blob: 2fea67331cd01a375a03b119d58eef9d82888e2b [file] [log] [blame]
#!/usr/bin/env python
# This is a simple script that takes in an scurve file produced by
# csvcolumn_to_scurve and produces a png graph of the scurve.
import argparse
import csv
import matplotlib.pyplot as plt
import numpy as np
FIELDS = ['N/total', 'New/Old']
def get_data(input_file):
global FIELDS
for row in csv.DictReader(input_file):
yield (float(row[FIELDS[0]]), float(row[FIELDS[1]]))
def main():
p = argparse.ArgumentParser()
p.add_argument('input_csv_file', type=argparse.FileType('r'))
p.add_argument('output_file', type=str)
p.add_argument('-y-axis-num-tick-marks', type=int,
help='The number of y tick marks to use above/below zero.')
p.add_argument('-y-axis-min', type=float,
help='Override the min y axis that we use')
p.add_argument('-y-axis-max', type=float,
help='Override the min y axis that we use')
p.add_argument('-title', type=str,
help='Title of the graph')
p.add_argument('-x-axis-title', type=str,
help='The title to use on the x-axis of the graph')
p.add_argument('-y-axis-title', type=str,
help='The title to use on the x-axis of the graph')
args = p.parse_args()
data = np.array(list(get_data(args.input_csv_file)))
assert np.all(data >= 0)
x = data[:, 0]
y = data[:, 1]
x_axis_title = args.x_axis_title or FIELDS[0]
y_axis_title = args.y_axis_title or FIELDS[1]
title = args.title or "{} vs {}".format(x_axis_title, y_axis_title)
fig, ax = plt.subplots()
fig.set_size_inches(18.5, 18.5)
fig.suptitle(title, fontsize=20)
ax.set_xlabel(x_axis_title, fontsize=20)
ax.set_ylabel(y_axis_title, fontsize=20)
ax.plot(x, y)
ax.scatter(x, y)
# To get good bounds, we:
#
# 1. Re-center our data at 0 by subtracting 1. This will give us the %
# difference in between new and old (i.e. (new - old)/old)
#
# 2. Then we take the maximum absolute delta from zero and round to a
# multiple of 5 away from zero. Lets call this value limit.
#
# 3. We set [min_y, max_y] = [1.0 - limit, 1.0 + limit]
recentered_data = y - 1.0
max_magnitude = int(np.max(np.abs(recentered_data)) * 100.0)
y_limit = float(((max_magnitude // 5) + 1) * 5) * 0.01
ax.set_xlim(0.0, 1.0)
y_min = args.y_axis_min or 1.0 - y_limit
y_max = args.y_axis_max or 1.0 + y_limit
assert(y_min <= y_max)
ax.set_ylim(y_min, y_max)
ax.grid(True)
ax.xaxis.set_ticks(np.arange(0.0, 1.0, 0.05))
if args.y_axis_num_tick_marks:
y_delta = y_max - y_min
y_tickmark_frequency = y_delta / float(args.y_axis_num_tick_marks)
ax.yaxis.set_ticks(np.arange(y_min, y_max, y_tickmark_frequency))
plt.savefig(args.output_file)
if __name__ == "__main__":
main()