blob: de856374546e48be8b77b71cacaa2426092231b1 [file] [log] [blame]
//===--- IRGenFunction.cpp - Swift Per-Function IR Generation -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements basic setup and teardown for the class which
// performs IR generation for function bodies.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/IRGenOptions.h"
#include "swift/Basic/SourceLoc.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
#include "Explosion.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "Linking.h"
#include "LoadableTypeInfo.h"
using namespace swift;
using namespace irgen;
IRGenFunction::IRGenFunction(IRGenModule &IGM, llvm::Function *Fn,
const SILDebugScope *DbgScope,
Optional<SILLocation> DbgLoc)
: IGM(IGM), Builder(IGM.getLLVMContext(),
IGM.DebugInfo && !IGM.Context.LangOpts.DebuggerSupport),
CurFn(Fn), DbgScope(DbgScope) {
// Make sure the instructions in this function are attached its debug scope.
if (IGM.DebugInfo) {
// Functions, especially artificial thunks and closures, are often
// generated on-the-fly while we are in the middle of another
// function. Be nice and preserve the current debug location until
// after we're done with this function.
IGM.DebugInfo->pushLoc();
}
emitPrologue();
}
IRGenFunction::~IRGenFunction() {
emitEpilogue();
// Restore the debug location.
if (IGM.DebugInfo) IGM.DebugInfo->popLoc();
// Tear down any side-table data structures.
if (LocalTypeData) destroyLocalTypeData();
}
ModuleDecl *IRGenFunction::getSwiftModule() const {
return IGM.getSwiftModule();
}
SILModule &IRGenFunction::getSILModule() const {
return IGM.getSILModule();
}
Lowering::TypeConverter &IRGenFunction::getSILTypes() const {
return IGM.getSILTypes();
}
// Returns the default atomicity of the module.
Atomicity IRGenFunction::getDefaultAtomicity() {
return getSILModule().isDefaultAtomic() ? Atomicity::Atomic : Atomicity::NonAtomic;
}
/// Call the llvm.memcpy intrinsic. The arguments need not already
/// be of i8* type.
void IRGenFunction::emitMemCpy(llvm::Value *dest, llvm::Value *src,
Size size, Alignment align) {
emitMemCpy(dest, src, IGM.getSize(size), align);
}
void IRGenFunction::emitMemCpy(llvm::Value *dest, llvm::Value *src,
llvm::Value *size, Alignment align) {
Builder.CreateMemCpy(dest, src, size, align.getValue(), false);
}
void IRGenFunction::emitMemCpy(Address dest, Address src, Size size) {
emitMemCpy(dest, src, IGM.getSize(size));
}
void IRGenFunction::emitMemCpy(Address dest, Address src, llvm::Value *size) {
// Map over to the inferior design of the LLVM intrinsic.
emitMemCpy(dest.getAddress(), src.getAddress(), size,
std::min(dest.getAlignment(), src.getAlignment()));
}
static llvm::Value *emitAllocatingCall(IRGenFunction &IGF,
llvm::Value *fn,
std::initializer_list<llvm::Value*> args,
const llvm::Twine &name) {
auto allocAttrs = IGF.IGM.getAllocAttrs();
llvm::CallInst *call =
IGF.Builder.CreateCall(fn, makeArrayRef(args.begin(), args.size()));
call->setAttributes(allocAttrs);
return call;
}
/// Emit a 'raw' allocation, which has no heap pointer and is
/// not guaranteed to be zero-initialized.
llvm::Value *IRGenFunction::emitAllocRawCall(llvm::Value *size,
llvm::Value *alignMask,
const llvm::Twine &name) {
// For now, all we have is swift_slowAlloc.
return emitAllocatingCall(*this, IGM.getSlowAllocFn(),
{size, alignMask},
name);
}
/// Emit a heap allocation.
llvm::Value *IRGenFunction::emitAllocObjectCall(llvm::Value *metadata,
llvm::Value *size,
llvm::Value *alignMask,
const llvm::Twine &name) {
// For now, all we have is swift_allocObject.
return emitAllocatingCall(*this, IGM.getAllocObjectFn(),
{ metadata, size, alignMask }, name);
}
llvm::Value *IRGenFunction::emitInitStackObjectCall(llvm::Value *metadata,
llvm::Value *object,
const llvm::Twine &name) {
llvm::CallInst *call =
Builder.CreateCall(IGM.getInitStackObjectFn(), { metadata, object }, name);
call->setDoesNotThrow();
return call;
}
llvm::Value *IRGenFunction::emitVerifyEndOfLifetimeCall(llvm::Value *object,
const llvm::Twine &name) {
llvm::CallInst *call =
Builder.CreateCall(IGM.getVerifyEndOfLifetimeFn(), { object }, name);
call->setDoesNotThrow();
return call;
}
void IRGenFunction::emitAllocBoxCall(llvm::Value *typeMetadata,
llvm::Value *&box,
llvm::Value *&valueAddress) {
auto attrs = llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoUnwind);
llvm::CallInst *call =
Builder.CreateCall(IGM.getAllocBoxFn(), typeMetadata);
call->setAttributes(attrs);
box = Builder.CreateExtractValue(call, 0);
valueAddress = Builder.CreateExtractValue(call, 1);
}
void IRGenFunction::emitMakeBoxUniqueCall(llvm::Value *box,
llvm::Value *typeMetadata,
llvm::Value *alignMask,
llvm::Value *&outBox,
llvm::Value *&outValueAddress) {
auto attrs = llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoUnwind);
llvm::CallInst *call = Builder.CreateCall(IGM.getMakeBoxUniqueFn(),
{box, typeMetadata, alignMask});
call->setAttributes(attrs);
outBox = Builder.CreateExtractValue(call, 0);
outValueAddress = Builder.CreateExtractValue(call, 1);
}
void IRGenFunction::emitDeallocBoxCall(llvm::Value *box,
llvm::Value *typeMetadata) {
auto attrs = llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoUnwind);
llvm::CallInst *call =
Builder.CreateCall(IGM.getDeallocBoxFn(), box);
call->setCallingConv(IGM.DefaultCC);
call->setAttributes(attrs);
}
llvm::Value *IRGenFunction::emitProjectBoxCall(llvm::Value *box,
llvm::Value *typeMetadata) {
llvm::Attribute::AttrKind attrKinds[] = {
llvm::Attribute::NoUnwind,
llvm::Attribute::ReadNone,
};
auto attrs = llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
attrKinds);
llvm::CallInst *call =
Builder.CreateCall(IGM.getProjectBoxFn(), box);
call->setCallingConv(IGM.DefaultCC);
call->setAttributes(attrs);
return call;
}
static void emitDeallocatingCall(IRGenFunction &IGF, llvm::Constant *fn,
std::initializer_list<llvm::Value *> args) {
auto cc = IGF.IGM.DefaultCC;
if (auto fun = dyn_cast<llvm::Function>(fn))
cc = fun->getCallingConv();
llvm::CallInst *call =
IGF.Builder.CreateCall(fn, makeArrayRef(args.begin(), args.size()));
call->setCallingConv(cc);
call->setDoesNotThrow();
}
/// Emit a 'raw' deallocation, which has no heap pointer and is not
/// guaranteed to be zero-initialized.
void IRGenFunction::emitDeallocRawCall(llvm::Value *pointer,
llvm::Value *size,
llvm::Value *alignMask) {
// For now, all we have is swift_slowDealloc.
return emitDeallocatingCall(*this, IGM.getSlowDeallocFn(),
{pointer, size, alignMask});
}
void IRGenFunction::emitTSanInoutAccessCall(llvm::Value *address) {
llvm::Function *fn = cast<llvm::Function>(IGM.getTSanInoutAccessFn());
llvm::Value *castAddress = Builder.CreateBitCast(address, IGM.Int8PtrTy);
Builder.CreateCall(fn, {castAddress});
}
/// Initialize a relative indirectable pointer to the given value.
/// This always leaves the value in the direct state; if it's not a
/// far reference, it's the caller's responsibility to ensure that the
/// pointer ranges are sufficient.
void IRGenFunction::emitStoreOfRelativeIndirectablePointer(llvm::Value *value,
Address addr,
bool isFar) {
value = Builder.CreatePtrToInt(value, IGM.IntPtrTy);
auto addrAsInt =
Builder.CreatePtrToInt(addr.getAddress(), IGM.IntPtrTy);
auto difference = Builder.CreateSub(value, addrAsInt);
if (!isFar) {
difference = Builder.CreateTrunc(difference, IGM.RelativeAddressTy);
}
Builder.CreateStore(difference, addr);
}
llvm::Value *
IRGenFunction::emitLoadOfRelativeIndirectablePointer(Address addr,
bool isFar,
llvm::PointerType *expectedType,
const llvm::Twine &name) {
// Load the pointer and turn it back into a pointer.
llvm::Value *value = Builder.CreateLoad(addr);
assert(value->getType() == (isFar ? IGM.FarRelativeAddressTy
: IGM.RelativeAddressTy));
if (!isFar) {
value = Builder.CreateSExt(value, IGM.IntPtrTy);
}
assert(value->getType() == IGM.IntPtrTy);
llvm::BasicBlock *origBB = Builder.GetInsertBlock();
llvm::Value *directResult = Builder.CreateIntToPtr(value, expectedType);
// Check whether the low bit is set.
llvm::Constant *one = llvm::ConstantInt::get(IGM.IntPtrTy, 1);
llvm::BasicBlock *indirectBB = createBasicBlock("relptr.indirect");
llvm::BasicBlock *contBB = createBasicBlock("relptr.cont");
llvm::Value *isIndirect = Builder.CreateAnd(value, one);
isIndirect = Builder.CreateIsNotNull(isIndirect);
Builder.CreateCondBr(isIndirect, indirectBB, contBB);
// In the indirect block, clear the low bit and perform an additional load.
llvm::Value *indirectResult; {
Builder.emitBlock(indirectBB);
// Clear the low bit.
llvm::Value *ptr = Builder.CreateSub(value, one);
ptr = Builder.CreateIntToPtr(ptr, expectedType->getPointerTo());
// Load.
Address indirectAddr(ptr, IGM.getPointerAlignment());
indirectResult = Builder.CreateLoad(indirectAddr);
Builder.CreateBr(contBB);
}
Builder.emitBlock(contBB);
auto phi = Builder.CreatePHI(expectedType, 2, name);
phi->addIncoming(directResult, origBB);
phi->addIncoming(indirectResult, indirectBB);
return phi;
}
void IRGenFunction::emitFakeExplosion(const TypeInfo &type,
Explosion &explosion) {
if (!isa<LoadableTypeInfo>(type)) {
explosion.add(llvm::UndefValue::get(type.getStorageType()->getPointerTo()));
return;
}
ExplosionSchema schema = cast<LoadableTypeInfo>(type).getSchema();
for (auto &element : schema) {
llvm::Type *elementType;
if (element.isAggregate()) {
elementType = element.getAggregateType()->getPointerTo();
} else {
elementType = element.getScalarType();
}
explosion.add(llvm::UndefValue::get(elementType));
}
}
void IRGenFunction::unimplemented(SourceLoc Loc, StringRef Message) {
return IGM.unimplemented(Loc, Message);
}
// Debug output for Explosions.
void Explosion::print(llvm::raw_ostream &OS) {
for (auto value : makeArrayRef(Values).slice(NextValue)) {
value->print(OS);
OS << '\n';
}
}
void Explosion::dump() {
print(llvm::errs());
}