blob: 9597e691ae27b3ebf442f0e9771c89dd8cc7d6bd [file] [log] [blame]
//===--- SILGenDecl.cpp - Implements Lowering of ASTs -> SIL for Decls ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "SILGen.h"
#include "SILGenDynamicCast.h"
#include "Scope.h"
#include "SwitchEnumBuilder.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILDebuggerClient.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/SmallString.h"
#include <iterator>
using namespace swift;
using namespace Lowering;
void Initialization::_anchor() {}
void SILDebuggerClient::anchor() {}
namespace {
/// A "null" initialization that indicates that any value being initialized
/// into this initialization should be discarded. This represents AnyPatterns
/// (that is, 'var (_)') that bind to values without storing them.
class BlackHoleInitialization : public Initialization {
public:
BlackHoleInitialization() {}
bool canSplitIntoTupleElements() const override {
return true;
}
MutableArrayRef<InitializationPtr>
splitIntoTupleElements(SILGenFunction &SGF, SILLocation loc,
CanType type,
SmallVectorImpl<InitializationPtr> &buf) override {
// "Destructure" an ignored binding into multiple ignored bindings.
for (auto fieldType : cast<TupleType>(type)->getElementTypes()) {
(void) fieldType;
buf.push_back(InitializationPtr(new BlackHoleInitialization()));
}
return buf;
}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override {
/// This just ignores the provided value.
}
void finishUninitialized(SILGenFunction &SGF) override {
// do nothing
}
};
} // end anonymous namespace
static void copyOrInitValueIntoHelper(
SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit,
ArrayRef<InitializationPtr> subInitializations,
llvm::function_ref<ManagedValue(ManagedValue, unsigned, SILType)> func) {
auto sourceType = value.getType().castTo<TupleType>();
auto sourceSILType = value.getType();
for (unsigned i = 0, e = sourceType->getNumElements(); i != e; ++i) {
SILType fieldTy = sourceSILType.getTupleElementType(i);
ManagedValue elt = func(value, i, fieldTy);
subInitializations[i]->copyOrInitValueInto(SGF, loc, elt, isInit);
subInitializations[i]->finishInitialization(SGF);
}
}
void TupleInitialization::copyOrInitValueInto(SILGenFunction &SGF,
SILLocation loc,
ManagedValue value, bool isInit) {
// In the object case, we perform a borrow + extract + copy sequence. This is
// because we do not have a destructure operation.
if (value.getType().isObject()) {
value = value.borrow(SGF, loc);
return copyOrInitValueIntoHelper(
SGF, loc, value, isInit, SubInitializations,
[&](ManagedValue aggregate, unsigned i,
SILType fieldType) -> ManagedValue {
auto elt = SGF.B.createTupleExtract(loc, aggregate, i, fieldType);
return SGF.B.createCopyValue(loc, elt);
});
}
// In the address case, we can support takes directly, so forward the cleanup
// of the aggregate and create takes of the underlying addresses.
value = ManagedValue::forUnmanaged(value.forward(SGF));
return copyOrInitValueIntoHelper(
SGF, loc, value, isInit, SubInitializations,
[&](ManagedValue aggregate, unsigned i,
SILType fieldType) -> ManagedValue {
ManagedValue elt =
SGF.B.createTupleElementAddr(loc, value, i, fieldType);
if (!fieldType.isAddressOnly(SGF.F.getModule())) {
return SGF.B.createLoadTake(loc, elt);
}
return SGF.emitManagedRValueWithCleanup(elt.getValue());
});
}
void TupleInitialization::finishUninitialized(SILGenFunction &SGF) {
for (auto &subInit : SubInitializations) {
subInit->finishUninitialized(SGF);
}
}
namespace {
class CleanupClosureConstant : public Cleanup {
SILValue closure;
public:
CleanupClosureConstant(SILValue closure) : closure(closure) {}
void emit(SILGenFunction &SGF, CleanupLocation l) override {
SGF.B.emitDestroyValueOperation(l, closure);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "CleanupClosureConstant\n"
<< "State:" << getState() << "\n"
<< "closure:" << closure << "\n";
#endif
}
};
} // end anonymous namespace
SubstitutionList SILGenFunction::getForwardingSubstitutions() {
return F.getForwardingSubstitutions();
}
void SILGenFunction::visitFuncDecl(FuncDecl *fd) {
// Generate the local function body.
SGM.emitFunction(fd);
}
MutableArrayRef<InitializationPtr>
SingleBufferInitialization::
splitIntoTupleElements(SILGenFunction &SGF, SILLocation loc, CanType type,
SmallVectorImpl<InitializationPtr> &buf) {
assert(SplitCleanups.empty() && "getting sub-initializations twice?");
auto address = getAddressForInPlaceInitialization(SGF, loc);
return splitSingleBufferIntoTupleElements(SGF, loc, type, address,
buf, SplitCleanups);
}
MutableArrayRef<InitializationPtr>
SingleBufferInitialization::
splitSingleBufferIntoTupleElements(SILGenFunction &SGF, SILLocation loc,
CanType type, SILValue baseAddr,
SmallVectorImpl<InitializationPtr> &buf,
TinyPtrVector<CleanupHandle::AsPointer> &splitCleanups) {
// Destructure the buffer into per-element buffers.
for (auto i : indices(cast<TupleType>(type)->getElementTypes())) {
// Project the element.
SILValue eltAddr = SGF.B.createTupleElementAddr(loc, baseAddr, i);
// Create an initialization to initialize the element.
auto &eltTL = SGF.getTypeLowering(eltAddr->getType());
auto eltInit = SGF.useBufferAsTemporary(eltAddr, eltTL);
// Remember the element cleanup.
auto eltCleanup = eltInit->getInitializedCleanup();
if (eltCleanup.isValid())
splitCleanups.push_back(eltCleanup);
buf.emplace_back(eltInit.release());
}
return buf;
}
void SingleBufferInitialization::
copyOrInitValueIntoSingleBuffer(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit,
SILValue destAddr) {
// Emit an unchecked access around initialization of the local buffer to
// silence access marker verification.
//
// FIXME: This is not a good place for FormalEvaluationScope +
// UnenforcedFormalAccess. However, there's no way to identify the buffer
// initialization sequence after SILGen, and no easy way to wrap the
// Initialization in an access during top-level expression evaluation.
FormalEvaluationScope scope(SGF);
if (!isInit) {
assert(value.getValue() != destAddr && "copying in place?!");
SILValue accessAddr =
UnenforcedFormalAccess::enter(SGF, loc, destAddr, SILAccessKind::Modify);
value.copyInto(SGF, accessAddr, loc);
return;
}
// If we didn't evaluate into the initialization buffer, do so now.
if (value.getValue() != destAddr) {
SILValue accessAddr =
UnenforcedFormalAccess::enter(SGF, loc, destAddr, SILAccessKind::Modify);
value.forwardInto(SGF, loc, accessAddr);
} else {
// If we did evaluate into the initialization buffer, disable the
// cleanup.
value.forwardCleanup(SGF);
}
}
void SingleBufferInitialization::finishInitialization(SILGenFunction &SGF) {
// Forward all of the split element cleanups, assuming we made any.
for (CleanupHandle eltCleanup : SplitCleanups)
SGF.Cleanups.forwardCleanup(eltCleanup);
}
bool KnownAddressInitialization::isInPlaceInitializationOfGlobal() const {
return isa<GlobalAddrInst>(address);
}
bool TemporaryInitialization::isInPlaceInitializationOfGlobal() const {
return isa<GlobalAddrInst>(Addr);
}
void TemporaryInitialization::finishInitialization(SILGenFunction &SGF) {
SingleBufferInitialization::finishInitialization(SGF);
if (Cleanup.isValid())
SGF.Cleanups.setCleanupState(Cleanup, CleanupState::Active);
}
namespace {
class EndBorrowCleanup : public Cleanup {
SILValue original;
SILValue borrowed;
public:
EndBorrowCleanup(SILValue original, SILValue borrowed)
: original(original), borrowed(borrowed) {}
void emit(SILGenFunction &SGF, CleanupLocation l) override {
SGF.B.createEndBorrow(l, borrowed, original);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "EndBorrowCleanup "
<< "State:" << getState() << "\n"
<< "original:" << original << "\n"
<< "borrowed:" << borrowed << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
class ReleaseValueCleanup : public Cleanup {
SILValue v;
public:
ReleaseValueCleanup(SILValue v) : v(v) {}
void emit(SILGenFunction &SGF, CleanupLocation l) override {
if (v->getType().isAddress())
SGF.B.createDestroyAddr(l, v);
else
SGF.B.emitDestroyValueOperation(l, v);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "ReleaseValueCleanup\n"
<< "State:" << getState() << "\n"
<< "Value:" << v << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
/// Cleanup to destroy an initialized variable.
class DeallocStackCleanup : public Cleanup {
SILValue Addr;
public:
DeallocStackCleanup(SILValue addr) : Addr(addr) {}
void emit(SILGenFunction &SGF, CleanupLocation l) override {
SGF.B.createDeallocStack(l, Addr);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "DeallocStackCleanup\n"
<< "State:" << getState() << "\n"
<< "Addr:" << Addr << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
/// Cleanup to destroy an initialized 'var' variable.
class DestroyLocalVariable : public Cleanup {
VarDecl *Var;
public:
DestroyLocalVariable(VarDecl *var) : Var(var) {}
void emit(SILGenFunction &SGF, CleanupLocation l) override {
SGF.destroyLocalVariable(l, Var);
}
void dump(SILGenFunction &SGF) const override {
#ifndef NDEBUG
llvm::errs() << "DestroyLocalVariable\n"
<< "State:" << getState() << "\n"
<< "Decl: ";
Var->print(llvm::errs());
llvm::errs() << "\n";
if (isActive()) {
auto loc = SGF.VarLocs[Var];
assert((loc.box || loc.value) && "One of box or value should be set");
if (loc.box) {
llvm::errs() << "Box: " << loc.box << "\n";
} else {
llvm::errs() << "Value: " << loc.value << "\n";
}
}
llvm::errs() << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
/// Cleanup to destroy an uninitialized local variable.
class DeallocateUninitializedLocalVariable : public Cleanup {
VarDecl *Var;
public:
DeallocateUninitializedLocalVariable(VarDecl *var) : Var(var) {}
void emit(SILGenFunction &SGF, CleanupLocation l) override {
SGF.deallocateUninitializedLocalVariable(l, Var);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "DeallocateUninitializedLocalVariable\n"
<< "State:" << getState() << "\n";
// TODO: Make sure we dump var.
llvm::errs() << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
/// An initialization of a local 'var'.
class LocalVariableInitialization : public SingleBufferInitialization {
/// The local variable decl being initialized.
VarDecl *decl;
SILGenFunction &SGF;
/// The cleanup we pushed to deallocate the local variable before it
/// gets initialized.
CleanupHandle DeallocCleanup;
/// The cleanup we pushed to destroy and deallocate the local variable.
CleanupHandle ReleaseCleanup;
bool DidFinish = false;
public:
/// Sets up an initialization for the allocated box. This pushes a
/// CleanupUninitializedBox cleanup that will be replaced when
/// initialization is completed.
LocalVariableInitialization(VarDecl *decl,
Optional<MarkUninitializedInst::Kind> kind,
unsigned ArgNo, SILGenFunction &SGF)
: decl(decl), SGF(SGF) {
assert(decl->getDeclContext()->isLocalContext() &&
"can't emit a local var for a non-local var decl");
assert(decl->hasStorage() && "can't emit storage for a computed variable");
assert(!SGF.VarLocs.count(decl) && "Already have an entry for this decl?");
auto boxType = SGF.SGM.Types
.getContextBoxTypeForCapture(decl,
SGF.getLoweredType(decl->getType()).getSwiftRValueType(),
SGF.F.getGenericEnvironment(),
/*mutable*/ true);
// The variable may have its lifetime extended by a closure, heap-allocate
// it using a box.
SILValue allocBox =
SGF.B.createAllocBox(decl, boxType, {decl->isLet(), ArgNo});
// Mark the memory as uninitialized, so DI will track it for us.
if (kind)
allocBox = SGF.B.createMarkUninitialized(decl, allocBox, kind.getValue());
SILValue addr = SGF.B.createProjectBox(decl, allocBox, 0);
/// Remember that this is the memory location that we're emitting the
/// decl to.
SGF.VarLocs[decl] = SILGenFunction::VarLoc::get(addr, allocBox);
// Push a cleanup to destroy the local variable. This has to be
// inactive until the variable is initialized.
SGF.Cleanups.pushCleanupInState<DestroyLocalVariable>(CleanupState::Dormant,
decl);
ReleaseCleanup = SGF.Cleanups.getTopCleanup();
// Push a cleanup to deallocate the local variable.
SGF.Cleanups.pushCleanup<DeallocateUninitializedLocalVariable>(decl);
DeallocCleanup = SGF.Cleanups.getTopCleanup();
}
~LocalVariableInitialization() override {
assert(DidFinish && "did not call VarInit::finishInitialization!");
}
SILValue getAddress() const {
assert(SGF.VarLocs.count(decl) && "did not emit var?!");
return SGF.VarLocs[decl].value;
}
SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF,
SILLocation loc) override {
return getAddress();
}
bool isInPlaceInitializationOfGlobal() const override {
return isa<GlobalAddrInst>(getAddress());
}
void finishUninitialized(SILGenFunction &SGF) override {
LocalVariableInitialization::finishInitialization(SGF);
}
void finishInitialization(SILGenFunction &SGF) override {
SingleBufferInitialization::finishInitialization(SGF);
assert(!DidFinish &&
"called LocalVariableInitialization::finishInitialization twice!");
SGF.Cleanups.setCleanupState(DeallocCleanup, CleanupState::Dead);
SGF.Cleanups.setCleanupState(ReleaseCleanup, CleanupState::Active);
DidFinish = true;
}
};
} // end anonymous namespace
namespace {
/// Initialize a writeback buffer that receives the value of a 'let'
/// declaration.
class LetValueInitialization : public Initialization {
/// The VarDecl for the let decl.
VarDecl *vd;
/// The address of the buffer used for the binding, if this is an address-only
/// let.
SILValue address;
/// The cleanup we pushed to destroy the local variable.
CleanupHandle DestroyCleanup;
/// Cleanups we introduced when splitting.
TinyPtrVector<CleanupHandle::AsPointer> SplitCleanups;
bool DidFinish = false;
public:
LetValueInitialization(VarDecl *vd, SILGenFunction &SGF) : vd(vd) {
auto &lowering = SGF.getTypeLowering(vd->getType());
// Decide whether we need a temporary stack buffer to evaluate this 'let'.
// There are three cases we need to handle here: parameters, initialized (or
// bound) decls, and uninitialized ones.
bool needsTemporaryBuffer;
bool isUninitialized = false;
assert(!isa<ParamDecl>(vd)
&& "should not bind function params on this path");
if (vd->getParentPatternBinding() && !vd->getParentInitializer()) {
// This value is uninitialized (and unbound) if it has a pattern binding
// decl, with no initializer value.
assert(!vd->hasNonPatternBindingInit() && "Bound values aren't uninit!");
// If this is a let-value without an initializer, then we need a temporary
// buffer. DI will make sure it is only assigned to once.
needsTemporaryBuffer = true;
isUninitialized = true;
} else {
// If this is a let with an initializer or bound value, we only need a
// buffer if the type is address only.
needsTemporaryBuffer =
lowering.isAddressOnly() && SGF.silConv.useLoweredAddresses();
}
if (needsTemporaryBuffer) {
address = SGF.emitTemporaryAllocation(vd, lowering.getLoweredType());
if (isUninitialized)
address = SGF.B.createMarkUninitializedVar(vd, address);
DestroyCleanup = SGF.enterDormantTemporaryCleanup(address, lowering);
SGF.VarLocs[vd] = SILGenFunction::VarLoc::get(address);
} else if (!lowering.isTrivial()) {
// Push a cleanup to destroy the let declaration. This has to be
// inactive until the variable is initialized: if control flow exits the
// before the value is bound, we don't want to destroy the value.
SGF.Cleanups.pushCleanupInState<DestroyLocalVariable>(
CleanupState::Dormant, vd);
DestroyCleanup = SGF.Cleanups.getTopCleanup();
} else {
DestroyCleanup = CleanupHandle::invalid();
}
}
~LetValueInitialization() override {
assert(DidFinish && "did not call LetValueInit::finishInitialization!");
}
bool hasAddress() const { return (bool)address; }
bool canPerformInPlaceInitialization() const override {
return hasAddress();
}
bool isInPlaceInitializationOfGlobal() const override {
return isa<GlobalAddrInst>(address);
}
SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF,
SILLocation loc) override {
// Emit into the buffer that 'let's produce for address-only values if
// we have it.
assert(hasAddress());
return address;
}
/// Return true if we can get the addresses of elements with the
/// 'getSubInitializationsForTuple' method.
///
/// Let-value initializations cannot be broken into constituent pieces if a
/// scalar value needs to be bound. If there is an address in play, then we
/// can initialize the address elements of the tuple though.
bool canSplitIntoTupleElements() const override {
return hasAddress();
}
MutableArrayRef<InitializationPtr>
splitIntoTupleElements(SILGenFunction &SGF, SILLocation loc, CanType type,
SmallVectorImpl<InitializationPtr> &buf) override {
assert(SplitCleanups.empty());
auto address = getAddressForInPlaceInitialization(SGF, loc);
return SingleBufferInitialization
::splitSingleBufferIntoTupleElements(SGF, loc, type, address, buf,
SplitCleanups);
}
void bindValue(SILValue value, SILGenFunction &SGF) {
assert(!SGF.VarLocs.count(vd) && "Already emitted this vardecl?");
// If we're binding an address to this let value, then we can use it as an
// address later. This happens when binding an address only parameter to
// an argument, for example.
if (value->getType().isAddress())
address = value;
SGF.VarLocs[vd] = SILGenFunction::VarLoc::get(value);
// Emit a debug_value[_addr] instruction to record the start of this value's
// lifetime.
SILLocation PrologueLoc(vd);
PrologueLoc.markAsPrologue();
if (address)
SGF.B.createDebugValueAddr(PrologueLoc, value);
else
SGF.B.createDebugValue(PrologueLoc, value);
}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override {
// If this let value has an address, we can handle it just like a single
// buffer value.
if (hasAddress())
return SingleBufferInitialization::
copyOrInitValueIntoSingleBuffer(SGF, loc, value, isInit, address);
// Otherwise, we bind the value.
if (isInit) {
// Disable the rvalue expression cleanup, since the let value
// initialization has a cleanup that lives for the entire scope of the
// let declaration.
bindValue(value.forward(SGF), SGF);
} else {
// Disable the expression cleanup of the copy, since the let value
// initialization has a cleanup that lives for the entire scope of the
// let declaration.
bindValue(value.copyUnmanaged(SGF, loc).forward(SGF), SGF);
}
}
void finishUninitialized(SILGenFunction &SGF) override {
LetValueInitialization::finishInitialization(SGF);
}
void finishInitialization(SILGenFunction &SGF) override {
assert(!DidFinish &&
"called LetValueInit::finishInitialization twice!");
assert(SGF.VarLocs.count(vd) && "Didn't bind a value to this let!");
// Deactivate any cleanups we made when splitting the tuple.
for (auto cleanup : SplitCleanups)
SGF.Cleanups.forwardCleanup(cleanup);
// Activate the destroy cleanup.
if (DestroyCleanup != CleanupHandle::invalid())
SGF.Cleanups.setCleanupState(DestroyCleanup, CleanupState::Active);
DidFinish = true;
}
};
} // end anonymous namespace
namespace {
/// Initialize a variable of reference-storage type.
class ReferenceStorageInitialization : public Initialization {
InitializationPtr VarInit;
public:
ReferenceStorageInitialization(InitializationPtr &&subInit)
: VarInit(std::move(subInit)) {
assert(VarInit->canPerformInPlaceInitialization());
}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override {
auto address = VarInit->getAddressForInPlaceInitialization(SGF, loc);
// If this is not an initialization, copy the value before we translateIt,
// translation expects a +1 value.
if (isInit)
value.forwardInto(SGF, loc, address);
else
value.copyInto(SGF, address, loc);
}
void finishUninitialized(SILGenFunction &SGF) override {
ReferenceStorageInitialization::finishInitialization(SGF);
}
void finishInitialization(SILGenFunction &SGF) override {
VarInit->finishInitialization(SGF);
}
};
} // end anonymous namespace
namespace {
/// Abstract base class for refutable pattern initializations.
class RefutablePatternInitialization : public Initialization {
/// This is the label to jump to if the pattern fails to match.
JumpDest failureDest;
public:
RefutablePatternInitialization(JumpDest failureDest)
: failureDest(failureDest) {
assert(failureDest.isValid() &&
"Refutable patterns can only exist in failable conditions");
}
JumpDest getFailureDest() const { return failureDest; }
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override = 0;
void bindVariable(SILLocation loc, VarDecl *var, ManagedValue value,
CanType formalValueType, SILGenFunction &SGF) {
// Initialize the variable value.
InitializationPtr init = SGF.emitInitializationForVarDecl(var, var->isLet());
RValue(SGF, loc, formalValueType, value).forwardInto(SGF, loc, init.get());
}
};
} // end anonymous namespace
namespace {
class ExprPatternInitialization : public RefutablePatternInitialization {
ExprPattern *P;
public:
ExprPatternInitialization(ExprPattern *P, JumpDest patternFailDest)
: RefutablePatternInitialization(patternFailDest), P(P) {}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override;
};
} // end anonymous namespace
void ExprPatternInitialization::
copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) {
assert(isInit && "Only initialization is supported for refutable patterns");
FullExpr scope(SGF.Cleanups, CleanupLocation(P));
bindVariable(P, P->getMatchVar(), value,
P->getType()->getCanonicalType(), SGF);
// Emit the match test.
SILValue testBool;
{
FullExpr scope(SGF.Cleanups, CleanupLocation(P->getMatchExpr()));
testBool = SGF.emitRValueAsSingleValue(P->getMatchExpr()).
getUnmanagedValue();
}
SILBasicBlock *contBB = SGF.B.splitBlockForFallthrough();
auto falseBB = SGF.Cleanups.emitBlockForCleanups(getFailureDest(), loc);
SGF.B.createCondBranch(loc, testBool, contBB, falseBB);
SGF.B.setInsertionPoint(contBB);
}
namespace {
class EnumElementPatternInitialization : public RefutablePatternInitialization {
EnumElementDecl *ElementDecl;
InitializationPtr subInitialization;
public:
EnumElementPatternInitialization(EnumElementDecl *ElementDecl,
InitializationPtr &&subInitialization,
JumpDest patternFailDest)
: RefutablePatternInitialization(patternFailDest), ElementDecl(ElementDecl),
subInitialization(std::move(subInitialization)) {}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override {
assert(isInit && "Only initialization is supported for refutable patterns");
emitEnumMatch(value, ElementDecl, subInitialization.get(), getFailureDest(),
loc, SGF);
}
static void emitEnumMatch(ManagedValue value, EnumElementDecl *ElementDecl,
Initialization *subInit, JumpDest FailureDest,
SILLocation loc, SILGenFunction &SGF);
void finishInitialization(SILGenFunction &SGF) override {
if (subInitialization.get())
subInitialization->finishInitialization(SGF);
}
};
} // end anonymous namespace
void EnumElementPatternInitialization::emitEnumMatch(
ManagedValue value, EnumElementDecl *eltDecl, Initialization *subInit,
JumpDest failureDest, SILLocation loc, SILGenFunction &SGF) {
// Create all of the blocks early so we can maintain a consistent ordering
// (and update less tests). Break this at your fingers parallel.
//
// *NOTE* This needs to be in reverse order to preserve the textual SIL.
auto *contBlock = SGF.createBasicBlock();
auto *someBlock = SGF.createBasicBlock();
auto *defaultBlock = SGF.createBasicBlock();
auto *originalBlock = SGF.B.getInsertionBB();
SwitchEnumBuilder switchBuilder(SGF.B, loc, value);
// Handle the none case.
//
// *NOTE*: Since we are performing an initialization here, it is *VERY*
// important that we emit the negative case first. The reason why is that
// currently the initialization has a dormant cleanup in a scope that may be
// after the failureDest depth. Once we run the positive case, this
// initialization will be enabled. Thus if we run the negative case /after/
// the positive case, a cleanup will be emitted for the initialization on the
// negative path... but the actual initialization happened on the positive
// path, causing a use (the destroy on the negative path) to be created that
// does not dominate its definition (in the positive path).
auto handler = [&SGF, &loc, &failureDest](ManagedValue mv,
SwitchCaseFullExpr &expr) {
expr.exit();
SGF.Cleanups.emitBranchAndCleanups(failureDest, loc);
};
// If we have a binary enum, do not emit a true default case. This ensures
// that we do not emit a destroy_value on a .None.
bool inferredBinaryEnum = false;
auto *enumDecl = value.getType().getEnumOrBoundGenericEnum();
if (auto *otherDecl = enumDecl->getOppositeBinaryDecl(eltDecl)) {
inferredBinaryEnum = true;
switchBuilder.addCase(otherDecl, defaultBlock, nullptr, handler);
} else {
switchBuilder.addDefaultCase(
defaultBlock, nullptr, handler,
SwitchEnumBuilder::DefaultDispatchTime::BeforeNormalCases);
}
// Always insert the some case at the front of the list. In the default case,
// this will not matter, but in the case where we have a binary enum, we want
// to preserve the old ordering of .some/.none. to make it easier to update
// tests.
switchBuilder.addCase(
eltDecl, someBlock, contBlock,
[&SGF, &loc, &eltDecl, &subInit, &value](ManagedValue mv,
SwitchCaseFullExpr &expr) {
// If the enum case has no bound value, we're done.
if (!eltDecl->hasAssociatedValues()) {
assert(
subInit == nullptr &&
"Cannot have a subinit when there is no value to match against");
expr.exitAndBranch(loc);
return;
}
if (subInit == nullptr) {
// If there is no subinitialization, then we are done matching. Don't
// bother projecting out the any elements value only to ignore it.
expr.exitAndBranch(loc);
return;
}
// Otherwise, the bound value for the enum case is available.
SILType eltTy = value.getType().getEnumElementType(eltDecl, SGF.SGM.M);
auto &eltTL = SGF.getTypeLowering(eltTy);
if (mv.getType().isAddress()) {
// If the enum is address-only, take from the enum we have and load it
// if
// the element value is loadable.
assert((eltTL.isTrivial() || mv.hasCleanup()) &&
"must be able to consume value");
mv = SGF.B.createUncheckedTakeEnumDataAddr(loc, mv, eltDecl, eltTy);
// Load a loadable data value.
if (eltTL.isLoadable())
mv = SGF.B.createLoadTake(loc, mv);
}
// If the payload is indirect, project it out of the box.
if (eltDecl->isIndirect() || eltDecl->getParentEnum()->isIndirect()) {
SILValue boxedValue = SGF.B.createProjectBox(loc, mv.getValue(), 0);
auto &boxedTL = SGF.getTypeLowering(boxedValue->getType());
// SEMANTIC ARC TODO: Revisit this when the verifier is enabled.
if (boxedTL.isLoadable() || !SGF.silConv.useLoweredAddresses()) {
UnenforcedAccess access;
SILValue accessAddress =
access.beginAccess(SGF, loc, boxedValue, SILAccessKind::Read);
boxedValue = boxedTL.emitLoad(SGF.B, loc, accessAddress,
LoadOwnershipQualifier::Take);
access.endAccess(SGF);
}
// We must treat the boxed value as +0 since it may be shared. Copy it
// if nontrivial.
//
// TODO: Should be able to hand it off at +0 in some cases.
mv = ManagedValue::forUnmanaged(boxedValue);
mv = mv.copyUnmanaged(SGF, loc);
}
// Reabstract to the substituted type, if needed.
CanType substEltTy =
value.getType()
.getSwiftRValueType()
->getTypeOfMember(SGF.SGM.M.getSwiftModule(), eltDecl,
eltDecl->getArgumentInterfaceType())
->getCanonicalType();
AbstractionPattern origEltTy =
(eltDecl == SGF.getASTContext().getOptionalSomeDecl()
? AbstractionPattern(substEltTy)
: SGF.SGM.M.Types.getAbstractionPattern(eltDecl));
mv = SGF.emitOrigToSubstValue(loc, mv, origEltTy, substEltTy);
// Pass the +1 value down into the sub initialization.
subInit->copyOrInitValueInto(SGF, loc, mv, /*is an init*/ true);
expr.exitAndBranch(loc);
});
std::move(switchBuilder).emit();
// If we inferred a binary enum, put the asked for case first so we preserve
// the current code structure. This just ensures that less test updates are
// needed.
if (inferredBinaryEnum) {
if (auto *switchEnum =
dyn_cast<SwitchEnumInst>(originalBlock->getTerminator())) {
switchEnum->swapCase(0, 1);
} else {
auto *switchEnumAddr =
cast<SwitchEnumAddrInst>(originalBlock->getTerminator());
switchEnumAddr->swapCase(0, 1);
}
}
// Reset the insertion point to the end of contBlock.
SGF.B.setInsertionPoint(contBlock);
}
namespace {
class IsPatternInitialization : public RefutablePatternInitialization {
IsPattern *pattern;
InitializationPtr subInitialization;
public:
IsPatternInitialization(IsPattern *pattern,
InitializationPtr &&subInitialization,
JumpDest patternFailDest)
: RefutablePatternInitialization(patternFailDest), pattern(pattern),
subInitialization(std::move(subInitialization)) {}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override;
void finishInitialization(SILGenFunction &SGF) override {
if (subInitialization.get())
subInitialization->finishInitialization(SGF);
}
};
} // end anonymous namespace
void IsPatternInitialization::
copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) {
assert(isInit && "Only initialization is supported for refutable patterns");
// Try to perform the cast to the destination type, producing an optional that
// indicates whether we succeeded.
auto destType = OptionalType::get(pattern->getCastTypeLoc().getType());
value =
emitConditionalCheckedCast(SGF, loc, value, pattern->getType(), destType,
pattern->getCastKind(), SGFContext(),
ProfileCounter(), ProfileCounter())
.getAsSingleValue(SGF, loc);
// Now that we have our result as an optional, we can use an enum projection
// to do all the work.
EnumElementPatternInitialization::
emitEnumMatch(value, SGF.getASTContext().getOptionalSomeDecl(),
subInitialization.get(), getFailureDest(), loc, SGF);
}
namespace {
class BoolPatternInitialization : public RefutablePatternInitialization {
BoolPattern *pattern;
public:
BoolPatternInitialization(BoolPattern *pattern,
JumpDest patternFailDest)
: RefutablePatternInitialization(patternFailDest), pattern(pattern) {}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override;
};
} // end anonymous namespace
void BoolPatternInitialization::
copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) {
assert(isInit && "Only initialization is supported for refutable patterns");
// Extract the i1 from the Bool struct.
StructDecl *BoolStruct = cast<StructDecl>(SGF.getASTContext().getBoolDecl());
auto Members = BoolStruct->lookupDirect(SGF.getASTContext().Id_value_);
assert(Members.size() == 1 &&
"Bool should have only one property with name '_value'");
auto Member = dyn_cast<VarDecl>(Members[0]);
assert(Member &&"Bool should have a property with name '_value' of type Int1");
auto *i1Val = SGF.B.createStructExtract(loc, value.forward(SGF), Member);
// Branch on the boolean based on whether we're testing for true or false.
SILBasicBlock *trueBB = SGF.B.splitBlockForFallthrough();
auto contBB = trueBB;
auto falseBB = SGF.Cleanups.emitBlockForCleanups(getFailureDest(), loc);
if (!pattern->getValue())
std::swap(trueBB, falseBB);
SGF.B.createCondBranch(loc, i1Val, trueBB, falseBB);
SGF.B.setInsertionPoint(contBB);
}
namespace {
/// InitializationForPattern - A visitor for traversing a pattern, generating
/// SIL code to allocate the declared variables, and generating an
/// Initialization representing the needed initializations.
///
/// It is important that any Initialization created for a pattern that might
/// not have an immediate initializer implement finishUninitialized. Note
/// that this only applies to irrefutable patterns.
struct InitializationForPattern
: public PatternVisitor<InitializationForPattern, InitializationPtr>
{
SILGenFunction &SGF;
/// This is the place that should be jumped to if the pattern fails to match.
/// This is invalid for irrefutable pattern initializations.
JumpDest patternFailDest;
InitializationForPattern(SILGenFunction &SGF, JumpDest patternFailDest)
: SGF(SGF), patternFailDest(patternFailDest) {}
// Paren, Typed, and Var patterns are noops, just look through them.
InitializationPtr visitParenPattern(ParenPattern *P) {
return visit(P->getSubPattern());
}
InitializationPtr visitTypedPattern(TypedPattern *P) {
return visit(P->getSubPattern());
}
InitializationPtr visitVarPattern(VarPattern *P) {
return visit(P->getSubPattern());
}
// AnyPatterns (i.e, _) don't require any storage. Any value bound here will
// just be dropped.
InitializationPtr visitAnyPattern(AnyPattern *P) {
return InitializationPtr(new BlackHoleInitialization());
}
// Bind to a named pattern by creating a memory location and initializing it
// with the initial value.
InitializationPtr visitNamedPattern(NamedPattern *P) {
if (!P->getDecl()->hasName()) {
// Unnamed parameters don't require any storage. Any value bound here will
// just be dropped.
return InitializationPtr(new BlackHoleInitialization());
}
return SGF.emitInitializationForVarDecl(P->getDecl(), P->getDecl()->isLet());
}
// Bind a tuple pattern by aggregating the component variables into a
// TupleInitialization.
InitializationPtr visitTuplePattern(TuplePattern *P) {
TupleInitialization *init = new TupleInitialization();
for (auto &elt : P->getElements())
init->SubInitializations.push_back(visit(elt.getPattern()));
return InitializationPtr(init);
}
InitializationPtr visitEnumElementPattern(EnumElementPattern *P) {
InitializationPtr subInit;
if (auto *subP = P->getSubPattern())
subInit = visit(subP);
auto *res = new EnumElementPatternInitialization(P->getElementDecl(),
std::move(subInit),
patternFailDest);
return InitializationPtr(res);
}
InitializationPtr visitOptionalSomePattern(OptionalSomePattern *P) {
InitializationPtr subInit = visit(P->getSubPattern());
auto *res = new EnumElementPatternInitialization(P->getElementDecl(),
std::move(subInit),
patternFailDest);
return InitializationPtr(res);
}
InitializationPtr visitIsPattern(IsPattern *P) {
InitializationPtr subInit;
if (auto *subP = P->getSubPattern())
subInit = visit(subP);
return InitializationPtr(new IsPatternInitialization(P, std::move(subInit),
patternFailDest));
}
InitializationPtr visitBoolPattern(BoolPattern *P) {
return InitializationPtr(new BoolPatternInitialization(P, patternFailDest));
}
InitializationPtr visitExprPattern(ExprPattern *P) {
return InitializationPtr(new ExprPatternInitialization(P, patternFailDest));
}
};
} // end anonymous namespace
InitializationPtr
SILGenFunction::emitInitializationForVarDecl(VarDecl *vd, bool forceImmutable) {
// If this is a computed variable, we don't need to do anything here.
// We'll generate the getter and setter when we see their FuncDecls.
if (!vd->hasStorage())
return InitializationPtr(new BlackHoleInitialization());
if (vd->isDebuggerVar()) {
DebuggerClient *DebugClient = SGM.SwiftModule->getDebugClient();
assert(DebugClient && "Debugger variables with no debugger client");
SILDebuggerClient *SILDebugClient = DebugClient->getAsSILDebuggerClient();
assert(SILDebugClient && "Debugger client doesn't support SIL");
SILValue SV = SILDebugClient->emitLValueForVariable(vd, B);
VarLocs[vd] = SILGenFunction::VarLoc::get(SV);
return InitializationPtr(new KnownAddressInitialization(SV));
}
CanType varType = vd->getType()->getCanonicalType();
assert(!isa<InOutType>(varType) && "local variables should never be inout");
// If this is a 'let' initialization for a non-global, set up a
// let binding, which stores the initialization value into VarLocs directly.
if (forceImmutable && vd->getDeclContext()->isLocalContext() &&
!isa<ReferenceStorageType>(varType))
return InitializationPtr(new LetValueInitialization(vd, *this));
// If the variable has no initial value, emit a mark_uninitialized instruction
// so that DI tracks and enforces validity of it.
bool isUninitialized =
vd->getParentPatternBinding() && !vd->getParentInitializer();
// If this is a global variable, initialize it without allocations or
// cleanups.
InitializationPtr Result;
if (!vd->getDeclContext()->isLocalContext()) {
auto *silG = SGM.getSILGlobalVariable(vd, NotForDefinition);
B.createAllocGlobal(vd, silG);
SILValue addr = B.createGlobalAddr(vd, silG);
if (isUninitialized)
addr = B.createMarkUninitializedVar(vd, addr);
VarLocs[vd] = SILGenFunction::VarLoc::get(addr);
Result = InitializationPtr(new KnownAddressInitialization(addr));
} else {
Optional<MarkUninitializedInst::Kind> uninitKind;
if (isUninitialized) {
uninitKind = MarkUninitializedInst::Kind::Var;
}
Result = emitLocalVariableWithCleanup(vd, uninitKind);
}
// If we're initializing a weak or unowned variable, this requires a change in
// type.
if (isa<ReferenceStorageType>(varType))
Result = InitializationPtr(new
ReferenceStorageInitialization(std::move(Result)));
return Result;
}
void SILGenFunction::emitPatternBinding(PatternBindingDecl *PBD,
unsigned pbdEntry) {
auto &entry = PBD->getPatternList()[pbdEntry];
auto initialization = emitPatternBindingInitialization(entry.getPattern(),
JumpDest::invalid());
// If an initial value expression was specified by the decl, emit it into
// the initialization. Otherwise, mark it uninitialized for DI to resolve.
if (auto *Init = entry.getInit()) {
FullExpr Scope(Cleanups, CleanupLocation(Init));
emitExprInto(Init, initialization.get(), SILLocation(PBD));
} else {
initialization->finishUninitialized(*this);
}
}
void SILGenFunction::visitPatternBindingDecl(PatternBindingDecl *PBD) {
// Allocate the variables and build up an Initialization over their
// allocated storage.
for (unsigned i : indices(PBD->getPatternList())) {
emitPatternBinding(PBD, i);
}
}
void SILGenFunction::visitVarDecl(VarDecl *D) {
// We handle emitting the variable storage when we see the pattern binding.
// Here we just emit the behavior witness table, if any.
if (D->hasBehavior())
SGM.emitPropertyBehavior(D);
}
/// Emit a check that returns 1 if the running OS version is in
/// the specified version range and 0 otherwise. The returned SILValue
/// (which has type Builtin.Int1) represents the result of this check.
SILValue SILGenFunction::emitOSVersionRangeCheck(SILLocation loc,
const VersionRange &range) {
// Emit constants for the checked version range.
clang::VersionTuple Vers = range.getLowerEndpoint();
unsigned major = Vers.getMajor();
unsigned minor =
(Vers.getMinor().hasValue() ? Vers.getMinor().getValue() : 0);
unsigned subminor =
(Vers.getSubminor().hasValue() ? Vers.getSubminor().getValue() : 0);
SILType wordType = SILType::getBuiltinWordType(getASTContext());
SILValue majorValue = B.createIntegerLiteral(loc, wordType, major);
SILValue minorValue = B.createIntegerLiteral(loc, wordType, minor);
SILValue subminorValue = B.createIntegerLiteral(loc, wordType, subminor);
// Emit call to _stdlib_isOSVersionAtLeast(major, minor, patch)
FuncDecl *versionQueryDecl =
getASTContext().getIsOSVersionAtLeastDecl(nullptr);
assert(versionQueryDecl);
auto silDeclRef = SILDeclRef(versionQueryDecl);
SILValue availabilityGTEFn = emitGlobalFunctionRef(
loc, silDeclRef, getConstantInfo(silDeclRef));
SILValue args[] = {majorValue, minorValue, subminorValue};
return B.createApply(loc, availabilityGTEFn, args, false);
}
/// Emit the boolean test and/or pattern bindings indicated by the specified
/// stmt condition. If the condition fails, control flow is transferred to the
/// specified JumpDest. The insertion point is left in the block where the
/// condition has matched and any bound variables are in scope.
///
void SILGenFunction::emitStmtCondition(StmtCondition Cond, JumpDest FailDest,
SILLocation loc,
ProfileCounter NumTrueTaken,
ProfileCounter NumFalseTaken) {
assert(B.hasValidInsertionPoint() &&
"emitting condition at unreachable point");
for (const auto &elt : Cond) {
SILLocation booleanTestLoc = loc;
SILValue booleanTestValue;
switch (elt.getKind()) {
case StmtConditionElement::CK_PatternBinding: {
InitializationPtr initialization =
InitializationForPattern(*this, FailDest).visit(elt.getPattern());
// Emit the initial value into the initialization.
FullExpr Scope(Cleanups, CleanupLocation(elt.getInitializer()));
emitExprInto(elt.getInitializer(), initialization.get());
// Pattern bindings handle their own tests, we don't need a boolean test.
continue;
}
case StmtConditionElement::CK_Boolean: { // Handle boolean conditions.
auto *expr = elt.getBoolean();
// Evaluate the condition as an i1 value (guaranteed by Sema).
FullExpr Scope(Cleanups, CleanupLocation(expr));
booleanTestValue = emitRValue(expr).forwardAsSingleValue(*this, expr);
booleanTestLoc = expr;
break;
}
case StmtConditionElement::CK_Availability:
// Check the running OS version to determine whether it is in the range
// specified by elt.
VersionRange OSVersion = elt.getAvailability()->getAvailableRange();
assert(!OSVersion.isEmpty());
if (OSVersion.isAll()) {
// If there's no check for the current platform, this condition is
// trivially true.
SILType i1 = SILType::getBuiltinIntegerType(1, getASTContext());
booleanTestValue = B.createIntegerLiteral(loc, i1, true);
} else {
booleanTestValue = emitOSVersionRangeCheck(loc, OSVersion);
}
break;
}
// Now that we have a boolean test as a Builtin.i1, emit the branch.
assert(booleanTestValue->getType().
castTo<BuiltinIntegerType>()->isFixedWidth(1) &&
"Sema forces conditions to have Builtin.i1 type");
// Just branch on the condition. On failure, we unwind any active cleanups,
// on success we fall through to a new block.
SILBasicBlock *ContBB = createBasicBlock();
auto FailBB = Cleanups.emitBlockForCleanups(FailDest, loc);
B.createCondBranch(booleanTestLoc, booleanTestValue, ContBB, FailBB,
NumTrueTaken, NumFalseTaken);
// Finally, emit the continue block and keep emitting the rest of the
// condition.
B.emitBlock(ContBB);
}
}
InitializationPtr
SILGenFunction::emitPatternBindingInitialization(Pattern *P,
JumpDest failureDest) {
return InitializationForPattern(*this, failureDest).visit(P);
}
/// Enter a cleanup to deallocate the given location.
CleanupHandle SILGenFunction::enterDeallocStackCleanup(SILValue temp) {
assert(temp->getType().isAddress() && "dealloc must have an address type");
Cleanups.pushCleanup<DeallocStackCleanup>(temp);
return Cleanups.getTopCleanup();
}
CleanupHandle SILGenFunction::enterDestroyCleanup(SILValue valueOrAddr) {
Cleanups.pushCleanup<ReleaseValueCleanup>(valueOrAddr);
return Cleanups.getTopCleanup();
}
PostponedCleanup::PostponedCleanup(SILGenFunction &sgf, bool recursive)
: depth(sgf.Cleanups.innermostScope), SGF(sgf),
previouslyActiveCleanup(sgf.CurrentlyActivePostponedCleanup),
active(true), applyRecursively(recursive) {
SGF.CurrentlyActivePostponedCleanup = this;
}
PostponedCleanup::PostponedCleanup(SILGenFunction &sgf)
: depth(sgf.Cleanups.innermostScope), SGF(sgf),
previouslyActiveCleanup(sgf.CurrentlyActivePostponedCleanup),
active(true),
applyRecursively(previouslyActiveCleanup
? previouslyActiveCleanup->applyRecursively
: false) {
SGF.CurrentlyActivePostponedCleanup = this;
}
PostponedCleanup::~PostponedCleanup() {
if (active) {
end();
}
}
void PostponedCleanup::end() {
if (previouslyActiveCleanup && applyRecursively &&
previouslyActiveCleanup->applyRecursively) {
previouslyActiveCleanup->deferredCleanups.append(deferredCleanups.begin(),
deferredCleanups.end());
}
SGF.CurrentlyActivePostponedCleanup = previouslyActiveCleanup;
active = false;
}
void PostponedCleanup::postponeCleanup(CleanupHandle cleanup,
SILValue forValue) {
deferredCleanups.push_back(std::make_pair(cleanup, forValue));
}
void SILGenFunction::enterPostponedCleanup(SILValue forValue) {
auto handle = enterDestroyCleanup(forValue);
if (CurrentlyActivePostponedCleanup)
CurrentlyActivePostponedCleanup->postponeCleanup(handle, forValue);
}
namespace {
/// A cleanup that deinitializes an opaque existential container
/// before a value has been stored into it, or after its value was taken.
class DeinitExistentialCleanup: public Cleanup {
SILValue existentialAddr;
CanType concreteFormalType;
ExistentialRepresentation repr;
public:
DeinitExistentialCleanup(SILValue existentialAddr,
CanType concreteFormalType,
ExistentialRepresentation repr)
: existentialAddr(existentialAddr),
concreteFormalType(concreteFormalType),
repr(repr) {}
void emit(SILGenFunction &SGF, CleanupLocation l) override {
switch (repr) {
case ExistentialRepresentation::None:
case ExistentialRepresentation::Class:
case ExistentialRepresentation::Metatype:
llvm_unreachable("cannot cleanup existential");
case ExistentialRepresentation::Opaque:
if (SGF.silConv.useLoweredAddresses()) {
SGF.B.createDeinitExistentialAddr(l, existentialAddr);
} else {
SGF.B.createDeinitExistentialValue(l, existentialAddr);
}
break;
case ExistentialRepresentation::Boxed:
SGF.B.createDeallocExistentialBox(l, concreteFormalType,
existentialAddr);
break;
}
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "DeinitExistentialCleanup\n"
<< "State:" << getState() << "\n"
<< "Value:" << existentialAddr << "\n";
#endif
}
};
} // end anonymous namespace
/// Enter a cleanup to emit a DeinitExistentialAddr or DeinitExistentialBox
/// of the specified value.
CleanupHandle SILGenFunction::enterDeinitExistentialCleanup(
SILValue valueOrAddr,
CanType concreteFormalType,
ExistentialRepresentation repr) {
Cleanups.pushCleanup<DeinitExistentialCleanup>(valueOrAddr,
concreteFormalType,
repr);
return Cleanups.getTopCleanup();
}
void SILGenModule::emitExternalWitnessTable(ProtocolConformance *c) {
auto root = c->getRootNormalConformance();
// Emit the witness table right now if we used it.
if (usedConformances.count(root)) {
getWitnessTable(c);
return;
}
// Otherwise, remember it for later.
delayedConformances.insert({root, {lastEmittedConformance}});
lastEmittedConformance = root;
}
void SILGenModule::emitExternalDefinition(Decl *d) {
switch (d->getKind()) {
case DeclKind::Func:
case DeclKind::Accessor: {
emitFunction(cast<FuncDecl>(d));
break;
}
case DeclKind::Constructor: {
auto C = cast<ConstructorDecl>(d);
// For factories, we don't need to emit a special thunk; the normal
// foreign-to-native thunk is sufficient.
if (C->isFactoryInit())
break;
emitConstructor(C);
break;
}
case DeclKind::Enum:
case DeclKind::Struct:
case DeclKind::Class: {
// Emit witness tables.
auto nom = cast<NominalTypeDecl>(d);
for (auto c : nom->getLocalConformances(ConformanceLookupKind::All,
nullptr, /*sorted=*/true)) {
auto *proto = c->getProtocol();
if (Lowering::TypeConverter::protocolRequiresWitnessTable(proto) &&
isa<NormalProtocolConformance>(c) &&
c->isComplete())
emitExternalWitnessTable(c);
}
break;
}
case DeclKind::Protocol:
// Nothing to do in SILGen for other external types.
break;
case DeclKind::Var:
// Imported static vars are handled solely in IRGen.
break;
case DeclKind::IfConfig:
case DeclKind::PoundDiagnostic:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::EnumElement:
case DeclKind::TopLevelCode:
case DeclKind::TypeAlias:
case DeclKind::AssociatedType:
case DeclKind::GenericTypeParam:
case DeclKind::Param:
case DeclKind::Import:
case DeclKind::Subscript:
case DeclKind::Destructor:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::PrecedenceGroup:
case DeclKind::Module:
case DeclKind::MissingMember:
llvm_unreachable("Not a valid external definition for SILGen");
}
}
/// Create a LocalVariableInitialization for the uninitialized var.
InitializationPtr SILGenFunction::emitLocalVariableWithCleanup(
VarDecl *vd, Optional<MarkUninitializedInst::Kind> kind, unsigned ArgNo) {
return InitializationPtr(
new LocalVariableInitialization(vd, kind, ArgNo, *this));
}
/// Create an Initialization for an uninitialized temporary.
std::unique_ptr<TemporaryInitialization>
SILGenFunction::emitTemporary(SILLocation loc, const TypeLowering &tempTL) {
SILValue addr = emitTemporaryAllocation(loc, tempTL.getLoweredType());
return useBufferAsTemporary(addr, tempTL);
}
std::unique_ptr<TemporaryInitialization>
SILGenFunction::emitFormalAccessTemporary(SILLocation loc,
const TypeLowering &tempTL) {
SILValue addr = emitTemporaryAllocation(loc, tempTL.getLoweredType());
CleanupHandle cleanup =
enterDormantFormalAccessTemporaryCleanup(addr, loc, tempTL);
return std::unique_ptr<TemporaryInitialization>(
new TemporaryInitialization(addr, cleanup));
}
/// Create an Initialization for an uninitialized buffer.
std::unique_ptr<TemporaryInitialization>
SILGenFunction::useBufferAsTemporary(SILValue addr,
const TypeLowering &tempTL) {
CleanupHandle cleanup = enterDormantTemporaryCleanup(addr, tempTL);
return std::unique_ptr<TemporaryInitialization>(
new TemporaryInitialization(addr, cleanup));
}
CleanupHandle
SILGenFunction::enterDormantTemporaryCleanup(SILValue addr,
const TypeLowering &tempTL) {
if (tempTL.isTrivial())
return CleanupHandle::invalid();
Cleanups.pushCleanupInState<ReleaseValueCleanup>(CleanupState::Dormant, addr);
return Cleanups.getCleanupsDepth();
}
namespace {
struct FormalAccessReleaseValueCleanup : Cleanup {
FormalEvaluationContext::stable_iterator Depth;
FormalAccessReleaseValueCleanup() : Depth() {}
void setState(SILGenFunction &SGF, CleanupState newState) override {
if (newState == CleanupState::Dead) {
getEvaluation(SGF).setFinished();
}
state = newState;
}
void emit(SILGenFunction &SGF, CleanupLocation l) override {
getEvaluation(SGF).finish(SGF);
}
void dump(SILGenFunction &SGF) const override {
#ifndef NDEBUG
llvm::errs() << "FormalAccessReleaseValueCleanup "
<< "State:" << getState() << "\n"
<< "Value:" << getValue(SGF) << "\n";
#endif
}
OwnedFormalAccess &getEvaluation(SILGenFunction &SGF) const {
auto &evaluation = *SGF.FormalEvalContext.find(Depth);
assert(evaluation.getKind() == FormalAccess::Owned);
return static_cast<OwnedFormalAccess &>(evaluation);
}
SILValue getValue(SILGenFunction &SGF) const {
return getEvaluation(SGF).getValue();
}
};
} // end anonymous namespace
ManagedValue
SILGenFunction::emitFormalAccessManagedBufferWithCleanup(SILLocation loc,
SILValue addr) {
assert(InFormalEvaluationScope && "Must be in formal evaluation scope");
auto &lowering = getTypeLowering(addr->getType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(addr);
auto &cleanup = Cleanups.pushCleanup<FormalAccessReleaseValueCleanup>();
CleanupHandle handle = Cleanups.getTopCleanup();
FormalEvalContext.push<OwnedFormalAccess>(loc, handle, addr);
cleanup.Depth = FormalEvalContext.stable_begin();
return ManagedValue(addr, handle);
}
ManagedValue
SILGenFunction::emitFormalAccessManagedRValueWithCleanup(SILLocation loc,
SILValue value) {
assert(InFormalEvaluationScope && "Must be in formal evaluation scope");
auto &lowering = getTypeLowering(value->getType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(value);
auto &cleanup = Cleanups.pushCleanup<FormalAccessReleaseValueCleanup>();
CleanupHandle handle = Cleanups.getTopCleanup();
FormalEvalContext.push<OwnedFormalAccess>(loc, handle, value);
cleanup.Depth = FormalEvalContext.stable_begin();
return ManagedValue(value, handle);
}
CleanupHandle SILGenFunction::enterDormantFormalAccessTemporaryCleanup(
SILValue addr, SILLocation loc, const TypeLowering &tempTL) {
assert(InFormalEvaluationScope && "Must be in formal evaluation scope");
if (tempTL.isTrivial())
return CleanupHandle::invalid();
auto &cleanup = Cleanups.pushCleanup<FormalAccessReleaseValueCleanup>();
CleanupHandle handle = Cleanups.getTopCleanup();
Cleanups.setCleanupState(handle, CleanupState::Dormant);
FormalEvalContext.push<OwnedFormalAccess>(loc, handle, addr);
cleanup.Depth = FormalEvalContext.stable_begin();
return handle;
}
void SILGenFunction::destroyLocalVariable(SILLocation silLoc, VarDecl *vd) {
assert(vd->getDeclContext()->isLocalContext() &&
"can't emit a local var for a non-local var decl");
assert(vd->hasStorage() && "can't emit storage for a computed variable");
assert(VarLocs.count(vd) && "var decl wasn't emitted?!");
auto loc = VarLocs[vd];
// For a heap variable, the box is responsible for the value. We just need
// to give up our retain count on it.
if (loc.box) {
B.emitDestroyValueOperation(silLoc, loc.box);
return;
}
// For 'let' bindings, we emit a release_value or destroy_addr, depending on
// whether we have an address or not.
SILValue Val = loc.value;
if (!Val->getType().isAddress())
B.emitDestroyValueOperation(silLoc, Val);
else
B.createDestroyAddr(silLoc, Val);
}
void SILGenFunction::deallocateUninitializedLocalVariable(SILLocation silLoc,
VarDecl *vd) {
assert(vd->getDeclContext()->isLocalContext() &&
"can't emit a local var for a non-local var decl");
assert(vd->hasStorage() && "can't emit storage for a computed variable");
assert(VarLocs.count(vd) && "var decl wasn't emitted?!");
auto loc = VarLocs[vd];
// Ignore let values captured without a memory location.
if (!loc.value->getType().isAddress()) return;
assert(loc.box && "captured var should have been given a box");
B.createDeallocBox(silLoc, loc.box);
}