blob: b2fa9423ae74a1ca98c6f9bc91d5eb2d91fd6693 [file] [log] [blame]
//===--- Generics.cpp ---- Utilities for transforming generics ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "generic-specializer"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignatureBuilder.h"
#include "swift/AST/TypeMatcher.h"
#include "swift/Basic/Statistic.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SILOptimizer/Utils/GenericCloner.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "swift/Strings.h"
using namespace swift;
STATISTIC(NumPreventedGenericSpecializationLoops,
"# of prevented infinite generic specializations loops");
STATISTIC(NumPreventedTooComplexGenericSpecializations,
"# of prevented generic specializations with too complex "
"generic type parameters");
/// Set to true to enable the support for partial specialization.
llvm::cl::opt<bool> EnablePartialSpecialization(
"sil-partial-specialization", llvm::cl::init(false),
llvm::cl::desc("Enable partial specialization of generics"));
/// If set, then generic specialization tries to specialize using
/// all substitutions, even if they the replacement types are generic.
llvm::cl::opt<bool> SupportGenericSubstitutions(
"sil-partial-specialization-with-generic-substitutions",
llvm::cl::init(false),
llvm::cl::desc("Enable partial specialization with generic substitutions"));
/// Set to true to print detected infinite generic specialization loops that
/// were prevented.
llvm::cl::opt<bool> PrintGenericSpecializationLoops(
"sil-print-generic-specialization-loops", llvm::cl::init(false),
llvm::cl::desc("Print detected infinite generic specialization loops that "
"were prevented"));
static bool OptimizeGenericSubstitutions = false;
/// Max depth of a type which can be processed by the generic
/// specializer.
/// E.g. the depth of Array<Array<Array<T>>> is 3.
/// No specializations will be produced, if any of generic parameters contains
/// a bound generic type with the depth higher than this threshold
static const unsigned TypeDepthThreshold = 50;
/// Set the width threshold rather high, because some projects uses very wide
/// tuples to model fixed size arrays.
static const unsigned TypeWidthThreshold = 2000;
/// Compute the width and the depth of a type.
/// We compute both, because some pathological test-cases result in very
/// wide types and some others result in very deep types. It is important
/// to bail as soon as we hit the threshold on any of both dimensions to
/// prevent compiler hangs and crashes.
static std::pair<unsigned, unsigned> getTypeDepthAndWidth(Type t) {
unsigned Depth = 0;
unsigned Width = 0;
if (auto *BGT = t->getAs<BoundGenericType>()) {
auto *NTD = BGT->getNominalOrBoundGenericNominal();
if (NTD) {
auto StoredProperties = NTD->getStoredProperties();
Width += std::distance(StoredProperties.begin(), StoredProperties.end());
}
Depth++;
unsigned MaxTypeDepth = 0;
auto GenericArgs = BGT->getGenericArgs();
for (auto Ty : GenericArgs) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(Ty);
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
Depth += MaxTypeDepth;
return std::make_pair(Depth, Width);
}
if (auto *TupleTy = t->getAs<TupleType>()) {
Width += TupleTy->getNumElements();
Depth++;
unsigned MaxTypeDepth = 0;
auto ElementTypes = TupleTy->getElementTypes();
for (auto Ty : ElementTypes) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(Ty);
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
Depth += MaxTypeDepth;
return std::make_pair(Depth, Width);
}
if (auto *FnTy = t->getAs<SILFunctionType>()) {
Depth++;
unsigned MaxTypeDepth = 0;
auto Params = FnTy->getParameters();
Width += Params.size();
for (auto Param : Params) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(Param.getType());
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
auto Results = FnTy->getResults();
Width += Results.size();
for (auto Result : Results) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(Result.getType());
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
if (FnTy->hasErrorResult()) {
Width += 1;
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) =
getTypeDepthAndWidth(FnTy->getErrorResult().getType());
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
Depth += MaxTypeDepth;
return std::make_pair(Depth, Width);
}
if (auto *FnTy = t->getAs<FunctionType>()) {
Depth++;
unsigned MaxTypeDepth = 0;
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(FnTy->getInput());
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(FnTy->getResult());
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
Depth += MaxTypeDepth;
return std::make_pair(Depth, Width);
}
if (auto *MT = t->getAs<MetatypeType>()) {
Depth += 1;
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(MT->getInstanceType());
Width += TypeWidth;
Depth += TypeDepth;
return std::make_pair(Depth, Width);
}
return std::make_pair(Depth, Width);
}
static bool isTypeTooComplex(Type t) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(t);
return TypeWidth >= TypeWidthThreshold || TypeDepth >= TypeDepthThreshold;
}
namespace {
/// A helper class used to check whether one type is structurally contained
/// the other type either completely or partially.
class TypeComparator : public TypeMatcher<TypeComparator> {
bool IsContained = false;
public:
bool isEqual(CanType T1, CanType T2) { return T1 == T2; }
/// Check whether the type T1 is different from T2 and contained in the type
/// T2.
bool isStrictlyContainedIn(CanType T1, CanType T2) {
if (isEqual(T1, T2))
return false;
return T2.findIf([&T1, this](Type T) -> bool {
return isEqual(T->getCanonicalType(), T1);
});
}
/// Check whether the type T1 is strictly or partially contained in the type
/// T2.
/// Partially contained means that if you drop the common structural "prefix"
/// of T1 and T2 and get T1' and T2' then T1' is strictly contained in T2'.
bool isPartiallyContainedIn(CanType T1, CanType T2) {
if (isStrictlyContainedIn(T1, T2))
return true;
match(T1, T2);
return IsContained;
}
/// This method is invoked aftre skipping a common prefix of two types,
/// when a structural difference is found.
bool mismatch(TypeBase *firstType, TypeBase *secondType,
Type sugaredFirstType) {
auto firstCanType = firstType->getCanonicalType();
auto secondCanType = secondType->getCanonicalType();
if (isEqual(firstCanType, secondCanType))
return false;
if (isStrictlyContainedIn(firstCanType, secondCanType)) {
IsContained = true;
return false;
}
return false;
}
};
} // anonymous namespace
/// Checks if a second substitution list is an expanded version of
/// the first substitution list.
/// This is the case if at least one of the substitution type in Subs2 is
/// "bigger" than the corresponding substitution type in Subs1.
/// Type T2 is "smaller" than type T1 if T2 is structurally contained in T1.
static bool growingSubstitutions(SubstitutionList Subs1,
SubstitutionList Subs2) {
assert(Subs1.size() == Subs2.size());
TypeComparator TypeCmp;
// Perform component-wise comparisions for substitutions.
for (unsigned idx = 0, e = Subs1.size(); idx < e; ++idx) {
auto Type1 = Subs1[idx].getReplacement()->getCanonicalType();
auto Type2 = Subs2[idx].getReplacement()->getCanonicalType();
// Replacement types should be concrete.
assert(!Type1->hasArchetype());
assert(!Type2->hasArchetype());
// If types are the same, the substitution type does not grow.
if (TypeCmp.isEqual(Type2, Type1))
continue;
// If the new substitution type is getting smaller, the
// substitution type does not grow.
if (TypeCmp.isPartiallyContainedIn(Type2, Type1))
continue;
if (TypeCmp.isPartiallyContainedIn(Type1, Type2)) {
DEBUG(llvm::dbgs() << "Type:\n"; Type1.dump();
llvm::dbgs() << "is (partially) contained in type:\n"; Type2.dump();
llvm::dbgs() << "SubstitutionList[" << idx
<< "] has got bigger since last time.\n");
return true;
}
// None of the types is contained in the other type.
// They are not comparable in this sense.
}
// The substitition list is not growing.
return false;
}
/// Checks whether specializing a given generic apply would create an infinite
/// cycle in the generic specializations graph. This can be the case if there is
/// a loop in the specialization graph and generic parameters at each iteration
/// of such a loop are getting bigger and bigger.
/// The specialization graph is represented by means of SpecializationInformation.
/// We use this meta-information about specializations to detect cycles in this
/// graph.
static bool createsInfiniteSpecializationLoop(ApplySite Apply) {
if (!Apply)
return false;
auto *Callee = Apply.getCalleeFunction();
SILFunction *Caller = nullptr;
Caller = Apply.getFunction();
// Name of the function to be specialized.
auto GenericFunc = Callee;
DEBUG(llvm::dbgs() << "\n\n\nChecking for a specialization cycle:\n"
<< "Caller: " << Caller->getName() << "\n"
<< "Callee: " << Callee->getName() << "\n";
llvm::dbgs() << "Substitutions:\n";
for (auto Sub: Apply.getSubstitutions()) {
Sub.getReplacement()->dump();
});
auto *CurSpecializationInfo = Apply.getSpecializationInfo();
if (CurSpecializationInfo) {
DEBUG(llvm::dbgs() << "Scan call-site's history\n");
} else if (Caller->isSpecialization()) {
CurSpecializationInfo = Caller->getSpecializationInfo();
DEBUG(llvm::dbgs() << "Scan caller's specialization history\n");
}
while (CurSpecializationInfo) {
DEBUG(llvm::dbgs() << "Current caller is a specialization:\n"
<< "Caller: "
<< CurSpecializationInfo->getCaller()->getName() << "\n"
<< "Parent: "
<< CurSpecializationInfo->getParent()->getName() << "\n";
llvm::dbgs() << "Substitutions:\n";
for (auto Sub: CurSpecializationInfo->getSubstitutions()) {
Sub.getReplacement()->dump();
});
if (CurSpecializationInfo->getParent() == GenericFunc) {
DEBUG(llvm::dbgs() << "Found a call graph loop, checking substitutions\n");
// Consider if components of the substitution list gets bigger compared to
// the previously seen specialization of the same generic function.
if (growingSubstitutions(CurSpecializationInfo->getSubstitutions(),
Apply.getSubstitutions())) {
DEBUG(llvm::dbgs() << "Found a generic specialization loop!\n");
return true;
}
}
// Get the next element of the specialization history.
auto *CurCaller = CurSpecializationInfo->getCaller();
CurSpecializationInfo = nullptr;
if (!CurCaller)
break;
DEBUG(llvm::dbgs() << "\nCurrent caller is: " << CurCaller->getName()
<< "\n");
if (!CurCaller->isSpecialization())
break;
CurSpecializationInfo = CurCaller->getSpecializationInfo();
}
assert(!CurSpecializationInfo);
DEBUG(llvm::dbgs() << "Stop the scan: Current caller is not a specialization\n");
return false;
}
// =============================================================================
// ReabstractionInfo
// =============================================================================
static bool shouldNotSpecializeCallee(SILFunction *Callee,
SubstitutionList Subs = {}) {
if (!Callee->shouldOptimize()) {
DEBUG(llvm::dbgs() << " Cannot specialize function " << Callee->getName()
<< " marked to be excluded from optimizations.\n");
return true;
}
if (Callee->hasSemanticsAttr("optimize.sil.specialize.generic.never"))
return true;
if (!Subs.empty() &&
Callee->hasSemanticsAttr("optimize.sil.specialize.generic.partial.never"))
return true;
return false;
}
/// Prepares the ReabstractionInfo object for further processing and checks
/// if the current function can be specialized at all.
/// Returns false, if the current function cannot be specialized.
/// Returns true otherwise.
bool ReabstractionInfo::prepareAndCheck(ApplySite Apply, SILFunction *Callee,
SubstitutionList ParamSubs) {
if (shouldNotSpecializeCallee(Callee))
return false;
SpecializedGenericEnv = nullptr;
SpecializedGenericSig = nullptr;
CalleeParamSubs = ParamSubs;
auto CalleeGenericSig = Callee->getLoweredFunctionType()->getGenericSignature();
auto CalleeGenericEnv = Callee->getGenericEnvironment();
this->Callee = Callee;
this->Apply = Apply;
SubstitutionMap InterfaceSubs;
// Get the original substitution map.
if (CalleeGenericSig)
InterfaceSubs = CalleeGenericSig->getSubstitutionMap(ParamSubs);
// We do not support partial specialization.
if (!EnablePartialSpecialization && InterfaceSubs.hasArchetypes()) {
DEBUG(llvm::dbgs() << " Partial specialization is not supported.\n");
DEBUG(for (auto Sub : ParamSubs) { Sub.dump(); });
return false;
}
// Perform some checks to see if we need to bail.
if (InterfaceSubs.hasDynamicSelf()) {
DEBUG(llvm::dbgs() << " Cannot specialize with dynamic self.\n");
return false;
}
// Check if the substitution contains any generic types that are too deep.
// If this is the case, bail to avoid the explosion in the number of
// generated specializations.
for (auto Sub : ParamSubs) {
auto Replacement = Sub.getReplacement();
if (isTypeTooComplex(Replacement)) {
DEBUG(llvm::dbgs()
<< " Cannot specialize because the generic type is too deep.\n");
NumPreventedTooComplexGenericSpecializations++;
return false;
}
}
// Check if we have substitutions which replace generic type parameters with
// concrete types or unbound generic types.
bool HasConcreteGenericParams = false;
bool HasNonArchetypeGenericParams = false;
HasUnboundGenericParams = false;
for (auto GP : CalleeGenericSig->getSubstitutableParams()) {
// Check only the substitutions for the generic parameters.
// Ignore any dependent types, etc.
auto Replacement = Type(GP).subst(InterfaceSubs);
if (!Replacement->is<ArchetypeType>())
HasNonArchetypeGenericParams = true;
if (Replacement->hasArchetype()) {
HasUnboundGenericParams = true;
// Check if the replacement is an archetype which is more specific
// than the corresponding archetype in the original generic signature.
// If this is the case, then specialization makes sense, because
// it would produce something more specific.
if (CalleeGenericEnv) {
if (auto Archetype = Replacement->getAs<ArchetypeType>()) {
auto OrigArchetype =
CalleeGenericEnv->mapTypeIntoContext(GP)->castTo<ArchetypeType>();
if (Archetype->requiresClass() && !OrigArchetype->requiresClass())
HasNonArchetypeGenericParams = true;
if (Archetype->getLayoutConstraint() &&
!OrigArchetype->getLayoutConstraint())
HasNonArchetypeGenericParams = true;
}
}
continue;
}
HasConcreteGenericParams = true;
}
if (HasUnboundGenericParams) {
// Bail if we cannot specialize generic substitutions, but all substitutions
// were generic.
if (!HasConcreteGenericParams && !SupportGenericSubstitutions) {
DEBUG(llvm::dbgs() << " Partial specialization is not supported if "
"all substitutions are generic.\n");
DEBUG(for (auto Sub : ParamSubs) {
Sub.dump();
});
return false;
}
if (!HasNonArchetypeGenericParams && !HasConcreteGenericParams) {
DEBUG(llvm::dbgs() << " Partial specialization is not supported if "
"all substitutions are archetypes.\n");
DEBUG(for (auto Sub : ParamSubs) {
Sub.dump();
});
return false;
}
// We need a generic environment for the partial specialization.
if (!CalleeGenericEnv)
return false;
// Bail if the callee should not be partially specialized.
if (shouldNotSpecializeCallee(Callee, ParamSubs))
return false;
}
// Check if specializing this call site would create in an infinite generic
// specialization loop.
if (createsInfiniteSpecializationLoop(Apply)) {
DEBUG(llvm::dbgs() << " Generic specialization is not supported if "
"it would result in a generic specialization of "
"infinite depth.\n");
DEBUG(llvm::dbgs() << "Callee " << Callee->getName()
<< " occurs multiple times on the call chain\n");
if (PrintGenericSpecializationLoops)
llvm::errs() << "Detected and prevented an infinite "
"generic specialization loop for callee: "
<< Callee->getName() << '\n';
NumPreventedGenericSpecializationLoops++;
return false;
}
return true;
}
bool ReabstractionInfo::canBeSpecialized(ApplySite Apply, SILFunction *Callee,
SubstitutionList ParamSubs) {
ReabstractionInfo ReInfo;
return ReInfo.prepareAndCheck(Apply, Callee, ParamSubs);
}
ReabstractionInfo::ReabstractionInfo(ApplySite Apply, SILFunction *Callee,
ArrayRef<Substitution> ParamSubs,
bool ConvertIndirectToDirect) {
if (!prepareAndCheck(Apply, Callee, ParamSubs))
return;
this->ConvertIndirectToDirect = ConvertIndirectToDirect;
SILFunction *Caller = nullptr;
if (Apply)
Caller = Apply.getFunction();
if (!EnablePartialSpecialization || !HasUnboundGenericParams) {
// Fast path for full specializations.
performFullSpecializationPreparation(Callee, ParamSubs);
} else {
performPartialSpecializationPreparation(Caller, Callee, ParamSubs);
}
verify();
if (SpecializedGenericSig) {
DEBUG(llvm::dbgs() << "\n\nPartially specialized types for function: "
<< Callee->getName() << "\n\n";
llvm::dbgs() << "Original generic function type:\n"
<< Callee->getLoweredFunctionType() << "\n"
<< "Partially specialized generic function type:\n"
<< SpecializedType << "\n\n");
}
// Some sanity checks.
auto SpecializedFnTy = getSpecializedType();
auto SpecializedSubstFnTy = SpecializedFnTy;
if (SpecializedFnTy->isPolymorphic() &&
!getCallerParamSubstitutions().empty()) {
auto CalleeFnTy = Callee->getLoweredFunctionType();
assert(CalleeFnTy->isPolymorphic());
auto CalleeSubstFnTy = CalleeFnTy->substGenericArgs(
Callee->getModule(), getCalleeParamSubstitutions());
assert(!CalleeSubstFnTy->isPolymorphic() &&
"Substituted callee type should not be polymorphic");
assert(!CalleeSubstFnTy->hasTypeParameter() &&
"Substituted callee type should not have type parameters");
SpecializedSubstFnTy = SpecializedFnTy->substGenericArgs(
Callee->getModule(), getCallerParamSubstitutions());
assert(!SpecializedSubstFnTy->isPolymorphic() &&
"Substituted callee type should not be polymorphic");
assert(!SpecializedSubstFnTy->hasTypeParameter() &&
"Substituted callee type should not have type parameters");
auto SpecializedCalleeSubstFnTy =
createSpecializedType(CalleeSubstFnTy, Callee->getModule());
if (SpecializedSubstFnTy != SpecializedCalleeSubstFnTy) {
llvm::dbgs() << "SpecializedFnTy:\n" << SpecializedFnTy << "\n";
llvm::dbgs() << "SpecializedSubstFnTy:\n" << SpecializedSubstFnTy << "\n";
for (auto Sub : getCallerParamSubstitutions()) {
llvm::dbgs() << "Sub:\n";
Sub.dump();
}
llvm::dbgs() << "\n\n";
llvm::dbgs() << "CalleeFnTy:\n" << CalleeFnTy << "\n";
llvm::dbgs() << "SpecializedCalleeSubstFnTy:\n" << SpecializedCalleeSubstFnTy << "\n";
for (auto Sub : ParamSubs) {
llvm::dbgs() << "Sub:\n";
Sub.dump();
}
llvm::dbgs() << "\n\n";
assert(SpecializedSubstFnTy == SpecializedCalleeSubstFnTy &&
"Substituted function types should be the same");
}
}
// If the new type is the same, there is nothing to do and
// no specialization should be performed.
if (getSubstitutedType() == Callee->getLoweredFunctionType()) {
DEBUG(llvm::dbgs() << "The new specialized type is the same as "
"the original "
"type. Don't specialize!\n";
llvm::dbgs() << "The type is: " << getSubstitutedType() << "\n");
SpecializedType = CanSILFunctionType();
SubstitutedType = CanSILFunctionType();
SpecializedGenericSig = nullptr;
SpecializedGenericEnv = nullptr;
return;
}
if (SpecializedGenericSig) {
// It is a partial specialization.
DEBUG(llvm::dbgs() << "Specializing the call:\n";
Apply.getInstruction()->dumpInContext();
llvm::dbgs() << "\n\nPartially specialized types for function: "
<< Callee->getName() << "\n\n";
llvm::dbgs() << "Callee generic function type:\n"
<< Callee->getLoweredFunctionType() << "\n\n";
llvm::dbgs() << "Callee's call substitution:\n";
for (auto Sub : getCalleeParamSubstitutions()) {
llvm::dbgs() << "Sub:\n";
Sub.dump();
llvm::dbgs() << "\n";
}
llvm::dbgs() << "Partially specialized generic function type:\n"
<< getSpecializedType() << "\n\n";
llvm::dbgs() << "\nSpecialization call substitution:\n";
for (auto Sub : getCallerParamSubstitutions()) {
llvm::dbgs() << "Sub:\n";
Sub.dump();
llvm::dbgs() << "\n";
});
}
}
bool ReabstractionInfo::canBeSpecialized() const {
return getSpecializedType();
}
bool ReabstractionInfo::isFullSpecialization() const {
return !hasArchetypes(getCalleeParamSubstitutions());
}
bool ReabstractionInfo::isPartialSpecialization() const {
return hasArchetypes(getCalleeParamSubstitutions());
}
void ReabstractionInfo::createSubstitutedAndSpecializedTypes() {
auto &M = Callee->getModule();
// Find out how the function type looks like after applying the provided
// substitutions.
if (!SubstitutedType) {
SubstitutedType = createSubstitutedType(Callee, CallerInterfaceSubs,
HasUnboundGenericParams);
}
assert(!SubstitutedType->hasArchetype() &&
"Substituted function type should not contain archetypes");
// Check which parameters and results can be converted from
// indirect to direct ones.
NumFormalIndirectResults = SubstitutedType->getNumIndirectFormalResults();
Conversions.resize(NumFormalIndirectResults +
SubstitutedType->getParameters().size());
CanGenericSignature CanSig;
if (SpecializedGenericSig)
CanSig = SpecializedGenericSig->getCanonicalSignature();
Lowering::GenericContextScope GenericScope(M.Types, CanSig);
SILFunctionConventions substConv(SubstitutedType, M);
if (SubstitutedType->getNumDirectFormalResults() == 0) {
// The original function has no direct result yet. Try to convert the first
// indirect result to a direct result.
// TODO: We could also convert multiple indirect results by returning a
// tuple type and created tuple_extract instructions at the call site.
unsigned IdxForResult = 0;
for (SILResultInfo RI : SubstitutedType->getIndirectFormalResults()) {
assert(RI.isFormalIndirect());
if (substConv.getSILType(RI).isLoadable(M) && !RI.getType()->isVoid() &&
shouldExpand(M, substConv.getSILType(RI).getObjectType())) {
Conversions.set(IdxForResult);
break;
}
++IdxForResult;
}
}
// Try to convert indirect incoming parameters to direct parameters.
unsigned IdxForParam = NumFormalIndirectResults;
for (SILParameterInfo PI : SubstitutedType->getParameters()) {
if (substConv.getSILType(PI).isLoadable(M) &&
PI.getConvention() == ParameterConvention::Indirect_In) {
Conversions.set(IdxForParam);
}
++IdxForParam;
}
// Produce a specialized type, which is the substituted type with
// the parameters/results passing conventions adjusted according
// to the conversions selected above.
SpecializedType = createSpecializedType(SubstitutedType, M);
}
/// Create a new substituted type with the updated signature.
CanSILFunctionType
ReabstractionInfo::createSubstitutedType(SILFunction *OrigF,
const SubstitutionMap &SubstMap,
bool HasUnboundGenericParams) {
auto &M = OrigF->getModule();
if ((SpecializedGenericSig &&
SpecializedGenericSig->areAllParamsConcrete()) ||
!HasUnboundGenericParams) {
SpecializedGenericSig = nullptr;
SpecializedGenericEnv = nullptr;
}
CanGenericSignature CanSpecializedGenericSig;
if (SpecializedGenericSig)
CanSpecializedGenericSig = SpecializedGenericSig->getCanonicalSignature();
// First substitute concrete types into the existing function type.
CanSILFunctionType FnTy;
{
Lowering::GenericContextScope GenericScope(M.Types,
CanSpecializedGenericSig);
FnTy = OrigF->getLoweredFunctionType()->substGenericArgs(M, SubstMap);
// FIXME: Some of the added new requirements may not have been taken into
// account by the substGenericArgs. So, canonicalize in the context of the
// specialized signature.
FnTy = cast<SILFunctionType>(
CanSpecializedGenericSig->getCanonicalTypeInContext(
FnTy, *M.getSwiftModule()));
}
assert(FnTy);
// Use the new specialized generic signature.
auto NewFnTy = SILFunctionType::get(
CanSpecializedGenericSig, FnTy->getExtInfo(), FnTy->getCalleeConvention(),
FnTy->getParameters(), FnTy->getResults(), FnTy->getOptionalErrorResult(),
M.getASTContext());
// This is an interface type. It should not have any archetypes.
assert(!NewFnTy->hasArchetype());
return NewFnTy;
}
/// Convert the substituted function type into a specialized function type based
/// on the ReabstractionInfo.
CanSILFunctionType ReabstractionInfo::
createSpecializedType(CanSILFunctionType SubstFTy, SILModule &M) const {
llvm::SmallVector<SILResultInfo, 8> SpecializedResults;
llvm::SmallVector<SILParameterInfo, 8> SpecializedParams;
unsigned IndirectResultIdx = 0;
for (SILResultInfo RI : SubstFTy->getResults()) {
if (RI.isFormalIndirect()) {
if (isFormalResultConverted(IndirectResultIdx++)) {
// Convert the indirect result to a direct result.
SILType SILResTy = SILType::getPrimitiveObjectType(RI.getType());
// Indirect results are passed as owned, so we also need to pass the
// direct result as owned (except it's a trivial type).
auto C = (SILResTy.isTrivial(M) ? ResultConvention::Unowned :
ResultConvention::Owned);
SpecializedResults.push_back(SILResultInfo(RI.getType(), C));
continue;
}
}
// No conversion: re-use the original, substituted result info.
SpecializedResults.push_back(RI);
}
unsigned ParamIdx = 0;
for (SILParameterInfo PI : SubstFTy->getParameters()) {
if (isParamConverted(ParamIdx++)) {
// Convert the indirect parameter to a direct parameter.
SILType SILParamTy = SILType::getPrimitiveObjectType(PI.getType());
// Indirect parameters are passed as owned, so we also need to pass the
// direct parameter as owned (except it's a trivial type).
auto C = (SILParamTy.isTrivial(M) ? ParameterConvention::Direct_Unowned :
ParameterConvention::Direct_Owned);
SpecializedParams.push_back(SILParameterInfo(PI.getType(), C));
} else {
// No conversion: re-use the original, substituted parameter info.
SpecializedParams.push_back(PI);
}
}
return
SILFunctionType::get(SubstFTy->getGenericSignature(),
SubstFTy->getExtInfo(),
SubstFTy->getCalleeConvention(), SpecializedParams,
SpecializedResults, SubstFTy->getOptionalErrorResult(),
M.getASTContext());
}
/// Create a new generic signature from an existing one by adding
/// additional requirements.
static std::pair<GenericEnvironment *, GenericSignature *>
getGenericEnvironmentAndSignatureWithRequirements(
GenericSignature *OrigGenSig, GenericEnvironment *OrigGenericEnv,
ArrayRef<Requirement> Requirements, SILModule &M) {
// Form a new generic signature based on the old one.
GenericSignatureBuilder Builder(M.getASTContext(),
LookUpConformanceInModule(M.getSwiftModule()));
// First, add the old generic signature.
Builder.addGenericSignature(OrigGenSig);
auto Source =
GenericSignatureBuilder::FloatingRequirementSource::forAbstract();
// For each substitution with a concrete type as a replacement,
// add a new concrete type equality requirement.
for (auto &Req : Requirements) {
Builder.addRequirement(Req, Source, M.getSwiftModule());
}
auto NewGenSig =
std::move(Builder).computeGenericSignature(SourceLoc(),
/*allowConcreteGenericParams=*/true);
auto NewGenEnv = NewGenSig->createGenericEnvironment(*M.getSwiftModule());
return { NewGenEnv, NewGenSig };
}
/// Perform some sanity checks on the newly formed substitution lists.
static void verifySubstitutionList(SubstitutionList Subs, StringRef Name) {
DEBUG(llvm::dbgs() << "\nSubstitutions for " << Name << "\n";
for (auto Sub : Subs) {
Sub.getReplacement()->dump();
});
#ifndef NDEBUG
for (auto Sub : Subs) {
assert(!Sub.getReplacement()->hasError() &&
"There should be no error types in substitutions");
}
#endif
}
/// This is a fast path for full specializations.
/// There is no need to form a new generic signature in such cases,
/// because the specialized function will be non-generic.
void ReabstractionInfo::performFullSpecializationPreparation(
SILFunction *Callee, ArrayRef<Substitution> ParamSubs) {
assert((!EnablePartialSpecialization || !HasUnboundGenericParams) &&
"Only full specializations are handled here");
SILModule &M = Callee->getModule();
this->Callee = Callee;
auto CalleeGenericSig =
Callee->getLoweredFunctionType()->getGenericSignature();
// Get the original substitution map.
auto CalleeInterfaceToCallerArchetypeMap =
CalleeGenericSig->getSubstitutionMap(ParamSubs);
SubstitutedType = Callee->getLoweredFunctionType()->substGenericArgs(
M, CalleeInterfaceToCallerArchetypeMap);
ClonerParamSubs = CalleeParamSubs;
CallerParamSubs = {};
createSubstitutedAndSpecializedTypes();
}
/// If the archetype (or any of its dependent types) has requirements
/// depending on other archetypes, return true.
/// Otherwise return false.
static bool hasNonSelfContainedRequirements(ArchetypeType *Archetype,
GenericSignature *Sig,
GenericEnvironment *Env) {
auto Reqs = Sig->getRequirements();
auto CurrentGP = Env->mapTypeOutOfContext(Archetype)
->getCanonicalType()
->getRootGenericParam();
for (auto Req : Reqs) {
switch(Req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Superclass:
case RequirementKind::Layout:
// FIXME: Second type of a superclass requirement may contain
// generic parameters.
continue;
case RequirementKind::SameType: {
// Check if this requirement contains more than one generic param.
// If this is the case, then these archetypes are interdependent and
// we should return true.
auto First = Req.getFirstType()->getCanonicalType();
auto Second = Req.getSecondType()->getCanonicalType();
llvm::SmallSetVector<TypeBase *, 2> UsedGenericParams;
First.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
Second.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
if (UsedGenericParams.count(CurrentGP) && UsedGenericParams.size() > 1)
return true;
}
}
}
return false;
}
/// Collect all requirements for a generic parameter corresponding to a given
/// archetype.
static void collectRequirements(ArchetypeType *Archetype, GenericSignature *Sig,
GenericEnvironment *Env,
SmallVectorImpl<Requirement> &CollectedReqs) {
auto Reqs = Sig->getRequirements();
auto CurrentGP = Env->mapTypeOutOfContext(Archetype)
->getCanonicalType()
->getRootGenericParam();
CollectedReqs.clear();
for (auto Req : Reqs) {
switch(Req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Superclass:
case RequirementKind::Layout:
// If it is a generic param or something derived from it, add this
// requirement.
// FIXME: Second type of a superclass requirement may contain
// generic parameters.
if (Req.getFirstType()->getCanonicalType()->getRootGenericParam() ==
CurrentGP)
CollectedReqs.push_back(Req);
continue;
case RequirementKind::SameType: {
// Check if this requirement contains more than one generic param.
// If this is the case, then these archetypes are interdependent and
// we should return true.
auto First = Req.getFirstType()->getCanonicalType();
auto Second = Req.getSecondType()->getCanonicalType();
llvm::SmallSetVector<GenericTypeParamType *, 2> UsedGenericParams;
First.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
Second.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
if (!UsedGenericParams.count(CurrentGP))
continue;
if (UsedGenericParams.size() != 1) {
llvm::dbgs() << "Strange requirement for "
<< CurrentGP->getCanonicalType() << "\n";
Req.dump();
}
assert(UsedGenericParams.size() == 1);
CollectedReqs.push_back(Req);
continue;
}
}
}
}
/// Returns true if a given substitution should participate in the
/// partial specialization.
///
/// TODO:
/// If a replacement is an archetype or a dependent type
/// of an archetype, then it does not make sense to substitute
/// it into the signature of the specialized function, because
/// it does not provide any benefits at runtime and may actually
/// lead to performance degradations.
///
/// If a replacement is a loadable type, it is most likely
/// rather beneficial to specialize using this substitution, because
/// it would allow for more efficient codegen for this type.
///
/// If a substitution simply replaces a generic parameter in the callee
/// by a generic parameter in the caller and this generic parameter
/// in the caller does have more "specific" conformances or requirements,
/// then it does name make any sense to perform this substitutions.
/// In particular, if the generic parameter in the callee is unconstrained
/// (i.e. just T), then providing a more specific generic parameter with some
/// conformances does not help, because the body of the callee does not invoke
/// any methods from any of these new conformances, unless these conformances
/// or requirements influence the layout of the generic type, e.g. "class",
/// "Trivial of size N", "HeapAllocationObject", etc.
/// (NOTE: It could be that additional conformances can still be used due
/// to conditional conformances or something like that, if the caller
/// has an invocation like: "G<T>().method(...)". In this case, G<T>().method()
/// and G<T:P>().method() may be resolved differently).
///
/// We may need to analyze the uses of the generic type inside
/// the function body (recursively). It is ever loaded/stored?
/// Do we create objects of this type? Which conformances are
/// really used?
static bool
shouldBePartiallySpecialized(Type Replacement,
ArrayRef<ProtocolConformanceRef> Conformances,
GenericSignature *Sig, GenericEnvironment *Env) {
// If replacement is a concrete type, this substitution
// should participate.
if (!Replacement->hasArchetype())
return true;
// We cannot handle opened existentials yet.
if (Replacement->hasOpenedExistential())
return false;
if (!SupportGenericSubstitutions) {
// Don't partially specialize if the replacement contains an archetype.
if (Replacement->hasArchetype())
return false;
}
// If the archetype used (or any of its dependent types) has requirements
// depending on other caller's archetypes, then we don't want to specialize
// on it as it may require introducing more generic parameters, which
// is not beneficial.
// Collect the archetypes used by the replacement type.
llvm::SmallSetVector<ArchetypeType *, 2> UsedArchetypes;
Replacement.visit([&](Type Ty) {
if (auto Archetype = Ty->getAs<ArchetypeType>()) {
UsedArchetypes.insert(Archetype->getPrimary());
}
});
// Check if any of the used archetypes are non-self contained when
// it comes to requirements.
for (auto *UsedArchetype : UsedArchetypes) {
if (hasNonSelfContainedRequirements(UsedArchetype, Sig, Env)) {
DEBUG(llvm::dbgs() << "Requirements of the archetype depend on other "
"caller's generic "
"parameters! It cannot be partially specialized:\n";
UsedArchetype->dump();
llvm::dbgs() << "This archetype is used in the substitution: "
<< Replacement << "\n");
return false;
}
}
if (OptimizeGenericSubstitutions) {
// Is it an unconstrained generic parameter?
if (Conformances.empty()) {
if (Replacement->is<ArchetypeType>()) {
// TODO: If Replacement add a new layout constraint, then
// it may be still useful to perform the partial specialization.
return false;
}
}
}
return true;
}
namespace swift {
/// A helper class for creating partially specialized function signatures.
///
/// The following naming convention is used to describe the members and
/// functions:
/// Caller - the function which invokes the callee.
/// Callee - the callee to be specialized.
/// Specialized - the specialized callee which is being created.
class FunctionSignaturePartialSpecializer {
/// Maps caller's generic parameters to generic parameters of the specialized
/// function.
llvm::DenseMap<SubstitutableType *, Type>
CallerInterfaceToSpecializedInterfaceMapping;
/// Maps callee's generic parameters to generic parameters of the specialized
/// function.
llvm::DenseMap<SubstitutableType *, Type>
CalleeInterfaceToSpecializedInterfaceMapping;
/// Maps the generic parameters of the specialized function to the caller's
/// contextual types.
llvm::DenseMap<SubstitutableType *, Type>
SpecializedInterfaceToCallerArchetypeMapping;
/// A SubstitutionMap for re-mapping caller's interface types
/// to interface types of the specialized function.
SubstitutionMap CallerInterfaceToSpecializedInterfaceMap;
/// Maps callee's interface types to caller's contextual types.
/// It is computed from the original SubstitutionList.
SubstitutionMap CalleeInterfaceToCallerArchetypeMap;
/// Maps callee's interface types to specialized functions interface types.
SubstitutionMap CalleeInterfaceToSpecializedInterfaceMap;
/// Maps the generic parameters of the specialized function to the caller's
/// contextual types.
SubstitutionMap SpecializedInterfaceToCallerArchetypeMap;
/// Generic signatures and environments for the caller, callee and
/// the specialized function.
GenericSignature *CallerGenericSig;
GenericEnvironment *CallerGenericEnv;
GenericSignature *CalleeGenericSig;
GenericEnvironment *CalleeGenericEnv;
GenericSignature *SpecializedGenericSig;
GenericEnvironment *SpecializedGenericEnv;
SILModule &M;
ModuleDecl *SM;
ASTContext &Ctx;
/// This is a builder for a new partially specialized generic signature.
GenericSignatureBuilder Builder;
/// Set of newly created generic type parameters.
SmallVector<GenericTypeParamType*, 4> AllGenericParams;
/// Archetypes used in the substitutions of an apply instructions.
/// These are the contextual archetypes of the caller function, which
/// invokes a generic function that is being specialized.
llvm::SmallSetVector<ArchetypeType *, 2> UsedCallerArchetypes;
/// Number of created generic parameters so far.
unsigned GPIdx = 0;
void createGenericParamsForUsedCallerArchetypes();
void createGenericParamsForCalleeGenericParams();
void addRequirements(ArrayRef<Requirement> Reqs, SubstitutionMap &SubsMap);
void addCallerRequirements();
void addCalleeRequirements();
std::pair<GenericEnvironment *, GenericSignature *>
getSpecializedGenericEnvironmentAndSignature();
void computeCallerInterfaceToSpecializedInterfaceMap();
void computeCalleeInterfaceToSpecializedInterfaceMap();
void computeSpecializedInterfaceToCallerArchetypeMap();
/// Collect all used archetypes from all the substitutions.
/// Take into account only those archetypes that occur in the
/// substitutions of generic parameters which will be partially
/// specialized. Ignore all others.
void collectUsedCallerArchetypes(SubstitutionList ParamSubs);
/// Create a new generic parameter.
GenericTypeParamType *createGenericParam();
public:
FunctionSignaturePartialSpecializer(SILModule &M,
GenericSignature *CallerGenericSig,
GenericEnvironment *CallerGenericEnv,
GenericSignature *CalleeGenericSig,
GenericEnvironment *CalleeGenericEnv,
SubstitutionList ParamSubs)
: CallerGenericSig(CallerGenericSig), CallerGenericEnv(CallerGenericEnv),
CalleeGenericSig(CalleeGenericSig), CalleeGenericEnv(CalleeGenericEnv),
M(M), SM(M.getSwiftModule()), Ctx(M.getASTContext()),
Builder(Ctx, LookUpConformanceInModule(SM)) {
SpecializedGenericSig = nullptr;
SpecializedGenericEnv = nullptr;
CalleeInterfaceToCallerArchetypeMap =
CalleeGenericSig->getSubstitutionMap(ParamSubs);
}
/// This constructor is used by when processing @_specialize.
/// In this case, the caller and the callee are the same function.
FunctionSignaturePartialSpecializer(SILModule &M,
GenericSignature *CalleeGenericSig,
GenericEnvironment *CalleeGenericEnv,
ArrayRef<Requirement> Requirements)
: CallerGenericSig(CalleeGenericSig), CallerGenericEnv(CalleeGenericEnv),
CalleeGenericSig(CalleeGenericSig), CalleeGenericEnv(CalleeGenericEnv),
M(M), SM(M.getSwiftModule()), Ctx(M.getASTContext()),
Builder(Ctx, LookUpConformanceInModule(SM)) {
// Create the new generic signature using provided requirements.
std::tie(SpecializedGenericEnv, SpecializedGenericSig) =
getGenericEnvironmentAndSignatureWithRequirements(
CalleeGenericSig, CalleeGenericEnv, Requirements, M);
// Compute SubstitutionMaps required for re-mapping.
// Callee's generic signature and specialized generic signature
// use the same set of generic parameters, i.e. each generic
// parameter should be mapped to itself.
for (auto GP : CalleeGenericSig->getGenericParams()) {
CalleeInterfaceToSpecializedInterfaceMapping[GP] = Type(GP);
}
computeCalleeInterfaceToSpecializedInterfaceMap();
// Each generic parameter of the callee is mapped to its own
// archetype.
SpecializedInterfaceToCallerArchetypeMap =
SpecializedGenericSig->getSubstitutionMap(
[&](SubstitutableType *type) -> Type {
return CalleeGenericEnv->mapTypeIntoContext(type);
},
LookUpConformanceInSignature(*SpecializedGenericSig));
}
GenericSignature *getSpecializedGenericSignature() {
return SpecializedGenericSig;
}
GenericEnvironment *getSpecializedGenericEnvironment() {
return SpecializedGenericEnv;
}
void createSpecializedGenericSignature(SubstitutionList ParamSubs);
void createSpecializedGenericSignatureWithNonGenericSubs();
void computeClonerParamSubs(SubstitutionList &ClonerParamSubs);
void computeCallerParamSubs(GenericSignature *SpecializedGenericSig,
SubstitutionList &CallerParamSubs);
void computeCallerInterfaceSubs(SubstitutionMap &CallerInterfaceSubs);
};
} // end of namespace
GenericTypeParamType *
FunctionSignaturePartialSpecializer::createGenericParam() {
auto GP = GenericTypeParamType::get(0, GPIdx++, Ctx);
AllGenericParams.push_back(GP);
Builder.addGenericParameter(GP);
return GP;
}
/// Collect all used caller's archetypes from all the substitutions.
void FunctionSignaturePartialSpecializer::collectUsedCallerArchetypes(
SubstitutionList ParamSubs) {
for (auto Sub : ParamSubs) {
auto Replacement = Sub.getReplacement();
if (!Replacement->hasArchetype())
continue;
// If the substitution will not be performed in the specialized
// function, there is no need to check for any archetypes inside
// the replacement.
if (!shouldBePartiallySpecialized(Replacement, Sub.getConformances(),
CallerGenericSig, CallerGenericEnv))
continue;
// Add used generic parameters/archetypes.
Replacement.visit([&](Type Ty) {
if (auto Archetype = Ty->getAs<ArchetypeType>()) {
UsedCallerArchetypes.insert(Archetype->getPrimary());
}
});
}
}
void FunctionSignaturePartialSpecializer::
computeCallerInterfaceToSpecializedInterfaceMap() {
if (!CallerGenericSig)
return;
CallerInterfaceToSpecializedInterfaceMap =
CallerGenericSig->getSubstitutionMap(
[&](SubstitutableType *type) -> Type {
return CallerInterfaceToSpecializedInterfaceMapping.lookup(type);
},
LookUpConformanceInSignature(*CallerGenericSig));
DEBUG(llvm::dbgs() << "\n\nCallerInterfaceToSpecializedInterfaceMap map:\n";
CallerInterfaceToSpecializedInterfaceMap.dump(llvm::dbgs()));
}
void FunctionSignaturePartialSpecializer::
computeSpecializedInterfaceToCallerArchetypeMap() {
// Define a substitution map for re-mapping interface types of
// the specialized function to contextual types of the caller.
SpecializedInterfaceToCallerArchetypeMap =
SpecializedGenericSig->getSubstitutionMap(
[&](SubstitutableType *type) -> Type {
DEBUG(llvm::dbgs()
<< "Mapping specialized interface type to caller "
"archetype:\n";
llvm::dbgs() << "Interface type: "; type->dump();
llvm::dbgs() << "Archetype: ";
auto Archetype =
SpecializedInterfaceToCallerArchetypeMapping.lookup(type);
if (Archetype) Archetype->dump();
else llvm::dbgs() << "Not found!\n";);
return SpecializedInterfaceToCallerArchetypeMapping.lookup(type);
},
LookUpConformanceInSignature(*SpecializedGenericSig));
DEBUG(llvm::dbgs() << "\n\nSpecializedInterfaceToCallerArchetypeMap map:\n";
SpecializedInterfaceToCallerArchetypeMap.dump(llvm::dbgs()));
}
void FunctionSignaturePartialSpecializer::
computeCalleeInterfaceToSpecializedInterfaceMap() {
CalleeInterfaceToSpecializedInterfaceMap =
CalleeGenericSig->getSubstitutionMap(
[&](SubstitutableType *type) -> Type {
return CalleeInterfaceToSpecializedInterfaceMapping.lookup(type);
},
LookUpConformanceInSignature(*CalleeGenericSig));
DEBUG(llvm::dbgs() << "\n\nCalleeInterfaceToSpecializedInterfaceMap:\n";
CalleeInterfaceToSpecializedInterfaceMap.dump(llvm::dbgs()));
}
/// Generate a new generic type parameter for each used archetype from
/// the caller.
void FunctionSignaturePartialSpecializer::
createGenericParamsForUsedCallerArchetypes() {
for (auto CallerArchetype : UsedCallerArchetypes) {
auto CallerGenericParam =
CallerGenericEnv->mapTypeOutOfContext(CallerArchetype);
assert(CallerGenericParam->is<GenericTypeParamType>());
DEBUG(llvm::dbgs() << "\n\nChecking used caller archetype:\n";
CallerArchetype->dump();
llvm::dbgs() << "It corresponds to the caller generic parameter:\n";
CallerGenericParam->dump());
// Create an equivalent generic parameter.
auto SubstGenericParam = createGenericParam();
auto SubstGenericParamCanTy = SubstGenericParam->getCanonicalType();
(void)SubstGenericParamCanTy;
CallerInterfaceToSpecializedInterfaceMapping
[CallerGenericParam->getCanonicalType()
->castTo<GenericTypeParamType>()] = SubstGenericParam;
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
CallerArchetype;
DEBUG(llvm::dbgs() << "\nCreated a new specialized generic parameter:\n";
SubstGenericParam->dump();
llvm::dbgs() << "Created a mapping "
"(caller interface -> specialize interface):\n"
<< CallerGenericParam << " -> " << SubstGenericParamCanTy
<< "\n";
llvm::dbgs() << "Created a mapping"
"(specialized interface -> caller archetype):\n"
<< SubstGenericParamCanTy << " -> "
<< CallerArchetype->getCanonicalType() << "\n");
}
}
/// Create a new generic parameter for each of the callee's generic parameters
/// which requires a substitution.
void FunctionSignaturePartialSpecializer::
createGenericParamsForCalleeGenericParams() {
auto Source =
GenericSignatureBuilder::FloatingRequirementSource::forAbstract();
for (auto GP : CalleeGenericSig->getGenericParams()) {
auto CanTy = GP->getCanonicalType();
auto CanTyInContext =
CalleeGenericSig->getCanonicalTypeInContext(CanTy, *SM);
auto Replacement = CanTyInContext.subst(CalleeInterfaceToCallerArchetypeMap);
DEBUG(llvm::dbgs() << "\n\nChecking callee generic parameter:\n";
CanTy->dump());
if (!Replacement) {
DEBUG(llvm::dbgs() << "No replacement found. Skipping.\n");
continue;
}
DEBUG(llvm::dbgs() << "Replacement found:\n"; Replacement->dump());
bool ShouldSpecializeGP = shouldBePartiallySpecialized(
Replacement, {}, CallerGenericSig, CallerGenericEnv);
if (ShouldSpecializeGP) {
DEBUG(llvm::dbgs() << "Should be partially specialized.\n");
} else {
DEBUG(llvm::dbgs() << "Should not be partially specialized.\n");
}
// Create an equivalent generic parameter in the specialized
// generic environment.
auto SubstGenericParam = createGenericParam();
auto SubstGenericParamCanTy = SubstGenericParam->getCanonicalType();
// Remember which specialized generic parameter correspond's to callee's
// generic parameter.
CalleeInterfaceToSpecializedInterfaceMapping[GP] = SubstGenericParam;
DEBUG(llvm::dbgs() << "\nCreated a new specialized generic parameter:\n";
SubstGenericParam->dump();
llvm::dbgs() << "Created a mapping "
"(callee interface -> specialized interface):\n"
<< CanTy << " -> " << SubstGenericParamCanTy << "\n");
if (!ShouldSpecializeGP) {
// Remember the original substitution from the apply instruction.
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
Replacement;
DEBUG(llvm::dbgs() << "Created a mapping (specialized interface -> "
"caller archetype):\n"
<< Type(SubstGenericParam) << " -> " << Replacement
<< "\n");
continue;
}
// Add a same type requirement based on the provided generic parameter
// substitutions.
auto ReplacementCallerInterfaceTy = Replacement;
if (CallerGenericEnv)
ReplacementCallerInterfaceTy =
CallerGenericEnv->mapTypeOutOfContext(Replacement);
auto SpecializedReplacementCallerInterfaceTy =
ReplacementCallerInterfaceTy.subst(
CallerInterfaceToSpecializedInterfaceMap);
assert(!SpecializedReplacementCallerInterfaceTy->hasError());
Requirement Req(RequirementKind::SameType, SubstGenericParamCanTy,
SpecializedReplacementCallerInterfaceTy);
Builder.addRequirement(Req, Source, SM);
DEBUG(llvm::dbgs() << "Added a requirement:\n"; Req.dump());
if (ReplacementCallerInterfaceTy->is<GenericTypeParamType>()) {
// Remember that the new generic parameter corresponds
// to the same caller archetype, which corresponds to
// the ReplacementCallerInterfaceTy.
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
SpecializedInterfaceToCallerArchetypeMapping.lookup(
ReplacementCallerInterfaceTy
.subst(CallerInterfaceToSpecializedInterfaceMap)
->castTo<SubstitutableType>());
DEBUG(llvm::dbgs()
<< "Created a mapping (specialized interface -> "
"caller archetype):\n"
<< Type(SubstGenericParam) << " -> "
<< SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam]
->getCanonicalType()
<< "\n");
continue;
}
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
Replacement;
DEBUG(llvm::dbgs()
<< "Created a mapping (specialized interface -> "
"caller archetype):\n"
<< Type(SubstGenericParam) << " -> "
<< SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam]
->getCanonicalType()
<< "\n");
}
}
/// Add requirements from a given list of requirements to the
/// GenericSignatureBuilder. Re-map them using the provided SubstitutionMap.
void FunctionSignaturePartialSpecializer::addRequirements(
ArrayRef<Requirement> Reqs, SubstitutionMap &SubsMap) {
auto source =
GenericSignatureBuilder::FloatingRequirementSource::forAbstract();
for (auto &reqReq : Reqs) {
DEBUG(llvm::dbgs() << "\n\nRe-mapping the requirement:\n"; reqReq.dump());
Builder.addRequirement(reqReq, source, SM, &SubsMap);
}
}
/// Add requirements from the caller's signature.
void FunctionSignaturePartialSpecializer::addCallerRequirements() {
for (auto CallerArchetype : UsedCallerArchetypes) {
// Add requirements for this caller generic parameter and its dependent
// types.
SmallVector<Requirement, 4> CollectedReqs;
collectRequirements(CallerArchetype, CallerGenericSig, CallerGenericEnv,
CollectedReqs);
if (!CollectedReqs.empty()) {
DEBUG(llvm::dbgs() << "Adding caller archetype requirements:\n";
for (auto Req : CollectedReqs) {
Req.dump();
}
CallerInterfaceToSpecializedInterfaceMap.dump(llvm::dbgs());
);
addRequirements(CollectedReqs, CallerInterfaceToSpecializedInterfaceMap);
}
}
}
/// Add requirements from the callee's signature.
void FunctionSignaturePartialSpecializer::addCalleeRequirements() {
if (CalleeGenericSig)
addRequirements(CalleeGenericSig->getRequirements(),
CalleeInterfaceToSpecializedInterfaceMap);
}
std::pair<GenericEnvironment *, GenericSignature *>
FunctionSignaturePartialSpecializer::
getSpecializedGenericEnvironmentAndSignature() {
if (AllGenericParams.empty())
return { nullptr, nullptr };
// Finalize the archetype builder.
auto GenSig =
std::move(Builder).computeGenericSignature(SourceLoc(),
/*allowConcreteGenericParams=*/true);
auto GenEnv = GenSig->createGenericEnvironment(*M.getSwiftModule());
return { GenEnv, GenSig };
}
void FunctionSignaturePartialSpecializer::computeClonerParamSubs(
SubstitutionList &ClonerParamSubs) {
auto SubMap = CalleeGenericSig->getSubstitutionMap(
[&](SubstitutableType *type) -> Type {
DEBUG(llvm::dbgs() << "\ngetSubstitution for ClonerParamSubs:\n"
<< Type(type) << "\n"
<< "in generic signature:\n";
CalleeGenericSig->dump());
auto SpecializedInterfaceTy =
Type(type).subst(CalleeInterfaceToSpecializedInterfaceMap);
return SpecializedGenericEnv->mapTypeIntoContext(
SpecializedInterfaceTy);
},
LookUpConformanceInSignature(*SpecializedGenericSig));
SmallVector<Substitution, 4> List;
CalleeGenericSig->getSubstitutions(SubMap, List);
ClonerParamSubs = Ctx.AllocateCopy(List);
verifySubstitutionList(ClonerParamSubs, "ClonerParamSubs");
}
void FunctionSignaturePartialSpecializer::computeCallerParamSubs(
GenericSignature *SpecializedGenericSig,
SubstitutionList &CallerParamSubs) {
SmallVector<Substitution, 4> List;
SpecializedGenericSig->getSubstitutions(
SpecializedInterfaceToCallerArchetypeMap, List);
CallerParamSubs = Ctx.AllocateCopy(List);
verifySubstitutionList(CallerParamSubs, "CallerParamSubs");
}
void FunctionSignaturePartialSpecializer::computeCallerInterfaceSubs(
SubstitutionMap &CallerInterfaceSubs) {
CallerInterfaceSubs = CalleeGenericSig->getSubstitutionMap(
[&](SubstitutableType *type) -> Type {
// First, map callee's interface type to specialized interface type.
auto Ty = Type(type).subst(CalleeInterfaceToSpecializedInterfaceMap);
Type SpecializedInterfaceTy =
SpecializedGenericEnv->mapTypeOutOfContext(
SpecializedGenericEnv->mapTypeIntoContext(Ty));
assert(!SpecializedInterfaceTy->hasError());
return SpecializedInterfaceTy;
},
LookUpConformanceInSignature(*CalleeGenericSig));
DEBUG(llvm::dbgs() << "\n\nCallerInterfaceSubs map:\n";
CallerInterfaceSubs.dump(llvm::dbgs()));
}
/// Fast-path for the case when generic substitutions are not supported.
void FunctionSignaturePartialSpecializer::
createSpecializedGenericSignatureWithNonGenericSubs() {
// Simply create a set of same-type requirements based on concrete
// substitutions.
SmallVector<Requirement, 4> Requirements;
for (auto GP : CalleeGenericSig->getSubstitutableParams()) {
auto Replacement = Type(GP).subst(CalleeInterfaceToCallerArchetypeMap);
if (Replacement->hasArchetype())
continue;
// Replacement is concrete. Add a same type requirement.
Requirement Req(RequirementKind::SameType, GP, Replacement);
Requirements.push_back(Req);
}
// Create a new generic signature by taking the existing one
// and adding new requirements to it. No need to introduce
// any new generic parameters.
auto GenPair = getGenericEnvironmentAndSignatureWithRequirements(
CalleeGenericSig, CalleeGenericEnv, Requirements, M);
if (GenPair.second) {
SpecializedGenericSig = GenPair.second->getCanonicalSignature();
SpecializedGenericEnv = GenPair.first;
}
for (auto GP : CalleeGenericSig->getGenericParams()) {
CalleeInterfaceToSpecializedInterfaceMapping[GP] = Type(GP);
}
computeCalleeInterfaceToSpecializedInterfaceMap();
SpecializedInterfaceToCallerArchetypeMap =
CalleeInterfaceToCallerArchetypeMap;
}
void FunctionSignaturePartialSpecializer::createSpecializedGenericSignature(
SubstitutionList ParamSubs) {
// Collect all used caller's archetypes from all the substitutions.
collectUsedCallerArchetypes(ParamSubs);
// Generate a new generic type parameter for each used archetype from
// the caller.
createGenericParamsForUsedCallerArchetypes();
// Create a SubstitutionMap for re-mapping caller's interface types
// to interface types of the specialized function.
computeCallerInterfaceToSpecializedInterfaceMap();
// Add generic parameters that will come from the callee.
// Introduce a new generic parameter in the new generic signature
// for each generic parameter from the callee.
createGenericParamsForCalleeGenericParams();
computeCalleeInterfaceToSpecializedInterfaceMap();
// Add requirements from the callee's generic signature.
addCalleeRequirements();
// Add requirements from the caller's generic signature.
addCallerRequirements();
auto GenPair = getSpecializedGenericEnvironmentAndSignature();
if (GenPair.second) {
SpecializedGenericSig = GenPair.second->getCanonicalSignature();
SpecializedGenericEnv = GenPair.first;
computeSpecializedInterfaceToCallerArchetypeMap();
}
}
/// Builds a new generic and function signatures for a partial specialization.
/// Allows for partial specializations even if substitutions contain
/// type parameters.
///
/// The new generic signature has the following generic parameters:
/// - For each substitution with a concrete type CT as a replacement for a
/// generic type T, it introduces a generic parameter T' and a
/// requirement T' == CT
/// - For all other substitutions that are considered for partial specialization,
/// it collects first the archetypes used in the replacements. Then for each such
/// archetype A a new generic parameter T' introduced.
/// - If there is a substitution for type T and this substitution is excluded
/// from partial specialization (e.g. because it is impossible or would result
/// in a less efficient code), then a new generic parameter T' is introduced,
/// which does not get any additional, more specific requirements based on the
/// substitutions.
///
/// After all generic parameters are added according to the rules above,
/// the requirements of the callee's signature are re-mapped by re-formulating
/// them in terms of the newly introduced generic parameters. In case a remapped
/// requirement does not contain any generic types, it can be omitted, because
/// it is fulfilled already.
///
/// If any of the generic parameters were introduced for caller's archetypes,
/// their requirements from the caller's signature are re-mapped by
/// re-formulating them in terms of the newly introduced generic parameters.
void ReabstractionInfo::performPartialSpecializationPreparation(
SILFunction *Caller, SILFunction *Callee,
ArrayRef<Substitution> ParamSubs) {
SILModule &M = Callee->getModule();
// Caller is the SILFunction containing the apply instruction.
CanGenericSignature CallerGenericSig;
GenericEnvironment *CallerGenericEnv = nullptr;
if (Caller) {
CallerGenericSig = Caller->getLoweredFunctionType()->getGenericSignature();
CallerGenericEnv = Caller->getGenericEnvironment();
}
// Callee is the generic function being called by the apply instruction.
auto CalleeFnTy = Callee->getLoweredFunctionType();
auto CalleeGenericSig = CalleeFnTy->getGenericSignature();
auto CalleeGenericEnv = Callee->getGenericEnvironment();
DEBUG(llvm::dbgs() << "\n\nTrying partial specialization for: "
<< Callee->getName() << "\n";
llvm::dbgs() << "Callee generic signature is:\n";
CalleeGenericSig->dump());
FunctionSignaturePartialSpecializer FSPS(M,
CallerGenericSig, CallerGenericEnv,
CalleeGenericSig, CalleeGenericEnv,
ParamSubs);
// Create the partially specialized generic signature and generic environment.
if (SupportGenericSubstitutions)
FSPS.createSpecializedGenericSignature(ParamSubs);
else
FSPS.createSpecializedGenericSignatureWithNonGenericSubs();
// Once the specialized signature is known, compute different
// maps and function types based on it. The specializer will need
// them for cloning and specializing the function body, rewriting
// the original apply instruction, etc.
finishPartialSpecializationPreparation(FSPS);
}
void ReabstractionInfo::finishPartialSpecializationPreparation(
FunctionSignaturePartialSpecializer &FSPS) {
SpecializedGenericSig = FSPS.getSpecializedGenericSignature();
SpecializedGenericEnv = FSPS.getSpecializedGenericEnvironment();
if (SpecializedGenericSig) {
DEBUG(llvm::dbgs() << "\nCreated SpecializedGenericSig:\n";
SpecializedGenericSig->dump(); SpecializedGenericEnv->dump());
}
// Create substitution lists for the caller and cloner.
FSPS.computeClonerParamSubs(ClonerParamSubs);
FSPS.computeCallerParamSubs(SpecializedGenericSig, CallerParamSubs);
// Create a substitution map for the caller interface substitutions.
FSPS.computeCallerInterfaceSubs(CallerInterfaceSubs);
if (CalleeParamSubs.empty()) {
// It can happen if there is no caller or it is an eager specialization.
CalleeParamSubs = CallerParamSubs;
}
HasUnboundGenericParams =
SpecializedGenericSig && !SpecializedGenericSig->areAllParamsConcrete();
createSubstitutedAndSpecializedTypes();
if (getSubstitutedType() != Callee->getLoweredFunctionType()) {
if (getSubstitutedType()->isPolymorphic())
DEBUG(llvm::dbgs() << "Created new specialized type: " << SpecializedType
<< "\n");
}
}
/// Perform some sanity checks for the requirements provided in @_specialize.
static void
checkSpecializationRequirements(ArrayRef<Requirement> Requirements) {
for (auto &Req : Requirements) {
if (Req.getKind() == RequirementKind::SameType) {
auto FirstType = Req.getFirstType();
auto SecondType = Req.getSecondType();
assert(FirstType && SecondType);
assert(!FirstType->hasArchetype());
assert(!SecondType->hasArchetype());
// Only one of the types should be concrete.
assert(FirstType->hasTypeParameter() != SecondType->hasTypeParameter() &&
"Only concrete type same-type requirements are supported by "
"generic specialization");
(void) FirstType;
(void) SecondType;
continue;
}
if (Req.getKind() == RequirementKind::Layout) {
continue;
}
llvm_unreachable("Unknown type of requirement in generic specialization");
}
}
/// This constructor is used when processing @_specialize.
ReabstractionInfo::ReabstractionInfo(SILFunction *Callee,
ArrayRef<Requirement> Requirements) {
if (shouldNotSpecializeCallee(Callee))
return;
// Perform some sanity checks for the requirements.
checkSpecializationRequirements(Requirements);
this->Callee = Callee;
ConvertIndirectToDirect = true;
SILModule &M = Callee->getModule();
auto CalleeGenericSig =
Callee->getLoweredFunctionType()->getGenericSignature();
auto *CalleeGenericEnv = Callee->getGenericEnvironment();
FunctionSignaturePartialSpecializer FSPS(M,
CalleeGenericSig, CalleeGenericEnv,
Requirements);
finishPartialSpecializationPreparation(FSPS);
}
// =============================================================================
// GenericFuncSpecializer
// =============================================================================
GenericFuncSpecializer::GenericFuncSpecializer(SILFunction *GenericFunc,
SubstitutionList ParamSubs,
IsSerialized_t Serialized,
const ReabstractionInfo &ReInfo)
: M(GenericFunc->getModule()),
GenericFunc(GenericFunc),
ParamSubs(ParamSubs),
Serialized(Serialized),
ReInfo(ReInfo) {
assert(GenericFunc->isDefinition() && "Expected definition to specialize!");
auto FnTy = ReInfo.getSpecializedType();
if (ReInfo.isPartialSpecialization()) {
Mangle::PartialSpecializationMangler Mangler(
GenericFunc, FnTy, Serialized, /*isReAbstracted*/ true);
ClonedName = Mangler.mangle();
} else {
Mangle::GenericSpecializationMangler Mangler(
GenericFunc, ParamSubs, Serialized, /*isReAbstracted*/ true);
ClonedName = Mangler.mangle();
}
DEBUG(llvm::dbgs() << " Specialized function " << ClonedName << '\n');
}
/// Return an existing specialization if one exists.
SILFunction *GenericFuncSpecializer::lookupSpecialization() {
if (SILFunction *SpecializedF = M.lookUpFunction(ClonedName)) {
if (ReInfo.getSpecializedType() != SpecializedF->getLoweredFunctionType()) {
llvm::dbgs() << "Looking for a function: " << ClonedName << "\n"
<< "Expected type: " << ReInfo.getSpecializedType() << "\n"
<< "Found type: "
<< SpecializedF->getLoweredFunctionType() << "\n";
}
assert(ReInfo.getSpecializedType()
== SpecializedF->getLoweredFunctionType() &&
"Previously specialized function does not match expected type.");
DEBUG(llvm::dbgs() << "Found an existing specialization for: " << ClonedName
<< "\n");
return SpecializedF;
}
DEBUG(llvm::dbgs() << "Could not find an existing specialization for: "
<< ClonedName << "\n");
return nullptr;
}
/// Forward decl for prespecialization support.
static bool linkSpecialization(SILModule &M, SILFunction *F);
void ReabstractionInfo::verify() const {
assert((!SpecializedGenericSig && !SpecializedGenericEnv &&
!getSpecializedType()->isPolymorphic()) ||
(SpecializedGenericSig && SpecializedGenericEnv &&
getSpecializedType()->isPolymorphic()));
}
/// Create a new specialized function if possible, and cache it.
SILFunction *GenericFuncSpecializer::tryCreateSpecialization() {
// Do not create any new specializations at Onone.
if (M.getOptions().Optimization <= SILOptions::SILOptMode::None)
return nullptr;
DEBUG(
if (M.getOptions().Optimization <= SILOptions::SILOptMode::Debug) {
llvm::dbgs() << "Creating a specialization: " << ClonedName << "\n"; });
ReInfo.verify();
// Create a new function.
SILFunction *SpecializedF = GenericCloner::cloneFunction(
GenericFunc, Serialized, ReInfo,
// Use these substitutions inside the new specialized function being
// created.
ReInfo.getClonerParamSubstitutions(),
ClonedName);
assert((SpecializedF->getLoweredFunctionType()->isPolymorphic() &&
SpecializedF->getGenericEnvironment()) ||
(!SpecializedF->getLoweredFunctionType()->isPolymorphic() &&
!SpecializedF->getGenericEnvironment()));
assert(SpecializedF->hasUnqualifiedOwnership());
// Check if this specialization should be linked for prespecialization.
linkSpecialization(M, SpecializedF);
// Store the meta-information about how this specialization was created.
auto *Caller = ReInfo.getApply() ? ReInfo.getApply().getFunction() : nullptr;
SubstitutionList Subs = Caller ? ReInfo.getApply().getSubstitutions()
: ReInfo.getClonerParamSubstitutions();
SpecializedF->setSpecializationInfo(
GenericSpecializationInformation::create(Caller, GenericFunc, Subs));
return SpecializedF;
}
// =============================================================================
// Apply substitution
// =============================================================================
/// Fix the case where a void function returns the result of an apply, which is
/// also a call of a void-returning function.
/// We always want a void function returning a tuple _instruction_.
static void fixUsedVoidType(SILValue VoidVal, SILLocation Loc,
SILBuilder &Builder) {
assert(VoidVal->getType().isVoid());
if (VoidVal->use_empty())
return;
auto *NewVoidVal = Builder.createTuple(Loc, VoidVal->getType(), { });
VoidVal->replaceAllUsesWith(NewVoidVal);
}
/// Prepare call arguments. Perform re-abstraction if required.
static void prepareCallArguments(ApplySite AI, SILBuilder &Builder,
const ReabstractionInfo &ReInfo,
SmallVectorImpl<SILValue> &Arguments,
SILValue &StoreResultTo) {
/// SIL function conventions for the original apply site with substitutions.
SILLocation Loc = AI.getLoc();
auto substConv = AI.getSubstCalleeConv();
unsigned ArgIdx = AI.getCalleeArgIndexOfFirstAppliedArg();
for (auto &Op : AI.getArgumentOperands()) {
auto handleConversion = [&]() {
// Rewriting SIL arguments is only for lowered addresses.
if (!substConv.useLoweredAddresses())
return false;
if (ArgIdx < substConv.getSILArgIndexOfFirstParam()) {
// Handle result arguments.
unsigned formalIdx =
substConv.getIndirectFormalResultIndexForSILArg(ArgIdx);
if (ReInfo.isFormalResultConverted(formalIdx)) {
// The result is converted from indirect to direct. We need to insert
// a store later.
assert(!StoreResultTo);
StoreResultTo = Op.get();
return true;
}
} else {
// Handle arguments for formal parameters.
unsigned paramIdx = ArgIdx - substConv.getSILArgIndexOfFirstParam();
if (ReInfo.isParamConverted(paramIdx)) {
// An argument is converted from indirect to direct. Instead of the
// address we pass the loaded value.
SILValue Val = Builder.createLoad(
Loc, Op.get(), LoadOwnershipQualifier::Unqualified);
Arguments.push_back(Val);
return true;
}
}
return false;
};
if (!handleConversion())
Arguments.push_back(Op.get());
++ArgIdx;
}
}
/// Return a substituted callee function type.
static CanSILFunctionType
getCalleeSubstFunctionType(SILValue Callee, SubstitutionList Subs) {
// Create a substituted callee type.
auto CanFnTy = Callee->getType().castTo<SILFunctionType>();
return CanFnTy->substGenericArgs(*Callee->getModule(), Subs);
}
/// Create a new apply based on an old one, but with a different
/// function being applied.
static ApplySite replaceWithSpecializedCallee(ApplySite AI,
SILValue Callee,
SILBuilder &Builder,
const ReabstractionInfo &ReInfo) {
SILLocation Loc = AI.getLoc();
SmallVector<SILValue, 4> Arguments;
SILValue StoreResultTo;
prepareCallArguments(AI, Builder, ReInfo, Arguments, StoreResultTo);
// Create a substituted callee type.
ArrayRef<Substitution> Subs;
if (ReInfo.getSpecializedType()->isPolymorphic()) {
Subs = ReInfo.getCallerParamSubstitutions();
if (auto FRI = dyn_cast<FunctionRefInst>(Callee)) {
assert(Subs.size() ==
FRI->getReferencedFunction()
->getLoweredFunctionType()
->getGenericSignature()
->getSubstitutionListSize());
}
}
auto CalleeSubstFnTy = getCalleeSubstFunctionType(Callee, Subs);
auto CalleeSILSubstFnTy = SILType::getPrimitiveObjectType(CalleeSubstFnTy);
SILFunctionConventions substConv(CalleeSubstFnTy, Builder.getModule());
if (auto *TAI = dyn_cast<TryApplyInst>(AI)) {
SILBasicBlock *ResultBB = TAI->getNormalBB();
assert(ResultBB->getSinglePredecessorBlock() == TAI->getParent());
auto *NewTAI = Builder.createTryApply(Loc, Callee, Subs, Arguments,
ResultBB, TAI->getErrorBB());
if (StoreResultTo) {
assert(substConv.useLoweredAddresses());
// The original normal result of the try_apply is an empty tuple.
assert(ResultBB->getNumArguments() == 1);
Builder.setInsertionPoint(ResultBB->begin());
fixUsedVoidType(ResultBB->getArgument(0), Loc, Builder);
SILArgument *Arg = ResultBB->replacePHIArgument(
0, StoreResultTo->getType().getObjectType(),
ValueOwnershipKind::Owned);
// Store the direct result to the original result address.
Builder.createStore(Loc, Arg, StoreResultTo,
StoreOwnershipQualifier::Unqualified);
}
return NewTAI;
}
if (auto *A = dyn_cast<ApplyInst>(AI)) {
auto *NewAI = Builder.createApply(Loc, Callee, Subs, Arguments,
A->isNonThrowing());
if (StoreResultTo) {
assert(substConv.useLoweredAddresses());
if (!CalleeSILSubstFnTy.isNoReturnFunction()) {
// Store the direct result to the original result address.
fixUsedVoidType(A, Loc, Builder);
Builder.createStore(Loc, NewAI, StoreResultTo,
StoreOwnershipQualifier::Unqualified);
} else {
Builder.createUnreachable(Loc);
// unreachable should be the terminator instruction.
// So, split the current basic block right after the
// inserted unreachable instruction.
Builder.getInsertionPoint()->getParent()->split(
Builder.getInsertionPoint());
}
}
A->replaceAllUsesWith(NewAI);
return NewAI;
}
if (auto *PAI = dyn_cast<PartialApplyInst>(AI)) {
auto *NewPAI = Builder.createPartialApply(
Loc, Callee, Subs, Arguments,
PAI->getType().getAs<SILFunctionType>()->getCalleeConvention());
PAI->replaceAllUsesWith(NewPAI);
return NewPAI;
}
llvm_unreachable("unhandled kind of apply");
}
/// Create a new apply based on an old one, but with a different
/// function being applied.
ApplySite swift::
replaceWithSpecializedFunction(ApplySite AI, SILFunction *NewF,
const ReabstractionInfo &ReInfo) {
SILBuilderWithScope Builder(AI.getInstruction());
FunctionRefInst *FRI = Builder.createFunctionRef(AI.getLoc(), NewF);
return replaceWithSpecializedCallee(AI, FRI, Builder, ReInfo);
}
namespace {
class ReabstractionThunkGenerator {
SILFunction *OrigF;
SILModule &M;
SILFunction *SpecializedFunc;
const ReabstractionInfo &ReInfo;
PartialApplyInst *OrigPAI;
IsSerialized_t Serialized = IsNotSerialized;
std::string ThunkName;
RegularLocation Loc;
SmallVector<SILValue, 4> Arguments;
public:
ReabstractionThunkGenerator(const ReabstractionInfo &ReInfo,
PartialApplyInst *OrigPAI,
SILFunction *SpecializedFunc)
: OrigF(OrigPAI->getCalleeFunction()), M(OrigF->getModule()),
SpecializedFunc(SpecializedFunc), ReInfo(ReInfo), OrigPAI(OrigPAI),
Loc(RegularLocation::getAutoGeneratedLocation()) {
if (OrigF->isSerialized() && OrigPAI->getFunction()->isSerialized())
Serialized = IsSerializable;
{
if (!ReInfo.isPartialSpecialization()) {
Mangle::GenericSpecializationMangler Mangler(
OrigF, ReInfo.getCalleeParamSubstitutions(), Serialized,
/*isReAbstracted*/ false);
ThunkName = Mangler.mangle();
} else {
Mangle::PartialSpecializationMangler Mangler(
OrigF, ReInfo.getSpecializedType(), Serialized,
/*isReAbstracted*/ false);
ThunkName = Mangler.mangle();
}
}
}
SILFunction *createThunk();
protected:
SILValue createReabstractionThunkApply(SILBuilder &Builder);
SILArgument *convertReabstractionThunkArguments(SILBuilder &Builder);
};
} // anonymous namespace
SILFunction *ReabstractionThunkGenerator::createThunk() {
SILFunction *Thunk =
M.getOrCreateSharedFunction(Loc, ThunkName, ReInfo.getSubstitutedType(),
IsBare, IsTransparent, Serialized, IsThunk);
// Re-use an existing thunk.
if (!Thunk->empty())
return Thunk;
Thunk->setGenericEnvironment(ReInfo.getSpecializedGenericEnvironment());
// Set proper generic context scope for the type lowering.
CanSILFunctionType SpecType = SpecializedFunc->getLoweredFunctionType();
Lowering::GenericContextScope GenericScope(M.Types,
SpecType->getGenericSignature());
SILBasicBlock *EntryBB = Thunk->createBasicBlock();
SILBuilder Builder(EntryBB);
// If the original specialized function had unqualified ownership, set the
// thunk to have unqualified ownership as well.
//
// This is a stop gap measure to allow for easy inlining. We could always make
// the Thunk qualified, but then we would need to either fix the inliner to
// inline qualified into unqualified functions /or/ have the
// OwnershipModelEliminator run as part of the normal compilation pipeline
// (which we are not doing yet).
if (SpecializedFunc->hasUnqualifiedOwnership()) {
Thunk->setUnqualifiedOwnership();
}
if (!SILModuleConventions(M).useLoweredAddresses()) {
for (auto SpecArg : SpecializedFunc->getArguments()) {
SILArgument *NewArg = EntryBB->createFunctionArgument(SpecArg->getType(),
SpecArg->getDecl());
Arguments.push_back(NewArg);
}
SILValue ReturnValue = createReabstractionThunkApply(Builder);
Builder.createReturn(Loc, ReturnValue);
return Thunk;
}
// Handle lowered addresses.
SILArgument *ReturnValueAddr = convertReabstractionThunkArguments(Builder);
SILValue ReturnValue = createReabstractionThunkApply(Builder);
if (ReturnValueAddr) {
// Need to store the direct results to the original indirect address.
Builder.createStore(Loc, ReturnValue, ReturnValueAddr,
StoreOwnershipQualifier::Unqualified);
SILType VoidTy =
OrigPAI->getSubstCalleeType()->getDirectFormalResultsType();
assert(VoidTy.isVoid());
ReturnValue = Builder.createTuple(Loc, VoidTy, {});
}
Builder.createReturn(Loc, ReturnValue);
return Thunk;
}
/// Create a call to a reabstraction thunk. Return the call's direct result.
SILValue ReabstractionThunkGenerator::createReabstractionThunkApply(
SILBuilder &Builder) {
SILFunction *Thunk = &Builder.getFunction();
auto *FRI = Builder.createFunctionRef(Loc, SpecializedFunc);
auto Subs = Thunk->getForwardingSubstitutions();
auto specConv = SpecializedFunc->getConventions();
if (!SpecializedFunc->getLoweredFunctionType()->hasErrorResult()) {
return Builder.createApply(Loc, FRI, Subs, Arguments, false);
}
// Create the logic for calling a throwing function.
SILBasicBlock *NormalBB = Thunk->createBasicBlock();
SILBasicBlock *ErrorBB = Thunk->createBasicBlock();
Builder.createTryApply(Loc, FRI, Subs, Arguments, NormalBB, ErrorBB);
auto *ErrorVal = ErrorBB->createPHIArgument(
SpecializedFunc->mapTypeIntoContext(specConv.getSILErrorType()),
ValueOwnershipKind::Owned);
Builder.setInsertionPoint(ErrorBB);
Builder.createThrow(Loc, ErrorVal);
SILValue ReturnValue = NormalBB->createPHIArgument(
SpecializedFunc->mapTypeIntoContext(specConv.getSILResultType()),
ValueOwnershipKind::Owned);
Builder.setInsertionPoint(NormalBB);
return ReturnValue;
}
/// Create SIL arguments for a reabstraction thunk with lowered addresses. This
/// may involve replacing indirect arguments with loads and stores. Return the
/// SILArgument for the address of an indirect result, or nullptr.
///
/// FIXME: Remove this if we don't need to create reabstraction thunks after
/// address lowering.
SILArgument *ReabstractionThunkGenerator::convertReabstractionThunkArguments(
SILBuilder &Builder) {
SILFunction *Thunk = &Builder.getFunction();
CanSILFunctionType SpecType = SpecializedFunc->getLoweredFunctionType();
CanSILFunctionType SubstType = ReInfo.getSubstitutedType();
auto specConv = SpecializedFunc->getConventions();
(void)specConv;
SILFunctionConventions substConv(SubstType, M);
assert(specConv.useLoweredAddresses());
// ReInfo.NumIndirectResults corresponds to SubstTy's formal indirect
// results. SpecTy may have fewer formal indirect results.
assert(SubstType->getNumIndirectFormalResults()
>= SpecType->getNumIndirectFormalResults());
SILBasicBlock *EntryBB = Thunk->getEntryBlock();
SILArgument *ReturnValueAddr = nullptr;
auto SpecArgIter = SpecializedFunc->getArguments().begin();
auto cloneSpecializedArgument = [&]() {
// No change to the argument.
SILArgument *SpecArg = *SpecArgIter++;
SILArgument *NewArg =
EntryBB->createFunctionArgument(SpecArg->getType(), SpecArg->getDecl());
Arguments.push_back(NewArg);
};
// ReInfo.NumIndirectResults corresponds to SubstTy's formal indirect
// results. SpecTy may have fewer formal indirect results.
assert(SubstType->getNumIndirectFormalResults()
>= SpecType->getNumIndirectFormalResults());
unsigned resultIdx = 0;
for (auto substRI : SubstType->getIndirectFormalResults()) {
if (ReInfo.isFormalResultConverted(resultIdx++)) {
// Convert an originally indirect to direct specialized result.
// Store the result later.
// FIXME: This only handles a single result! Partial specialization could
// induce some combination of direct and indirect results.
SILType ResultTy =
SpecializedFunc->mapTypeIntoContext(substConv.getSILType(substRI));
assert(ResultTy.isAddress());
assert(!ReturnValueAddr);
ReturnValueAddr = EntryBB->createFunctionArgument(ResultTy);
continue;
}
// If the specialized result is already indirect, simply clone the indirect
// result argument.
assert((*SpecArgIter)->getType().isAddress());
cloneSpecializedArgument();
}
assert(SpecArgIter
== SpecializedFunc->getArgumentsWithoutIndirectResults().begin());
unsigned numParams = SpecType->getNumParameters();
assert(numParams == SubstType->getNumParameters());
for (unsigned paramIdx = 0; paramIdx < numParams; ++paramIdx) {
if (ReInfo.isParamConverted(paramIdx)) {
// Convert an originally indirect to direct specialized parameter.
assert(!specConv.isSILIndirect(SpecType->getParameters()[paramIdx]));
// Instead of passing the address, pass the loaded value.
SILType ParamTy = SpecializedFunc->mapTypeIntoContext(
substConv.getSILType(SubstType->getParameters()[paramIdx]));
assert(ParamTy.isAddress());
SILArgument *SpecArg = *SpecArgIter++;
SILArgument *NewArg =
EntryBB->createFunctionArgument(ParamTy, SpecArg->getDecl());
auto *ArgVal =
Builder.createLoad(Loc, NewArg, LoadOwnershipQualifier::Unqualified);
Arguments.push_back(ArgVal);
continue;
}
// Simply clone unconverted direct or indirect parameters.
cloneSpecializedArgument();
}
assert(SpecArgIter == SpecializedFunc->getArguments().end());
return ReturnValueAddr;
}
void swift::trySpecializeApplyOfGeneric(
ApplySite Apply, DeadInstructionSet &DeadApplies,
llvm::SmallVectorImpl<SILFunction *> &NewFunctions) {
assert(Apply.hasSubstitutions() && "Expected an apply with substitutions!");
auto *F = Apply.getFunction();
auto *RefF = cast<FunctionRefInst>(Apply.getCallee())->getReferencedFunction();
DEBUG(llvm::dbgs() << "\n\n*** ApplyInst in function " << F->getName()
<< ":\n";
Apply.getInstruction()->dumpInContext());
// If the caller is fragile but the callee is not, bail out.
// Specializations have shared linkage, which means they do
// not have an external entry point, Since the callee is not
// fragile we cannot serialize the body of the specialized
// callee either.
if (F->isSerialized() && !RefF->hasValidLinkageForFragileInline())
return;
if (shouldNotSpecializeCallee(RefF))
return;
// If the caller and callee are both fragile, preserve the fragility when
// cloning the callee. Otherwise, strip it off so that we can optimize
// the body more.
IsSerialized_t Serialized = IsNotSerialized;
if (F->isSerialized() && RefF->isSerialized())
Serialized = IsSerializable;
ReabstractionInfo ReInfo(Apply, RefF, Apply.getSubstitutions());
if (!ReInfo.canBeSpecialized())
return;
SILModule &M = F->getModule();
bool needAdaptUsers = false;
bool replacePartialApplyWithoutReabstraction = false;
auto *PAI = dyn_cast<PartialApplyInst>(Apply);
if (PAI && ReInfo.hasConversions()) {
// If we have a partial_apply and we converted some results/parameters from
// indirect to direct there are 3 cases:
// 1) All uses of the partial_apply are apply sites again. In this case
// we can just adapt all the apply sites which use the partial_apply.
// 2) The result of the partial_apply is re-abstracted anyway (and the
// re-abstracted function type matches with our specialized type). In
// this case we can just skip the existing re-abstraction.
// 3) For all other cases we need to create a new re-abstraction thunk.
needAdaptUsers = true;
for (Operand *Use : PAI->getUses()) {
SILInstruction *User = Use->getUser();
if (isa<RefCountingInst>(User))
continue;
if (isDebugInst(User))
continue;
auto FAS = FullApplySite::isa(User);
if (FAS && FAS.getCallee() == PAI)
continue;
auto *PAIUser = dyn_cast<PartialApplyInst>(User);
if (PAIUser && isPartialApplyOfReabstractionThunk(PAIUser)) {
CanSILFunctionType NewPAType =
ReInfo.createSpecializedType(PAI->getFunctionType(), M);
if (PAIUser->getFunctionType() == NewPAType)
continue;
}
replacePartialApplyWithoutReabstraction = true;
break;
}
}
GenericFuncSpecializer FuncSpecializer(RefF, Apply.getSubstitutions(),
Serialized, ReInfo);
SILFunction *SpecializedF = FuncSpecializer.lookupSpecialization();
if (SpecializedF) {
// Even if the pre-specialization exists already, try to preserve it
// if it is one of our known pre-specializations for -Onone support.
linkSpecialization(M, SpecializedF);
} else {
SpecializedF = FuncSpecializer.tryCreateSpecialization();
if (!SpecializedF)
return;
DEBUG(llvm::dbgs() << "Created specialized function: "
<< SpecializedF->getName() << "\n"
<< "Specialized function type: "
<< SpecializedF->getLoweredFunctionType() << "\n");
assert(SpecializedF->hasUnqualifiedOwnership());
NewFunctions.push_back(SpecializedF);
}
assert(ReInfo.getSpecializedType()
== SpecializedF->getLoweredFunctionType() &&
"Previously specialized function does not match expected type.");
// FIXME: Replace pre-specialization's "keep as public" hack with something
// more principled
assert((Serialized == SpecializedF->isSerialized() ||
SpecializedF->isKeepAsPublic()) &&
"Previously specialized function does not match expected "
"resilience level.");
DeadApplies.insert(Apply.getInstruction());
if (replacePartialApplyWithoutReabstraction) {
// There are some unknown users of the partial_apply. Therefore we need a
// thunk which converts from the re-abstracted function back to the
// original function with indirect parameters/results.
auto *PAI = cast<PartialApplyInst>(Apply.getInstruction());
SILBuilderWithScope Builder(PAI);
SILFunction *Thunk =
ReabstractionThunkGenerator(ReInfo, PAI, SpecializedF).createThunk();
NewFunctions.push_back(Thunk);
auto *FRI = Builder.createFunctionRef(PAI->getLoc(), Thunk);
SmallVector<SILValue, 4> Arguments;
for (auto &Op : PAI->getArgumentOperands()) {
Arguments.push_back(Op.get());
}
auto Subs = ReInfo.getCallerParamSubstitutions();
auto *NewPAI = Builder.createPartialApply(
PAI->getLoc(), FRI, Subs, Arguments,
PAI->getType().getAs<SILFunctionType>()->getCalleeConvention());
PAI->replaceAllUsesWith(NewPAI);
DeadApplies.insert(PAI);
return;
}
// Make the required changes to the call site.
ApplySite newApply = replaceWithSpecializedFunction(Apply, SpecializedF,
ReInfo);
if (needAdaptUsers) {
// Adapt all known users of the partial_apply. This is needed in case we
// converted some indirect parameters/results to direct ones.
auto *NewPAI = cast<PartialApplyInst>(newApply);
ReInfo.prunePartialApplyArgs(NewPAI->getNumArguments());
for (Operand *Use : NewPAI->getUses()) {
SILInstruction *User = Use->getUser();
if (auto FAS = FullApplySite::isa(User)) {
SILBuilder Builder(User);
replaceWithSpecializedCallee(FAS, NewPAI, Builder, ReInfo);
DeadApplies.insert(FAS.getInstruction());
continue;
}
if (auto *PAI = dyn_cast<PartialApplyInst>(User)) {
// This is a partial_apply of a re-abstraction thunk. Just skip this.
assert(PAI->getType() == NewPAI->getType());
PAI->replaceAllUsesWith(NewPAI);
DeadApplies.insert(PAI);
}
}
}
}
// =============================================================================
// Prespecialized symbol lookup.
//
// This uses the SIL linker to checks for the does not load the body of the pres
// =============================================================================
static void keepSpecializationAsPublic(SILFunction *F) {
DEBUG(auto DemangledNameString =
swift::Demangle::demangleSymbolAsString(F->getName());
StringRef DemangledName = DemangledNameString;
llvm::dbgs() << "Keep specialization public: " << DemangledName << " : "
<< F->getName() << "\n");
// Make it public, so that others can refer to it.
//
// NOTE: This function may refer to non-public symbols, which may lead to
// problems, if you ever try to inline this function. Therefore, these
// specializations should only be used to refer to them, but should never
// be inlined! The general rule could be: Never inline specializations
// from stdlib!
//
// NOTE: Making these specializations public at this point breaks
// some optimizations. Therefore, just mark the function.
// DeadFunctionElimination pass will check if the function is marked
// and preserve it if required.
F->setKeepAsPublic(true);
}
/// Link a specialization for generating prespecialized code.
///
/// For now, it is performed only for specializations in the
/// standard library. But in the future, one could think of
/// maintaining a cache of optimized specializations.
///
/// Mark specializations as public, so that they can be used by user
/// applications. These specializations are generated during -O compilation of
/// the library, but only used only by client code compiled at -Onone. They
/// should be never inlined.
static bool linkSpecialization(SILModule &M, SILFunction *F) {
if (F->isKeepAsPublic())
return true;
// Do not remove functions that are known prespecializations.
// Keep them around. Change their linkage to public, so that other
// applications can refer to them.
if (M.getOptions().Optimization >= SILOptions::SILOptMode::Optimize &&
F->getModule().getSwiftModule()->getName().str() == SWIFT_ONONE_SUPPORT) {
if (isKnownPrespecialization(F->getName())) {
keepSpecializationAsPublic(F);
return true;
}
}
return false;
}
/// The list of classes and functions from the stdlib
/// whose specializations we want to preserve.
static const char *const KnownPrespecializations[] = {
"Array",
"_ArrayBuffer",
"_ContiguousArrayBuffer",
"Range",
"RangeIterator",
"CountableRange",
"CountableRangeIterator",
"ClosedRange",
"ClosedRangeIterator",
"CountableClosedRange",
"CountableClosedRangeIterator",
"IndexingIterator",
"Collection",
"ReversedCollection",
"MutableCollection",
"BidirectionalCollection",
"RandomAccessCollection",
"ReversedRandomAccessCollection",
"RangeReplaceableCollection",
"_allocateUninitializedArray",
"UTF8",
"UTF16",
"String",
"_StringBuffer",
"_toStringReadOnlyPrintable",
};
bool swift::isKnownPrespecialization(StringRef SpecName) {
// TODO: Once there is an efficient API to check if
// a given symbol is a specialization of a specific type,
// use it instead. Doing demangling just for this check
// is just wasteful.
auto DemangledNameString =
swift::Demangle::demangleSymbolAsString(SpecName);
StringRef DemangledName = DemangledNameString;
DEBUG(llvm::dbgs() << "Check if known: " << DemangledName << "\n");
auto pos = DemangledName.find("generic ", 0);
auto oldpos = pos;
if (pos == StringRef::npos)
return false;
// Create "of Swift"
llvm::SmallString<64> OfString;
llvm::raw_svector_ostream buffer(OfString);
buffer << "of ";
buffer << STDLIB_NAME <<'.';
StringRef OfStr = buffer.str();
DEBUG(llvm::dbgs() << "Check substring: " << OfStr << "\n");
pos = DemangledName.find(OfStr, oldpos);
if (pos == StringRef::npos) {
// Create "of (extension in Swift).Swift"
llvm::SmallString<64> OfString;
llvm::raw_svector_ostream buffer(OfString);
buffer << "of (extension in " << STDLIB_NAME << "):";
buffer << STDLIB_NAME << '.';
OfStr = buffer.str();
pos = DemangledName.find(OfStr, oldpos);
DEBUG(llvm::dbgs() << "Check substring: " << OfStr << "\n");
if (pos == StringRef::npos)
return false;
}
pos += OfStr.size();
for (auto NameStr : KnownPrespecializations) {
StringRef Name = NameStr;
auto pos1 = DemangledName.find(Name, pos);
if (pos1 == pos && !isalpha(DemangledName[pos1+Name.size()])) {
return true;
}
}
return false;
}
/// Try to look up an existing specialization in the specialization cache.
/// If it is found, it tries to link this specialization.
///
/// For now, it performs a lookup only in the standard library.
/// But in the future, one could think of maintaining a cache
/// of optimized specializations.
static SILFunction *lookupExistingSpecialization(SILModule &M,
StringRef FunctionName) {
// Try to link existing specialization only in -Onone mode.
// All other compilation modes perform specialization themselves.
// TODO: Cache optimized specializations and perform lookup here?
// Only check that this function exists, but don't read
// its body. It can save some compile-time.
if (isKnownPrespecialization(FunctionName))
return M.findFunction(FunctionName, SILLinkage::PublicExternal);
return nullptr;
}
SILFunction *swift::lookupPrespecializedSymbol(SILModule &M,
StringRef FunctionName) {
// First check if the module contains a required specialization already.
auto *Specialization = M.lookUpFunction(FunctionName);
if (Specialization) {
if (Specialization->getLinkage() == SILLinkage::PublicExternal)
return Specialization;
}
// Then check if the required specialization can be found elsewhere.
Specialization = lookupExistingSpecialization(M, FunctionName);
if (!Specialization)
return nullptr;
assert(hasPublicVisibility(Specialization->getLinkage()) &&
"Pre-specializations should have public visibility");
Specialization->setLinkage(SILLinkage::PublicExternal);
assert(Specialization->isExternalDeclaration() &&
"Specialization should be a public external declaration");
DEBUG(llvm::dbgs() << "Found existing specialization for: " << FunctionName
<< '\n';
llvm::dbgs() << swift::Demangle::demangleSymbolAsString(
Specialization->getName())
<< "\n\n");
return Specialization;
}