blob: 98ece804073f3053db58c90df3af7a89ddb2cad0 [file] [log] [blame]
//===--- GenReflection.cpp - IR generation for nominal type reflection ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation of type metadata for struct/class
// stored properties and enum cases for use with reflection.
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/IRGen/Linking.h"
#include "swift/Reflection/MetadataSourceBuilder.h"
#include "swift/Reflection/Records.h"
#include "swift/SIL/SILModule.h"
#include "ConstantBuilder.h"
#include "GenClass.h"
#include "GenDecl.h"
#include "GenEnum.h"
#include "GenHeap.h"
#include "GenProto.h"
#include "GenType.h"
#include "IRGenMangler.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
using namespace swift;
using namespace irgen;
using namespace reflection;
class MetadataSourceEncoder
: public MetadataSourceVisitor<MetadataSourceEncoder> {
llvm::raw_ostream &OS;
public:
MetadataSourceEncoder(llvm::raw_ostream &OS) : OS(OS) {}
void
visitClosureBindingMetadataSource(const ClosureBindingMetadataSource *CB) {
OS << 'B';
OS << CB->getIndex();
}
void
visitReferenceCaptureMetadataSource(const ReferenceCaptureMetadataSource *RC){
OS << 'R';
OS << RC->getIndex();
}
void
visitMetadataCaptureMetadataSource(const MetadataCaptureMetadataSource *MC) {
OS << 'M';
OS << MC->getIndex();
}
void
visitGenericArgumentMetadataSource(const GenericArgumentMetadataSource *GA) {
OS << 'G';
OS << GA->getIndex();
visit(GA->getSource());
OS << '_';
}
void visitParentMetadataSource(const ParentMetadataSource *P) {
OS << 'P';
visit(P->getChild());
OS << '_';
}
void visitSelfMetadataSource(const SelfMetadataSource *S) {
OS << 'S';
}
void
visitSelfWitnessTableMetadataSource(const SelfWitnessTableMetadataSource *S) {
OS << 'W';
}
};
class PrintMetadataSource
: public MetadataSourceVisitor<PrintMetadataSource, void> {
llvm::raw_ostream &OS;
unsigned Indent;
llvm::raw_ostream &indent(unsigned Amount) {
for (unsigned i = 0; i < Amount; ++i)
OS << ' ';
return OS;
}
llvm::raw_ostream &printHeader(std::string Name) {
indent(Indent) << '(' << Name;
return OS;
}
template<typename T>
llvm::raw_ostream &printField(std::string name, const T &value) {
if (!name.empty())
OS << " " << name << "=" << value;
else
OS << " " << value;
return OS;
}
void printRec(const reflection::MetadataSource *MS) {
OS << "\n";
Indent += 2;
visit(MS);
Indent -= 2;
}
void closeForm() {
OS << ')';
}
public:
PrintMetadataSource(llvm::raw_ostream &OS, unsigned Indent)
: OS(OS), Indent(Indent) {}
void
visitClosureBindingMetadataSource(const ClosureBindingMetadataSource *CB) {
printHeader("closure-binding");
printField("index", CB->getIndex());
closeForm();
}
void
visitReferenceCaptureMetadataSource(const ReferenceCaptureMetadataSource *RC){
printHeader("reference-capture");
printField("index", RC->getIndex());
closeForm();
}
void
visitMetadataCaptureMetadataSource(const MetadataCaptureMetadataSource *MC){
printHeader("metadata-capture");
printField("index", MC->getIndex());
closeForm();
}
void
visitGenericArgumentMetadataSource(const GenericArgumentMetadataSource *GA) {
printHeader("generic-argument");
printField("index", GA->getIndex());
printRec(GA->getSource());
closeForm();
}
void
visitParentMetadataSource(const ParentMetadataSource *P) {
printHeader("parent-of");
printRec(P->getChild());
closeForm();
}
void
visitSelfMetadataSource(const SelfMetadataSource *S) {
printHeader("self");
closeForm();
}
void
visitSelfWitnessTableMetadataSource(const SelfWitnessTableMetadataSource *S) {
printHeader("self-witness-table");
closeForm();
}
};
class ReflectionMetadataBuilder {
protected:
IRGenModule &IGM;
ConstantInitBuilder InitBuilder;
ConstantStructBuilder B;
ReflectionMetadataBuilder(IRGenModule &IGM)
: IGM(IGM), InitBuilder(IGM), B(InitBuilder.beginStruct()) {}
virtual ~ReflectionMetadataBuilder() {}
// Collect any builtin types referenced from this type.
void addBuiltinTypeRefs(CanType type) {
type.visit([&](CanType t) {
if (IGM.getSwiftModule()->isStdlibModule() && isa<BuiltinType>(t))
IGM.BuiltinTypes.insert(t);
// We need size/alignment information for imported value types,
// so emit builtin descriptors for them.
//
// In effect they're treated like an opaque blob, which is OK
// for now, at least until we want to import C++ types or
// something like that.
//
// Classes and protocols go down a different path.
if (auto Nominal = t->getAnyNominal())
if (Nominal->hasClangNode()) {
if (auto CD = dyn_cast<ClassDecl>(Nominal))
IGM.ImportedClasses.insert(CD);
else if (auto PD = dyn_cast<ProtocolDecl>(Nominal))
IGM.ImportedProtocols.insert(PD);
else
IGM.OpaqueTypes.insert(Nominal);
}
});
}
/// Add a 32-bit relative offset to a mangled typeref string
/// in the typeref reflection section.
void addTypeRef(ModuleDecl *ModuleContext, CanType type,
CanGenericSignature Context = {}) {
assert(type);
// Generic parameters should be written in terms of interface types
// for the purposes of reflection metadata
assert(!type->hasArchetype() && "Forgot to map typeref out of context");
// TODO: As a compatibility hack, mangle single-field boxes with the legacy
// mangling in reflection metadata.
bool isSingleFieldOfBox = false;
auto boxTy = dyn_cast<SILBoxType>(type);
if (boxTy && boxTy->getLayout()->getFields().size() == 1) {
GenericContextScope scope(IGM, Context);
type = boxTy->getFieldLoweredType(IGM.getSILModule(), 0);
isSingleFieldOfBox = true;
}
IRGenMangler mangler;
std::string MangledStr = mangler.mangleTypeForReflection(type,
ModuleContext, isSingleFieldOfBox);
auto mangledName = IGM.getAddrOfStringForTypeRef(MangledStr);
B.addRelativeAddress(mangledName);
}
llvm::GlobalVariable *emit(Optional<LinkEntity> entity,
const char *section) {
layout();
llvm::GlobalVariable *var;
// Some reflection records have a mangled symbol name, for uniquing
// imported type metadata.
if (entity) {
auto info = LinkInfo::get(IGM, *entity, ForDefinition);
auto init = B.finishAndCreateFuture();
var = createVariable(IGM, info, init.getType(), Alignment(4));
var->setConstant(true);
init.installInGlobal(var);
// Others, such as capture descriptors, do not have a name.
} else {
var = B.finishAndCreateGlobal("\x01l__swift3_reflection_descriptor",
Alignment(4), /*isConstant*/ true,
llvm::GlobalValue::PrivateLinkage);
}
var->setSection(section);
IGM.addUsedGlobal(var);
return var;
}
virtual void layout() = 0;
};
class AssociatedTypeMetadataBuilder : public ReflectionMetadataBuilder {
static const uint32_t AssociatedTypeRecordSize = 8;
const ProtocolConformance *Conformance;
ArrayRef<std::pair<StringRef, CanType>> AssociatedTypes;
void layout() override {
// If the conforming type is generic, we just want to emit the
// unbound generic type here.
auto *Nominal = Conformance->getType()->getAnyNominal();
assert(Nominal && "Structural conformance?");
PrettyStackTraceDecl DebugStack("emitting associated type metadata",
Nominal);
auto *M = IGM.getSILModule().getSwiftModule();
addTypeRef(M, Nominal->getDeclaredType()->getCanonicalType());
auto ProtoTy = Conformance->getProtocol()->getDeclaredType();
addTypeRef(M, ProtoTy->getCanonicalType());
B.addInt32(AssociatedTypes.size());
B.addInt32(AssociatedTypeRecordSize);
for (auto AssocTy : AssociatedTypes) {
auto NameGlobal = IGM.getAddrOfStringForTypeRef(AssocTy.first);
B.addRelativeAddress(NameGlobal);
addBuiltinTypeRefs(AssocTy.second);
addTypeRef(M, AssocTy.second);
}
}
public:
AssociatedTypeMetadataBuilder(IRGenModule &IGM,
const ProtocolConformance *Conformance,
ArrayRef<std::pair<StringRef, CanType>> AssociatedTypes)
: ReflectionMetadataBuilder(IGM), Conformance(Conformance),
AssociatedTypes(AssociatedTypes) {}
llvm::GlobalVariable *emit() {
auto entity = LinkEntity::forReflectionAssociatedTypeDescriptor(Conformance);
auto section = IGM.getAssociatedTypeMetadataSectionName();
return ReflectionMetadataBuilder::emit(entity, section);
}
};
class FieldTypeMetadataBuilder : public ReflectionMetadataBuilder {
const uint32_t fieldRecordSize = 12;
const NominalTypeDecl *NTD;
void addFieldDecl(const ValueDecl *value, CanType type,
bool indirect=false) {
reflection::FieldRecordFlags flags;
flags.setIsIndirectCase(indirect);
B.addInt32(flags.getRawValue());
if (!type) {
B.addInt32(0);
} else {
addTypeRef(value->getModuleContext(), type);
addBuiltinTypeRefs(type);
}
if (IGM.IRGen.Opts.EnableReflectionNames) {
auto name = value->getBaseName().getIdentifier().str();
auto fieldName = IGM.getAddrOfFieldName(name);
B.addRelativeAddress(fieldName);
} else {
B.addInt32(0);
}
}
void layoutRecord() {
auto kind = FieldDescriptorKind::Struct;
if (auto CD = dyn_cast<ClassDecl>(NTD)) {
auto type = CD->getDeclaredType()->getCanonicalType();
auto RC = getReferenceCountingForType(IGM, type);
if (RC == ReferenceCounting::ObjC)
kind = FieldDescriptorKind::ObjCClass;
else
kind = FieldDescriptorKind::Class;
}
B.addInt16(uint16_t(kind));
B.addInt16(fieldRecordSize);
// Imported classes don't need field descriptors
if (NTD->hasClangNode()) {
assert(isa<ClassDecl>(NTD));
B.addInt32(0);
return;
}
auto properties = NTD->getStoredProperties();
B.addInt32(std::distance(properties.begin(), properties.end()));
for (auto property : properties)
addFieldDecl(property,
property->getInterfaceType()
->getCanonicalType());
}
void layoutEnum() {
auto enumDecl = cast<EnumDecl>(NTD);
auto &strategy = irgen::getEnumImplStrategy(
IGM, enumDecl->getDeclaredTypeInContext()
->getCanonicalType());
auto kind = FieldDescriptorKind::Enum;
// If this is a fixed-size multi-payload enum, we have to emit a descriptor
// with the size and alignment of the type, because the reflection library
// cannot derive this information at runtime.
if (strategy.getElementsWithPayload().size() > 1 &&
!strategy.needsPayloadSizeInMetadata()) {
kind = FieldDescriptorKind::MultiPayloadEnum;
IGM.OpaqueTypes.insert(enumDecl);
}
B.addInt16(uint16_t(kind));
B.addInt16(fieldRecordSize);
B.addInt32(strategy.getElementsWithPayload().size()
+ strategy.getElementsWithNoPayload().size());
for (auto enumCase : strategy.getElementsWithPayload()) {
bool indirect = (enumCase.decl->isIndirect() ||
enumDecl->isIndirect());
addFieldDecl(enumCase.decl,
enumCase.decl->getArgumentInterfaceType()
->getCanonicalType(),
indirect);
}
for (auto enumCase : strategy.getElementsWithNoPayload()) {
addFieldDecl(enumCase.decl, CanType());
}
}
void layoutProtocol() {
auto protocolDecl = cast<ProtocolDecl>(NTD);
FieldDescriptorKind Kind;
if (protocolDecl->isObjC())
Kind = FieldDescriptorKind::ObjCProtocol;
else if (protocolDecl->requiresClass())
Kind = FieldDescriptorKind::ClassProtocol;
else
Kind = FieldDescriptorKind::Protocol;
B.addInt16(uint16_t(Kind));
B.addInt16(fieldRecordSize);
B.addInt32(0);
}
void layout() override {
if (NTD->hasClangNode() &&
!isa<ClassDecl>(NTD) &&
!isa<ProtocolDecl>(NTD))
return;
PrettyStackTraceDecl DebugStack("emitting field type metadata", NTD);
auto type = NTD->getDeclaredType()->getCanonicalType();
addTypeRef(NTD->getModuleContext(), type);
auto *CD = dyn_cast<ClassDecl>(NTD);
if (CD && CD->getSuperclass()) {
addTypeRef(NTD->getModuleContext(),
CD->getSuperclass()->getCanonicalType());
} else {
B.addInt32(0);
}
switch (NTD->getKind()) {
case DeclKind::Class:
case DeclKind::Struct:
layoutRecord();
break;
case DeclKind::Enum:
layoutEnum();
break;
case DeclKind::Protocol:
layoutProtocol();
break;
default:
llvm_unreachable("Not a nominal type");
break;
}
}
public:
FieldTypeMetadataBuilder(IRGenModule &IGM,
const NominalTypeDecl * NTD)
: ReflectionMetadataBuilder(IGM), NTD(NTD) {}
llvm::GlobalVariable *emit() {
auto entity = LinkEntity::forReflectionFieldDescriptor(
NTD->getDeclaredType()->getCanonicalType());
auto section = IGM.getFieldTypeMetadataSectionName();
return ReflectionMetadataBuilder::emit(entity, section);
}
};
class FixedTypeMetadataBuilder : public ReflectionMetadataBuilder {
ModuleDecl *module;
CanType type;
const FixedTypeInfo *ti;
public:
FixedTypeMetadataBuilder(IRGenModule &IGM,
CanType builtinType)
: ReflectionMetadataBuilder(IGM) {
module = builtinType->getASTContext().TheBuiltinModule;
type = builtinType;
ti = &cast<FixedTypeInfo>(IGM.getTypeInfoForUnlowered(builtinType));
}
FixedTypeMetadataBuilder(IRGenModule &IGM,
const NominalTypeDecl *nominalDecl)
: ReflectionMetadataBuilder(IGM) {
module = nominalDecl->getParentModule();
type = nominalDecl->getDeclaredType()->getCanonicalType();
ti = &cast<FixedTypeInfo>(IGM.getTypeInfoForUnlowered(
nominalDecl->getDeclaredTypeInContext()->getCanonicalType()));
}
void layout() override {
addTypeRef(module, type);
B.addInt32(ti->getFixedSize().getValue());
B.addInt32(ti->getFixedAlignment().getValue());
B.addInt32(ti->getFixedStride().getValue());
B.addInt32(ti->getFixedExtraInhabitantCount(IGM));
}
llvm::GlobalVariable *emit() {
auto entity = LinkEntity::forReflectionBuiltinDescriptor(type);
auto section = IGM.getBuiltinTypeMetadataSectionName();
return ReflectionMetadataBuilder::emit(entity, section);
}
};
void IRGenModule::emitBuiltinTypeMetadataRecord(CanType builtinType) {
FixedTypeMetadataBuilder builder(*this, builtinType);
builder.emit();
}
void IRGenModule::emitOpaqueTypeMetadataRecord(const NominalTypeDecl *nominalDecl) {
FixedTypeMetadataBuilder builder(*this, nominalDecl);
builder.emit();
}
bool IRGenModule::shouldEmitOpaqueTypeMetadataRecord(
const NominalTypeDecl *nominalDecl) {
if (nominalDecl->getAttrs().hasAttribute<AlignmentAttr>()) {
auto &ti = getTypeInfoForUnlowered(nominalDecl->getDeclaredTypeInContext());
if (isa<FixedTypeInfo>(ti))
return true;
}
return false;
}
/// Builds a constant LLVM struct describing the layout of a fixed-size
/// SIL @box. These look like closure contexts, but without any necessary
/// bindings or metadata sources, and only a single captured value.
class BoxDescriptorBuilder : public ReflectionMetadataBuilder {
CanType BoxedType;
public:
BoxDescriptorBuilder(IRGenModule &IGM, CanType BoxedType)
: ReflectionMetadataBuilder(IGM), BoxedType(BoxedType) {}
void layout() override {
B.addInt32(1);
B.addInt32(0); // Number of sources
B.addInt32(0); // Number of generic bindings
addTypeRef(IGM.getSILModule().getSwiftModule(), BoxedType);
addBuiltinTypeRefs(BoxedType);
}
llvm::GlobalVariable *emit() {
auto section = IGM.getCaptureDescriptorMetadataSectionName();
return ReflectionMetadataBuilder::emit(None, section);
}
};
/// Builds a constant LLVM struct describing the layout of a heap closure,
/// the types of its captures, and the sources of metadata if any of the
/// captures are generic.
class CaptureDescriptorBuilder : public ReflectionMetadataBuilder {
swift::reflection::MetadataSourceBuilder SourceBuilder;
SILFunction &Caller;
CanSILFunctionType OrigCalleeType;
CanSILFunctionType SubstCalleeType;
SubstitutionList Subs;
const HeapLayout &Layout;
public:
CaptureDescriptorBuilder(IRGenModule &IGM,
SILFunction &Caller,
CanSILFunctionType OrigCalleeType,
CanSILFunctionType SubstCalleeType,
SubstitutionList Subs,
const HeapLayout &Layout)
: ReflectionMetadataBuilder(IGM),
Caller(Caller), OrigCalleeType(OrigCalleeType),
SubstCalleeType(SubstCalleeType), Subs(Subs),
Layout(Layout) {}
using MetadataSourceMap
= std::vector<std::pair<CanType, const reflection::MetadataSource*>>;
void addMetadataSource(const reflection::MetadataSource *Source) {
if (Source == nullptr) {
B.addInt32(0);
} else {
SmallString<16> EncodeBuffer;
llvm::raw_svector_ostream OS(EncodeBuffer);
MetadataSourceEncoder Encoder(OS);
Encoder.visit(Source);
auto EncodedSource = IGM.getAddrOfStringForTypeRef(OS.str());
B.addRelativeAddress(EncodedSource);
}
}
/// Give up if we captured an opened existential type. Eventually we
/// should figure out how to represent this.
static bool hasOpenedExistential(CanSILFunctionType OrigCalleeType,
const HeapLayout &Layout) {
if (!OrigCalleeType->isPolymorphic() ||
OrigCalleeType->isPseudogeneric())
return false;
auto &Bindings = Layout.getBindings();
for (unsigned i = 0; i < Bindings.size(); ++i) {
// Skip protocol requirements (FIXME: for now?)
if (Bindings[i].Protocol != nullptr)
continue;
if (Bindings[i].TypeParameter->hasOpenedExistential())
return true;
}
auto ElementTypes = Layout.getElementTypes().slice(
Layout.hasBindings() ? 1 : 0);
for (auto ElementType : ElementTypes) {
auto SwiftType = ElementType.getSwiftRValueType();
if (SwiftType->hasOpenedExistential())
return true;
}
return false;
}
/// Slice off the NecessaryBindings struct at the beginning, if it's there.
/// We'll keep track of how many things are in the bindings struct with its
/// own count in the capture descriptor.
ArrayRef<SILType> getElementTypes() {
return Layout.getElementTypes().slice(Layout.hasBindings() ? 1 : 0);
}
/// Build a map from generic parameter -> source of its metadata at runtime.
///
/// If the callee that we are partially applying to create a box/closure
/// isn't generic, then the map is empty.
MetadataSourceMap getMetadataSourceMap() {
MetadataSourceMap SourceMap;
// Generic parameters of pseudogeneric functions do not have
// runtime metadata.
if (!OrigCalleeType->isPolymorphic() ||
OrigCalleeType->isPseudogeneric())
return SourceMap;
// Any generic parameters that are not fulfilled are passed in via the
// bindings. Structural types are decomposed, so emit the contents of
// the bindings structure directly.
auto &Bindings = Layout.getBindings();
for (unsigned i = 0; i < Bindings.size(); ++i) {
// Skip protocol requirements (FIXME: for now?)
if (Bindings[i].Protocol != nullptr)
continue;
auto Source = SourceBuilder.createClosureBinding(i);
auto BindingType = Bindings[i].TypeParameter;
auto InterfaceType = Caller.mapTypeOutOfContext(BindingType);
SourceMap.push_back({InterfaceType->getCanonicalType(), Source});
}
// Check if any requirements were fulfilled by metadata stored inside a
// captured value.
auto SubstMap =
OrigCalleeType->getGenericSignature()->getSubstitutionMap(Subs);
enumerateGenericParamFulfillments(IGM, OrigCalleeType,
[&](CanType GenericParam,
const irgen::MetadataSource &Source,
const MetadataPath &Path) {
const reflection::MetadataSource *Root;
switch (Source.getKind()) {
case irgen::MetadataSource::Kind::SelfMetadata:
case irgen::MetadataSource::Kind::SelfWitnessTable:
// Handled as part of bindings
return;
case irgen::MetadataSource::Kind::GenericLValueMetadata:
// FIXME?
return;
case irgen::MetadataSource::Kind::ClassPointer:
Root = SourceBuilder.createReferenceCapture(Source.getParamIndex());
break;
case irgen::MetadataSource::Kind::Metadata:
Root = SourceBuilder.createMetadataCapture(Source.getParamIndex());
break;
}
// The metadata might be reached via a non-trivial path (eg,
// dereferencing an isa pointer or a generic argument). Record
// the path. We assume captured values map 1-1 with function
// parameters.
auto Src = Path.getMetadataSource(SourceBuilder, Root);
auto SubstType = GenericParam.subst(SubstMap);
auto InterfaceType = Caller.mapTypeOutOfContext(SubstType);
SourceMap.push_back({InterfaceType->getCanonicalType(), Src});
});
return SourceMap;
}
/// Get the interface types of all of the captured values, mapped out of the
/// context of the callee we're partially applying.
std::vector<CanType> getCaptureTypes() {
std::vector<CanType> CaptureTypes;
for (auto ElementType : getElementTypes()) {
auto SwiftType = ElementType.getSwiftRValueType();
// Erase pseudogeneric captures down to AnyObject.
if (OrigCalleeType->isPseudogeneric()) {
SwiftType = SwiftType.transform([&](Type t) -> Type {
if (auto *archetype = t->getAs<ArchetypeType>()) {
assert(archetype->requiresClass() && "don't know what to do");
return IGM.Context.getAnyObjectType();
}
return t;
})->getCanonicalType();
}
auto InterfaceType = Caller.mapTypeOutOfContext(SwiftType);
CaptureTypes.push_back(InterfaceType->getCanonicalType());
}
return CaptureTypes;
}
void layout() override {
auto CaptureTypes = getCaptureTypes();
auto MetadataSources = getMetadataSourceMap();
B.addInt32(CaptureTypes.size());
B.addInt32(MetadataSources.size());
B.addInt32(Layout.getBindings().size());
// Now add typerefs of all of the captures.
for (auto CaptureType : CaptureTypes) {
addTypeRef(IGM.getSILModule().getSwiftModule(), CaptureType,
OrigCalleeType->getGenericSignature());
addBuiltinTypeRefs(CaptureType);
}
// Add the pairs that make up the generic param -> metadata source map
// to the struct.
for (auto GenericAndSource : MetadataSources) {
auto GenericParam = GenericAndSource.first->getCanonicalType();
auto Source = GenericAndSource.second;
addTypeRef(nullptr, GenericParam);
addMetadataSource(Source);
}
}
llvm::GlobalVariable *emit() {
auto section = IGM.getCaptureDescriptorMetadataSectionName();
return ReflectionMetadataBuilder::emit(None, section);
}
};
static std::string getReflectionSectionName(IRGenModule &IGM,
StringRef LongName,
StringRef FourCC) {
SmallString<50> SectionName;
llvm::raw_svector_ostream OS(SectionName);
switch (IGM.TargetInfo.OutputObjectFormat) {
case llvm::Triple::UnknownObjectFormat:
llvm_unreachable("unknown object format");
case llvm::Triple::COFF:
assert(FourCC.size() <= 4 &&
"COFF section name length must be <= 8 characters");
OS << ".sw3" << FourCC;
break;
case llvm::Triple::ELF:
OS << ".swift3_" << LongName;
break;
case llvm::Triple::MachO:
assert(LongName.size() <= 7 &&
"Mach-O section name length must be <= 16 characters");
OS << "__TEXT,__swift3_" << LongName << ", regular, no_dead_strip";
break;
case llvm::Triple::Wasm:
llvm_unreachable("web assembly object format is not supported.");
break;
}
return OS.str();
}
const char *IRGenModule::getFieldTypeMetadataSectionName() {
if (FieldTypeSection.empty())
FieldTypeSection = getReflectionSectionName(*this, "fieldmd", "flmd");
return FieldTypeSection.c_str();
}
const char *IRGenModule::getBuiltinTypeMetadataSectionName() {
if (BuiltinTypeSection.empty())
BuiltinTypeSection = getReflectionSectionName(*this, "builtin", "bltn");
return BuiltinTypeSection.c_str();
}
const char *IRGenModule::getAssociatedTypeMetadataSectionName() {
if (AssociatedTypeSection.empty())
AssociatedTypeSection = getReflectionSectionName(*this, "assocty", "asty");
return AssociatedTypeSection.c_str();
}
const char *IRGenModule::getCaptureDescriptorMetadataSectionName() {
if (CaptureDescriptorSection.empty())
CaptureDescriptorSection = getReflectionSectionName(*this, "capture", "cptr");
return CaptureDescriptorSection.c_str();
}
const char *IRGenModule::getReflectionStringsSectionName() {
if (ReflectionStringsSection.empty())
ReflectionStringsSection = getReflectionSectionName(*this, "reflstr", "rfst");
return ReflectionStringsSection.c_str();
}
const char *IRGenModule::getReflectionTypeRefSectionName() {
if (ReflectionTypeRefSection.empty())
ReflectionTypeRefSection = getReflectionSectionName(*this, "typeref", "tyrf");
return ReflectionTypeRefSection.c_str();
}
llvm::Constant *IRGenModule::getAddrOfFieldName(StringRef Name) {
auto &entry = FieldNames[Name];
if (entry.second)
return entry.second;
entry = createStringConstant(Name, /*willBeRelativelyAddressed*/ true,
getReflectionStringsSectionName());
return entry.second;
}
llvm::Constant *IRGenModule::getAddrOfStringForTypeRef(StringRef Str) {
auto &entry = StringsForTypeRef[Str];
if (entry.second)
return entry.second;
entry = createStringConstant(Str, /*willBeRelativelyAddressed*/ true,
getReflectionTypeRefSectionName());
return entry.second;
}
llvm::Constant *
IRGenModule::getAddrOfBoxDescriptor(CanType BoxedType) {
if (!IRGen.Opts.EnableReflectionMetadata)
return llvm::Constant::getNullValue(CaptureDescriptorPtrTy);
BoxDescriptorBuilder builder(*this, BoxedType);
auto var = builder.emit();
return llvm::ConstantExpr::getBitCast(var, CaptureDescriptorPtrTy);
}
llvm::Constant *
IRGenModule::getAddrOfCaptureDescriptor(SILFunction &Caller,
CanSILFunctionType OrigCalleeType,
CanSILFunctionType SubstCalleeType,
SubstitutionList Subs,
const HeapLayout &Layout) {
if (!IRGen.Opts.EnableReflectionMetadata)
return llvm::Constant::getNullValue(CaptureDescriptorPtrTy);
if (CaptureDescriptorBuilder::hasOpenedExistential(OrigCalleeType, Layout))
return llvm::Constant::getNullValue(CaptureDescriptorPtrTy);
CaptureDescriptorBuilder builder(*this, Caller,
OrigCalleeType, SubstCalleeType, Subs,
Layout);
auto var = builder.emit();
return llvm::ConstantExpr::getBitCast(var, CaptureDescriptorPtrTy);
}
void IRGenModule::
emitAssociatedTypeMetadataRecord(const ProtocolConformance *Conformance) {
if (!IRGen.Opts.EnableReflectionMetadata)
return;
SmallVector<std::pair<StringRef, CanType>, 2> AssociatedTypes;
auto collectTypeWitness = [&](const AssociatedTypeDecl *AssocTy,
Type Replacement,
const TypeDecl *TD) -> bool {
auto Subst = Conformance->getDeclContext()->mapTypeOutOfContext(
Replacement);
AssociatedTypes.push_back({
AssocTy->getNameStr(),
Subst->getCanonicalType()
});
return false;
};
Conformance->forEachTypeWitness(/*resolver*/ nullptr, collectTypeWitness);
// If there are no associated types, don't bother emitting any
// metadata.
if (AssociatedTypes.empty())
return;
AssociatedTypeMetadataBuilder builder(*this, Conformance, AssociatedTypes);
builder.emit();
}
void IRGenModule::emitBuiltinReflectionMetadata() {
if (getSwiftModule()->isStdlibModule()) {
BuiltinTypes.insert(Context.TheNativeObjectType);
BuiltinTypes.insert(Context.TheUnknownObjectType);
BuiltinTypes.insert(Context.TheBridgeObjectType);
BuiltinTypes.insert(Context.TheRawPointerType);
BuiltinTypes.insert(Context.TheUnsafeValueBufferType);
// This would not be necessary if RawPointer had the same set of
// extra inhabitants as these. But maybe it's best not to codify
// that in the ABI anyway.
CanType thinFunction = CanFunctionType::get(
AnyFunctionType::CanParamArrayRef(), Context.TheEmptyTupleType,
AnyFunctionType::ExtInfo().withRepresentation(
FunctionTypeRepresentation::Thin));
BuiltinTypes.insert(thinFunction);
CanType anyMetatype = CanExistentialMetatypeType::get(
Context.TheAnyType);
BuiltinTypes.insert(anyMetatype);
}
for (auto CD : ImportedClasses)
emitFieldMetadataRecord(CD);
for (auto PD : ImportedProtocols)
emitFieldMetadataRecord(PD);
for (auto builtinType : BuiltinTypes)
emitBuiltinTypeMetadataRecord(builtinType);
for (auto nominalDecl : OpaqueTypes)
emitOpaqueTypeMetadataRecord(nominalDecl);
}
void IRGenerator::emitBuiltinReflectionMetadata() {
for (auto &m : *this) {
m.second->emitBuiltinReflectionMetadata();
}
}
void IRGenModule::emitFieldMetadataRecord(const NominalTypeDecl *Decl) {
if (!IRGen.Opts.EnableReflectionMetadata)
return;
// @objc enums never have generic parameters or payloads,
// and lower as their raw type.
if (auto *ED = dyn_cast<EnumDecl>(Decl))
if (ED->isObjC()) {
emitOpaqueTypeMetadataRecord(ED);
return;
}
FieldTypeMetadataBuilder builder(*this, Decl);
builder.emit();
}
void IRGenModule::emitReflectionMetadataVersion() {
auto Init =
llvm::ConstantInt::get(Int16Ty, SWIFT_REFLECTION_METADATA_VERSION);
auto Version = new llvm::GlobalVariable(Module, Int16Ty, /*constant*/ true,
llvm::GlobalValue::LinkOnceODRLinkage,
Init,
"__swift_reflection_version");
Version->setVisibility(llvm::GlobalValue::HiddenVisibility);
addUsedGlobal(Version);
}
void IRGenerator::emitReflectionMetadataVersion() {
for (auto &m : *this) {
m.second->emitReflectionMetadataVersion();
}
}