());
case clang::BuiltinType::Float128:
return convertFloatingType(Ctx.getTargetInfo().getFloat128Format());
// nullptr_t -> void*
case clang::BuiltinType::NullPtr:
return IGM.Int8PtrTy;
}
llvm_unreachable("bad builtin type");
}
llvm::Type *convertFloatingType(const llvm::fltSemantics &format) {
if (&format == &llvm::APFloat::IEEEhalf())
return llvm::Type::getHalfTy(IGM.getLLVMContext());
if (&format == &llvm::APFloat::IEEEsingle())
return llvm::Type::getFloatTy(IGM.getLLVMContext());
if (&format == &llvm::APFloat::IEEEdouble())
return llvm::Type::getDoubleTy(IGM.getLLVMContext());
if (&format == &llvm::APFloat::IEEEquad())
return llvm::Type::getFP128Ty(IGM.getLLVMContext());
if (&format == &llvm::APFloat::PPCDoubleDouble())
return llvm::Type::getPPC_FP128Ty(IGM.getLLVMContext());
if (&format == &llvm::APFloat::x87DoubleExtended())
return llvm::Type::getX86_FP80Ty(IGM.getLLVMContext());
llvm_unreachable("bad float format");
}
llvm::Type *convertTypeAsInteger(clang::QualType type) {
auto size = getSizeOfType(type);
return llvm::IntegerType::get(IGM.getLLVMContext(),
size.getValueInBits());
}
};
/// A CRTP specialization of ClangExpand which projects down to
/// various aggregate elements of an address.
///
/// Subclasses should only have to define visitScalar.
template <class Impl>
class ClangExpandProjection : public ClangExpand<Impl, Address> {
using super = ClangExpand<Impl, Address>;
using super::asImpl;
using super::IGM;
using super::Ctx;
using super::getSizeOfType;
protected:
IRGenFunction &IGF;
ClangExpandProjection(IRGenFunction &IGF)
: super(IGF.IGM), IGF(IGF) {}
public:
void visit(clang::CanQualType type, Address addr) {
assert(addr.getType() == IGM.Int8PtrTy);
super::visit(type, addr);
}
Size beginArrayElements(clang::CanQualType element) {
return getSizeOfType(element);
}
void visitArrayElement(clang::CanQualType element, unsigned i,
Size elementSize, Address arrayAddr) {
asImpl().visit(element, createGEPAtOffset(arrayAddr, elementSize * i));
}
void visitComplexElement(clang::CanQualType element, unsigned i,
Address complexAddr) {
Address addr = complexAddr;
if (i) { addr = createGEPAtOffset(complexAddr, getSizeOfType(element)); }
asImpl().visit(element, addr);
}
void visitUnionField(const clang::RecordDecl *record,
const clang::FieldDecl *field,
Address structAddr) {
asImpl().visit(Ctx.getCanonicalType(field->getType()), structAddr);
}
const clang::ASTRecordLayout &
beginStructFields(const clang::RecordDecl *record) {
return Ctx.getASTRecordLayout(record);
}
void visitStructField(const clang::RecordDecl *record,
const clang::FieldDecl *field,
const clang::ASTRecordLayout &layout,
Address structAddr) {
auto fieldIndex = field->getFieldIndex();
assert(!field->isBitField());
auto fieldOffset = Size(layout.getFieldOffset(fieldIndex) / 8);
asImpl().visit(Ctx.getCanonicalType(field->getType()),
createGEPAtOffset(structAddr, fieldOffset));
}
private:
Address createGEPAtOffset(Address addr, Size offset) {
if (offset.isZero()) {
return addr;
} else {
return IGF.Builder.CreateConstByteArrayGEP(addr, offset);
}
}
};
/// A class for collecting the types of a Clang ABIArgInfo::Expand
/// argument expansion.
struct ClangExpandTypeCollector : ClangExpand<ClangExpandTypeCollector> {
SmallVectorImpl<llvm::Type*> &Types;
ClangExpandTypeCollector(IRGenModule &IGM,
SmallVectorImpl<llvm::Type*> &types)
: ClangExpand(IGM), Types(types) {}
bool beginArrayElements(clang::CanQualType element) { return true; }
void visitArrayElement(clang::CanQualType element, unsigned i, bool _) {
visit(element);
}
void visitComplexElement(clang::CanQualType element, unsigned i) {
visit(element);
}
void visitUnionField(const clang::RecordDecl *record,
const clang::FieldDecl *field) {
visit(Ctx.getCanonicalType(field->getType()));
}
bool beginStructFields(const clang::RecordDecl *record) { return true; }
void visitStructField(const clang::RecordDecl *record,
const clang::FieldDecl *field,
bool _) {
visit(Ctx.getCanonicalType(field->getType()));
}
void visitScalar(llvm::Type *type) {
Types.push_back(type);
}
};
} // end anonymous namespace
static bool doesClangExpansionMatchSchema(IRGenModule &IGM,
clang::CanQualType type,
const ExplosionSchema &schema) {
assert(!schema.containsAggregate());
SmallVector<llvm::Type *, 4> expansion;
ClangExpandTypeCollector(IGM, expansion).visit(type);
if (expansion.size() != schema.size())
return false;
for (size_t i = 0, e = schema.size(); i != e; ++i) {
if (schema[i].getScalarType() != expansion[i])
return false;
}
return true;
}
/// Expand the result and parameter types to the appropriate LLVM IR
/// types for C and Objective-C signatures.
void SignatureExpansion::expandExternalSignatureTypes() {
assert(FnType->getLanguage() == SILFunctionLanguage::C);
// Convert the SIL result type to a Clang type.
auto clangResultTy = IGM.getClangType(FnType->getFormalCSemanticResult());
// Now convert the parameters to Clang types.
auto params = FnType->getParameters();
SmallVector<clang::CanQualType,4> paramTys;
auto const &clangCtx = IGM.getClangASTContext();
switch (FnType->getRepresentation()) {
case SILFunctionTypeRepresentation::ObjCMethod: {
// ObjC methods take their 'self' argument first, followed by an
// implicit _cmd argument.
auto &self = params.back();
auto clangTy = IGM.getClangType(self);
paramTys.push_back(clangTy);
paramTys.push_back(clangCtx.VoidPtrTy);
params = params.drop_back();
break;
}
case SILFunctionTypeRepresentation::Block:
// Blocks take their context argument first.
paramTys.push_back(clangCtx.VoidPtrTy);
break;
case SILFunctionTypeRepresentation::CFunctionPointer:
// No implicit arguments.
break;
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::WitnessMethod:
case SILFunctionTypeRepresentation::Closure:
llvm_unreachable("not a C representation");
}
// Given an index within the clang parameters list, what do we need
// to subtract from it to get to the corresponding index within the
// Swift parameters list?
size_t clangToSwiftParamOffset = paramTys.size();
// Convert each parameter to a Clang type.
for (auto param : params) {
auto clangTy = IGM.getClangType(param);
paramTys.push_back(clangTy);
}
// Generate function info for this signature.
auto extInfo = clang::FunctionType::ExtInfo();
auto &FI = clang::CodeGen::arrangeFreeFunctionCall(IGM.ClangCodeGen->CGM(),
clangResultTy, paramTys, extInfo,
clang::CodeGen::RequiredArgs::All);
ForeignInfo.ClangInfo = &FI;
assert(FI.arg_size() == paramTys.size() &&
"Expected one ArgInfo for each parameter type!");
auto &returnInfo = FI.getReturnInfo();
// Does the result need an extension attribute?
if (returnInfo.isExtend()) {
bool signExt = clangResultTy->hasSignedIntegerRepresentation();
assert((signExt || clangResultTy->hasUnsignedIntegerRepresentation()) &&
"Invalid attempt to add extension attribute to argument!");
addExtendAttribute(IGM, Attrs, llvm::AttributeList::ReturnIndex, signExt);
}
// If we return indirectly, that is the first parameter type.
if (returnInfo.isIndirect()) {
addIndirectResult();
}
size_t firstParamToLowerNormally = 0;
// Use a special IR type for passing block pointers.
if (FnType->getRepresentation() == SILFunctionTypeRepresentation::Block) {
assert(FI.arg_begin()[0].info.isDirect() &&
"block pointer not passed directly?");
ParamIRTypes.push_back(IGM.ObjCBlockPtrTy);
firstParamToLowerNormally = 1;
}
for (auto i : indices(paramTys).slice(firstParamToLowerNormally)) {
auto &AI = FI.arg_begin()[i].info;
// Add a padding argument if required.
if (auto *padType = AI.getPaddingType())
ParamIRTypes.push_back(padType);
switch (AI.getKind()) {
case clang::CodeGen::ABIArgInfo::Extend: {
bool signExt = paramTys[i]->hasSignedIntegerRepresentation();
assert((signExt || paramTys[i]->hasUnsignedIntegerRepresentation()) &&
"Invalid attempt to add extension attribute to argument!");
addExtendAttribute(IGM, Attrs, getCurParamIndex() +
llvm::AttributeList::FirstArgIndex, signExt);
LLVM_FALLTHROUGH;
}
case clang::CodeGen::ABIArgInfo::Direct: {
switch (FI.getExtParameterInfo(i).getABI()) {
case clang::ParameterABI::Ordinary:
break;
case clang::ParameterABI::SwiftContext:
IGM.addSwiftSelfAttributes(Attrs, getCurParamIndex());
break;
case clang::ParameterABI::SwiftErrorResult:
IGM.addSwiftErrorAttributes(Attrs, getCurParamIndex());
break;
case clang::ParameterABI::SwiftIndirectResult:
addIndirectResultAttributes(IGM, Attrs, getCurParamIndex(),claimSRet());
break;
}
// If the coercion type is a struct which can be flattened, we need to
// expand it.
auto *coercedTy = AI.getCoerceToType();
if (AI.isDirect() && AI.getCanBeFlattened() &&
isa<llvm::StructType>(coercedTy)) {
const auto *ST = cast<llvm::StructType>(coercedTy);
for (unsigned EI : range(ST->getNumElements()))
ParamIRTypes.push_back(ST->getElementType(EI));
} else {
ParamIRTypes.push_back(coercedTy);
}
break;
}
case clang::CodeGen::ABIArgInfo::CoerceAndExpand: {
auto types = AI.getCoerceAndExpandTypeSequence();
ParamIRTypes.append(types.begin(), types.end());
break;
}
case clang::CodeGen::ABIArgInfo::Indirect: {
assert(i >= clangToSwiftParamOffset &&
"Unexpected index for indirect byval argument");
auto &param = params[i - clangToSwiftParamOffset];
auto paramTy = getSILFuncConventions().getSILType(param);
auto &paramTI = cast<FixedTypeInfo>(IGM.getTypeInfo(paramTy));
if (AI.getIndirectByVal())
addByvalArgumentAttributes(
IGM, Attrs, getCurParamIndex(),
Alignment(AI.getIndirectAlign().getQuantity()));
addPointerParameter(paramTI.getStorageType());
break;
}
case clang::CodeGen::ABIArgInfo::Expand:
ClangExpandTypeCollector(IGM, ParamIRTypes).visit(paramTys[i]);
break;
case clang::CodeGen::ABIArgInfo::Ignore:
break;
case clang::CodeGen::ABIArgInfo::InAlloca:
llvm_unreachable("Need to handle InAlloca during signature expansion");
}
}
if (returnInfo.isIndirect() || returnInfo.isIgnore()) {
ResultIRType = IGM.VoidTy;
} else {
ResultIRType = returnInfo.getCoerceToType();
}
}
static ArrayRef<llvm::Type *> expandScalarOrStructTypeToArray(llvm::Type *&ty) {
ArrayRef<llvm::Type*> expandedTys;
if (auto expansionTy = dyn_cast<llvm::StructType>(ty)) {
// Is there any good reason this isn't public API of llvm::StructType?
expandedTys = makeArrayRef(expansionTy->element_begin(),
expansionTy->getNumElements());
} else {
expandedTys = ty;
}
return expandedTys;
}
void SignatureExpansion::expand(SILParameterInfo param) {
auto paramSILType = getSILFuncConventions().getSILType(param);
auto &ti = IGM.getTypeInfo(paramSILType);
switch (auto conv = param.getConvention()) {
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Constant:
case ParameterConvention::Indirect_In_Guaranteed:
addIndirectValueParameterAttributes(IGM, Attrs, ti, ParamIRTypes.size());
addPointerParameter(
IGM.getStorageType(getSILFuncConventions().getSILType(param)));
return;
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
addInoutParameterAttributes(IGM, Attrs, ti, ParamIRTypes.size(),
conv == ParameterConvention::Indirect_InoutAliasable);
addPointerParameter(
IGM.getStorageType(getSILFuncConventions().getSILType(param)));
return;
case ParameterConvention::Direct_Owned:
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed:
switch (FnType->getLanguage()) {
case SILFunctionLanguage::C: {
llvm_unreachable("Unexpected C/ObjC method in parameter expansion!");
return;
}
case SILFunctionLanguage::Swift: {
auto &nativeSchema = ti.nativeParameterValueSchema(IGM);
if (nativeSchema.requiresIndirect()) {
addIndirectValueParameterAttributes(IGM, Attrs, ti,
ParamIRTypes.size());
ParamIRTypes.push_back(ti.getStorageType()->getPointerTo());
return;
}
if (nativeSchema.empty()) {
assert(ti.getSchema().empty());
return;
}
auto expandedTy = nativeSchema.getExpandedType(IGM);
auto expandedTysArray = expandScalarOrStructTypeToArray(expandedTy);
for (auto *Ty : expandedTysArray)
ParamIRTypes.push_back(Ty);
return;
}
}
llvm_unreachable("bad abstract CC");
}
llvm_unreachable("bad parameter convention");
}
/// Does the given function type have a self parameter that should be
/// given the special treatment for self parameters?
///
/// It's important that this only return true for things that are
/// passed as a single pointer.
bool irgen::hasSelfContextParameter(CanSILFunctionType fnType) {
if (!fnType->hasSelfParam())
return false;
SILParameterInfo param = fnType->getSelfParameter();
// All the indirect conventions pass a single pointer.
if (param.isFormalIndirect()) {
return true;
}
// Direct conventions depend on the type.
CanType type = param.getType();
// Thick or @objc metatypes (but not existential metatypes).
if (auto metatype = dyn_cast<MetatypeType>(type)) {
return metatype->getRepresentation() != MetatypeRepresentation::Thin;
}
// Classes and class-bounded archetypes or ObjC existentials.
// No need to apply this to existentials.
// The direct check for SubstitutableType works because only
// class-bounded generic types can be passed directly.
if (type->mayHaveSuperclass() || isa<SubstitutableType>(type) ||
type->isObjCExistentialType()) {
return true;
}
return false;
}
/// Expand the abstract parameters of a SIL function type into the physical
/// parameters of an LLVM function type (results have already been expanded).
void SignatureExpansion::expandParameters() {
assert(FnType->getRepresentation() != SILFunctionTypeRepresentation::Block
&& "block with non-C calling conv?!");
// First, if this is a coroutine, add the coroutine-context parameter.
switch (FnType->getCoroutineKind()) {
case SILCoroutineKind::None:
break;
case SILCoroutineKind::YieldOnce:
case SILCoroutineKind::YieldMany:
addCoroutineContextParameter();
break;
}
// Next, the formal parameters. But 'self' is treated as the
// context if it has pointer representation.
auto params = FnType->getParameters();
bool hasSelfContext = false;
if (hasSelfContextParameter(FnType)) {
hasSelfContext = true;
params = params.drop_back();
}
for (auto param : params) {
expand(param);
}
// Next, the generic signature.
if (hasPolymorphicParameters(FnType))
expandPolymorphicSignature(IGM, FnType, ParamIRTypes);
// Context is next.
if (hasSelfContext) {
auto curLength = ParamIRTypes.size(); (void) curLength;
if (claimSelf())
IGM.addSwiftSelfAttributes(Attrs, curLength);
expand(FnType->getSelfParameter());
assert(ParamIRTypes.size() == curLength + 1 &&
"adding 'self' added unexpected number of parameters");
} else {
auto needsContext = [=]() -> bool {
switch (FnType->getRepresentation()) {
case SILFunctionType::Representation::Block:
llvm_unreachable("adding block parameter in Swift CC expansion?");
// Always leave space for a context argument if we have an error result.
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Closure:
return FnType->hasErrorResult();
case SILFunctionType::Representation::Thick:
return true;
}
llvm_unreachable("bad representation kind");
};
if (needsContext()) {
if (claimSelf())
IGM.addSwiftSelfAttributes(Attrs, ParamIRTypes.size());
ParamIRTypes.push_back(IGM.RefCountedPtrTy);
}
}
// Error results are last. We always pass them as a pointer to the
// formal error type; LLVM will magically turn this into a non-pointer
// if we set the right attribute.
if (FnType->hasErrorResult()) {
if (claimError())
IGM.addSwiftErrorAttributes(Attrs, ParamIRTypes.size());
llvm::Type *errorType = IGM.getStorageType(
getSILFuncConventions().getSILType(FnType->getErrorResult()));
ParamIRTypes.push_back(errorType->getPointerTo());
}
// Witness methods have some extra parameter types.
if (FnType->getRepresentation() ==
SILFunctionTypeRepresentation::WitnessMethod) {
expandTrailingWitnessSignature(IGM, FnType, ParamIRTypes);
}
}
/// Expand the result and parameter types of a SIL function into the
/// physical parameter types of an LLVM function and return the result
/// type.
void SignatureExpansion::expandFunctionType() {
switch (FnType->getLanguage()) {
case SILFunctionLanguage::Swift: {
expandResult();
expandParameters();
return;
}
case SILFunctionLanguage::C:
expandExternalSignatureTypes();
return;
}
llvm_unreachable("bad abstract calling convention");
}
void SignatureExpansion::expandCoroutineContinuationType() {
expandCoroutineResult(/*for continuation*/ true);
expandCoroutineContinuationParameters();
}
Signature SignatureExpansion::getSignature() {
// Create the appropriate LLVM type.
llvm::FunctionType *llvmType =
llvm::FunctionType::get(ResultIRType, ParamIRTypes, /*variadic*/ false);
assert((ForeignInfo.ClangInfo != nullptr) ==
(FnType->getLanguage() == SILFunctionLanguage::C) &&
"C function type without C function info");
auto callingConv = expandCallingConv(IGM, FnType->getRepresentation());
Signature result;
result.Type = llvmType;
result.CallingConv = callingConv;
result.Attributes = Attrs;
using ExtraData = Signature::ExtraData;
if (FnType->getLanguage() == SILFunctionLanguage::C) {
result.ExtraDataKind = ExtraData::kindForMember<ForeignFunctionInfo>();
result.ExtraDataStorage.emplace<ForeignFunctionInfo>(result.ExtraDataKind,
ForeignInfo);
} else if (FnType->isCoroutine()) {
result.ExtraDataKind = ExtraData::kindForMember<CoroutineInfo>();
result.ExtraDataStorage.emplace<CoroutineInfo>(result.ExtraDataKind,
CoroInfo);
} else {
result.ExtraDataKind = ExtraData::kindForMember<void>();
}
return result;
}
Signature Signature::getUncached(IRGenModule &IGM,
CanSILFunctionType formalType) {
GenericContextScope scope(IGM, formalType->getGenericSignature());
SignatureExpansion expansion(IGM, formalType);
expansion.expandFunctionType();
return expansion.getSignature();
}
Signature Signature::forCoroutineContinuation(IRGenModule &IGM,
CanSILFunctionType fnType) {
assert(fnType->isCoroutine());
SignatureExpansion expansion(IGM, fnType);
expansion.expandCoroutineContinuationType();
return expansion.getSignature();
}
void irgen::extractScalarResults(IRGenFunction &IGF, llvm::Type *bodyType,
llvm::Value *call, Explosion &out) {
assert(!bodyType->isVoidTy() && "Unexpected void result type!");
auto *returned = call;
auto *callType = call->getType();
// If the type of the result of the call differs from the type used
// elsewhere in the caller due to ABI type coercion, we need to
// coerce the result back from the ABI type before extracting the
// elements.
if (bodyType != callType)
returned = IGF.coerceValue(returned, bodyType, IGF.IGM.DataLayout);
if (auto *structType = dyn_cast<llvm::StructType>(bodyType))
for (unsigned i = 0, e = structType->getNumElements(); i != e; ++i)
out.add(IGF.Builder.CreateExtractValue(returned, i));
else
out.add(returned);
}
/// Emit the unsubstituted result of this call into the given explosion.
/// The unsubstituted result must be naturally returned directly.
void CallEmission::emitToUnmappedExplosion(Explosion &out) {
assert(LastArgWritten == 0 && "emitting unnaturally to explosion");
auto call = emitCallSite();
// Bail out immediately on a void result.
llvm::Value *result = call.getInstruction();
if (result->getType()->isVoidTy())
return;
SILFunctionConventions fnConv(getCallee().getOrigFunctionType(),
IGF.getSILModule());
// If the result was returned autoreleased, implicitly insert the reclaim.
// This is only allowed on a single direct result.
if (fnConv.getNumDirectSILResults() == 1
&& (fnConv.getDirectSILResults().begin()->getConvention()
== ResultConvention::Autoreleased)) {
result = emitObjCRetainAutoreleasedReturnValue(IGF, result);
}
// Get the natural IR type in the body of the function that makes
// the call. This may be different than the IR type returned by the
// call itself due to ABI type coercion.
auto resultType = fnConv.getSILResultType();
auto &nativeSchema = IGF.IGM.getTypeInfo(resultType).nativeReturnValueSchema(IGF.IGM);
// For ABI reasons the result type of the call might not actually match the
// expected result type.
auto expectedNativeResultType = nativeSchema.getExpandedType(IGF.IGM);
if (result->getType() != expectedNativeResultType) {
// This should only be needed when we call C functions.
assert(getCallee().getOrigFunctionType()->getLanguage() ==
SILFunctionLanguage::C);
result =
IGF.coerceValue(result, expectedNativeResultType, IGF.IGM.DataLayout);
}
// Gather the values.
Explosion nativeExplosion;
extractScalarResults(IGF, result->getType(), result, nativeExplosion);
out = nativeSchema.mapFromNative(IGF.IGM, IGF, nativeExplosion, resultType);
}
/// Emit the unsubstituted result of this call to the given address.
/// The unsubstituted result must be naturally returned indirectly.
void CallEmission::emitToUnmappedMemory(Address result) {
assert(LastArgWritten == 1 && "emitting unnaturally to indirect result");
Args[0] = result.getAddress();
SILFunctionConventions FnConv(CurCallee.getSubstFunctionType(),
IGF.getSILModule());
addIndirectResultAttributes(IGF.IGM, CurCallee.getMutableAttributes(),
0, FnConv.getNumIndirectSILResults() <= 1);
#ifndef NDEBUG
LastArgWritten = 0; // appease an assert
#endif
emitCallSite();
}
/// The private routine to ultimately emit a call or invoke instruction.
llvm::CallSite CallEmission::emitCallSite() {
assert(LastArgWritten == 0);
assert(!EmittedCall);
EmittedCall = true;
// Make the call and clear the arguments array.
const auto &fn = getCallee().getFunctionPointer();
auto fnTy = fn.getFunctionType();
// Coerce argument types for those cases where the IR type required
// by the ABI differs from the type used within the function body.
assert(fnTy->getNumParams() == Args.size());
for (int i = 0, e = fnTy->getNumParams(); i != e; ++i) {
auto *paramTy = fnTy->getParamType(i);
auto *argTy = Args[i]->getType();
if (paramTy != argTy)
Args[i] = IGF.coerceValue(Args[i], paramTy, IGF.IGM.DataLayout);
}
// TODO: exceptions!
auto call = IGF.Builder.CreateCall(fn, Args);
// Make coroutines calls opaque to LLVM analysis.
if (IsCoroutine) {
// Go back and insert some instructions right before the call.
// It's easier to do this than to mess around with copying and
// modifying the FunctionPointer above.
IGF.Builder.SetInsertPoint(call);
// Insert a call to @llvm.coro.prepare.retcon, then bitcast to the right
// function type.
auto origCallee = call->getCalledValue();
llvm::Value *opaqueCallee = origCallee;
opaqueCallee =
IGF.Builder.CreateBitCast(opaqueCallee, IGF.IGM.Int8PtrTy);
opaqueCallee =
IGF.Builder.CreateIntrinsicCall(llvm::Intrinsic::ID::coro_prepare_retcon,
{ opaqueCallee });
opaqueCallee =
IGF.Builder.CreateBitCast(opaqueCallee, origCallee->getType());
call->setCalledFunction(opaqueCallee);
// Reset the insert point to after the call.
IGF.Builder.SetInsertPoint(call->getParent());
}
Args.clear();
// Destroy any temporaries we needed.
// We don't do this for coroutines because we need to wait until the
// coroutine is complete.
if (!IsCoroutine) {
Temporaries.destroyAll(IGF);
// Clear the temporary set so that we can assert that there are no
// temporaries later.
Temporaries.clear();
}
// Return.
return call;
}
llvm::CallInst *IRBuilder::CreateCall(const FunctionPointer &fn,
ArrayRef<llvm::Value*> args) {
assert(!isTrapIntrinsic(fn.getPointer()) && "Use CreateNonMergeableTrap");
llvm::CallInst *call = IRBuilderBase::CreateCall(fn.getPointer(), args);
call->setAttributes(fn.getAttributes());
call->setCallingConv(fn.getCallingConv());
return call;
}
/// Emit the result of this call to memory.
void CallEmission::emitToMemory(Address addr,
const LoadableTypeInfo &indirectedResultTI,
bool isOutlined) {
assert(LastArgWritten <= 1);
// If the call is naturally to an explosion, emit it that way and
// then initialize the temporary.
if (LastArgWritten == 0) {
Explosion result;
emitToExplosion(result, isOutlined);
indirectedResultTI.initialize(IGF, result, addr, isOutlined);
return;
}
// Okay, we're naturally emitting to memory.
Address origAddr = addr;
auto origFnType = CurCallee.getOrigFunctionType();
auto substFnType = CurCallee.getSubstFunctionType();
// We're never being asked to do anything with *formal*
// indirect results here, just the possibility of a direct-in-SIL
// result that's actually being passed indirectly.
//
// TODO: SIL address lowering should be able to handle such cases earlier.
CanType origResultType =
origFnType->getDirectFormalResultsType().getSwiftRValueType();
CanType substResultType =
substFnType->getDirectFormalResultsType().getSwiftRValueType();
if (origResultType->hasTypeParameter())
origResultType = IGF.IGM.getGenericEnvironment()
->mapTypeIntoContext(origResultType)
->getCanonicalType();
if (origResultType != substResultType) {
auto origTy = IGF.IGM.getStoragePointerTypeForLowered(origResultType);
origAddr = IGF.Builder.CreateBitCast(origAddr, origTy);
}
emitToUnmappedMemory(origAddr);
}
static void emitCastToSubstSchema(IRGenFunction &IGF, Explosion &in,
const ExplosionSchema &schema,
Explosion &out) {
assert(in.size() == schema.size());
for (unsigned i = 0, e = schema.size(); i != e; ++i) {
llvm::Type *expectedType = schema.begin()[i].getScalarType();
llvm::Value *value = in.claimNext();
if (value->getType() != expectedType)
value = IGF.Builder.CreateBitCast(value, expectedType,
value->getName() + ".asSubstituted");
out.add(value);
}
}
void CallEmission::emitYieldsToExplosion(Explosion &out) {
// Emit the call site.
auto call = emitCallSite();
// Pull the raw return values out.
Explosion rawReturnValues;
extractScalarResults(IGF, call->getType(), call.getInstruction(),
rawReturnValues);
auto coroInfo = getCallee().getSignature().getCoroutineInfo();
// Go ahead and forward the continuation pointer as an opaque pointer.
auto continuation = rawReturnValues.claimNext();
out.add(continuation);
// Collect the raw value components.
Explosion rawYieldComponents;
// Add all the direct yield components.
rawYieldComponents.add(
rawReturnValues.claim(coroInfo.NumDirectYieldComponents));
// Add all the indirect yield components.
assert(rawReturnValues.size() <= 1);
if (!rawReturnValues.empty()) {
// Extract the indirect yield buffer.
auto indirectPointer = rawReturnValues.claimNext();
auto indirectStructTy = cast<llvm::StructType>(
indirectPointer->getType()->getPointerElementType());
auto layout = IGF.IGM.DataLayout.getStructLayout(indirectStructTy);
Address indirectBuffer(indirectPointer, Alignment(layout->getAlignment()));
for (auto i : indices(indirectStructTy->elements())) {
// Skip padding.
if (indirectStructTy->getElementType(i)->isArrayTy())
continue;
auto eltAddr = IGF.Builder.CreateStructGEP(indirectBuffer, i, layout);
rawYieldComponents.add(IGF.Builder.CreateLoad(eltAddr));
}
}
auto substCoroType = getCallee().getSubstFunctionType();
SILFunctionConventions fnConv(substCoroType, IGF.getSILModule());
for (auto yield : fnConv.getYields()) {
YieldSchema schema(IGF.IGM, fnConv, yield);
// If the schema says it's indirect, then we expect a pointer.
if (schema.isIndirect()) {
auto pointer = IGF.Builder.CreateBitCast(rawYieldComponents.claimNext(),
schema.getIndirectPointerType());
// If it's formally indirect, then we should just add that pointer
// to the output.
if (schema.isFormalIndirect()) {
out.add(pointer);
continue;
}
// Otherwise, we need to load.
auto &yieldTI = cast<LoadableTypeInfo>(schema.getTypeInfo());
yieldTI.loadAsTake(IGF, yieldTI.getAddressForPointer(pointer), out);
continue;
}
// Otherwise, it's direct. Remap.
auto temp = schema.getDirectSchema().mapFromNative(IGF.IGM, IGF,
rawYieldComponents,
schema.getSILType());
auto &yieldTI = cast<LoadableTypeInfo>(schema.getTypeInfo());
emitCastToSubstSchema(IGF, temp, yieldTI.getSchema(), out);
}
}
/// Emit the result of this call to an explosion.
void CallEmission::emitToExplosion(Explosion &out, bool isOutlined) {
assert(LastArgWritten <= 1);
// For coroutine calls, we need to collect the yields, not the results;
// this looks very different.
if (IsCoroutine) {
assert(LastArgWritten == 0 && "coroutine with indirect result?");
emitYieldsToExplosion(out);
return;
}
SILFunctionConventions fnConv(getCallee().getSubstFunctionType(),
IGF.getSILModule());
SILType substResultType = fnConv.getSILResultType();
auto &substResultTI =
cast<LoadableTypeInfo>(IGF.getTypeInfo(substResultType));
// If the call is naturally to memory, emit it that way and then
// explode that temporary.
if (LastArgWritten == 1) {
StackAddress ctemp = substResultTI.allocateStack(IGF, substResultType,
"call.aggresult");
Address temp = ctemp.getAddress();
emitToMemory(temp, substResultTI, isOutlined);
// We can use a take.
substResultTI.loadAsTake(IGF, temp, out);
substResultTI.deallocateStack(IGF, ctemp, substResultType);
return;
}
// Okay, we're naturally emitting to an explosion.
Explosion temp;
emitToUnmappedExplosion(temp);
// We might need to bitcast the results.
emitCastToSubstSchema(IGF, temp, substResultTI.getSchema(), out);
}
CallEmission::CallEmission(CallEmission &&other)
: IGF(other.IGF),
Args(std::move(other.Args)),
CurCallee(std::move(other.CurCallee)),
LastArgWritten(other.LastArgWritten),
EmittedCall(other.EmittedCall) {
// Prevent other's destructor from asserting.
LastArgWritten = 0;
EmittedCall = true;
}
CallEmission::~CallEmission() {
assert(LastArgWritten == 0);
assert(EmittedCall);
assert(Temporaries.hasBeenCleared());
}
Callee::Callee(CalleeInfo &&info, const FunctionPointer &fn,
llvm::Value *firstData, llvm::Value *secondData)
: Info(std::move(info)), Fn(fn),
FirstData(firstData), SecondData(secondData) {
#ifndef NDEBUG
// We should have foreign info if it's a foreign call.
assert((Fn.getForeignInfo().ClangInfo != nullptr) ==
(Info.OrigFnType->getLanguage() == SILFunctionLanguage::C));
// We should have the right data values for the representation.
switch (Info.OrigFnType->getRepresentation()) {
case SILFunctionTypeRepresentation::ObjCMethod:
assert(FirstData && SecondData);
break;
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::WitnessMethod:
assert((FirstData != nullptr) == hasSelfContextParameter(Info.OrigFnType));
assert(!SecondData);
break;
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::Block:
assert(FirstData && !SecondData);
break;
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Closure:
case SILFunctionTypeRepresentation::CFunctionPointer:
assert(!FirstData && !SecondData);
break;
}
#endif
}
llvm::Value *Callee::getSwiftContext() const {
switch (Info.OrigFnType->getRepresentation()) {
case SILFunctionTypeRepresentation::Block:
case SILFunctionTypeRepresentation::ObjCMethod:
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Closure:
return nullptr;
case SILFunctionTypeRepresentation::WitnessMethod:
case SILFunctionTypeRepresentation::Method:
// This may or may not be null.
return FirstData;
case SILFunctionTypeRepresentation::Thick:
assert(FirstData && "no context value set on callee");
return FirstData;
}
llvm_unreachable("bad representation");
}
llvm::Value *Callee::getBlockObject() const {
assert(Info.OrigFnType->getRepresentation() ==
SILFunctionTypeRepresentation::Block &&
"not a block");
assert(FirstData && "no block object set on callee");
return FirstData;
}
llvm::Value *Callee::getObjCMethodReceiver() const {
assert(Info.OrigFnType->getRepresentation() ==
SILFunctionTypeRepresentation::ObjCMethod &&
"not a method");
assert(FirstData && "no receiver set on callee");
return FirstData;
}
llvm::Value *Callee::getObjCMethodSelector() const {
assert(Info.OrigFnType->getRepresentation() ==
SILFunctionTypeRepresentation::ObjCMethod &&
"not a method");
assert(SecondData && "no selector set on callee");
return SecondData;
}
/// Set up this emitter afresh from the current callee specs.
void CallEmission::setFromCallee() {
IsCoroutine = CurCallee.getSubstFunctionType()->isCoroutine();
EmittedCall = false;
unsigned numArgs = CurCallee.getLLVMFunctionType()->getNumParams();
// Set up the args array.
assert(Args.empty());
Args.reserve(numArgs);
Args.set_size(numArgs);
LastArgWritten = numArgs;
auto fnType = CurCallee.getOrigFunctionType();
if (fnType->getRepresentation()
== SILFunctionTypeRepresentation::WitnessMethod) {
unsigned n = getTrailingWitnessSignatureLength(IGF.IGM, fnType);
while (n--) {
Args[--LastArgWritten] = nullptr;
}
}
llvm::Value *contextPtr = CurCallee.getSwiftContext();
// Add the error result if we have one.
if (fnType->hasErrorResult()) {
// The invariant is that this is always zero-initialized, so we
// don't need to do anything extra here.
SILFunctionConventions fnConv(fnType, IGF.getSILModule());
Address errorResultSlot = IGF.getErrorResultSlot(fnConv.getSILErrorType());
assert(LastArgWritten > 0);
Args[--LastArgWritten] = errorResultSlot.getAddress();
addAttribute(LastArgWritten + llvm::AttributeList::FirstArgIndex,
llvm::Attribute::NoCapture);
IGF.IGM.addSwiftErrorAttributes(CurCallee.getMutableAttributes(),
LastArgWritten);
// Fill in the context pointer if necessary.
if (!contextPtr) {
assert(!CurCallee.getOrigFunctionType()->getExtInfo().hasContext() &&
"Missing context?");
contextPtr = llvm::UndefValue::get(IGF.IGM.RefCountedPtrTy);
}
}
// Add the data pointer if we have one.
// (Note that we're emitting backwards, so this correctly goes
// *before* the error pointer.)
if (contextPtr) {
assert(LastArgWritten > 0);
Args[--LastArgWritten] = contextPtr;
IGF.IGM.addSwiftSelfAttributes(CurCallee.getMutableAttributes(),
LastArgWritten);
}
}
bool irgen::canCoerceToSchema(IRGenModule &IGM,
ArrayRef<llvm::Type*> expandedTys,
const ExplosionSchema &schema) {
// If the schemas don't even match in number, we have to go
// through memory.
if (expandedTys.size() != schema.size())
return false;
// If there's just one element, we can always coerce as a scalar.
if (expandedTys.size() == 1) return true;
// If there are multiple elements, the pairs of types need to
// match in size for the coercion to work.
for (size_t i = 0, e = expandedTys.size(); i != e; ++i) {
llvm::Type *inputTy = schema[i].getScalarType();
llvm::Type *outputTy = expandedTys[i];
if (inputTy != outputTy &&
IGM.DataLayout.getTypeSizeInBits(inputTy) !=
IGM.DataLayout.getTypeSizeInBits(outputTy))
return false;
}
// Okay, everything is fine.
return true;
}
static llvm::Type *getOutputType(TranslationDirection direction, unsigned index,
const ExplosionSchema &nativeSchema,
ArrayRef<llvm::Type*> expandedForeignTys) {
assert(nativeSchema.size() == expandedForeignTys.size());
return (direction == TranslationDirection::ToForeign
? expandedForeignTys[index]
: nativeSchema[index].getScalarType());
}
static void emitCoerceAndExpand(IRGenFunction &IGF, Explosion &in,
Explosion &out, SILType paramTy,
const LoadableTypeInfo &paramTI,
llvm::StructType *coercionTy,
ArrayRef<llvm::Type *> expandedTys,
TranslationDirection direction,
bool isOutlined) {
// If we can directly coerce the scalar values, avoid going through memory.
auto schema = paramTI.getSchema();
if (canCoerceToSchema(IGF.IGM, expandedTys, schema)) {
for (auto index : indices(expandedTys)) {
llvm::Value *arg = in.claimNext();
assert(arg->getType() ==
getOutputType(reverse(direction), index, schema, expandedTys));
auto outputTy = getOutputType(direction, index, schema, expandedTys);
if (arg->getType() != outputTy)
arg = IGF.coerceValue(arg, outputTy, IGF.IGM.DataLayout);
out.add(arg);
}
return;
}
// Otherwise, materialize to a temporary.
auto temporaryAlloc =
paramTI.allocateStack(IGF, paramTy, "coerce-and-expand.temp");
Address temporary = temporaryAlloc.getAddress();
auto coercionTyLayout = IGF.IGM.DataLayout.getStructLayout(coercionTy);
// Make the alloca at least as aligned as the coercion struct, just
// so that the element accesses we make don't end up under-aligned.
Alignment coercionTyAlignment = Alignment(coercionTyLayout->getAlignment());
auto alloca = cast<llvm::AllocaInst>(temporary.getAddress());
if (alloca->getAlignment() < coercionTyAlignment.getValue()) {
alloca->setAlignment(coercionTyAlignment.getValue());
temporary = Address(temporary.getAddress(), coercionTyAlignment);
}
// If we're translating *to* the foreign expansion, do an ordinary
// initialization from the input explosion.
if (direction == TranslationDirection::ToForeign) {
paramTI.initialize(IGF, in, temporary, isOutlined);
}
Address coercedTemporary =
IGF.Builder.CreateElementBitCast(temporary, coercionTy);
#ifndef NDEBUG
size_t expandedTyIndex = 0;
#endif
for (auto eltIndex : indices(coercionTy->elements())) {
auto eltTy = coercionTy->getElementType(eltIndex);
// Skip padding fields.
if (eltTy->isArrayTy()) continue;
assert(expandedTys[expandedTyIndex++] == eltTy);
// Project down to the field.
Address eltAddr =
IGF.Builder.CreateStructGEP(coercedTemporary, eltIndex, coercionTyLayout);
// If we're translating *to* the foreign expansion, pull the value out
// of the field and add it to the output.
if (direction == TranslationDirection::ToForeign) {
llvm::Value *value = IGF.Builder.CreateLoad(eltAddr);
out.add(value);
// Otherwise, claim the next value from the input and store that
// in the field.
} else {
llvm::Value *value = in.claimNext();
IGF.Builder.CreateStore(value, eltAddr);
}
}
assert(expandedTyIndex == expandedTys.size());
// If we're translating *from* the foreign expansion, do an ordinary
// load into the output explosion.
if (direction == TranslationDirection::ToNative) {
paramTI.loadAsTake(IGF, temporary, out);
}
paramTI.deallocateStack(IGF, temporaryAlloc, paramTy);
}
static void emitDirectExternalArgument(IRGenFunction &IGF, SILType argType,
const clang::CodeGen::ABIArgInfo &AI,
Explosion &in, Explosion &out,
bool isOutlined) {
bool IsDirectFlattened = AI.isDirect() && AI.getCanBeFlattened();
bool IsIndirect = !AI.isDirect();
// If we're supposed to pass directly as a struct type, that
// really means expanding out as multiple arguments.
llvm::Type *coercedTy = AI.getCoerceToType();
ArrayRef<llvm::Type *> expandedTys =
expandScalarOrStructTypeToArray(coercedTy);
auto &argTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(argType));
auto inputSchema = argTI.getSchema();
// Check to see if we can pairwise coerce Swift's exploded scalars
// to Clang's expanded elements.
if ((IsDirectFlattened || IsIndirect) &&
canCoerceToSchema(IGF.IGM, expandedTys, inputSchema)) {
for (auto outputTy : expandedTys) {
llvm::Value *arg = in.claimNext();
if (arg->getType() != outputTy)
arg = IGF.coerceValue(arg, outputTy, IGF.IGM.DataLayout);
out.add(arg);
}
return;
}
// Otherwise, we need to coerce through memory.
Address temporary;
Size tempSize;
std::tie(temporary, tempSize) =
allocateForCoercion(IGF, argTI.getStorageType(), coercedTy, "coerced-arg");
IGF.Builder.CreateLifetimeStart(temporary, tempSize);
// Store to a temporary.
Address tempOfArgTy = IGF.Builder.CreateBitCast(
temporary, argTI.getStorageType()->getPointerTo());
argTI.initializeFromParams(IGF, in, tempOfArgTy, argType, isOutlined);
// Bitcast the temporary to the expected type.
Address coercedAddr =
IGF.Builder.CreateBitCast(temporary, coercedTy->getPointerTo());
if (IsDirectFlattened && isa<llvm::StructType>(coercedTy)) {
// Project out individual elements if necessary.
auto *ST = cast<llvm::StructType>(coercedTy);
const auto *layout = IGF.IGM.DataLayout.getStructLayout(ST);
for (unsigned EI : range(ST->getNumElements())) {
auto offset = Size(layout->getElementOffset(EI));
auto address = IGF.Builder.CreateStructGEP(coercedAddr, EI, offset);
out.add(IGF.Builder.CreateLoad(address));
}
} else {
// Otherwise, collect the single scalar.
out.add(IGF.Builder.CreateLoad(coercedAddr));
}
IGF.Builder.CreateLifetimeEnd(temporary, tempSize);
}
namespace {
/// Load a clang argument expansion from a buffer.
struct ClangExpandLoadEmitter :
ClangExpandProjection<ClangExpandLoadEmitter> {
Explosion &Out;
ClangExpandLoadEmitter(IRGenFunction &IGF, Explosion &out)
: ClangExpandProjection(IGF), Out(out) {}
void visitScalar(llvm::Type *scalarTy, Address addr) {
addr = IGF.Builder.CreateBitCast(addr, scalarTy->getPointerTo());
auto value = IGF.Builder.CreateLoad(addr);
Out.add(value);
}
};
/// Store a clang argument expansion into a buffer.
struct ClangExpandStoreEmitter :
ClangExpandProjection<ClangExpandStoreEmitter> {
Explosion &In;
ClangExpandStoreEmitter(IRGenFunction &IGF, Explosion &in)
: ClangExpandProjection(IGF), In(in) {}
void visitScalar(llvm::Type *scalarTy, Address addr) {
auto value = In.claimNext();
addr = IGF.Builder.CreateBitCast(addr, scalarTy->getPointerTo());
IGF.Builder.CreateStore(value, addr);
}
};
} // end anonymous namespace
/// Given a Swift value explosion in 'in', produce a Clang expansion
/// (according to ABIArgInfo::Expand) in 'out'.
static void
emitClangExpandedArgument(IRGenFunction &IGF, Explosion &in, Explosion &out,
clang::CanQualType clangType, SILType swiftType,
const LoadableTypeInfo &swiftTI, bool isOutlined) {
// If Clang's expansion schema matches Swift's, great.
auto swiftSchema = swiftTI.getSchema();
if (doesClangExpansionMatchSchema(IGF.IGM, clangType, swiftSchema)) {
return in.transferInto(out, swiftSchema.size());
}
// Otherwise, materialize to a temporary.
auto ctemp = swiftTI.allocateStack(IGF, swiftType, "clang-expand-arg.temp");
Address temp = ctemp.getAddress();
swiftTI.initialize(IGF, in, temp, isOutlined);
Address castTemp = IGF.Builder.CreateBitCast(temp, IGF.IGM.Int8PtrTy);
ClangExpandLoadEmitter(IGF, out).visit(clangType, castTemp);
swiftTI.deallocateStack(IGF, ctemp, swiftType);
}
/// Given a Clang-expanded (according to ABIArgInfo::Expand) parameter
/// in 'in', produce a Swift value explosion in 'out'.
void irgen::emitClangExpandedParameter(IRGenFunction &IGF,
Explosion &in, Explosion &out,
clang::CanQualType clangType,
SILType swiftType,
const LoadableTypeInfo &swiftTI) {
// If Clang's expansion schema matches Swift's, great.
auto swiftSchema = swiftTI.getSchema();
if (doesClangExpansionMatchSchema(IGF.IGM, clangType, swiftSchema)) {
return in.transferInto(out, swiftSchema.size());
}
// Otherwise, materialize to a temporary.
auto tempAlloc = swiftTI.allocateStack(IGF, swiftType,
"clang-expand-param.temp");
Address temp = tempAlloc.getAddress();
Address castTemp = IGF.Builder.CreateBitCast(temp, IGF.IGM.Int8PtrTy);
ClangExpandStoreEmitter(IGF, in).visit(clangType, castTemp);
// Then load out.
swiftTI.loadAsTake(IGF, temp, out);
swiftTI.deallocateStack(IGF, tempAlloc, swiftType);
}
static void externalizeArguments(IRGenFunction &IGF, const Callee &callee,
Explosion &in, Explosion &out,
TemporarySet &temporaries,
bool isOutlined) {
auto silConv = IGF.IGM.silConv;
auto fnType = callee.getOrigFunctionType();
auto params = fnType->getParameters();
assert(callee.getForeignInfo().ClangInfo);
auto &FI = *callee.getForeignInfo().ClangInfo;
// The index of the first "physical" parameter from paramTys/FI that
// corresponds to a logical parameter from params.
unsigned firstParam = 0;
// Handle the ObjC prefix.
if (callee.getRepresentation() == SILFunctionTypeRepresentation::ObjCMethod) {
// Ignore both the logical and the physical parameters associated
// with self and _cmd.
firstParam += 2;
params = params.drop_back();
// Or the block prefix.
} else if (fnType->getRepresentation()
== SILFunctionTypeRepresentation::Block) {
// Ignore the physical block-object parameter.
firstParam += 1;
}
for (unsigned i = firstParam, e = FI.arg_size(); i != e; ++i) {
auto clangParamTy = FI.arg_begin()[i].type;
auto &AI = FI.arg_begin()[i].info;
// We don't need to do anything to handle the Swift parameter-ABI
// attributes here because we shouldn't be trying to round-trip
// swiftcall function pointers through SIL as C functions anyway.
assert(FI.getExtParameterInfo(i).getABI() == clang::ParameterABI::Ordinary);
// Add a padding argument if required.
if (auto *padType = AI.getPaddingType())
out.add(llvm::UndefValue::get(padType));
SILType paramType = silConv.getSILType(params[i - firstParam]);
switch (AI.getKind()) {
case clang::CodeGen::ABIArgInfo::Extend: {
bool signExt = clangParamTy->hasSignedIntegerRepresentation();
assert((signExt || clangParamTy->hasUnsignedIntegerRepresentation()) &&
"Invalid attempt to add extension attribute to argument!");
(void) signExt;
LLVM_FALLTHROUGH;
}
case clang::CodeGen::ABIArgInfo::Direct: {
auto toTy = AI.getCoerceToType();
// Indirect parameters are bridged as Clang pointer types.
if (silConv.isSILIndirect(params[i - firstParam])) {
assert(paramType.isAddress() && "SIL type is not an address?");
auto addr = in.claimNext();
if (addr->getType() != toTy)
addr = IGF.coerceValue(addr, toTy, IGF.IGM.DataLayout);
out.add(addr);
break;
}
emitDirectExternalArgument(IGF, paramType, AI, in, out, isOutlined);
break;
}
case clang::CodeGen::ABIArgInfo::Indirect: {
auto &ti = cast<LoadableTypeInfo>(IGF.getTypeInfo(paramType));
auto temp = ti.allocateStack(IGF, paramType, "indirect-temporary");
temporaries.add({temp, paramType});
Address addr = temp.getAddress();
// Set at least the alignment the ABI expects.
if (AI.getIndirectByVal()) {
auto ABIAlign = AI.getIndirectAlign();
if (ABIAlign > addr.getAlignment()) {
auto *AS = cast<llvm::AllocaInst>(addr.getAddress());
AS->setAlignment(ABIAlign.getQuantity());
addr = Address(addr.getAddress(), Alignment(ABIAlign.getQuantity()));
}
}
ti.initialize(IGF, in, addr, isOutlined);
out.add(addr.getAddress());
break;
}
case clang::CodeGen::ABIArgInfo::CoerceAndExpand: {
auto &paramTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(paramType));
emitCoerceAndExpand(IGF, in, out, paramType, paramTI,
AI.getCoerceAndExpandType(),
AI.getCoerceAndExpandTypeSequence(),
TranslationDirection::ToForeign, isOutlined);
break;
}
case clang::CodeGen::ABIArgInfo::Expand:
emitClangExpandedArgument(
IGF, in, out, clangParamTy, paramType,
cast<LoadableTypeInfo>(IGF.getTypeInfo(paramType)), isOutlined);
break;
case clang::CodeGen::ABIArgInfo::Ignore:
break;
case clang::CodeGen::ABIArgInfo::InAlloca:
llvm_unreachable("Need to handle InAlloca when externalizing arguments");
break;
}
}
}
/// Returns whether allocas are needed.
bool irgen::addNativeArgument(IRGenFunction &IGF, Explosion &in,
SILParameterInfo origParamInfo, Explosion &out,
bool isOutlined) {
// Addresses consist of a single pointer argument.
if (IGF.IGM.silConv.isSILIndirect(origParamInfo)) {
out.add(in.claimNext());
return false;
}
auto paramType = IGF.IGM.silConv.getSILType(origParamInfo);
auto &ti = cast<LoadableTypeInfo>(IGF.getTypeInfo(paramType));
auto schema = ti.getSchema();
auto &nativeSchema = ti.nativeParameterValueSchema(IGF.IGM);
if (nativeSchema.requiresIndirect()) {
// Pass the argument indirectly.
auto buf = IGF.createAlloca(ti.getStorageType(),
ti.getFixedAlignment(), "");
ti.initialize(IGF, in, buf, isOutlined);
out.add(buf.getAddress());
return true;
} else {
if (schema.empty()) {
assert(nativeSchema.empty());
return false;
}
assert(!nativeSchema.empty());
// Pass the argument explosion directly, mapping into the native swift
// calling convention.
Explosion nonNativeParam;
ti.reexplode(IGF, in, nonNativeParam);
Explosion nativeParam = nativeSchema.mapIntoNative(
IGF.IGM, IGF, nonNativeParam, paramType, isOutlined);
nativeParam.transferInto(out, nativeParam.size());
return false;
}
}
/// Emit a direct parameter that was passed under a C-based CC.
static void emitDirectForeignParameter(IRGenFunction &IGF, Explosion &in,
const clang::CodeGen::ABIArgInfo &AI,
Explosion &out, SILType paramType,
const LoadableTypeInfo &paramTI) {
// The ABI IR types for the entrypoint might differ from the
// Swift IR types for the body of the function.
llvm::Type *coercionTy = AI.getCoerceToType();
ArrayRef<llvm::Type*> expandedTys;
if (AI.isDirect() && AI.getCanBeFlattened() &&
isa<llvm::StructType>(coercionTy)) {
const auto *ST = cast<llvm::StructType>(coercionTy);
expandedTys = makeArrayRef(ST->element_begin(), ST->getNumElements());
} else if (coercionTy == paramTI.getStorageType()) {
// Fast-path a really common case. This check assumes that either
// the storage type of a type is an llvm::StructType or it has a
// single-element explosion.
out.add(in.claimNext());
return;
} else {
expandedTys = coercionTy;
}
auto outputSchema = paramTI.getSchema();
// Check to see if we can pairwise-coerce Swift's exploded scalars
// to Clang's expanded elements.
if (canCoerceToSchema(IGF.IGM, expandedTys, outputSchema)) {
for (auto &outputElt : outputSchema) {
llvm::Value *param = in.claimNext();
llvm::Type *outputTy = outputElt.getScalarType();
if (param->getType() != outputTy)
param = IGF.coerceValue(param, outputTy, IGF.IGM.DataLayout);
out.add(param);
}
return;
}
// Otherwise, we need to traffic through memory.
// Create a temporary.
Address temporary; Size tempSize;
std::tie(temporary, tempSize) = allocateForCoercion(IGF,
coercionTy,
paramTI.getStorageType(),
"");
IGF.Builder.CreateLifetimeStart(temporary, tempSize);
// Write the input parameters into the temporary:
Address coercedAddr =
IGF.Builder.CreateBitCast(temporary, coercionTy->getPointerTo());
// Break down a struct expansion if necessary.
if (auto expansionTy = dyn_cast<llvm::StructType>(coercionTy)) {
auto layout = IGF.IGM.DataLayout.getStructLayout(expansionTy);
for (unsigned i = 0, e = expansionTy->getNumElements(); i != e; ++i) {
auto fieldOffset = Size(layout->getElementOffset(i));
auto fieldAddr = IGF.Builder.CreateStructGEP(coercedAddr, i, fieldOffset);
IGF.Builder.CreateStore(in.claimNext(), fieldAddr);
}
// Otherwise, store the single scalar.
} else {
IGF.Builder.CreateStore(in.claimNext(), coercedAddr);
}
// Pull out the elements.
temporary = IGF.Builder.CreateBitCast(temporary,
paramTI.getStorageType()->getPointerTo());
paramTI.loadAsTake(IGF, temporary, out);
// Deallocate the temporary.
// `deallocateStack` emits the lifetime.end marker for us.
paramTI.deallocateStack(IGF, StackAddress(temporary), paramType);
}
void irgen::emitForeignParameter(IRGenFunction &IGF, Explosion &params,
ForeignFunctionInfo foreignInfo,
unsigned foreignParamIndex, SILType paramTy,
const LoadableTypeInfo &paramTI,
Explosion &paramExplosion, bool isOutlined) {
assert(foreignInfo.ClangInfo);
auto &FI = *foreignInfo.ClangInfo;
auto clangArgTy = FI.arg_begin()[foreignParamIndex].type;
auto AI = FI.arg_begin()[foreignParamIndex].info;
// We don't need to do anything to handle the Swift parameter-ABI
// attributes here because we shouldn't be trying to round-trip
// swiftcall function pointers through SIL as C functions anyway.
assert(FI.getExtParameterInfo(foreignParamIndex).getABI()
== clang::ParameterABI::Ordinary);
// Drop padding arguments.
if (AI.getPaddingType())
params.claimNext();
switch (AI.getKind()) {
case clang::CodeGen::ABIArgInfo::Extend:
case clang::CodeGen::ABIArgInfo::Direct:
emitDirectForeignParameter(IGF, params, AI, paramExplosion, paramTy,
paramTI);
return;
case clang::CodeGen::ABIArgInfo::Indirect: {
Address address = paramTI.getAddressForPointer(params.claimNext());
paramTI.loadAsTake(IGF, address, paramExplosion);
return;
}
case clang::CodeGen::ABIArgInfo::Expand: {
emitClangExpandedParameter(IGF, params, paramExplosion, clangArgTy,
paramTy, paramTI);
return;
}
case clang::CodeGen::ABIArgInfo::CoerceAndExpand: {
auto &paramTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(paramTy));
emitCoerceAndExpand(IGF, params, paramExplosion, paramTy, paramTI,
AI.getCoerceAndExpandType(),
AI.getCoerceAndExpandTypeSequence(),
TranslationDirection::ToNative, isOutlined);
break;
}
case clang::CodeGen::ABIArgInfo::Ignore:
return;
case clang::CodeGen::ABIArgInfo::InAlloca:
llvm_unreachable("Need to handle InAlloca during signature expansion");
}
}
static void emitRetconCoroutineEntry(IRGenFunction &IGF,
CanSILFunctionType fnType,
Explosion &allParamValues,
llvm::Intrinsic::ID idIntrinsic,
Size bufferSize,
Alignment bufferAlignment) {
auto prototype =
IGF.IGM.getOpaquePtr(IGF.IGM.getAddrOfContinuationPrototype(fnType));
// Use malloc and free as our allocator.
auto allocFn = IGF.IGM.getOpaquePtr(IGF.IGM.getMallocFn());
auto deallocFn = IGF.IGM.getOpaquePtr(IGF.IGM.getFreeFn());
// Call the right 'llvm.coro.id.retcon' variant.
llvm::Value *buffer = allParamValues.claimNext();
llvm::Value *id = IGF.Builder.CreateIntrinsicCall(idIntrinsic, {
llvm::ConstantInt::get(IGF.IGM.Int32Ty, bufferSize.getValue()),
llvm::ConstantInt::get(IGF.IGM.Int32Ty, bufferAlignment.getValue()),
buffer,
prototype,
allocFn,
deallocFn
});
// Call 'llvm.coro.begin', just for consistency with the normal pattern.
// This serves as a handle that we can pass around to other intrinsics.
auto hdl = IGF.Builder.CreateIntrinsicCall(llvm::Intrinsic::ID::coro_begin, {
id,
llvm::ConstantPointerNull::get(IGF.IGM.Int8PtrTy)
});
// Set the coroutine handle; this also flags that is a coroutine so that
// e.g. dynamic allocas use the right code generation.
IGF.setCoroutineHandle(hdl);
}
void irgen::emitYieldOnceCoroutineEntry(IRGenFunction &IGF,
CanSILFunctionType fnType,
Explosion &allParamValues) {
emitRetconCoroutineEntry(IGF, fnType, allParamValues,
llvm::Intrinsic::ID::coro_id_retcon_once,
getYieldOnceCoroutineBufferSize(IGF.IGM),
getYieldOnceCoroutineBufferAlignment(IGF.IGM));
}
void irgen::emitYieldManyCoroutineEntry(IRGenFunction &IGF,
CanSILFunctionType fnType,
Explosion &allParamValues) {
emitRetconCoroutineEntry(IGF, fnType, allParamValues,
llvm::Intrinsic::ID::coro_id_retcon,
getYieldManyCoroutineBufferSize(IGF.IGM),
getYieldManyCoroutineBufferAlignment(IGF.IGM));
}
static Address createOpaqueBufferAlloca(IRGenFunction &IGF,
Size size, Alignment align) {
auto ty = llvm::ArrayType::get(IGF.IGM.Int8Ty, size.getValue());
auto addr = IGF.createAlloca(ty, align);
addr = IGF.Builder.CreateStructGEP(addr, 0, Size(0));
IGF.Builder.CreateLifetimeStart(addr, size);
return addr;
}
Address irgen::emitAllocYieldOnceCoroutineBuffer(IRGenFunction &IGF) {
return createOpaqueBufferAlloca(IGF, getYieldOnceCoroutineBufferSize(IGF.IGM),
getYieldOnceCoroutineBufferAlignment(IGF.IGM));
}
Address irgen::emitAllocYieldManyCoroutineBuffer(IRGenFunction &IGF) {
return createOpaqueBufferAlloca(IGF, getYieldManyCoroutineBufferSize(IGF.IGM),
getYieldManyCoroutineBufferAlignment(IGF.IGM));
}
void irgen::emitDeallocYieldOnceCoroutineBuffer(IRGenFunction &IGF,
Address buffer) {
auto bufferSize = getYieldOnceCoroutineBufferSize(IGF.IGM);
IGF.Builder.CreateLifetimeEnd(buffer, bufferSize);
}
void irgen::emitDeallocYieldManyCoroutineBuffer(IRGenFunction &IGF,
Address buffer) {
auto bufferSize = getYieldManyCoroutineBufferSize(IGF.IGM);
IGF.Builder.CreateLifetimeEnd(buffer, bufferSize);
}
llvm::Value *irgen::emitYield(IRGenFunction &IGF,
CanSILFunctionType coroutineType,
Explosion &substValues) {
auto coroSignature = IGF.IGM.getSignature(coroutineType);
auto coroInfo = coroSignature.getCoroutineInfo();
// Translate the arguments to an unsubstituted form.
Explosion allComponents;
for (auto yield : coroutineType->getYields())
addNativeArgument(IGF, substValues, yield, allComponents, false);
// Figure out which arguments need to be yielded directly.
SmallVector<llvm::Value*, 8> yieldArgs;
// Add the direct yield components.
auto directComponents =
allComponents.claim(coroInfo.NumDirectYieldComponents);
yieldArgs.append(directComponents.begin(), directComponents.end());
// The rest need to go into an indirect buffer.
auto indirectComponents = allComponents.claimAll();
auto resultStructTy =
dyn_cast<llvm::StructType>(coroSignature.getType()->getReturnType());
assert((!resultStructTy
&& directComponents.empty()
&& indirectComponents.empty())
|| (resultStructTy
&& resultStructTy->getNumElements() ==
(1 + directComponents.size()
+ unsigned(!indirectComponents.empty()))));
// Fill in the indirect buffer if necessary.
Optional<Address> indirectBuffer;
Size indirectBufferSize;
if (!indirectComponents.empty()) {
auto bufferStructTy = cast<llvm::StructType>(
resultStructTy->getElementType(resultStructTy->getNumElements() - 1)
->getPointerElementType());
auto layout = IGF.IGM.DataLayout.getStructLayout(bufferStructTy);
indirectBuffer = IGF.createAlloca(bufferStructTy,
Alignment(layout->getAlignment()));
indirectBufferSize = Size(layout->getSizeInBytes());
IGF.Builder.CreateLifetimeStart(*indirectBuffer, indirectBufferSize);
for (size_t i : indices(bufferStructTy->elements())) {
// Skip padding elements.
if (bufferStructTy->getElementType(i)->isArrayTy())
continue;
assert(!indirectComponents.empty() &&
"insufficient number of indirect yield components");
auto addr = IGF.Builder.CreateStructGEP(*indirectBuffer, i, layout);
IGF.Builder.CreateStore(indirectComponents.front(), addr);
indirectComponents = indirectComponents.drop_front();
}
assert(indirectComponents.empty() && "too many indirect yield components");
// Remember to yield the indirect buffer.
yieldArgs.push_back(indirectBuffer->getAddress());
}
// Perform the yield.
auto isUnwind =
IGF.Builder.CreateIntrinsicCall(llvm::Intrinsic::ID::coro_suspend_retcon,
{ IGF.IGM.Int1Ty },
yieldArgs);
// We're done with the indirect buffer.
if (indirectBuffer) {
IGF.Builder.CreateLifetimeEnd(*indirectBuffer, indirectBufferSize);
}
return isUnwind;
}
/// Add a new set of arguments to the function.
void CallEmission::setArgs(Explosion &original, bool isOutlined,
WitnessMetadata *witnessMetadata) {
// Convert arguments to a representation appropriate to the calling
// convention.
Explosion adjusted;
auto origCalleeType = CurCallee.getOrigFunctionType();
SILFunctionConventions fnConv(origCalleeType, IGF.getSILModule());
// Pass along the indirect result pointers.
original.transferInto(adjusted, fnConv.getNumIndirectSILResults());
// Pass along the coroutine buffer.
switch (origCalleeType->getCoroutineKind()) {
case SILCoroutineKind::YieldMany:
case SILCoroutineKind::YieldOnce:
original.transferInto(adjusted, 1);
break;
case SILCoroutineKind::None:
break;
}
// Translate the formal arguments and handle any special arguments.
switch (getCallee().getRepresentation()) {
case SILFunctionTypeRepresentation::ObjCMethod:
adjusted.add(getCallee().getObjCMethodReceiver());
adjusted.add(getCallee().getObjCMethodSelector());
externalizeArguments(IGF, getCallee(), original, adjusted,
Temporaries, isOutlined);
break;
case SILFunctionTypeRepresentation::Block:
adjusted.add(getCallee().getBlockObject());
LLVM_FALLTHROUGH;
case SILFunctionTypeRepresentation::CFunctionPointer:
externalizeArguments(IGF, getCallee(), original, adjusted,
Temporaries, isOutlined);
break;
case SILFunctionTypeRepresentation::WitnessMethod:
assert(witnessMetadata);
assert(witnessMetadata->SelfMetadata->getType() ==
IGF.IGM.TypeMetadataPtrTy);
assert(witnessMetadata->SelfWitnessTable->getType() ==
IGF.IGM.WitnessTablePtrTy);
Args.rbegin()[1] = witnessMetadata->SelfMetadata;
Args.rbegin()[0] = witnessMetadata->SelfWitnessTable;
LLVM_FALLTHROUGH;
case SILFunctionTypeRepresentation::Closure:
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Thick: {
// Check for value arguments that need to be passed indirectly.
// But don't expect to see 'self' if it's been moved to the context
// position.
auto params = origCalleeType->getParameters();
if (hasSelfContextParameter(origCalleeType)) {
params = params.drop_back();
}
for (auto param : params) {
addNativeArgument(IGF, original, param, adjusted, isOutlined);
}
// Anything else, just pass along. This will include things like
// generic arguments.
adjusted.add(original.claimAll());
break;
}
}
// Add the given number of arguments.
assert(LastArgWritten >= adjusted.size());
size_t targetIndex = LastArgWritten - adjusted.size();
assert(targetIndex <= 1);
LastArgWritten = targetIndex;
auto argIterator = Args.begin() + targetIndex;
for (auto value : adjusted.claimAll()) {
*argIterator++ = value;
}
}
void CallEmission::addAttribute(unsigned index,
llvm::Attribute::AttrKind attr) {
auto &attrs = CurCallee.getMutableAttributes();
attrs = attrs.addAttribute(IGF.IGM.LLVMContext, index, attr);
}
/// Initialize an Explosion with the parameters of the current
/// function. All of the objects will be added unmanaged. This is
/// really only useful when writing prologue code.
Explosion IRGenFunction::collectParameters() {
Explosion params;
for (auto i = CurFn->arg_begin(), e = CurFn->arg_end(); i != e; ++i)
params.add(&*i);
return params;
}
/// Fetch the error result slot.
Address IRGenFunction::getErrorResultSlot(SILType errorType) {
if (!ErrorResultSlot) {
auto &errorTI = cast<FixedTypeInfo>(getTypeInfo(errorType));
IRBuilder builder(IGM.getLLVMContext(), IGM.DebugInfo);
builder.SetInsertPoint(AllocaIP->getParent(), AllocaIP->getIterator());
// Create the alloca. We don't use allocateStack because we're
// not allocating this in stack order.
auto addr = createAlloca(errorTI.getStorageType(),
errorTI.getFixedAlignment(),
"swifterror");
// Only add the swifterror attribute on ABIs that pass it in a register.
// We create a shadow stack location of the swifterror parameter for the
// debugger on platforms that pass swifterror by reference and so we can't
// mark the parameter with a swifterror attribute for these.
if (IGM.IsSwiftErrorInRegister)
cast<llvm::AllocaInst>(addr.getAddress())->setSwiftError(true);
// Initialize at the alloca point.
auto nullError = llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(errorTI.getStorageType()));
builder.CreateStore(nullError, addr);
ErrorResultSlot = addr.getAddress();
}
return Address(ErrorResultSlot, IGM.getPointerAlignment());
}
/// Fetch the error result slot received from the caller.
Address IRGenFunction::getCallerErrorResultSlot() {
assert(ErrorResultSlot && "no error result slot!");
assert(isa<llvm::Argument>(ErrorResultSlot) && "error result slot is local!");
return Address(ErrorResultSlot, IGM.getPointerAlignment());
}
// Set the error result slot. This should only be done in the prologue.
void IRGenFunction::setErrorResultSlot(llvm::Value *address) {
assert(!ErrorResultSlot && "already have error result slot!");
assert(isa<llvm::PointerType>(address->getType()));
ErrorResultSlot = address;
}
/// Emit the basic block that 'return' should branch to and insert it into
/// the current function. This creates a second
/// insertion point that most blocks should be inserted before.
void IRGenFunction::emitBBForReturn() {
ReturnBB = createBasicBlock("return");
CurFn->getBasicBlockList().push_back(ReturnBB);
}
/// Emit the prologue for the function.
void IRGenFunction::emitPrologue() {
// Set up the IRBuilder.
llvm::BasicBlock *EntryBB = createBasicBlock("entry");
assert(CurFn->getBasicBlockList().empty() && "prologue already emitted?");
CurFn->getBasicBlockList().push_back(EntryBB);
Builder.SetInsertPoint(EntryBB);
// Set up the alloca insertion point.
AllocaIP = Builder.IRBuilderBase::CreateAlloca(IGM.Int1Ty,
/*array size*/ nullptr,
"alloca point");
}
/// Emit a branch to the return block and set the insert point there.
/// Returns true if the return block is reachable, false otherwise.
bool IRGenFunction::emitBranchToReturnBB() {
// If there are no edges to the return block, we never want to emit it.
if (ReturnBB->use_empty()) {
ReturnBB->eraseFromParent();
// Normally this means that we'll just insert the epilogue in the
// current block, but if the current IP is unreachable then so is
// the entire epilogue.
if (!Builder.hasValidIP())
return false;
// Otherwise, branch to it if the current IP is reachable.
} else if (Builder.hasValidIP()) {
Builder.CreateBr(ReturnBB);
Builder.SetInsertPoint(ReturnBB);
// Otherwise, if there is exactly one use of the return block, merge
// it into its predecessor.
} else if (ReturnBB->hasOneUse()) {
// return statements are never emitted as conditional branches.
llvm::BranchInst *Br = cast<llvm::BranchInst>(*ReturnBB->use_begin());
assert(Br->isUnconditional());
Builder.SetInsertPoint(Br->getParent());
Br->eraseFromParent();
ReturnBB->eraseFromParent();
// Otherwise, just move the IP to the return block.
} else {
Builder.SetInsertPoint(ReturnBB);
}
return true;
}
/// Emit the epilogue for the function.
void IRGenFunction::emitEpilogue() {
// Destroy the alloca insertion point.
AllocaIP->eraseFromParent();
}
std::pair<Address, Size>
irgen::allocateForCoercion(IRGenFunction &IGF,
llvm::Type *fromTy,
llvm::Type *toTy,
const llvm::Twine &basename) {
auto &DL = IGF.IGM.DataLayout;
auto fromSize = DL.getTypeSizeInBits(fromTy);
auto toSize = DL.getTypeSizeInBits(toTy);
auto bufferTy = fromSize >= toSize
? fromTy
: toTy;
auto alignment = std::max(DL.getABITypeAlignment(fromTy),
DL.getABITypeAlignment(toTy));
auto buffer = IGF.createAlloca(bufferTy, Alignment(alignment),
basename + ".coerced");
Size size(std::max(fromSize, toSize));
return {buffer, size};
}
llvm::Value* IRGenFunction::coerceValue(llvm::Value *value, llvm::Type *toTy,
const llvm::DataLayout &DL)
{
llvm::Type *fromTy = value->getType();
assert(fromTy != toTy && "Unexpected same types in type coercion!");
assert(!fromTy->isVoidTy()
&& "Unexpected void source type in type coercion!");
assert(!toTy->isVoidTy()
&& "Unexpected void destination type in type coercion!");
// Use the pointer/pointer and pointer/int casts if we can.
if (toTy->isPointerTy()) {
if (fromTy->isPointerTy())
return Builder.CreateBitCast(value, toTy);
if (fromTy == IGM.IntPtrTy)
return Builder.CreateIntToPtr(value, toTy);
} else if (fromTy->isPointerTy()) {
if (toTy == IGM.IntPtrTy) {
return Builder.CreatePtrToInt(value, toTy);
}
}
// Otherwise we need to store, bitcast, and load.
Address address; Size size;
std::tie(address, size) = allocateForCoercion(*this, fromTy, toTy,
value->getName() + ".coercion");
Builder.CreateLifetimeStart(address, size);
auto orig = Builder.CreateBitCast(address, fromTy->getPointerTo());
Builder.CreateStore(value, orig);
auto coerced = Builder.CreateBitCast(address, toTy->getPointerTo());
auto loaded = Builder.CreateLoad(coerced);
Builder.CreateLifetimeEnd(address, size);
return loaded;
}
void IRGenFunction::emitScalarReturn(llvm::Type *resultType,
Explosion &result) {
if (result.empty()) {
Builder.CreateRetVoid();
return;
}
auto *ABIType = CurFn->getReturnType();
if (result.size() == 1) {
auto *returned = result.claimNext();
if (ABIType != returned->getType())
returned = coerceValue(returned, ABIType, IGM.DataLayout);
Builder.CreateRet(returned);
return;
}
// Multiple return values are returned as a struct.
assert(cast<llvm::StructType>(resultType)->getNumElements() == result.size());
llvm::Value *resultAgg = llvm::UndefValue::get(resultType);
for (unsigned i = 0, e = result.size(); i != e; ++i) {
llvm::Value *elt = result.claimNext();
resultAgg = Builder.CreateInsertValue(resultAgg, elt, i);
}
if (ABIType != resultType)
resultAgg = coerceValue(resultAgg, ABIType, IGM.DataLayout);
Builder.CreateRet(resultAgg);
}
/// Adjust the alignment of the alloca pointed to by \p allocaAddr to the
/// required alignment of the struct \p type.
static void adjustAllocaAlignment(const llvm::DataLayout &DL,
Address allocaAddr, llvm::StructType *type) {
auto layout = DL.getStructLayout(type);
Alignment layoutAlignment = Alignment(layout->getAlignment());
auto alloca = cast<llvm::AllocaInst>(allocaAddr.getAddress());
if (alloca->getAlignment() < layoutAlignment.getValue()) {
alloca->setAlignment(layoutAlignment.getValue());
allocaAddr = Address(allocaAddr.getAddress(), layoutAlignment);
}
}
unsigned NativeConventionSchema::size() const {
if (empty())
return 0;
unsigned size = 0;
Lowering.enumerateComponents([&](clang::CharUnits offset,
clang::CharUnits end,
llvm::Type *type) { ++size; });
return size;
}
static bool canMatchByTruncation(IRGenModule &IGM,
ArrayRef<llvm::Type*> expandedTys,
const ExplosionSchema &schema) {
// If the schemas don't even match in number, we have to go
// through memory.
if (expandedTys.size() != schema.size() || expandedTys.empty())
return false;
if (expandedTys.size() == 1) return false;
// If there are multiple elements, the pairs of types need to
// match in size upto the penultimate for the truncation to work.
size_t e = expandedTys.size();
for (size_t i = 0; i != e - 1; ++i) {
// Check that we can truncate the last element.
llvm::Type *outputTy = schema[i].getScalarType();
llvm::Type *inputTy = expandedTys[i];
if (inputTy != outputTy &&
IGM.DataLayout.getTypeSizeInBits(inputTy) !=
IGM.DataLayout.getTypeSizeInBits(outputTy))
return false;
}
llvm::Type *outputTy = schema[e-1].getScalarType();
llvm::Type *inputTy = expandedTys[e-1];
return inputTy == outputTy || (IGM.DataLayout.getTypeSizeInBits(inputTy) ==
IGM.DataLayout.getTypeSizeInBits(outputTy)) ||
(IGM.DataLayout.getTypeSizeInBits(inputTy) >
IGM.DataLayout.getTypeSizeInBits(outputTy) &&
isa<llvm::IntegerType>(inputTy) && isa<llvm::IntegerType>(outputTy));
}
Explosion NativeConventionSchema::mapFromNative(IRGenModule &IGM,
IRGenFunction &IGF,
Explosion &native,
SILType type) const {
if (native.empty()) {
assert(empty() && "Empty explosion must match the native convention");
return Explosion();
}
assert(!empty());
auto *nativeTy = getExpandedType(IGM);
auto expandedTys = expandScalarOrStructTypeToArray(nativeTy);
auto &TI = IGM.getTypeInfo(type);
auto schema = TI.getSchema();
// The expected explosion type.
auto *explosionTy = schema.getScalarResultType(IGM);
// Check whether we can coerce the explosion to the expected type convention.
auto &DataLayout = IGM.DataLayout;
Explosion nonNativeExplosion;
if (canCoerceToSchema(IGM, expandedTys, schema)) {
if (native.size() == 1) {
auto *elt = native.claimNext();
if (explosionTy != elt->getType()) {
if (isa<llvm::IntegerType>(explosionTy) &&
isa<llvm::IntegerType>(elt->getType())) {
elt = IGF.Builder.CreateTrunc(elt, explosionTy);
} else {
elt = IGF.coerceValue(elt, explosionTy, DataLayout);
}
}
nonNativeExplosion.add(elt);
return nonNativeExplosion;
} else if (nativeTy == explosionTy) {
native.transferInto(nonNativeExplosion, native.size());
return nonNativeExplosion;
}
// Otherwise, we have to go through memory if we can match by truncation.
} else if (canMatchByTruncation(IGM, expandedTys, schema)) {
assert(expandedTys.size() == schema.size());
for (size_t i = 0, e = expandedTys.size(); i != e; ++i) {
auto *elt = native.claimNext();
auto *schemaTy = schema[i].getScalarType();
auto *nativeTy = elt->getType();
assert(nativeTy == expandedTys[i]);
if (schemaTy == nativeTy) {
// elt = elt
} else if (DataLayout.getTypeSizeInBits(schemaTy) ==
DataLayout.getTypeSizeInBits(nativeTy))
elt = IGF.coerceValue(elt, schemaTy, DataLayout);
else {
assert(DataLayout.getTypeSizeInBits(schemaTy) <
DataLayout.getTypeSizeInBits(nativeTy));
elt = IGF.Builder.CreateTrunc(elt, schemaTy);
}
nonNativeExplosion.add(elt);
}
return nonNativeExplosion;
}
// If not, go through memory.
auto &loadableTI = cast<LoadableTypeInfo>(TI);
// We can get two layouts if there are overlapping ranges in the legal type
// sequence.
llvm::StructType *coercionTy, *overlappedCoercionTy;
SmallVector<unsigned, 8> expandedTyIndicesMap;
std::tie(coercionTy, overlappedCoercionTy) =
getCoercionTypes(IGM, expandedTyIndicesMap);
// Get the larger layout out of those two.
auto coercionSize = DataLayout.getTypeSizeInBits(coercionTy);
auto overlappedCoercionSize =
DataLayout.getTypeSizeInBits(overlappedCoercionTy);
llvm::StructType *largerCoercion = coercionSize >= overlappedCoercionSize
? coercionTy
: overlappedCoercionTy;
// Allocate a temporary for the coercion.
Address temporary;
Size tempSize;
std::tie(temporary, tempSize) = allocateForCoercion(
IGF, largerCoercion, loadableTI.getStorageType(), "temp-coercion");
// Make sure we have sufficiently large alignment.
adjustAllocaAlignment(DataLayout, temporary, coercionTy);
adjustAllocaAlignment(DataLayout, temporary, overlappedCoercionTy);
auto &Builder = IGF.Builder;
Builder.CreateLifetimeStart(temporary, tempSize);
// Store the expanded type elements.
auto coercionAddr = Builder.CreateElementBitCast(temporary, coercionTy);
unsigned expandedMapIdx = 0;
SmallVector<llvm::Value *, 8> expandedElts(expandedTys.size(), nullptr);
auto eltsArray = native.claimAll();
SmallVector<llvm::Value *, 8> nativeElts(eltsArray.begin(), eltsArray.end());
auto storeToFn = [&](llvm::StructType *ty, Address structAddr) {
for (auto eltIndex : indices(ty->elements())) {
auto layout = DataLayout.getStructLayout(ty);
auto eltTy = ty->getElementType(eltIndex);
// Skip padding fields.
if (eltTy->isArrayTy())
continue;
Address eltAddr = Builder.CreateStructGEP(structAddr, eltIndex, layout);
auto index = expandedTyIndicesMap[expandedMapIdx];
assert(index < nativeElts.size() && nativeElts[index] != nullptr);
auto nativeElt = nativeElts[index];
Builder.CreateStore(nativeElt, eltAddr);
nativeElts[index] = nullptr;
++expandedMapIdx;
}
};
storeToFn(coercionTy, coercionAddr);
if (!overlappedCoercionTy->isEmptyTy()) {
auto overlappedCoercionAddr =
Builder.CreateElementBitCast(temporary, overlappedCoercionTy);
storeToFn(overlappedCoercionTy, overlappedCoercionAddr);
}
// Reload according to the types schema.
Address storageAddr = Builder.CreateBitCast(
temporary, loadableTI.getStorageType()->getPointerTo());
loadableTI.loadAsTake(IGF, storageAddr, nonNativeExplosion);
Builder.CreateLifetimeEnd(temporary, tempSize);
return nonNativeExplosion;
}
Explosion NativeConventionSchema::mapIntoNative(IRGenModule &IGM,
IRGenFunction &IGF,
Explosion &fromNonNative,
SILType type,
bool isOutlined) const {
if (fromNonNative.empty()) {
assert(empty() && "Empty explosion must match the native convention");
return Explosion();
}
assert(!requiresIndirect() && "Expected direct convention");
assert(!empty());
auto *nativeTy = getExpandedType(IGM);
auto expandedTys = expandScalarOrStructTypeToArray(nativeTy);
auto &TI = IGM.getTypeInfo(type);
auto schema = TI.getSchema();
auto *explosionTy = schema.getScalarResultType(IGM);
// Check whether we can coerce the explosion to the expected type convention.
auto &DataLayout = IGM.DataLayout;
Explosion nativeExplosion;
if (canCoerceToSchema(IGM, expandedTys, schema)) {
if (fromNonNative.size() == 1) {
auto *elt = fromNonNative.claimNext();
if (nativeTy != elt->getType()) {
if (isa<llvm::IntegerType>(nativeTy) &&
isa<llvm::IntegerType>(elt->getType()))
elt = IGF.Builder.CreateZExt(elt, nativeTy);
else
elt = IGF.coerceValue(elt, nativeTy, DataLayout);
}
nativeExplosion.add(elt);
return nativeExplosion;
} else if (nativeTy == explosionTy) {
fromNonNative.transferInto(nativeExplosion, fromNonNative.size());
return nativeExplosion;
}
// Otherwise, we have to go through memory if we can't match by truncation.
} else if (canMatchByTruncation(IGM, expandedTys, schema)) {
assert(expandedTys.size() == schema.size());
for (size_t i = 0, e = expandedTys.size(); i != e; ++i) {
auto *elt = fromNonNative.claimNext();
auto *schemaTy = elt->getType();
auto *nativeTy = expandedTys[i];
assert(schema[i].getScalarType() == schemaTy);
if (schemaTy == nativeTy) {
// elt = elt
} else if (DataLayout.getTypeSizeInBits(schemaTy) ==
DataLayout.getTypeSizeInBits(nativeTy))
elt = IGF.coerceValue(elt, nativeTy, DataLayout);
else {
assert(DataLayout.getTypeSizeInBits(schemaTy) <
DataLayout.getTypeSizeInBits(nativeTy));
elt = IGF.Builder.CreateZExt(elt, nativeTy);
}
nativeExplosion.add(elt);
}
return nativeExplosion;
}
// If not, go through memory.
auto &loadableTI = cast<LoadableTypeInfo>(TI);
// We can get two layouts if there are overlapping ranges in the legal type
// sequence.
llvm::StructType *coercionTy, *overlappedCoercionTy;
SmallVector<unsigned, 8> expandedTyIndicesMap;
std::tie(coercionTy, overlappedCoercionTy) =
getCoercionTypes(IGM, expandedTyIndicesMap);
// Get the larger layout out of those two.
auto coercionSize = DataLayout.getTypeSizeInBits(coercionTy);
auto overlappedCoercionSize =
DataLayout.getTypeSizeInBits(overlappedCoercionTy);
llvm::StructType *largerCoercion = coercionSize >= overlappedCoercionSize
? coercionTy
: overlappedCoercionTy;
// Allocate a temporary for the coercion.
Address temporary;
Size tempSize;
std::tie(temporary, tempSize) = allocateForCoercion(
IGF, largerCoercion, loadableTI.getStorageType(), "temp-coercion");
// Make sure we have sufficiently large alignment.
adjustAllocaAlignment(DataLayout, temporary, coercionTy);
adjustAllocaAlignment(DataLayout, temporary, overlappedCoercionTy);
auto &Builder = IGF.Builder;
Builder.CreateLifetimeStart(temporary, tempSize);
// Initialize the memory of the temporary.
Address storageAddr = Builder.CreateBitCast(
temporary, loadableTI.getStorageType()->getPointerTo());
loadableTI.initialize(IGF, fromNonNative, storageAddr, isOutlined);
// Load the expanded type elements from memory.
auto coercionAddr = Builder.CreateElementBitCast(temporary, coercionTy);
unsigned expandedMapIdx = 0;
SmallVector<llvm::Value *, 8> expandedElts(expandedTys.size(), nullptr);
auto loadFromFn = [&](llvm::StructType *ty, Address structAddr) {
for (auto eltIndex : indices(ty->elements())) {
auto layout = DataLayout.getStructLayout(ty);
auto eltTy = ty->getElementType(eltIndex);
// Skip padding fields.
if (eltTy->isArrayTy())
continue;
Address eltAddr = Builder.CreateStructGEP(structAddr, eltIndex, layout);
llvm::Value *elt = Builder.CreateLoad(eltAddr);
auto index = expandedTyIndicesMap[expandedMapIdx];
assert(expandedElts[index] == nullptr);
expandedElts[index] = elt;
++expandedMapIdx;
}
};
loadFromFn(coercionTy, coercionAddr);
if (!overlappedCoercionTy->isEmptyTy()) {
auto overlappedCoercionAddr =
Builder.CreateElementBitCast(temporary, overlappedCoercionTy);
loadFromFn(overlappedCoercionTy, overlappedCoercionAddr);
}
Builder.CreateLifetimeEnd(temporary, tempSize);
// Add the values to the explosion.
for (auto *val : expandedElts)
nativeExplosion.add(val);
assert(expandedTys.size() == nativeExplosion.size());
return nativeExplosion;
}
void IRGenFunction::emitScalarReturn(SILType resultType, Explosion &result,
bool isSwiftCCReturn, bool isOutlined) {
if (result.empty()) {
assert(IGM.getTypeInfo(resultType).nativeReturnValueSchema(IGM).empty() &&
"Empty explosion must match the native calling convention");
Builder.CreateRetVoid();
return;
}
// In the native case no coercion is needed.
if (isSwiftCCReturn) {
auto &nativeSchema =
IGM.getTypeInfo(resultType).nativeReturnValueSchema(IGM);
assert(!nativeSchema.requiresIndirect());
Explosion native =
nativeSchema.mapIntoNative(IGM, *this, result, resultType, isOutlined);
if (native.size() == 1) {
Builder.CreateRet(native.claimNext());
return;
}
llvm::Value *nativeAgg =
llvm::UndefValue::get(nativeSchema.getExpandedType(IGM));
for (unsigned i = 0, e = native.size(); i != e; ++i) {
llvm::Value *elt = native.claimNext();
nativeAgg = Builder.CreateInsertValue(nativeAgg, elt, i);
}
Builder.CreateRet(nativeAgg);
return;
}
// Otherwise we potentially need to coerce the type. We don't need to go
// through the mapping to the native calling convention.
auto *ABIType = CurFn->getReturnType();
if (result.size() == 1) {
auto *returned = result.claimNext();
if (ABIType != returned->getType())
returned = coerceValue(returned, ABIType, IGM.DataLayout);
Builder.CreateRet(returned);
return;
}
auto &resultTI = IGM.getTypeInfo(resultType);
auto schema = resultTI.getSchema();
auto *bodyType = schema.getScalarResultType(IGM);
// Multiple return values are returned as a struct.
assert(cast<llvm::StructType>(bodyType)->getNumElements() == result.size());
llvm::Value *resultAgg = llvm::UndefValue::get(bodyType);
for (unsigned i = 0, e = result.size(); i != e; ++i) {
llvm::Value *elt = result.claimNext();
resultAgg = Builder.CreateInsertValue(resultAgg, elt, i);
}
if (ABIType != bodyType)
resultAgg = coerceValue(resultAgg, ABIType, IGM.DataLayout);
Builder.CreateRet(resultAgg);
}
/// Modify the given variable to hold a pointer whose type is the
/// LLVM lowering of the given function type, and return the signature
/// for the type.
static Signature emitCastOfFunctionPointer(IRGenFunction &IGF,
llvm::Value *&fnPtr,
CanSILFunctionType fnType) {
// Figure out the function type.
auto sig = IGF.IGM.getSignature(fnType);
// Emit the cast.
fnPtr = IGF.Builder.CreateBitCast(fnPtr, sig.getType()->getPointerTo());
// Return the information.
return sig;
}
Callee irgen::getBlockPointerCallee(IRGenFunction &IGF,
llvm::Value *blockPtr,
CalleeInfo &&info) {
// Grab the block pointer and make it the first physical argument.
llvm::PointerType *blockPtrTy = IGF.IGM.ObjCBlockPtrTy;
auto castBlockPtr = IGF.Builder.CreateBitCast(blockPtr, blockPtrTy);
// Extract the invocation pointer for blocks.
auto blockStructTy = blockPtrTy->getElementType();
llvm::Value *invokeFnPtrPtr =
IGF.Builder.CreateStructGEP(blockStructTy, castBlockPtr, 3);
Address invokeFnPtrAddr(invokeFnPtrPtr, IGF.IGM.getPointerAlignment());
llvm::Value *invokeFnPtr = IGF.Builder.CreateLoad(invokeFnPtrAddr);
auto sig = emitCastOfFunctionPointer(IGF, invokeFnPtr, info.OrigFnType);
FunctionPointer fn(invokeFnPtr, sig);
return Callee(std::move(info), fn, blockPtr);
}
Callee irgen::getSwiftFunctionPointerCallee(
IRGenFunction &IGF, llvm::Value *fnPtr, llvm::Value *dataPtr,
CalleeInfo &&calleeInfo, bool castOpaqueToRefcountedContext) {
auto sig = emitCastOfFunctionPointer(IGF, fnPtr, calleeInfo.OrigFnType);
FunctionPointer fn(fnPtr, sig);
if (castOpaqueToRefcountedContext) {
assert(dataPtr && dataPtr->getType() == IGF.IGM.OpaquePtrTy &&
"Expecting trivial closure context");
dataPtr = IGF.Builder.CreateBitCast(dataPtr, IGF.IGM.RefCountedPtrTy);
}
return Callee(std::move(calleeInfo), fn, dataPtr);
}
Callee irgen::getCFunctionPointerCallee(IRGenFunction &IGF,
llvm::Value *fnPtr,
CalleeInfo &&calleeInfo) {
auto sig = emitCastOfFunctionPointer(IGF, fnPtr, calleeInfo.OrigFnType);
FunctionPointer fn(fnPtr, sig);
return Callee(std::move(calleeInfo), fn);
}
FunctionPointer
FunctionPointer::forDirect(IRGenModule &IGM, llvm::Constant *fnPtr,
CanSILFunctionType fnType) {
return forDirect(fnPtr, IGM.getSignature(fnType));
}
FunctionPointer
FunctionPointer::forExplosionValue(IRGenFunction &IGF, llvm::Value *fnPtr,
CanSILFunctionType fnType) {
// Bitcast out of an opaque pointer type.
assert(fnPtr->getType() == IGF.IGM.Int8PtrTy);
auto sig = emitCastOfFunctionPointer(IGF, fnPtr, fnType);
return FunctionPointer(fnPtr, sig);
}
llvm::Value *
FunctionPointer::getExplosionValue(IRGenFunction &IGF,
CanSILFunctionType fnType) const {
// Bitcast to an opaque pointer type.
llvm::Value *fnPtr =
IGF.Builder.CreateBitCast(getPointer(), IGF.IGM.Int8PtrTy);
return fnPtr;
}