blob: d1ded2d50a9019962cfe49019e847071bbb0147e [file] [log] [blame]
//===--- SILGenFunction.cpp - Top-level lowering for functions ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the primary routines for creating and emitting
// functions.
//
//===----------------------------------------------------------------------===//
#include "SILGenFunction.h"
#include "RValue.h"
#include "Scope.h"
#include "swift/AST/Initializer.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILUndef.h"
using namespace swift;
using namespace Lowering;
//===----------------------------------------------------------------------===//
// SILGenFunction Class implementation
//===----------------------------------------------------------------------===//
SILGenFunction::SILGenFunction(SILGenModule &SGM, SILFunction &F)
: SGM(SGM), F(F), silConv(SGM.M), StartOfPostmatter(F.end()),
B(*this, createBasicBlock()), OpenedArchetypesTracker(F),
CurrentSILLoc(F.getLocation()), Cleanups(*this) {
B.setCurrentDebugScope(F.getDebugScope());
B.setOpenedArchetypesTracker(&OpenedArchetypesTracker);
}
/// SILGenFunction destructor - called after the entire function's AST has been
/// visited. This handles "falling off the end of the function" logic.
SILGenFunction::~SILGenFunction() {
// If the end of the function isn't terminated, we screwed up somewhere.
assert(!B.hasValidInsertionPoint() &&
"SILGenFunction did not terminate function?!");
// If we didn't clean up the rethrow destination, we screwed up somewhere.
assert(!ThrowDest.isValid() &&
"SILGenFunction did not emit throw destination");
}
//===----------------------------------------------------------------------===//
// Function emission
//===----------------------------------------------------------------------===//
// Get the #function name for a declaration.
DeclName SILGenModule::getMagicFunctionName(DeclContext *dc) {
// For closures, use the parent name.
if (auto closure = dyn_cast<AbstractClosureExpr>(dc)) {
return getMagicFunctionName(closure->getParent());
}
if (auto absFunc = dyn_cast<AbstractFunctionDecl>(dc)) {
if (auto func = dyn_cast<FuncDecl>(absFunc)) {
// If this is an accessor, use the name of the storage.
if (auto storage = func->getAccessorStorageDecl()) {
return storage->getFullName();
}
// If this is a defer body, use the parent name.
if (func->isDeferBody()) {
return getMagicFunctionName(func->getParent());
}
}
return absFunc->getFullName();
}
if (auto init = dyn_cast<Initializer>(dc)) {
return getMagicFunctionName(init->getParent());
}
if (auto nominal = dyn_cast<NominalTypeDecl>(dc)) {
return nominal->getName();
}
if (auto tl = dyn_cast<TopLevelCodeDecl>(dc)) {
return tl->getModuleContext()->getName();
}
if (auto fu = dyn_cast<FileUnit>(dc)) {
return fu->getParentModule()->getName();
}
if (auto m = dyn_cast<ModuleDecl>(dc)) {
return m->getName();
}
if (auto e = dyn_cast<ExtensionDecl>(dc)) {
assert(e->getExtendedType()->getAnyNominal() && "extension for nonnominal");
return e->getExtendedType()->getAnyNominal()->getName();
}
llvm_unreachable("unexpected #function context");
}
DeclName SILGenModule::getMagicFunctionName(SILDeclRef ref) {
switch (ref.kind) {
case SILDeclRef::Kind::Func:
if (auto closure = ref.getAbstractClosureExpr())
return getMagicFunctionName(closure);
return getMagicFunctionName(cast<FuncDecl>(ref.getDecl()));
case SILDeclRef::Kind::Initializer:
case SILDeclRef::Kind::Allocator:
return getMagicFunctionName(cast<ConstructorDecl>(ref.getDecl()));
case SILDeclRef::Kind::Deallocator:
case SILDeclRef::Kind::Destroyer:
return getMagicFunctionName(cast<DestructorDecl>(ref.getDecl()));
case SILDeclRef::Kind::GlobalAccessor:
case SILDeclRef::Kind::GlobalGetter:
return getMagicFunctionName(cast<VarDecl>(ref.getDecl())->getDeclContext());
case SILDeclRef::Kind::DefaultArgGenerator:
return getMagicFunctionName(cast<AbstractFunctionDecl>(ref.getDecl()));
case SILDeclRef::Kind::StoredPropertyInitializer:
return getMagicFunctionName(cast<VarDecl>(ref.getDecl())->getDeclContext());
case SILDeclRef::Kind::IVarInitializer:
return getMagicFunctionName(cast<ClassDecl>(ref.getDecl()));
case SILDeclRef::Kind::IVarDestroyer:
return getMagicFunctionName(cast<ClassDecl>(ref.getDecl()));
case SILDeclRef::Kind::EnumElement:
return getMagicFunctionName(cast<EnumElementDecl>(ref.getDecl())
->getDeclContext());
}
llvm_unreachable("Unhandled SILDeclRefKind in switch.");
}
std::tuple<ManagedValue, SILType>
SILGenFunction::emitSiblingMethodRef(SILLocation loc,
SILValue selfValue,
SILDeclRef methodConstant,
const SubstitutionMap &subMap) {
SILValue methodValue;
// If the method is dynamic, access it through runtime-hookable virtual
// dispatch (viz. objc_msgSend for now).
if (methodConstant.hasDecl()
&& methodConstant.getDecl()->isDynamic())
methodValue = emitDynamicMethodRef(loc, methodConstant,
SGM.Types.getConstantInfo(methodConstant));
else
methodValue = emitGlobalFunctionRef(loc, methodConstant);
SILType methodTy = methodValue->getType();
// Specialize the generic method.
methodTy = methodTy.substGenericArgs(SGM.M, subMap);
return std::make_tuple(ManagedValue::forUnmanaged(methodValue),
methodTy);
}
void SILGenFunction::emitCaptures(SILLocation loc,
AnyFunctionRef closure,
CaptureEmission purpose,
SmallVectorImpl<ManagedValue> &capturedArgs) {
auto captureInfo = SGM.Types.getLoweredLocalCaptures(closure);
// For boxed captures, we need to mark the contained variables as having
// escaped for DI diagnostics.
SmallVector<SILValue, 2> escapesToMark;
// Partial applications take ownership of the context parameters, so we'll
// need to pass ownership rather than merely guaranteeing parameters.
bool canGuarantee;
switch (purpose) {
case CaptureEmission::PartialApplication:
canGuarantee = false;
break;
case CaptureEmission::ImmediateApplication:
canGuarantee = true;
break;
}
// TODO: Or we always retain them when guaranteed contexts aren't enabled.
if (!SGM.M.getOptions().EnableGuaranteedClosureContexts)
canGuarantee = false;
for (auto capture : captureInfo.getCaptures()) {
if (capture.isDynamicSelfMetadata()) {
// The parameter type is the static Self type, but the value we
// want to pass is the dynamic Self type, so upcast it.
auto dynamicSelfMetatype = MetatypeType::get(
captureInfo.getDynamicSelfType());
SILType dynamicSILType = getLoweredType(dynamicSelfMetatype);
SILValue value = B.createMetatype(loc, dynamicSILType);
capturedArgs.push_back(ManagedValue::forUnmanaged(value));
continue;
}
auto *vd = capture.getDecl();
switch (SGM.Types.getDeclCaptureKind(capture)) {
case CaptureKind::None:
break;
case CaptureKind::Constant: {
// let declarations.
auto Entry = VarLocs[vd];
auto *var = cast<VarDecl>(vd);
auto &tl = getTypeLowering(var->getType()->getReferenceStorageReferent());
SILValue Val = Entry.value;
if (!Val->getType().isAddress()) {
// Our 'let' binding can guarantee the lifetime for the callee,
// if we don't need to do anything more to it.
if (canGuarantee && !var->getType()->is<ReferenceStorageType>()) {
auto guaranteed = ManagedValue::forUnmanaged(Val);
capturedArgs.push_back(guaranteed);
break;
}
// Just retain a by-val let.
Val = B.emitCopyValueOperation(loc, Val);
} else {
// If we have a mutable binding for a 'let', such as 'self' in an
// 'init' method, load it.
Val = emitLoad(loc, Val, tl, SGFContext(), IsNotTake).forward(*this);
}
// If we're capturing an unowned pointer by value, we will have just
// loaded it into a normal retained class pointer, but we capture it as
// an unowned pointer. Convert back now.
if (var->getType()->is<ReferenceStorageType>()) {
auto type = getLoweredType(var->getType());
Val = emitConversionFromSemanticValue(loc, Val, type);
}
capturedArgs.push_back(emitManagedRValueWithCleanup(Val));
break;
}
case CaptureKind::StorageAddress: {
// No-escaping stored declarations are captured as the
// address of the value.
assert(VarLocs.count(vd) && "no location for captured var!");
VarLoc vl = VarLocs[vd];
assert(vl.value->getType().isAddress() && "no address for captured var!");
capturedArgs.push_back(ManagedValue::forLValue(vl.value));
break;
}
case CaptureKind::Box: {
// LValues are captured as both the box owning the value and the
// address of the value.
assert(VarLocs.count(vd) && "no location for captured var!");
VarLoc vl = VarLocs[vd];
assert(vl.value->getType().isAddress() && "no address for captured var!");
// If this is a boxed variable, we can use it directly.
if (vl.box) {
// We can guarantee our own box to the callee.
if (canGuarantee) {
capturedArgs.push_back(ManagedValue::forUnmanaged(vl.box));
} else {
capturedArgs.push_back(emitManagedRetain(loc, vl.box));
}
escapesToMark.push_back(vl.value);
} else {
// Address only 'let' values are passed by box. This isn't great, in
// that a variable captured by multiple closures will be boxed for each
// one. This could be improved by doing an "isCaptured" analysis when
// emitting address-only let constants, and emit them into an alloc_box
// like a variable instead of into an alloc_stack.
//
// TODO: This might not be profitable anymore with guaranteed captures,
// since we could conceivably forward the copied value into the
// closure context and pass it down to the partially applied function
// in-place.
// TODO: Use immutable box for immutable captures.
auto boxTy = SGM.Types.getContextBoxTypeForCapture(vd,
vl.value->getType().getSwiftRValueType(),
F.getGenericEnvironment(),
/*mutable*/ true);
AllocBoxInst *allocBox = B.createAllocBox(loc, boxTy);
ProjectBoxInst *boxAddress = B.createProjectBox(loc, allocBox, 0);
B.createCopyAddr(loc, vl.value, boxAddress, IsNotTake,IsInitialization);
capturedArgs.push_back(emitManagedRValueWithCleanup(allocBox));
}
break;
}
}
}
// Mark box addresses as captured for DI purposes. The values must have
// been fully initialized before we close over them.
if (!escapesToMark.empty()) {
B.createMarkFunctionEscape(loc, escapesToMark);
}
}
ManagedValue
SILGenFunction::emitClosureValue(SILLocation loc, SILDeclRef constant,
CanType expectedType,
SubstitutionList subs) {
auto closure = *constant.getAnyFunctionRef();
auto captureInfo = closure.getCaptureInfo();
auto loweredCaptureInfo = SGM.Types.getLoweredLocalCaptures(closure);
auto hasCaptures = SGM.Types.hasLoweredLocalCaptures(closure);
assert(((constant.uncurryLevel == 1 && hasCaptures) ||
(constant.uncurryLevel == 0 && !hasCaptures)) &&
"curried local functions not yet supported");
auto constantInfo = getConstantInfo(constant);
SILValue functionRef = emitGlobalFunctionRef(loc, constant, constantInfo);
SILType functionTy = functionRef->getType();
// Apply substitutions.
auto pft = constantInfo.SILFnType;
auto *dc = closure.getAsDeclContext()->getParent();
if (dc->isLocalContext() && !loweredCaptureInfo.hasGenericParamCaptures()) {
// If the lowered function type is not polymorphic but we were given
// substitutions, we have a closure in a generic context which does not
// capture generic parameters. Just drop the substitutions.
subs = { };
} else if (closure.getAbstractClosureExpr()) {
// If we have a closure expression in generic context, Sema won't give
// us substitutions, so we just use the forwarding substitutions from
// context.
subs = getForwardingSubstitutions();
}
bool wasSpecialized = false;
if (!subs.empty()) {
auto specialized = pft->substGenericArgs(F.getModule(), subs);
functionTy = SILType::getPrimitiveObjectType(specialized);
wasSpecialized = true;
}
// If we're in top-level code, we don't need to physically capture script
// globals, but we still need to mark them as escaping so that DI can flag
// uninitialized uses.
if (this == SGM.TopLevelSGF) {
SGM.emitMarkFunctionEscapeForTopLevelCodeGlobals(
loc, captureInfo);
}
if (!hasCaptures && !wasSpecialized) {
auto result = ManagedValue::forUnmanaged(functionRef);
return emitOrigToSubstValue(loc, result,
AbstractionPattern(expectedType),
expectedType);
}
SmallVector<ManagedValue, 4> capturedArgs;
emitCaptures(loc, closure, CaptureEmission::PartialApplication,
capturedArgs);
// The partial application takes ownership of the context parameters.
SmallVector<SILValue, 4> forwardedArgs;
for (auto capture : capturedArgs)
forwardedArgs.push_back(capture.forward(*this));
SILType closureTy =
SILGenBuilder::getPartialApplyResultType(functionRef->getType(),
capturedArgs.size(), SGM.M,
subs,
ParameterConvention::Direct_Owned);
auto toClosure =
B.createPartialApply(loc, functionRef, functionTy,
subs, forwardedArgs, closureTy);
auto result = emitManagedRValueWithCleanup(toClosure);
// Get the lowered AST types:
// - the original type
auto origLoweredFormalType =
AbstractionPattern(constantInfo.LoweredInterfaceType);
if (hasCaptures) {
// Get the unlowered formal type of the constant, stripping off
// the first level of function application, which applies captures.
origLoweredFormalType =
AbstractionPattern(constantInfo.FormalInterfaceType)
.getFunctionResultType();
// Lower it, being careful to use the right generic signature.
origLoweredFormalType =
AbstractionPattern(
origLoweredFormalType.getGenericSignature(),
SGM.Types.getLoweredASTFunctionType(
cast<FunctionType>(origLoweredFormalType.getType()),
0, constant));
}
// - the substituted type
auto substFormalType = cast<FunctionType>(expectedType);
auto substLoweredFormalType =
SGM.Types.getLoweredASTFunctionType(substFormalType, 0, constant);
// Generalize if necessary.
result = emitOrigToSubstValue(loc, result, origLoweredFormalType,
substLoweredFormalType);
return result;
}
void SILGenFunction::emitFunction(FuncDecl *fd) {
MagicFunctionName = SILGenModule::getMagicFunctionName(fd);
emitProlog(fd, fd->getParameterLists(), fd->getResultInterfaceType(),
fd->hasThrows());
Type resultTy = fd->mapTypeIntoContext(fd->getResultInterfaceType());
prepareEpilog(resultTy, fd->hasThrows(), CleanupLocation(fd));
emitProfilerIncrement(fd->getBody());
emitStmt(fd->getBody());
emitEpilog(fd);
}
void SILGenFunction::emitClosure(AbstractClosureExpr *ace) {
MagicFunctionName = SILGenModule::getMagicFunctionName(ace);
auto resultIfaceTy = ace->mapTypeOutOfContext(ace->getResultType());
emitProlog(ace, ace->getParameters(), resultIfaceTy,
ace->isBodyThrowing());
prepareEpilog(ace->getResultType(), ace->isBodyThrowing(),
CleanupLocation(ace));
if (auto *ce = dyn_cast<ClosureExpr>(ace)) {
emitProfilerIncrement(ce);
emitStmt(ce->getBody());
} else {
auto *autoclosure = cast<AutoClosureExpr>(ace);
// Closure expressions implicitly return the result of their body
// expression.
emitProfilerIncrement(autoclosure);
emitReturnExpr(ImplicitReturnLocation(ace),
autoclosure->getSingleExpressionBody());
}
emitEpilog(ace);
}
void SILGenFunction::emitArtificialTopLevel(ClassDecl *mainClass) {
// Load argc and argv from the entry point arguments.
SILValue argc = F.begin()->getArgument(0);
SILValue argv = F.begin()->getArgument(1);
switch (mainClass->getArtificialMainKind()) {
case ArtificialMainKind::UIApplicationMain: {
// Emit a UIKit main.
// return UIApplicationMain(C_ARGC, C_ARGV, nil, ClassName);
CanType NSStringTy = SGM.Types.getNSStringType();
CanType OptNSStringTy
= OptionalType::get(NSStringTy)->getCanonicalType();
CanType IUOptNSStringTy
= ImplicitlyUnwrappedOptionalType::get(NSStringTy)->getCanonicalType();
// Look up UIApplicationMain.
// FIXME: Doing an AST lookup here is gross and not entirely sound;
// we're getting away with it because the types are guaranteed to already
// be imported.
ASTContext &ctx = getASTContext();
ModuleDecl *UIKit = ctx.getLoadedModule(ctx.getIdentifier("UIKit"));
SmallVector<ValueDecl *, 1> results;
UIKit->lookupQualified(UIKit->getInterfaceType(),
ctx.getIdentifier("UIApplicationMain"),
NL_QualifiedDefault,
/*resolver*/nullptr,
results);
assert(!results.empty() && "couldn't find UIApplicationMain in UIKit");
assert(results.size() == 1 && "more than one UIApplicationMain?");
SILDeclRef mainRef{results.front(), ResilienceExpansion::Minimal,
SILDeclRef::ConstructAtNaturalUncurryLevel,
/*isForeign*/true};
auto UIApplicationMainFn = SGM.M.getOrCreateFunction(mainClass, mainRef,
NotForDefinition);
auto fnTy = UIApplicationMainFn->getLoweredFunctionType();
SILFunctionConventions fnConv(fnTy, SGM.M);
// Get the class name as a string using NSStringFromClass.
CanType mainClassTy = mainClass->getDeclaredInterfaceType()
->getCanonicalType();
CanType mainClassMetaty = CanMetatypeType::get(mainClassTy,
MetatypeRepresentation::ObjC);
ProtocolDecl *anyObjectProtocol =
ctx.getProtocol(KnownProtocolKind::AnyObject);
auto mainClassAnyObjectConformance = ProtocolConformanceRef(
*SGM.M.getSwiftModule()->lookupConformance(mainClassTy, anyObjectProtocol,
nullptr));
CanType anyObjectTy = anyObjectProtocol
->getDeclaredInterfaceType()
->getCanonicalType();
CanType anyObjectMetaTy = CanExistentialMetatypeType::get(anyObjectTy,
MetatypeRepresentation::ObjC);
auto NSStringFromClassType = SILFunctionType::get(nullptr,
SILFunctionType::ExtInfo()
.withRepresentation(SILFunctionType::Representation::
CFunctionPointer),
ParameterConvention::Direct_Unowned,
SILParameterInfo(anyObjectMetaTy,
ParameterConvention::Direct_Unowned),
SILResultInfo(OptNSStringTy,
ResultConvention::Autoreleased),
/*error result*/ None,
ctx);
auto NSStringFromClassFn
= SGM.M.getOrCreateFunction(mainClass, "NSStringFromClass",
SILLinkage::PublicExternal,
NSStringFromClassType,
IsBare, IsTransparent, IsNotSerialized);
auto NSStringFromClass = B.createFunctionRef(mainClass, NSStringFromClassFn);
SILValue metaTy = B.createMetatype(mainClass,
SILType::getPrimitiveObjectType(mainClassMetaty));
metaTy = B.createInitExistentialMetatype(mainClass, metaTy,
SILType::getPrimitiveObjectType(anyObjectMetaTy),
ctx.AllocateCopy(
llvm::makeArrayRef(mainClassAnyObjectConformance)));
SILValue optName = B.createApply(mainClass,
NSStringFromClass,
NSStringFromClass->getType(),
SILType::getPrimitiveObjectType(OptNSStringTy),
{}, metaTy);
// Fix up the string parameters to have the right type.
SILType nameArgTy = fnConv.getSILArgumentType(3);
assert(nameArgTy == fnConv.getSILArgumentType(2));
auto managedName = ManagedValue::forUnmanaged(optName);
SILValue nilValue;
if (optName->getType() == nameArgTy) {
nilValue = getOptionalNoneValue(mainClass,
getTypeLowering(OptNSStringTy));
} else {
assert(nameArgTy.getSwiftRValueType() == IUOptNSStringTy);
nilValue = getOptionalNoneValue(mainClass,
getTypeLowering(IUOptNSStringTy));
managedName = emitOptionalToOptional(
mainClass, managedName,
SILType::getPrimitiveObjectType(IUOptNSStringTy),
[](SILGenFunction &, SILLocation, ManagedValue input, SILType) {
return input;
});
}
// Fix up argv to have the right type.
auto argvTy = fnConv.getSILArgumentType(1);
SILType unwrappedTy = argvTy;
if (Type innerTy = argvTy.getSwiftRValueType()->getAnyOptionalObjectType()){
auto canInnerTy = innerTy->getCanonicalType();
unwrappedTy = SILType::getPrimitiveObjectType(canInnerTy);
}
auto managedArgv = ManagedValue::forUnmanaged(argv);
if (unwrappedTy != argv->getType()) {
auto converted =
emitPointerToPointer(mainClass, managedArgv,
argv->getType().getSwiftRValueType(),
unwrappedTy.getSwiftRValueType());
managedArgv = std::move(converted).getAsSingleValue(*this, mainClass);
}
if (unwrappedTy != argvTy) {
managedArgv = getOptionalSomeValue(mainClass, managedArgv,
getTypeLowering(argvTy));
}
auto UIApplicationMain = B.createFunctionRef(mainClass, UIApplicationMainFn);
SILValue args[] = {argc, managedArgv.getValue(), nilValue,
managedName.getValue()};
B.createApply(mainClass, UIApplicationMain,
UIApplicationMain->getType(),
argc->getType(), {}, args);
SILValue r = B.createIntegerLiteral(mainClass,
SILType::getBuiltinIntegerType(32, ctx), 0);
auto rType = F.getConventions().getSingleSILResultType();
if (r->getType() != rType)
r = B.createStruct(mainClass, rType, r);
Cleanups.emitCleanupsForReturn(mainClass);
B.createReturn(mainClass, r);
return;
}
case ArtificialMainKind::NSApplicationMain: {
// Emit an AppKit main.
// return NSApplicationMain(C_ARGC, C_ARGV);
SILParameterInfo argTypes[] = {
SILParameterInfo(argc->getType().getSwiftRValueType(),
ParameterConvention::Direct_Unowned),
SILParameterInfo(argv->getType().getSwiftRValueType(),
ParameterConvention::Direct_Unowned),
};
auto NSApplicationMainType = SILFunctionType::get(nullptr,
SILFunctionType::ExtInfo()
// Should be C calling convention, but NSApplicationMain
// has an overlay to fix the type of argv.
.withRepresentation(SILFunctionType::Representation::Thin),
ParameterConvention::Direct_Unowned,
argTypes,
SILResultInfo(argc->getType().getSwiftRValueType(),
ResultConvention::Unowned),
/*error result*/ None,
getASTContext());
auto NSApplicationMainFn
= SGM.M.getOrCreateFunction(mainClass, "NSApplicationMain",
SILLinkage::PublicExternal,
NSApplicationMainType,
IsBare, IsTransparent, IsNotSerialized);
auto NSApplicationMain = B.createFunctionRef(mainClass, NSApplicationMainFn);
SILValue args[] = { argc, argv };
B.createApply(mainClass, NSApplicationMain,
NSApplicationMain->getType(),
argc->getType(), {}, args);
SILValue r = B.createIntegerLiteral(mainClass,
SILType::getBuiltinIntegerType(32, getASTContext()), 0);
auto rType = F.getConventions().getSingleSILResultType();
if (r->getType() != rType)
r = B.createStruct(mainClass, rType, r);
B.createReturn(mainClass, r);
return;
}
}
}
void SILGenFunction::emitGeneratorFunction(SILDeclRef function, Expr *value) {
MagicFunctionName = SILGenModule::getMagicFunctionName(function);
RegularLocation Loc(value);
Loc.markAutoGenerated();
// Override location for #file, #line etc. to an invalid one so that we
// don't put extra strings into the default argument generator function that
// is not going to be ever used anyway.
overrideLocationForMagicIdentifiers = SourceLoc();
auto *dc = function.getDecl()->getInnermostDeclContext();
auto interfaceType = dc->mapTypeOutOfContext(value->getType());
emitProlog({}, interfaceType, dc, false);
prepareEpilog(value->getType(), false, CleanupLocation::get(Loc));
emitReturnExpr(Loc, value);
emitEpilog(Loc);
}