blob: c81a43995be47865e05778ea975494051b0874aa [file] [log] [blame]
//===--- ARCAnalysis.cpp - SIL ARC Analysis -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-arc-analysis"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/Projection.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using BasicBlockRetainValue = std::pair<SILBasicBlock *, SILValue>;
//===----------------------------------------------------------------------===//
// Utility Analysis
//===----------------------------------------------------------------------===//
bool swift::isRetainInstruction(SILInstruction *I) {
return isa<StrongRetainInst>(I) || isa<RetainValueInst>(I);
}
bool swift::isReleaseInstruction(SILInstruction *I) {
return isa<StrongReleaseInst>(I) || isa<ReleaseValueInst>(I);
}
//===----------------------------------------------------------------------===//
// Decrement Analysis
//===----------------------------------------------------------------------===//
bool swift::mayDecrementRefCount(SILInstruction *User,
SILValue Ptr, AliasAnalysis *AA) {
// First do a basic check, mainly based on the type of instruction.
// Reading the RC is as "bad" as releasing.
if (!User->mayReleaseOrReadRefCount())
return false;
// Ok, this instruction may have ref counts. If it is an apply, attempt to
// prove that the callee is unable to affect Ptr.
if (auto *AI = dyn_cast<ApplyInst>(User))
return AA->canApplyDecrementRefCount(AI, Ptr);
if (auto *TAI = dyn_cast<TryApplyInst>(User))
return AA->canApplyDecrementRefCount(TAI, Ptr);
if (auto *BI = dyn_cast<BuiltinInst>(User))
return AA->canBuiltinDecrementRefCount(BI, Ptr);
// We cannot conservatively prove that this instruction cannot decrement the
// ref count of Ptr. So assume that it does.
return true;
}
bool swift::mayCheckRefCount(SILInstruction *User) {
return isa<IsUniqueInst>(User) || isa<IsUniqueOrPinnedInst>(User);
}
//===----------------------------------------------------------------------===//
// Use Analysis
//===----------------------------------------------------------------------===//
/// Returns true if a builtin apply cannot use reference counted values.
///
/// The main case that this handles here are builtins that via read none imply
/// that they cannot read globals and at the same time do not take any
/// non-trivial types via the arguments. The reason why we care about taking
/// non-trivial types as arguments is that we want to be careful in the face of
/// intrinsics that may be equivalent to bitcast and inttoptr operations.
static bool canApplyOfBuiltinUseNonTrivialValues(BuiltinInst *BInst) {
SILModule &Mod = BInst->getModule();
auto &II = BInst->getIntrinsicInfo();
if (II.ID != llvm::Intrinsic::not_intrinsic) {
if (II.hasAttribute(llvm::Attribute::ReadNone)) {
for (auto &Op : BInst->getAllOperands()) {
if (!Op.get()->getType().isTrivial(Mod)) {
return false;
}
}
}
return true;
}
auto &BI = BInst->getBuiltinInfo();
if (BI.isReadNone()) {
for (auto &Op : BInst->getAllOperands()) {
if (!Op.get()->getType().isTrivial(Mod)) {
return false;
}
}
}
return true;
}
/// Returns true if Inst is a function that we know never uses ref count values.
bool swift::canNeverUseValues(SILInstruction *Inst) {
switch (Inst->getKind()) {
// These instructions do not use other values.
case ValueKind::FunctionRefInst:
case ValueKind::IntegerLiteralInst:
case ValueKind::FloatLiteralInst:
case ValueKind::StringLiteralInst:
case ValueKind::AllocStackInst:
case ValueKind::AllocRefInst:
case ValueKind::AllocRefDynamicInst:
case ValueKind::AllocBoxInst:
case ValueKind::MetatypeInst:
case ValueKind::WitnessMethodInst:
return true;
// DeallocStackInst do not use reference counted values.
case ValueKind::DeallocStackInst:
return true;
// Debug values do not use referenced counted values in a manner we care
// about.
case ValueKind::DebugValueInst:
case ValueKind::DebugValueAddrInst:
return true;
// Casts do not use pointers in a manner that we care about since we strip
// them during our analysis. The reason for this is if the cast is not dead
// then there must be some other use after the cast that we will protect if a
// release is not in between the cast and the use.
case ValueKind::UpcastInst:
case ValueKind::AddressToPointerInst:
case ValueKind::PointerToAddressInst:
case ValueKind::UncheckedRefCastInst:
case ValueKind::UncheckedRefCastAddrInst:
case ValueKind::UncheckedAddrCastInst:
case ValueKind::RefToRawPointerInst:
case ValueKind::RawPointerToRefInst:
case ValueKind::UnconditionalCheckedCastInst:
case ValueKind::UncheckedBitwiseCastInst:
return true;
// If we have a trivial bit cast between trivial types, it is not something
// that can use ref count ops in a way we care about. We do need to be careful
// with uses with ref count inputs. In such a case, we assume conservatively
// that the bit cast could use it.
//
// The reason why this is different from the ref bitcast is b/c the use of a
// ref bit cast is still a ref typed value implying that our ARC dataflow will
// properly handle its users. A conversion of a reference count value to a
// trivial value though could be used as a trivial value in ways that ARC
// dataflow will not understand implying we need to treat it as a use to be
// safe.
case ValueKind::UncheckedTrivialBitCastInst: {
SILValue Op = cast<UncheckedTrivialBitCastInst>(Inst)->getOperand();
return Op->getType().isTrivial(Inst->getModule());
}
// Typed GEPs do not use pointers. The user of the typed GEP may but we will
// catch that via the dataflow.
case ValueKind::StructExtractInst:
case ValueKind::TupleExtractInst:
case ValueKind::StructElementAddrInst:
case ValueKind::TupleElementAddrInst:
case ValueKind::UncheckedTakeEnumDataAddrInst:
case ValueKind::RefElementAddrInst:
case ValueKind::RefTailAddrInst:
case ValueKind::UncheckedEnumDataInst:
case ValueKind::IndexAddrInst:
case ValueKind::IndexRawPointerInst:
return true;
// Aggregate formation by themselves do not create new uses since it is their
// users that would create the appropriate uses.
case ValueKind::EnumInst:
case ValueKind::StructInst:
case ValueKind::TupleInst:
return true;
// Only uses non reference counted values.
case ValueKind::CondFailInst:
return true;
case ValueKind::BuiltinInst: {
auto *BI = cast<BuiltinInst>(Inst);
// Certain builtin function refs we know can never use non-trivial values.
return canApplyOfBuiltinUseNonTrivialValues(BI);
}
// We do not care about branch inst, since if the branch inst's argument is
// dead, LLVM will clean it up.
case ValueKind::BranchInst:
case ValueKind::CondBranchInst:
return true;
default:
return false;
}
}
static bool doOperandsAlias(ArrayRef<Operand> Ops, SILValue Ptr,
AliasAnalysis *AA) {
// If any are not no alias, we have a use.
return std::any_of(Ops.begin(), Ops.end(),
[&AA, &Ptr](const Operand &Op) -> bool {
return !AA->isNoAlias(Ptr, Op.get());
});
}
static bool canTerminatorUseValue(TermInst *TI, SILValue Ptr,
AliasAnalysis *AA) {
if (auto *BI = dyn_cast<BranchInst>(TI)) {
return doOperandsAlias(BI->getAllOperands(), Ptr, AA);
}
if (auto *CBI = dyn_cast<CondBranchInst>(TI)) {
bool First = doOperandsAlias(CBI->getTrueOperands(), Ptr, AA);
bool Second = doOperandsAlias(CBI->getFalseOperands(), Ptr, AA);
return First || Second;
}
if (auto *SWEI = dyn_cast<SwitchEnumInst>(TI)) {
return doOperandsAlias(SWEI->getAllOperands(), Ptr, AA);
}
if (auto *SWVI = dyn_cast<SwitchValueInst>(TI)) {
return doOperandsAlias(SWVI->getAllOperands(), Ptr, AA);
}
auto *CCBI = dyn_cast<CheckedCastBranchInst>(TI);
// If we don't have this last case, be conservative and assume that we can use
// the value.
if (!CCBI)
return true;
// Otherwise, look at the operands.
return doOperandsAlias(CCBI->getAllOperands(), Ptr, AA);
}
bool swift::mayHaveSymmetricInterference(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) {
// Check whether releasing this value can call deinit and interfere with User.
if (AA->mayValueReleaseInterfereWithInstruction(User, Ptr))
return true;
// If Inst is an instruction that we know can never use values with reference
// semantics, return true.
if (canNeverUseValues(User))
return false;
// If the user is a load or a store and we can prove that it does not access
// the object then return true.
// Notice that we need to check all of the values of the object.
if (isa<StoreInst>(User)) {
if (AA->mayWriteToMemory(User, Ptr))
return true;
return false;
}
if (isa<LoadInst>(User) ) {
if (AA->mayReadFromMemory(User, Ptr))
return true;
return false;
}
// If we have a terminator instruction, see if it can use ptr. This currently
// means that we first show that TI cannot indirectly use Ptr and then use
// alias analysis on the arguments.
if (auto *TI = dyn_cast<TermInst>(User))
return canTerminatorUseValue(TI, Ptr, AA);
// TODO: If we add in alias analysis support here for apply inst, we will need
// to check that the pointer does not escape.
// Otherwise, assume that Inst can use Target.
return true;
}
//===----------------------------------------------------------------------===//
// Must Use Analysis
//===----------------------------------------------------------------------===//
/// Returns true if User must use Ptr.
///
/// In terms of ARC this means that if we do not remove User, all releases post
/// dominated by User are known safe.
bool swift::mustUseValue(SILInstruction *User, SILValue Ptr,
AliasAnalysis *AA) {
// Right now just pattern match applies.
auto *AI = dyn_cast<ApplyInst>(User);
if (!AI)
return false;
// If any of AI's arguments must alias Ptr, return true.
for (SILValue Arg : AI->getArguments())
if (AA->isMustAlias(Arg, Ptr))
return true;
return false;
}
/// Returns true if User must use Ptr in a guaranteed way.
///
/// This means that assuming that everything is conservative, we can ignore the
/// ref count effects of User on Ptr since we will only remove things over
/// guaranteed parameters if we are known safe in both directions.
bool swift::mustGuaranteedUseValue(SILInstruction *User, SILValue Ptr,
AliasAnalysis *AA) {
// Right now just pattern match applies.
auto *AI = dyn_cast<ApplyInst>(User);
if (!AI)
return false;
// For now just look for guaranteed self.
//
// TODO: Expand this to handle *any* guaranteed parameter.
if (!AI->hasGuaranteedSelfArgument())
return false;
// Return true if Ptr alias's self.
return AA->isMustAlias(AI->getSelfArgument(), Ptr);
}
//===----------------------------------------------------------------------===//
// Utility Methods for determining use, decrement of values in a contiguous
// instruction range in one BB.
//===----------------------------------------------------------------------===//
/// If \p Op has arc uses in the instruction range [Start, End), return the
/// first such instruction. Otherwise return None. We assume that
/// Start and End are both in the same basic block.
Optional<SILBasicBlock::iterator>
swift::
valueHasARCUsesInInstructionRange(SILValue Op,
SILBasicBlock::iterator Start,
SILBasicBlock::iterator End,
AliasAnalysis *AA) {
assert(Start->getParent() == End->getParent() &&
"Start and End should be in the same basic block");
// If Start == End, then we have an empty range, return false.
if (Start == End)
return None;
// Otherwise, until Start != End.
while (Start != End) {
// Check if Start can use Op in an ARC relevant way. If so, return true.
if (mayHaveSymmetricInterference(&*Start, Op, AA))
return Start;
// Otherwise, increment our iterator.
++Start;
}
// If all such instructions cannot use Op, return false.
return None;
}
/// If \p Op has arc uses in the instruction range (Start, End], return the
/// first such instruction. Otherwise return None. We assume that Start and End
/// are both in the same basic block.
Optional<SILBasicBlock::iterator>
swift::valueHasARCUsesInReverseInstructionRange(SILValue Op,
SILBasicBlock::iterator Start,
SILBasicBlock::iterator End,
AliasAnalysis *AA) {
assert(Start->getParent() == End->getParent() &&
"Start and End should be in the same basic block");
assert(End != End->getParent()->end() &&
"End should be mapped to an actual instruction");
// If Start == End, then we have an empty range, return false.
if (Start == End)
return None;
// Otherwise, until End == Start.
while (Start != End) {
// Check if Start can use Op in an ARC relevant way. If so, return true.
if (mayHaveSymmetricInterference(&*End, Op, AA))
return End;
// Otherwise, decrement our iterator.
--End;
}
// If all such instructions cannot use Op, return false.
return None;
}
/// If \p Op has instructions in the instruction range (Start, End] which may
/// decrement it, return the first such instruction. Returns None
/// if no such instruction exists. We assume that Start and End are both in the
/// same basic block.
Optional<SILBasicBlock::iterator>
swift::
valueHasARCDecrementOrCheckInInstructionRange(SILValue Op,
SILBasicBlock::iterator Start,
SILBasicBlock::iterator End,
AliasAnalysis *AA) {
assert(Start->getParent() == End->getParent() &&
"Start and End should be in the same basic block");
// If Start == End, then we have an empty range, return nothing.
if (Start == End)
return None;
// Otherwise, until Start != End.
while (Start != End) {
// Check if Start can decrement or check Op's ref count. If so, return
// Start. Ref count checks do not have side effects, but are barriers for
// retains.
if (mayDecrementRefCount(&*Start, Op, AA) || mayCheckRefCount(&*Start))
return Start;
// Otherwise, increment our iterator.
++Start;
}
// If all such instructions cannot decrement Op, return nothing.
return None;
}
bool
swift::
mayGuaranteedUseValue(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) {
// Only full apply sites can require a guaranteed lifetime. If we don't have
// one, bail.
if (!isa<FullApplySite>(User))
return false;
FullApplySite FAS(User);
// Ok, we have a full apply site. If the apply has no arguments, we don't need
// to worry about any guaranteed parameters.
if (!FAS.getNumArguments())
return false;
// Ok, we have an apply site with arguments. Look at the function type and
// iterate through the function parameters. If any of the parameters are
// guaranteed, attempt to prove that the passed in parameter cannot alias
// Ptr. If we fail, return true.
CanSILFunctionType FType = FAS.getSubstCalleeType();
auto Params = FType->getParameters();
for (unsigned i : indices(Params)) {
if (!Params[i].isGuaranteed())
continue;
SILValue Op = FAS.getArgument(i);
if (!AA->isNoAlias(Op, Ptr))
return true;
}
// Ok, we were able to prove that all arguments to the apply that were
// guaranteed do not alias Ptr. Return false.
return false;
}
//===----------------------------------------------------------------------===//
// Owned Result Utilities
//===----------------------------------------------------------------------===//
ConsumedResultToEpilogueRetainMatcher::
ConsumedResultToEpilogueRetainMatcher(RCIdentityFunctionInfo *RCFI,
AliasAnalysis *AA,
SILFunction *F)
: F(F), RCFI(RCFI), AA(AA) {
recompute();
}
void ConsumedResultToEpilogueRetainMatcher::recompute() {
EpilogueRetainInsts.clear();
// Find the return BB of F. If we fail, then bail.
SILFunction::iterator BB = F->findReturnBB();
if (BB == F->end())
return;
findMatchingRetains(&*BB);
}
bool
ConsumedResultToEpilogueRetainMatcher::
isTransitiveSuccessorsRetainFree(llvm::DenseSet<SILBasicBlock *> BBs) {
// For every block with retain, we need to check the transitive
// closure of its successors are retain-free.
for (auto &I : EpilogueRetainInsts) {
auto *CBB = I->getParent();
for (auto &Succ : CBB->getSuccessors()) {
if (BBs.find(Succ) != BBs.end())
continue;
return false;
}
}
for (auto CBB : BBs) {
for (auto &Succ : CBB->getSuccessors()) {
if (BBs.find(Succ) != BBs.end())
continue;
return false;
}
}
return true;
}
ConsumedResultToEpilogueRetainMatcher::RetainKindValue
ConsumedResultToEpilogueRetainMatcher::
findMatchingRetainsInBasicBlock(SILBasicBlock *BB, SILValue V) {
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
// Handle self-recursion.
if (ApplyInst *AI = dyn_cast<ApplyInst>(&*II))
if (AI->getCalleeFunction() == BB->getParent())
return std::make_pair(FindRetainKind::Recursion, AI);
// If we do not have a retain_value or strong_retain...
if (!isa<RetainValueInst>(*II) && !isa<StrongRetainInst>(*II)) {
// we can ignore it if it can not decrement the reference count of the
// return value.
if (!mayDecrementRefCount(&*II, V, AA))
continue;
// Otherwise, we need to stop computing since we do not want to create
// lifetime gap.
return std::make_pair(FindRetainKind::Blocked, nullptr);
}
// Ok, we have a retain_value or strong_retain. Grab Target and find the
// RC identity root of its operand.
SILInstruction *Target = &*II;
SILValue RetainValue = RCFI->getRCIdentityRoot(Target->getOperand(0));
SILValue ReturnValue = RCFI->getRCIdentityRoot(V);
// Is this the epilogue retain we are looking for ?.
// We break here as we do not know whether this is a part of the epilogue
// retain for the @own return value.
if (RetainValue != ReturnValue)
break;
return std::make_pair(FindRetainKind::Found, &*II);
}
// Did not find retain in this block.
return std::make_pair(FindRetainKind::None, nullptr);
}
void
ConsumedResultToEpilogueRetainMatcher::
findMatchingRetains(SILBasicBlock *BB) {
// Iterate over the instructions post-order and find retains associated with
// return value.
SILValue RV = SILValue();
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
if (ReturnInst *RI = dyn_cast<ReturnInst>(&*II)) {
RV = RI->getOperand();
break;
}
}
// Somehow, we managed not to find a return value.
if (!RV)
return;
// OK. we've found the return value, now iterate on the CFG to find all the
// post-dominating retains.
//
// The ConsumedArgToEpilogueReleaseMatcher finds the final releases
// in the following way.
//
// 1. If an instruction, which is not releaseinst nor releasevalue, that
// could decrement reference count is found. bail out.
//
// 2. If a release is found and the release that can not be mapped to any
// @owned argument. bail as this release may well be the final release of
// an @owned argument, but somehow rc-identity fails to prove that.
//
// 3. A release that is mapped to an argument which already has a release
// that overlaps with this release. This release for sure is not the final
// release.
constexpr unsigned WorkListMaxSize = 4;
llvm::DenseSet<SILBasicBlock *> RetainFrees;
llvm::SmallVector<BasicBlockRetainValue, 4> WorkList;
llvm::DenseSet<SILBasicBlock *> HandledBBs;
WorkList.push_back(std::make_pair(BB, RV));
HandledBBs.insert(BB);
while (!WorkList.empty()) {
// Too many blocks ?.
if (WorkList.size() > WorkListMaxSize) {
EpilogueRetainInsts.clear();
return;
}
// Try to find a retain %value in this basic block.
auto R = WorkList.pop_back_val();
RetainKindValue Kind = findMatchingRetainsInBasicBlock(R.first, R.second);
// We've found a retain on this path.
if (Kind.first == FindRetainKind::Found) {
EpilogueRetainInsts.push_back(Kind.second);
continue;
}
// There is a MayDecrement instruction.
if (Kind.first == FindRetainKind::Blocked) {
EpilogueRetainInsts.clear();
return;
}
// There is a self-recursion. Use the apply instruction as the retain.
if (Kind.first == FindRetainKind::Recursion) {
EpilogueRetainInsts.push_back(Kind.second);
continue;
}
// Did not find a retain in this block, try to go to its predecessors.
if (Kind.first == FindRetainKind::None) {
// We can not find a retain in a block with no predecessors.
if (R.first->getPredecessorBlocks().begin() ==
R.first->getPredecessorBlocks().end()) {
EpilogueRetainInsts.clear();
return;
}
// This block does not have a retain.
RetainFrees.insert(R.first);
// If this is a SILArgument of current basic block, we can split it up to
// values in the predecessors.
auto *SA = dyn_cast<SILPHIArgument>(R.second);
if (SA && SA->getParent() != R.first)
SA = nullptr;
for (auto X : R.first->getPredecessorBlocks()) {
if (HandledBBs.find(X) != HandledBBs.end())
continue;
// Try to use the predecessor edge-value.
if (SA && SA->getIncomingValue(X)) {
WorkList.push_back(std::make_pair(X, SA->getIncomingValue(X)));
}
else
WorkList.push_back(std::make_pair(X, R.second));
HandledBBs.insert(X);
}
}
}
// Lastly, check whether all the successor blocks are retain-free.
if (!isTransitiveSuccessorsRetainFree(RetainFrees))
EpilogueRetainInsts.clear();
// At this point, we've either failed to find any epilogue retains or
// all the post-dominating epilogue retains.
}
//===----------------------------------------------------------------------===//
// Owned Argument Utilities
//===----------------------------------------------------------------------===//
ConsumedArgToEpilogueReleaseMatcher::
ConsumedArgToEpilogueReleaseMatcher(RCIdentityFunctionInfo *RCFI,
SILFunction *F, ExitKind Kind)
: F(F), RCFI(RCFI), Kind(Kind), ProcessedBlock(nullptr) {
recompute();
}
void ConsumedArgToEpilogueReleaseMatcher::recompute() {
ArgInstMap.clear();
// Find the return BB of F. If we fail, then bail.
SILFunction::iterator BB;
switch (Kind) {
case ExitKind::Return:
BB = F->findReturnBB();
break;
case ExitKind::Throw:
BB = F->findThrowBB();
break;
}
if (BB == F->end()) {
ProcessedBlock = nullptr;
return;
}
ProcessedBlock = &*BB;
findMatchingReleases(&*BB);
}
bool
ConsumedArgToEpilogueReleaseMatcher::
isRedundantRelease(ReleaseList Insts, SILValue Base, SILValue Derived) {
// We use projection path to analyze the relation.
auto POp = ProjectionPath::getProjectionPath(Base, Derived);
// We can not build a projection path from the base to the derived, bail out.
// and return true so that we can stop the epilogue walking sequence.
if (!POp.hasValue())
return true;
for (auto &R : Insts) {
SILValue ROp = R->getOperand(0);
auto PROp = ProjectionPath::getProjectionPath(Base, ROp);
if (!PROp.hasValue())
return true;
// If Op is a part of ROp or Rop is a part of Op. then we have seen
// a redundant release.
if (!PROp.getValue().hasNonEmptySymmetricDifference(POp.getValue()))
return true;
}
return false;
}
bool
ConsumedArgToEpilogueReleaseMatcher::
releaseArgument(ReleaseList Insts, SILValue Arg) {
// Reason about whether all parts are released.
SILModule *Mod = &(*Insts.begin())->getModule();
// These are the list of SILValues that are actually released.
ProjectionPathSet Paths;
for (auto &I : Insts) {
auto PP = ProjectionPath::getProjectionPath(Arg, I->getOperand(0));
if (!PP)
return false;
Paths.insert(PP.getValue());
}
// Is there an uncovered non-trivial type.
return !ProjectionPath::hasUncoveredNonTrivials(Arg->getType(), Mod, Paths);
}
void
ConsumedArgToEpilogueReleaseMatcher::
processMatchingReleases() {
llvm::DenseSet<SILArgument *> ArgToRemove;
// If we can not find a release for all parts with reference semantics
// that means we did not find all releases for the base.
for (auto Arg : ArgInstMap) {
// If an argument has a single release and it is rc-identical to the
// SILArgument. Then we do not need to use projection to check for whether
// all non-trivial fields are covered.
if (Arg.second.size() == 1) {
SILInstruction *I = *Arg.second.begin();
SILValue RV = I->getOperand(0);
if (Arg.first == RCFI->getRCIdentityRoot(RV))
continue;
}
// OK. we have multiple epilogue releases for this argument, check whether
// it has covered all fields with reference semantic in the argument.
if (releaseArgument(Arg.second, Arg.first))
continue;
// OK. we did find some epilogue releases, just not all.
if (!Arg.second.empty())
FoundSomeReleases.insert(Arg.first);
ArgToRemove.insert(Arg.first);
}
// Clear any releases found for this argument.
for (auto &X : ArgToRemove) {
ArgInstMap.erase(ArgInstMap.find(X));
}
}
void
ConsumedArgToEpilogueReleaseMatcher::
collectMatchingReleases(SILBasicBlock *BB) {
// Iterate over the instructions post-order and find final releases
// associated with each arguments.
//
// The ConsumedArgToEpilogueReleaseMatcher finds the final releases
// in the following way.
//
// 1. If an instruction, which is not releaseinst nor releasevalue, that
// could decrement reference count is found. bail out.
//
// 2. If a release is found and the release that can not be mapped to any
// @owned argument. bail as this release may well be the final release of
// an @owned argument, but somehow rc-identity fails to prove that.
//
// 3. A release that is mapped to an argument which already has a release
// that overlaps with this release. This release for sure is not the final
// release.
for (auto II = std::next(BB->rbegin()), IE = BB->rend(); II != IE; ++II) {
// If we do not have a release_value or strong_release. We can continue
if (!isa<ReleaseValueInst>(*II) && !isa<StrongReleaseInst>(*II)) {
// We cannot match a final release if it is followed by a dealloc_ref.
if (isa<DeallocRefInst>(*II))
break;
// We do not know what this instruction is, do a simple check to make sure
// that it does not decrement the reference count of any of its operand.
//
// TODO: we could make the logic here more complicated to handle each type
// of instructions in a more precise manner.
if (!II->mayRelease())
continue;
// This instruction may release something, bail out conservatively.
break;
}
// Ok, we have a release_value or strong_release. Grab Target and find the
// RC identity root of its operand.
SILInstruction *Target = &*II;
SILValue OrigOp = Target->getOperand(0);
SILValue Op = RCFI->getRCIdentityRoot(OrigOp);
// Check whether this is a SILArgument or a part of a SILArgument. This is
// possible after we expand release instructions in SILLowerAgg pass.
auto *Arg = dyn_cast<SILFunctionArgument>(stripValueProjections(Op));
if (!Arg)
break;
// If Op is not a consumed argument, we must break since this is not an Op
// that is a part of a return sequence. We are being conservative here since
// we could make this more general by allowing for intervening non-arg
// releases in the sense that we do not allow for race conditions in between
// destructors.
if (!Arg->hasConvention(SILArgumentConvention::Direct_Owned))
break;
// Ok, we have a release on a SILArgument that is direct owned. Attempt to
// put it into our arc opts map. If we already have it, we have exited the
// return value sequence so break. Otherwise, continue looking for more arc
// operations.
auto Iter = ArgInstMap.find(Arg);
if (Iter == ArgInstMap.end()) {
ArgInstMap[Arg].push_back(Target);
continue;
}
// We've already seen at least part of this base. Check to see whether we
// are seeing a redundant release.
//
// If we are seeing a redundant release we have exited the return value
// sequence, so break.
if (isRedundantRelease(Iter->second, Arg, OrigOp))
break;
// We've seen part of this base, but this is a part we've have not seen.
// Record it.
Iter->second.push_back(Target);
}
}
void
ConsumedArgToEpilogueReleaseMatcher::
findMatchingReleases(SILBasicBlock *BB) {
// Walk the given basic block to find all the epilogue releases.
collectMatchingReleases(BB);
// We've exited the epilogue sequence, try to find out which parameter we
// have all the epilogue releases for and which one we did not.
processMatchingReleases();
}
//===----------------------------------------------------------------------===//
// Code for Determining Final Releases
//===----------------------------------------------------------------------===//
// Propagate liveness backwards from an initial set of blocks in our
// LiveIn set.
static void propagateLiveness(llvm::SmallPtrSetImpl<SILBasicBlock *> &LiveIn,
SILBasicBlock *DefBB) {
// First populate a worklist of predecessors.
llvm::SmallVector<SILBasicBlock *, 64> Worklist;
for (auto *BB : LiveIn)
for (auto Pred : BB->getPredecessorBlocks())
Worklist.push_back(Pred);
// Now propagate liveness backwards until we hit the alloc_box.
while (!Worklist.empty()) {
auto *BB = Worklist.pop_back_val();
// If it's already in the set, then we've already queued and/or
// processed the predecessors.
if (BB == DefBB || !LiveIn.insert(BB).second)
continue;
for (auto Pred : BB->getPredecessorBlocks())
Worklist.push_back(Pred);
}
}
// Is any successor of BB in the LiveIn set?
static bool successorHasLiveIn(SILBasicBlock *BB,
llvm::SmallPtrSetImpl<SILBasicBlock *> &LiveIn) {
for (auto &Succ : BB->getSuccessors())
if (LiveIn.count(Succ))
return true;
return false;
}
// Walk backwards in BB looking for the last use of a given
// value, and add it to the set of release points.
static bool addLastUse(SILValue V, SILBasicBlock *BB,
ReleaseTracker &Tracker) {
for (auto I = BB->rbegin(); I != BB->rend(); ++I) {
for (auto &Op : I->getAllOperands())
if (Op.get() == V) {
Tracker.trackLastRelease(&*I);
return true;
}
}
llvm_unreachable("BB is expected to have a use of a closure");
return false;
}
/// TODO: Refactor this code so the decision on whether or not to accept an
/// instruction.
bool swift::getFinalReleasesForValue(SILValue V, ReleaseTracker &Tracker) {
llvm::SmallPtrSet<SILBasicBlock *, 16> LiveIn;
llvm::SmallPtrSet<SILBasicBlock *, 16> UseBlocks;
// First attempt to get the BB where this value resides.
auto *DefBB = V->getParentBlock();
if (!DefBB)
return false;
bool seenRelease = false;
SILInstruction *OneRelease = nullptr;
// We'll treat this like a liveness problem where the value is the def. Each
// block that has a use of the value has the value live-in unless it is the
// block with the value.
for (auto *UI : V->getUses()) {
auto *User = UI->getUser();
auto *BB = User->getParent();
if (!Tracker.isUserAcceptable(User))
return false;
Tracker.trackUser(User);
if (BB != DefBB)
LiveIn.insert(BB);
// Also keep track of the blocks with uses.
UseBlocks.insert(BB);
// Try to speed up the trivial case of single release/dealloc.
if (isa<StrongReleaseInst>(User) || isa<DeallocBoxInst>(User)) {
if (!seenRelease)
OneRelease = User;
else
OneRelease = nullptr;
seenRelease = true;
}
}
// Only a single release/dealloc? We're done!
if (OneRelease) {
Tracker.trackLastRelease(OneRelease);
return true;
}
propagateLiveness(LiveIn, DefBB);
// Now examine each block we saw a use in. If it has no successors
// that are in LiveIn, then the last use in the block is the final
// release/dealloc.
for (auto *BB : UseBlocks)
if (!successorHasLiveIn(BB, LiveIn))
if (!addLastUse(V, BB, Tracker))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Leaking BB Analysis
//===----------------------------------------------------------------------===//
static bool ignorableApplyInstInUnreachableBlock(const ApplyInst *AI) {
const auto *Fn = AI->getReferencedFunction();
if (!Fn)
return false;
return Fn->hasSemanticsAttr("arc.programtermination_point");
}
static bool ignorableBuiltinInstInUnreachableBlock(const BuiltinInst *BI) {
const BuiltinInfo &BInfo = BI->getBuiltinInfo();
if (BInfo.ID == BuiltinValueKind::CondUnreachable)
return true;
const IntrinsicInfo &IInfo = BI->getIntrinsicInfo();
if (IInfo.ID == llvm::Intrinsic::trap)
return true;
return false;
}
/// Match a call to a trap BB with no ARC relevant side effects.
bool swift::isARCInertTrapBB(const SILBasicBlock *BB) {
// Do a quick check at the beginning to make sure that our terminator is
// actually an unreachable. This ensures that in many cases this function will
// exit early and quickly.
auto II = BB->rbegin();
if (!isa<UnreachableInst>(*II))
return false;
auto IE = BB->rend();
while (II != IE) {
// Ignore any instructions without side effects.
if (!II->mayHaveSideEffects()) {
++II;
continue;
}
// Ignore cond fail.
if (isa<CondFailInst>(*II)) {
++II;
continue;
}
// Check for apply insts that we can ignore.
if (auto *AI = dyn_cast<ApplyInst>(&*II)) {
if (ignorableApplyInstInUnreachableBlock(AI)) {
++II;
continue;
}
}
// Check for builtins that we can ignore.
if (auto *BI = dyn_cast<BuiltinInst>(&*II)) {
if (ignorableBuiltinInstInUnreachableBlock(BI)) {
++II;
continue;
}
}
// If we can't ignore the instruction, return false.
return false;
}
// Otherwise, we have an unreachable and every instruction is inert from an
// ARC perspective in an unreachable BB.
return true;
}
//===----------------------------------------------------------------------===//
// Analysis of builtin "unsafeGuaranteed" instructions
//===----------------------------------------------------------------------===//
std::pair<SILInstruction *, SILInstruction *>
swift::getSingleUnsafeGuaranteedValueResult(BuiltinInst *BI) {
assert(BI->getBuiltinKind() &&
*BI->getBuiltinKind() == BuiltinValueKind::UnsafeGuaranteed &&
"Expecting a unsafeGuaranteed builtin");
SILInstruction *GuaranteedValue = nullptr;
SILInstruction *Token = nullptr;
auto Failed = std::make_pair(nullptr, nullptr);
for (auto *Operand : getNonDebugUses(BI)) {
auto *Usr = Operand->getUser();
if (isa<ReleaseValueInst>(Usr) || isa<RetainValueInst>(Usr))
continue;
auto *TE = dyn_cast<TupleExtractInst>(Usr);
if (!TE || TE->getOperand() != BI)
return Failed;
if (TE->getFieldNo() == 0 && !GuaranteedValue) {
GuaranteedValue = TE;
continue;
}
if (TE->getFieldNo() == 1 && !Token) {
Token = TE;
continue;
}
return Failed;
}
if (!GuaranteedValue || !Token)
return Failed;
return std::make_pair(GuaranteedValue, Token);
}
BuiltinInst *swift::getUnsafeGuaranteedEndUser(SILInstruction *UnsafeGuaranteedToken) {
BuiltinInst *UnsafeGuaranteedEndI = nullptr;
for (auto *Operand : getNonDebugUses(UnsafeGuaranteedToken)) {
if (UnsafeGuaranteedEndI) {
DEBUG(llvm::dbgs() << " multiple unsafeGuaranteedEnd users\n");
UnsafeGuaranteedEndI = nullptr;
break;
}
auto *BI = dyn_cast<BuiltinInst>(Operand->getUser());
if (!BI || !BI->getBuiltinKind() ||
*BI->getBuiltinKind() != BuiltinValueKind::UnsafeGuaranteedEnd) {
DEBUG(llvm::dbgs() << " wrong unsafeGuaranteed token user "
<< *Operand->getUser());
break;
}
UnsafeGuaranteedEndI = BI;
}
return UnsafeGuaranteedEndI;
}
static bool hasUnsafeGuaranteedOperand(SILValue UnsafeGuaranteedValue,
SILValue UnsafeGuaranteedValueOperand,
RCIdentityFunctionInfo &RCII,
SILInstruction &Release) {
assert(isa<StrongReleaseInst>(Release) ||
isa<ReleaseValueInst>(Release) && "Expecting a release");
auto RCRoot = RCII.getRCIdentityRoot(Release.getOperand(0));
return RCRoot == UnsafeGuaranteedValue ||
RCRoot == UnsafeGuaranteedValueOperand;
}
SILInstruction *swift::findReleaseToMatchUnsafeGuaranteedValue(
SILInstruction *UnsafeGuaranteedEndI, SILInstruction *UnsafeGuaranteedI,
SILValue UnsafeGuaranteedValue, SILBasicBlock &BB,
RCIdentityFunctionInfo &RCFI) {
auto UnsafeGuaranteedRoot = RCFI.getRCIdentityRoot(UnsafeGuaranteedValue);
auto UnsafeGuaranteedOpdRoot =
RCFI.getRCIdentityRoot(UnsafeGuaranteedI->getOperand(0));
// Try finding it after the "unsafeGuaranteedEnd".
for (auto ForwardIt = std::next(UnsafeGuaranteedEndI->getIterator()),
End = BB.end();
ForwardIt != End; ++ForwardIt) {
SILInstruction &CurInst = *ForwardIt;
// Is this a release?
if (isa<ReleaseValueInst>(CurInst) || isa<StrongReleaseInst>(CurInst)) {
if (hasUnsafeGuaranteedOperand(UnsafeGuaranteedRoot,
UnsafeGuaranteedOpdRoot, RCFI, CurInst))
return &CurInst;
continue;
}
if (CurInst.mayHaveSideEffects() && !isa<DebugValueInst>(CurInst) &&
!isa<DebugValueAddrInst>(CurInst))
break;
}
// Otherwise, Look before the "unsafeGuaranteedEnd".
for (auto ReverseIt = ++UnsafeGuaranteedEndI->getIterator().getReverse(),
End = BB.rend();
ReverseIt != End; ++ReverseIt) {
SILInstruction &CurInst = *ReverseIt;
// Is this a release?
if (isa<ReleaseValueInst>(CurInst) || isa<StrongReleaseInst>(CurInst)) {
if (hasUnsafeGuaranteedOperand(UnsafeGuaranteedRoot,
UnsafeGuaranteedOpdRoot, RCFI, CurInst))
return &CurInst;
continue;
}
if (CurInst.mayHaveSideEffects() && !isa<DebugValueInst>(CurInst) &&
!isa<DebugValueAddrInst>(CurInst))
break;
}
return nullptr;
}