blob: 1fa8d382805f08af69e9c6adccbec32c56ffa535 [file] [log] [blame]
//===----------------------------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This file contains Swift wrappers for functions defined in the C++ runtime.
///
//===----------------------------------------------------------------------===//
import SwiftShims
//===----------------------------------------------------------------------===//
// Atomics
//===----------------------------------------------------------------------===//
@_transparent
public // @testable
func _stdlib_atomicCompareExchangeStrongPtr(
object target: UnsafeMutablePointer<UnsafeRawPointer?>,
expected: UnsafeMutablePointer<UnsafeRawPointer?>,
desired: UnsafeRawPointer?) -> Bool {
// We use Builtin.Word here because Builtin.RawPointer can't be nil.
let (oldValue, won) = Builtin.cmpxchg_seqcst_seqcst_Word(
target._rawValue,
UInt(bitPattern: expected.pointee)._builtinWordValue,
UInt(bitPattern: desired)._builtinWordValue)
expected.pointee = UnsafeRawPointer(bitPattern: Int(oldValue))
return Bool(won)
}
% for optional in ['', '?']:
/// Atomic compare and exchange of `UnsafeMutablePointer<T>` with sequentially
/// consistent memory ordering. Precise semantics are defined in C++11 or C11.
///
/// - Warning: This operation is extremely tricky to use correctly because of
/// writeback semantics.
///
/// It is best to use it directly on an
/// `UnsafeMutablePointer<UnsafeMutablePointer<T>>` that is known to point
/// directly to the memory where the value is stored.
///
/// In a call like this:
///
/// _stdlib_atomicCompareExchangeStrongPtr(&foo.property1.property2, ...)
///
/// you need to manually make sure that:
///
/// - all properties in the chain are physical (to make sure that no writeback
/// happens; the compare-and-exchange instruction should operate on the
/// shared memory); and
///
/// - the shared memory that you are accessing is located inside a heap
/// allocation (a class instance property, a `_HeapBuffer`, a pointer to
/// an `Array` element etc.)
///
/// If the conditions above are not met, the code will still compile, but the
/// compare-and-exchange instruction will operate on the writeback buffer, and
/// you will get a *race* while doing writeback into shared memory.
@_transparent
public // @testable
func _stdlib_atomicCompareExchangeStrongPtr<T>(
object target: UnsafeMutablePointer<UnsafeMutablePointer<T>${optional}>,
expected: UnsafeMutablePointer<UnsafeMutablePointer<T>${optional}>,
desired: UnsafeMutablePointer<T>${optional}
) -> Bool {
let rawTarget = UnsafeMutableRawPointer(target).assumingMemoryBound(
to: Optional<UnsafeRawPointer>.self)
let rawExpected = UnsafeMutableRawPointer(expected).assumingMemoryBound(
to: Optional<UnsafeRawPointer>.self)
return _stdlib_atomicCompareExchangeStrongPtr(
object: rawTarget,
expected: rawExpected,
desired: UnsafeRawPointer(desired))
}
% end # optional
@_transparent
@discardableResult
public // @testable
func _stdlib_atomicInitializeARCRef(
object target: UnsafeMutablePointer<AnyObject?>,
desired: AnyObject) -> Bool {
var expected: UnsafeRawPointer?
let desiredPtr = Unmanaged.passRetained(desired).toOpaque()
let rawTarget = UnsafeMutableRawPointer(target).assumingMemoryBound(
to: Optional<UnsafeRawPointer>.self)
let wonRace = _stdlib_atomicCompareExchangeStrongPtr(
object: rawTarget, expected: &expected, desired: desiredPtr)
if !wonRace {
// Some other thread initialized the value. Balance the retain that we
// performed on 'desired'.
Unmanaged.passUnretained(desired).release()
}
return wonRace
}
% for bits in [ 32, 64 ]:
@_transparent
public // @testable
func _stdlib_atomicCompareExchangeStrongUInt${bits}(
object target: UnsafeMutablePointer<UInt${bits}>,
expected: UnsafeMutablePointer<UInt${bits}>,
desired: UInt${bits}) -> Bool {
let (oldValue, won) = Builtin.cmpxchg_seqcst_seqcst_Int${bits}(
target._rawValue, expected.pointee._value, desired._value)
expected.pointee._value = oldValue
return Bool(won)
}
@_transparent
public // @testable
func _stdlib_atomicCompareExchangeStrongInt${bits}(
object target: UnsafeMutablePointer<Int${bits}>,
expected: UnsafeMutablePointer<Int${bits}>,
desired: Int${bits}) -> Bool {
let (oldValue, won) = Builtin.cmpxchg_seqcst_seqcst_Int${bits}(
target._rawValue, expected.pointee._value, desired._value)
expected.pointee._value = oldValue
return Bool(won)
}
@_transparent
public // @testable
func _swift_stdlib_atomicStoreUInt${bits}(
object target: UnsafeMutablePointer<UInt${bits}>,
desired: UInt${bits}) {
Builtin.atomicstore_seqcst_Int${bits}(target._rawValue, desired._value)
}
func _swift_stdlib_atomicStoreInt${bits}(
object target: UnsafeMutablePointer<Int${bits}>,
desired: Int${bits}) {
Builtin.atomicstore_seqcst_Int${bits}(target._rawValue, desired._value)
}
public // @testable
func _swift_stdlib_atomicLoadUInt${bits}(
object target: UnsafeMutablePointer<UInt${bits}>) -> UInt${bits} {
let value = Builtin.atomicload_seqcst_Int${bits}(target._rawValue)
return UInt${bits}(value)
}
func _swift_stdlib_atomicLoadInt${bits}(
object target: UnsafeMutablePointer<Int${bits}>) -> Int${bits} {
let value = Builtin.atomicload_seqcst_Int${bits}(target._rawValue)
return Int${bits}(value)
}
% for operation in ['Add', 'And', 'Or', 'Xor']:
// Warning: no overflow checking.
@_transparent
public // @testable
func _swift_stdlib_atomicFetch${operation}UInt${bits}(
object target: UnsafeMutablePointer<UInt${bits}>,
operand: UInt${bits}) -> UInt${bits} {
let value = Builtin.atomicrmw_${operation.lower()}_seqcst_Int${bits}(
target._rawValue, operand._value)
return UInt${bits}(value)
}
// Warning: no overflow checking.
func _swift_stdlib_atomicFetch${operation}Int${bits}(
object target: UnsafeMutablePointer<Int${bits}>,
operand: Int${bits}) -> Int${bits} {
let value = Builtin.atomicrmw_${operation.lower()}_seqcst_Int${bits}(
target._rawValue, operand._value)
return Int${bits}(value)
}
% end
% end
func _stdlib_atomicCompareExchangeStrongInt(
object target: UnsafeMutablePointer<Int>,
expected: UnsafeMutablePointer<Int>,
desired: Int) -> Bool {
#if arch(i386) || arch(arm)
let (oldValue, won) = Builtin.cmpxchg_seqcst_seqcst_Int32(
target._rawValue, expected.pointee._value, desired._value)
#elseif arch(x86_64) || arch(arm64) || arch(powerpc64) || arch(powerpc64le) || arch(s390x)
let (oldValue, won) = Builtin.cmpxchg_seqcst_seqcst_Int64(
target._rawValue, expected.pointee._value, desired._value)
#endif
expected.pointee._value = oldValue
return Bool(won)
}
func _swift_stdlib_atomicStoreInt(
object target: UnsafeMutablePointer<Int>,
desired: Int) {
#if arch(i386) || arch(arm)
Builtin.atomicstore_seqcst_Int32(target._rawValue, desired._value)
#elseif arch(x86_64) || arch(arm64) || arch(powerpc64) || arch(powerpc64le) || arch(s390x)
Builtin.atomicstore_seqcst_Int64(target._rawValue, desired._value)
#endif
}
@_transparent
public func _swift_stdlib_atomicLoadInt(
object target: UnsafeMutablePointer<Int>) -> Int {
#if arch(i386) || arch(arm)
let value = Builtin.atomicload_seqcst_Int32(target._rawValue)
return Int(value)
#elseif arch(x86_64) || arch(arm64) || arch(powerpc64) || arch(powerpc64le) || arch(s390x)
let value = Builtin.atomicload_seqcst_Int64(target._rawValue)
return Int(value)
#endif
}
@_transparent
public // @testable
func _stdlib_atomicLoadARCRef(
object target: UnsafeMutablePointer<AnyObject?>
) -> AnyObject? {
let value = Builtin.atomicload_seqcst_Word(target._rawValue)
if let unwrapped = UnsafeRawPointer(bitPattern: Int(value)) {
return Unmanaged<AnyObject>.fromOpaque(unwrapped).takeUnretainedValue()
}
return nil
}
% for operation in ['Add', 'And', 'Or', 'Xor']:
// Warning: no overflow checking.
public func _swift_stdlib_atomicFetch${operation}Int(
object target: UnsafeMutablePointer<Int>,
operand: Int) -> Int {
let rawTarget = UnsafeMutableRawPointer(target)
#if arch(i386) || arch(arm)
let value = _swift_stdlib_atomicFetch${operation}Int32(
object: rawTarget.assumingMemoryBound(to: Int32.self),
operand: Int32(operand))
#elseif arch(x86_64) || arch(arm64) || arch(powerpc64) || arch(powerpc64le) || arch(s390x)
let value = _swift_stdlib_atomicFetch${operation}Int64(
object: rawTarget.assumingMemoryBound(to: Int64.self),
operand: Int64(operand))
#endif
return Int(value)
}
% end
public final class _stdlib_AtomicInt {
var _value: Int
var _valuePtr: UnsafeMutablePointer<Int> {
return _getUnsafePointerToStoredProperties(self).assumingMemoryBound(
to: Int.self)
}
public init(_ value: Int = 0) {
_value = value
}
public func store(_ desired: Int) {
return _swift_stdlib_atomicStoreInt(object: _valuePtr, desired: desired)
}
public func load() -> Int {
return _swift_stdlib_atomicLoadInt(object: _valuePtr)
}
% for operation_name, operation in [ ('Add', '+'), ('And', '&'), ('Or', '|'), ('Xor', '^') ]:
@discardableResult
public func fetchAnd${operation_name}(_ operand: Int) -> Int {
return _swift_stdlib_atomicFetch${operation_name}Int(
object: _valuePtr,
operand: operand)
}
public func ${operation_name.lower()}AndFetch(_ operand: Int) -> Int {
return fetchAnd${operation_name}(operand) ${operation} operand
}
% end
public func compareExchange(expected: inout Int, desired: Int) -> Bool {
var expectedVar = expected
let result = _stdlib_atomicCompareExchangeStrongInt(
object: _valuePtr,
expected: &expectedVar,
desired: desired)
expected = expectedVar
return result
}
}
//===----------------------------------------------------------------------===//
// Conversion of primitive types to `String`
//===----------------------------------------------------------------------===//
/// A 32 byte buffer.
internal struct _Buffer32 {
% for i in range(32):
internal var _x${i}: UInt8 = 0
% end
mutating func withBytes<Result>(
_ body: (UnsafeMutablePointer<UInt8>) throws -> Result
) rethrows -> Result
{
return try withUnsafeMutablePointer(to: &self) {
try body(UnsafeMutableRawPointer($0).assumingMemoryBound(to: UInt8.self))
}
}
}
/// A 72 byte buffer.
internal struct _Buffer72 {
% for i in range(72):
internal var _x${i}: UInt8 = 0
% end
mutating func withBytes<Result>(
_ body: (UnsafeMutablePointer<UInt8>) throws -> Result
) rethrows -> Result
{
return try withUnsafeMutablePointer(to: &self) {
try body(UnsafeMutableRawPointer($0).assumingMemoryBound(to: UInt8.self))
}
}
}
% for bits in [ 32, 64, 80 ]:
% if bits == 80:
#if (!os(Windows) || CYGWIN) && (arch(i386) || arch(x86_64))
% end
@_silgen_name("swift_float${bits}ToString")
func _float${bits}ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt, _ value: Float${bits},
_ debug: Bool
) -> UInt
func _float${bits}ToString(_ value: Float${bits}, debug: Bool) -> String {
if !value.isFinite {
let significand = value.significandBitPattern
if significand == 0 {
// Infinity
return value.sign == .minus ? "-inf" : "inf"
}
else {
// NaN
if !debug {
return "nan"
}
let isSignaling = (significand & Float${bits}._quietNaNMask) == 0
let payload = significand & ((Float${bits}._quietNaNMask >> 1) - 1)
// FIXME(performance): Inefficient String manipulation. We could move
// this to C function.
return
(value.sign == .minus ? "-" : "")
+ (isSignaling ? "snan" : "nan")
+ (payload == 0 ? "" : ("(0x" + String(payload, radix: 16) + ")"))
}
}
_sanityCheck(MemoryLayout<_Buffer32>.size == 32)
_sanityCheck(MemoryLayout<_Buffer72>.size == 72)
var buffer = _Buffer32()
return buffer.withBytes { (bufferPtr) in
let actualLength = _float${bits}ToStringImpl(bufferPtr, 32, value, debug)
return String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(start: bufferPtr, count: Int(actualLength)))
}
}
% if bits == 80:
#endif
% end
% end
@_silgen_name("swift_int64ToString")
func _int64ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt, _ value: Int64,
_ radix: Int64, _ uppercase: Bool
) -> UInt
func _int64ToString(
_ value: Int64, radix: Int64 = 10, uppercase: Bool = false
) -> String {
if radix >= 10 {
var buffer = _Buffer32()
return buffer.withBytes { (bufferPtr) in
let actualLength
= _int64ToStringImpl(bufferPtr, 32, value, radix, uppercase)
return String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(start: bufferPtr, count: Int(actualLength)))
}
} else {
var buffer = _Buffer72()
return buffer.withBytes { (bufferPtr) in
let actualLength
= _int64ToStringImpl(bufferPtr, 72, value, radix, uppercase)
return String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(start: bufferPtr, count: Int(actualLength)))
}
}
}
@_silgen_name("swift_uint64ToString")
func _uint64ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt, _ value: UInt64, _ radix: Int64, _ uppercase: Bool
) -> UInt
public // @testable
func _uint64ToString(
_ value: UInt64, radix: Int64 = 10, uppercase: Bool = false
) -> String {
if radix >= 10 {
var buffer = _Buffer32()
return buffer.withBytes { (bufferPtr) in
let actualLength
= _uint64ToStringImpl(bufferPtr, 32, value, radix, uppercase)
return String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(start: bufferPtr, count: Int(actualLength)))
}
} else {
var buffer = _Buffer72()
return buffer.withBytes { (bufferPtr) in
let actualLength
= _uint64ToStringImpl(bufferPtr, 72, value, radix, uppercase)
return String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(start: bufferPtr, count: Int(actualLength)))
}
}
}
@_inlineable
@_versioned
func _rawPointerToString(_ value: Builtin.RawPointer) -> String {
var result = _uint64ToString(
UInt64(
UInt(bitPattern: UnsafeRawPointer(value))),
radix: 16,
uppercase: false
)
for _ in 0..<(2 * MemoryLayout<UnsafeRawPointer>.size - result.utf16.count) {
result = "0" + result
}
return "0x" + result
}
#if _runtime(_ObjC)
// At runtime, these classes are derived from `_SwiftNativeNSXXXBase`,
// which are derived from `NSXXX`.
//
// The @swift_native_objc_runtime_base attribute
// allows us to subclass an Objective-C class and still use the fast Swift
// memory allocator.
@objc @_swift_native_objc_runtime_base(_SwiftNativeNSArrayBase)
class _SwiftNativeNSArray {}
@objc @_swift_native_objc_runtime_base(_SwiftNativeNSDictionaryBase)
class _SwiftNativeNSDictionary {}
@objc @_swift_native_objc_runtime_base(_SwiftNativeNSSetBase)
class _SwiftNativeNSSet {}
@objc @_swift_native_objc_runtime_base(_SwiftNativeNSEnumeratorBase)
class _SwiftNativeNSEnumerator {}
// FIXME(ABI)#60 : move into the Foundation overlay and remove 'open'
@objc @_swift_native_objc_runtime_base(_SwiftNativeNSDataBase)
open class _SwiftNativeNSData {
public init() {}
}
// FIXME(ABI)#61 : move into the Foundation overlay and remove 'open'
@objc @_swift_native_objc_runtime_base(_SwiftNativeNSCharacterSetBase)
open class _SwiftNativeNSCharacterSet {
public init() {}
}
//===----------------------------------------------------------------------===//
// Support for reliable testing of the return-autoreleased optimization
//===----------------------------------------------------------------------===//
@objc internal class _stdlib_ReturnAutoreleasedDummy {
// Use 'dynamic' to force Objective-C dispatch, which uses the
// return-autoreleased call sequence.
@objc dynamic func returnsAutoreleased(_ x: AnyObject) -> AnyObject {
return x
}
// Use 'dynamic' to prevent this call to be duplicated into other modules.
@objc dynamic func initializeReturnAutoreleased() {
// On x86_64 it is sufficient to perform one cycle of return-autoreleased
// call sequence in order to initialize all required PLT entries.
_ = self.returnsAutoreleased(self)
}
}
/// This function ensures that the return-autoreleased optimization works.
///
/// On some platforms (for example, x86_64), the first call to
/// `objc_autoreleaseReturnValue` will always autorelease because it would fail
/// to verify the instruction sequence in the caller. On x86_64 certain PLT
/// entries would be still pointing to the resolver function, and sniffing
/// the call sequence would fail.
///
/// This code should live in the core stdlib dylib because PLT tables are
/// separate for each dylib.
///
/// Call this function in a fresh autorelease pool.
public func _stdlib_initializeReturnAutoreleased() {
// _stdlib_initializeReturnAutoreleasedImpl()
#if arch(x86_64)
_stdlib_ReturnAutoreleasedDummy().initializeReturnAutoreleased()
#endif
}
#else
class _SwiftNativeNSArray {}
class _SwiftNativeNSDictionary {}
class _SwiftNativeNSSet {}
#endif