blob: 87ccf6485eb6332059a7b2145b890176c70fe1c7 [file] [log] [blame]
//===--- Metadata.h - Swift Language ABI Metadata Support -------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Swift ABI for generating and uniquing metadata.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_RUNTIME_METADATA_H
#define SWIFT_RUNTIME_METADATA_H
#include <atomic>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <string>
#include <type_traits>
#include <utility>
#include <string.h>
#include "swift/Runtime/Config.h"
#include "swift/ABI/MetadataValues.h"
#include "swift/ABI/System.h"
#include "swift/Basic/Malloc.h"
#include "swift/Basic/FlaggedPointer.h"
#include "swift/Basic/RelativePointer.h"
#include "swift/Demangling/ManglingMacros.h"
#include "swift/Runtime/Unreachable.h"
#include "../../../stdlib/public/SwiftShims/HeapObject.h"
#if SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
#endif
namespace swift {
#if SWIFT_OBJC_INTEROP
// Const cast shorthands for ObjC types.
/// Cast to id, discarding const if necessary.
template <typename T>
static inline id id_const_cast(const T* value) {
return reinterpret_cast<id>(const_cast<T*>(value));
}
/// Cast to Class, discarding const if necessary.
template <typename T>
static inline Class class_const_cast(const T* value) {
return reinterpret_cast<Class>(const_cast<T*>(value));
}
/// Cast to Protocol*, discarding const if necessary.
template <typename T>
static inline Protocol* protocol_const_cast(const T* value) {
return reinterpret_cast<Protocol *>(const_cast<T*>(value));
}
/// Cast from a CF type, discarding const if necessary.
template <typename T>
static inline T cf_const_cast(const void* value) {
return reinterpret_cast<T>(const_cast<void *>(value));
}
#endif
template <unsigned PointerSize>
struct RuntimeTarget;
template <>
struct RuntimeTarget<4> {
using StoredPointer = uint32_t;
using StoredSize = uint32_t;
static constexpr size_t PointerSize = 4;
};
template <>
struct RuntimeTarget<8> {
using StoredPointer = uint64_t;
using StoredSize = uint64_t;
static constexpr size_t PointerSize = 8;
};
/// In-process native runtime target.
///
/// For interactions in the runtime, this should be the equivalent of working
/// with a plain old pointer type.
struct InProcess {
static constexpr size_t PointerSize = sizeof(uintptr_t);
using StoredPointer = uintptr_t;
using StoredSize = size_t;
template <typename T>
using Pointer = T*;
template <typename T, bool Nullable = false>
using FarRelativeDirectPointer = FarRelativeDirectPointer<T, Nullable>;
template <typename T, bool Nullable = false>
using FarRelativeIndirectablePointer =
FarRelativeIndirectablePointer<T, Nullable>;
template <typename T, bool Nullable = true>
using RelativeDirectPointer = RelativeDirectPointer<T, Nullable>;
};
/// Represents a pointer in another address space.
///
/// This type should not have * or -> operators -- you must as a memory reader
/// to read the data at the stored address on your behalf.
template <typename Runtime, typename Pointee>
struct ExternalPointer {
using StoredPointer = typename Runtime::StoredPointer;
StoredPointer PointerValue;
};
/// An external process's runtime target, which may be a different architecture.
template <typename Runtime>
struct External {
using StoredPointer = typename Runtime::StoredPointer;
using StoredSize = typename Runtime::StoredSize;
static constexpr size_t PointerSize = Runtime::PointerSize;
const StoredPointer PointerValue;
template <typename T>
using Pointer = StoredPointer;
template <typename T, bool Nullable = false>
using FarRelativeDirectPointer = StoredPointer;
template <typename T, bool Nullable = false>
using FarRelativeIndirectablePointer = StoredSize;
template <typename T, bool Nullable = true>
using RelativeDirectPointer = int32_t;
};
/// Template for branching on native pointer types versus external ones
template <typename Runtime, template <typename> class Pointee>
using TargetMetadataPointer
= typename Runtime::template Pointer<Pointee<Runtime>>;
template <typename Runtime, template <typename> class Pointee>
using ConstTargetMetadataPointer
= typename Runtime::template Pointer<const Pointee<Runtime>>;
template <typename Runtime, typename T>
using TargetPointer = typename Runtime::template Pointer<T>;
template <typename Runtime, template <typename> class Pointee,
bool Nullable = true>
using ConstTargetFarRelativeDirectPointer
= typename Runtime::template FarRelativeDirectPointer<const Pointee<Runtime>,
Nullable>;
template <typename Runtime, typename Pointee, bool Nullable = true>
using TargetRelativeDirectPointer
= typename Runtime::template RelativeDirectPointer<Pointee, Nullable>;
template <typename Runtime, typename Pointee, bool Nullable = true>
using TargetFarRelativeIndirectablePointer
= typename Runtime::template FarRelativeIndirectablePointer<Pointee,Nullable>;
struct HeapObject;
class WeakReference;
template <typename Runtime> struct TargetMetadata;
using Metadata = TargetMetadata<InProcess>;
/// Storage for an arbitrary value. In C/C++ terms, this is an
/// 'object', because it is rooted in memory.
///
/// The context dictates what type is actually stored in this object,
/// and so this type is intentionally incomplete.
///
/// An object can be in one of two states:
/// - An uninitialized object has a completely unspecified state.
/// - An initialized object holds a valid value of the type.
struct OpaqueValue;
/// A fixed-size buffer for local values. It is capable of owning
/// (possibly in side-allocated memory) the storage necessary
/// to hold a value of an arbitrary type. Because it is fixed-size,
/// it can be allocated in places that must be agnostic to the
/// actual type: for example, within objects of existential type,
/// or for local variables in generic functions.
///
/// The context dictates its type, which ultimately means providing
/// access to a value witness table by which the value can be
/// accessed and manipulated.
///
/// A buffer can directly store three pointers and is pointer-aligned.
/// Three pointers is a sweet spot for Swift, because it means we can
/// store a structure containing a pointer, a size, and an owning
/// object, which is a common pattern in code due to ARC. In a GC
/// environment, this could be reduced to two pointers without much loss.
///
/// A buffer can be in one of three states:
/// - An unallocated buffer has a completely unspecified state.
/// - An allocated buffer has been initialized so that it
/// owns uninitialized value storage for the stored type.
/// - An initialized buffer is an allocated buffer whose value
/// storage has been initialized.
struct ValueBuffer {
void *PrivateData[3];
};
/// Can a value with the given size and alignment be allocated inline?
constexpr inline bool canBeInline(size_t size, size_t alignment) {
return size <= sizeof(ValueBuffer) && alignment <= alignof(ValueBuffer);
}
template <class T>
constexpr inline bool canBeInline() {
return canBeInline(sizeof(T), alignof(T));
}
struct ValueWitnessTable;
/// Flags stored in the value-witness table.
class ValueWitnessFlags {
typedef size_t int_type;
// The polarity of these bits is chosen so that, when doing struct layout, the
// flags of the field types can be mostly bitwise-or'ed together to derive the
// flags for the struct. (The "non-inline" and "has-extra-inhabitants" bits
// still require additional fixup.)
enum : int_type {
AlignmentMask = 0x0000FFFF,
IsNonPOD = 0x00010000,
IsNonInline = 0x00020000,
HasExtraInhabitants = 0x00040000,
HasSpareBits = 0x00080000,
IsNonBitwiseTakable = 0x00100000,
HasEnumWitnesses = 0x00200000,
// Everything else is reserved.
};
int_type Data;
constexpr ValueWitnessFlags(int_type data) : Data(data) {}
public:
constexpr ValueWitnessFlags() : Data(0) {}
/// The required alignment of the first byte of an object of this
/// type, expressed as a mask of the low bits that must not be set
/// in the pointer.
///
/// This representation can be easily converted to the 'alignof'
/// result by merely adding 1, but it is more directly useful for
/// performing dynamic structure layouts, and it grants an
/// additional bit of precision in a compact field without needing
/// to switch to an exponent representation.
///
/// For example, if the type needs to be 8-byte aligned, the
/// appropriate alignment mask should be 0x7.
size_t getAlignmentMask() const {
return (Data & AlignmentMask);
}
constexpr ValueWitnessFlags withAlignmentMask(size_t alignMask) const {
return ValueWitnessFlags((Data & ~AlignmentMask) | alignMask);
}
size_t getAlignment() const { return getAlignmentMask() + 1; }
constexpr ValueWitnessFlags withAlignment(size_t alignment) const {
return withAlignmentMask(alignment - 1);
}
/// True if the type requires out-of-line allocation of its storage.
bool isInlineStorage() const { return !(Data & IsNonInline); }
constexpr ValueWitnessFlags withInlineStorage(bool isInline) const {
return ValueWitnessFlags((Data & ~IsNonInline) |
(isInline ? 0 : IsNonInline));
}
/// True if values of this type can be copied with memcpy and
/// destroyed with a no-op.
bool isPOD() const { return !(Data & IsNonPOD); }
constexpr ValueWitnessFlags withPOD(bool isPOD) const {
return ValueWitnessFlags((Data & ~IsNonPOD) |
(isPOD ? 0 : IsNonPOD));
}
/// True if values of this type can be taken with memcpy. Unlike C++ 'move',
/// 'take' is a destructive operation that invalidates the source object, so
/// most types can be taken with a simple bitwise copy. Only types with side
/// table references, like @weak references, or types with opaque value
/// semantics, like imported C++ types, are not bitwise-takable.
bool isBitwiseTakable() const { return !(Data & IsNonBitwiseTakable); }
constexpr ValueWitnessFlags withBitwiseTakable(bool isBT) const {
return ValueWitnessFlags((Data & ~IsNonBitwiseTakable) |
(isBT ? 0 : IsNonBitwiseTakable));
}
/// True if this type's binary representation has extra inhabitants, that is,
/// bit patterns that do not form valid values of the type.
///
/// If true, then the extra inhabitant value witness table entries are
/// available in this type's value witness table.
bool hasExtraInhabitants() const { return Data & HasExtraInhabitants; }
/// True if this type's binary representation is that of an enum, and the
/// enum value witness table entries are available in this type's value
/// witness table.
bool hasEnumWitnesses() const { return Data & HasEnumWitnesses; }
constexpr ValueWitnessFlags
withExtraInhabitants(bool hasExtraInhabitants) const {
return ValueWitnessFlags((Data & ~HasExtraInhabitants) |
(hasExtraInhabitants ? HasExtraInhabitants : 0));
}
constexpr ValueWitnessFlags
withEnumWitnesses(bool hasEnumWitnesses) const {
return ValueWitnessFlags((Data & ~HasEnumWitnesses) |
(hasEnumWitnesses ? HasEnumWitnesses : 0));
}
};
/// Flags stored in a value-witness table with extra inhabitants.
class ExtraInhabitantFlags {
typedef size_t int_type;
enum : int_type {
NumExtraInhabitantsMask = 0x7FFFFFFFU,
};
int_type Data;
constexpr ExtraInhabitantFlags(int_type data) : Data(data) {}
public:
constexpr ExtraInhabitantFlags() : Data(0) {}
/// The number of extra inhabitants in the type's representation.
int getNumExtraInhabitants() const { return Data & NumExtraInhabitantsMask; }
constexpr ExtraInhabitantFlags
withNumExtraInhabitants(unsigned numExtraInhabitants) const {
return ExtraInhabitantFlags((Data & ~NumExtraInhabitantsMask) |
numExtraInhabitants);
}
};
namespace value_witness_types {
// Note that, for now, we aren't strict about 'const'.
#define WANT_ALL_VALUE_WITNESSES
#define DATA_VALUE_WITNESS(lowerId, upperId, type)
#define FUNCTION_VALUE_WITNESS(lowerId, upperId, returnType, paramTypes) \
typedef returnType (*lowerId) paramTypes;
#define MUTABLE_VALUE_TYPE OpaqueValue *
#define IMMUTABLE_VALUE_TYPE const OpaqueValue *
#define MUTABLE_BUFFER_TYPE ValueBuffer *
#define IMMUTABLE_BUFFER_TYPE const ValueBuffer *
#define TYPE_TYPE const Metadata *
#define SIZE_TYPE size_t
#define INT_TYPE int
#define VOID_TYPE void
#include "swift/ABI/ValueWitness.def"
// Handle the data witnesses explicitly so we can use more specific
// types for the flags enums.
typedef size_t size;
typedef ValueWitnessFlags flags;
typedef size_t stride;
typedef ExtraInhabitantFlags extraInhabitantFlags;
} // end namespace value_witness_types
/// A standard routine, suitable for placement in the value witness
/// table, for copying an opaque POD object.
SWIFT_RUNTIME_EXPORT
OpaqueValue *swift_copyPOD(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *self);
struct TypeLayout;
/// A value-witness table. A value witness table is built around
/// the requirements of some specific type. The information in
/// a value-witness table is intended to be sufficient to lay out
/// and manipulate values of an arbitrary type.
struct ValueWitnessTable {
// For the meaning of all of these witnesses, consult the comments
// on their associated typedefs, above.
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
value_witness_types::LOWER_ID LOWER_ID;
#include "swift/ABI/ValueWitness.def"
/// Would values of a type with the given layout requirements be
/// allocated inline?
static bool isValueInline(size_t size, size_t alignment) {
return (size <= sizeof(ValueBuffer) &&
alignment <= alignof(ValueBuffer));
}
/// Are values of this type allocated inline?
bool isValueInline() const {
return flags.isInlineStorage();
}
/// Is this type POD?
bool isPOD() const {
return flags.isPOD();
}
/// Is this type bitwise-takable?
bool isBitwiseTakable() const {
return flags.isBitwiseTakable();
}
/// Return the size of this type. Unlike in C, this has not been
/// padded up to the alignment; that value is maintained as
/// 'stride'.
size_t getSize() const {
return size;
}
/// Return the stride of this type. This is the size rounded up to
/// be a multiple of the alignment.
size_t getStride() const {
return stride;
}
/// Return the alignment required by this type, in bytes.
size_t getAlignment() const {
return flags.getAlignment();
}
/// The alignment mask of this type. An offset may be rounded up to
/// the required alignment by adding this mask and masking by its
/// bit-negation.
///
/// For example, if the type needs to be 8-byte aligned, the value
/// of this witness is 0x7.
size_t getAlignmentMask() const {
return flags.getAlignmentMask();
}
/// The number of extra inhabitants, that is, bit patterns that do not form
/// valid values of the type, in this type's binary representation.
unsigned getNumExtraInhabitants() const;
/// Assert that this value witness table is an extra-inhabitants
/// value witness table and return it as such.
///
/// This has an awful name because it's supposed to be internal to
/// this file. Code outside this file should use LLVM's cast/dyn_cast.
/// We don't want to use those here because we need to avoid accidentally
/// introducing ABI dependencies on LLVM structures.
const struct ExtraInhabitantsValueWitnessTable *_asXIVWT() const;
/// Assert that this value witness table is an enum value witness table
/// and return it as such.
///
/// This has an awful name because it's supposed to be internal to
/// this file. Code outside this file should use LLVM's cast/dyn_cast.
/// We don't want to use those here because we need to avoid accidentally
/// introducing ABI dependencies on LLVM structures.
const struct EnumValueWitnessTable *_asEVWT() const;
/// Get the type layout record within this value witness table.
const TypeLayout *getTypeLayout() const {
return reinterpret_cast<const TypeLayout *>(&size);
}
};
/// A value-witness table with extra inhabitants entry points.
/// These entry points are available only if the HasExtraInhabitants flag bit is
/// set in the 'flags' field.
struct ExtraInhabitantsValueWitnessTable : ValueWitnessTable {
#define WANT_ONLY_EXTRA_INHABITANT_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
value_witness_types::LOWER_ID LOWER_ID;
#include "swift/ABI/ValueWitness.def"
#define SET_WITNESS(NAME) base.NAME,
constexpr ExtraInhabitantsValueWitnessTable()
: ValueWitnessTable{}, extraInhabitantFlags(),
storeExtraInhabitant(nullptr),
getExtraInhabitantIndex(nullptr) {}
constexpr ExtraInhabitantsValueWitnessTable(
const ValueWitnessTable &base,
value_witness_types::extraInhabitantFlags eif,
value_witness_types::storeExtraInhabitant sei,
value_witness_types::getExtraInhabitantIndex geii)
: ValueWitnessTable(base),
extraInhabitantFlags(eif),
storeExtraInhabitant(sei),
getExtraInhabitantIndex(geii) {}
static bool classof(const ValueWitnessTable *table) {
return table->flags.hasExtraInhabitants();
}
};
/// A value-witness table with enum entry points.
/// These entry points are available only if the HasEnumWitnesses flag bit is
/// set in the 'flags' field.
struct EnumValueWitnessTable : ExtraInhabitantsValueWitnessTable {
#define WANT_ONLY_ENUM_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
value_witness_types::LOWER_ID LOWER_ID;
#include "swift/ABI/ValueWitness.def"
constexpr EnumValueWitnessTable()
: ExtraInhabitantsValueWitnessTable(),
getEnumTag(nullptr),
destructiveProjectEnumData(nullptr),
destructiveInjectEnumTag(nullptr) {}
constexpr EnumValueWitnessTable(
const ExtraInhabitantsValueWitnessTable &base,
value_witness_types::getEnumTag getEnumTag,
value_witness_types::destructiveProjectEnumData destructiveProjectEnumData,
value_witness_types::destructiveInjectEnumTag destructiveInjectEnumTag)
: ExtraInhabitantsValueWitnessTable(base),
getEnumTag(getEnumTag),
destructiveProjectEnumData(destructiveProjectEnumData),
destructiveInjectEnumTag(destructiveInjectEnumTag) {}
static bool classof(const ValueWitnessTable *table) {
return table->flags.hasEnumWitnesses();
}
};
/// A type layout record. This is the subset of the value witness table that is
/// necessary to perform dependent layout of generic value types. It excludes
/// the value witness functions and includes only the size, alignment,
/// extra inhabitants, and miscellaneous flags about the type.
struct TypeLayout {
value_witness_types::size size;
value_witness_types::flags flags;
value_witness_types::stride stride;
private:
// Only available if the "hasExtraInhabitants" flag is set.
value_witness_types::extraInhabitantFlags extraInhabitantFlags;
void _static_assert_layout();
public:
value_witness_types::extraInhabitantFlags getExtraInhabitantFlags() const {
assert(flags.hasExtraInhabitants());
return extraInhabitantFlags;
}
const TypeLayout *getTypeLayout() const { return this; }
/// The number of extra inhabitants, that is, bit patterns that do not form
/// valid values of the type, in this type's binary representation.
unsigned getNumExtraInhabitants() const;
};
inline void TypeLayout::_static_assert_layout() {
#define CHECK_TYPE_LAYOUT_OFFSET(FIELD) \
static_assert(offsetof(ExtraInhabitantsValueWitnessTable, FIELD) \
- offsetof(ExtraInhabitantsValueWitnessTable, size) \
== offsetof(TypeLayout, FIELD), \
"layout of " #FIELD " in TypeLayout doesn't match " \
"value witness table")
CHECK_TYPE_LAYOUT_OFFSET(size);
CHECK_TYPE_LAYOUT_OFFSET(flags);
CHECK_TYPE_LAYOUT_OFFSET(stride);
CHECK_TYPE_LAYOUT_OFFSET(extraInhabitantFlags);
#undef CHECK_TYPE_LAYOUT_OFFSET
}
inline const ExtraInhabitantsValueWitnessTable *
ValueWitnessTable::_asXIVWT() const {
assert(ExtraInhabitantsValueWitnessTable::classof(this));
return static_cast<const ExtraInhabitantsValueWitnessTable *>(this);
}
inline const EnumValueWitnessTable *
ValueWitnessTable::_asEVWT() const {
assert(EnumValueWitnessTable::classof(this));
return static_cast<const EnumValueWitnessTable *>(this);
}
inline unsigned ValueWitnessTable::getNumExtraInhabitants() const {
// If the table does not have extra inhabitant witnesses, then there are zero.
if (!flags.hasExtraInhabitants())
return 0;
return this->_asXIVWT()->extraInhabitantFlags.getNumExtraInhabitants();
}
inline unsigned TypeLayout::getNumExtraInhabitants() const {
// If the table does not have extra inhabitant witnesses, then there are zero.
if (!flags.hasExtraInhabitants())
return 0;
return extraInhabitantFlags.getNumExtraInhabitants();
}
// Standard value-witness tables.
// The "Int" tables are used for arbitrary POD data with the matching
// size/alignment characteristics.
SWIFT_RUNTIME_EXPORT
const ValueWitnessTable VALUE_WITNESS_SYM(Bi8_); // Builtin.Int8
SWIFT_RUNTIME_EXPORT
const ValueWitnessTable VALUE_WITNESS_SYM(Bi16_); // Builtin.Int16
SWIFT_RUNTIME_EXPORT
const ValueWitnessTable VALUE_WITNESS_SYM(Bi32_); // Builtin.Int32
SWIFT_RUNTIME_EXPORT
const ValueWitnessTable VALUE_WITNESS_SYM(Bi64_); // Builtin.Int64
SWIFT_RUNTIME_EXPORT
const ValueWitnessTable VALUE_WITNESS_SYM(Bi128_); // Builtin.Int128
SWIFT_RUNTIME_EXPORT
const ValueWitnessTable VALUE_WITNESS_SYM(Bi256_); // Builtin.Int256
SWIFT_RUNTIME_EXPORT
const ValueWitnessTable VALUE_WITNESS_SYM(Bi512_); // Builtin.Int512
// The object-pointer table can be used for arbitrary Swift refcounted
// pointer types.
SWIFT_RUNTIME_EXPORT
const ExtraInhabitantsValueWitnessTable VALUE_WITNESS_SYM(Bo); // Builtin.NativeObject
SWIFT_RUNTIME_EXPORT
const ExtraInhabitantsValueWitnessTable UNOWNED_VALUE_WITNESS_SYM(Bo); // unowned Builtin.NativeObject
SWIFT_RUNTIME_EXPORT
const ValueWitnessTable WEAK_VALUE_WITNESS_SYM(Bo); // weak Builtin.NativeObject?
SWIFT_RUNTIME_EXPORT
const ExtraInhabitantsValueWitnessTable VALUE_WITNESS_SYM(Bb); // Builtin.BridgeObject
SWIFT_RUNTIME_EXPORT
const ExtraInhabitantsValueWitnessTable VALUE_WITNESS_SYM(Bp); // Builtin.RawPointer
#if SWIFT_OBJC_INTEROP
// The ObjC-pointer table can be used for arbitrary ObjC pointer types.
SWIFT_RUNTIME_EXPORT
const ExtraInhabitantsValueWitnessTable VALUE_WITNESS_SYM(BO); // Builtin.UnknownObject
SWIFT_RUNTIME_EXPORT
const ExtraInhabitantsValueWitnessTable UNOWNED_VALUE_WITNESS_SYM(BO); // unowned Builtin.UnknownObject
SWIFT_RUNTIME_EXPORT
const ValueWitnessTable WEAK_VALUE_WITNESS_SYM(BO); // weak Builtin.UnknownObject?
#endif
// The () -> () table can be used for arbitrary function types.
SWIFT_RUNTIME_EXPORT
const ExtraInhabitantsValueWitnessTable
VALUE_WITNESS_SYM(FUNCTION_MANGLING); // () -> ()
// The @convention(thin) () -> () table can be used for arbitrary thin function types.
SWIFT_RUNTIME_EXPORT
const ExtraInhabitantsValueWitnessTable
VALUE_WITNESS_SYM(THIN_FUNCTION_MANGLING); // @convention(thin) () -> ()
// The () table can be used for arbitrary empty types.
SWIFT_RUNTIME_EXPORT
const ValueWitnessTable VALUE_WITNESS_SYM(EMPTY_TUPLE_MANGLING); // ()
// The table for aligned-pointer-to-pointer types.
SWIFT_RUNTIME_EXPORT
const ExtraInhabitantsValueWitnessTable METATYPE_VALUE_WITNESS_SYM(Bo); // Builtin.NativeObject.Type
/// Return the value witnesses for unmanaged pointers.
static inline const ValueWitnessTable &getUnmanagedPointerValueWitnesses() {
#if __POINTER_WIDTH__ == 64
return VALUE_WITNESS_SYM(Bi64_);
#else
return VALUE_WITNESS_SYM(Bi32_);
#endif
}
/// Return value witnesses for a pointer-aligned pointer type.
static inline
const ExtraInhabitantsValueWitnessTable &
getUnmanagedPointerPointerValueWitnesses() {
return METATYPE_VALUE_WITNESS_SYM(Bo);
}
/// The header before a metadata object which appears on all type
/// metadata. Note that heap metadata are not necessarily type
/// metadata, even for objects of a heap type: for example, objects of
/// Objective-C type possess a form of heap metadata (an Objective-C
/// Class pointer), but this metadata lacks the type metadata header.
/// This case can be distinguished using the isTypeMetadata() flag
/// on ClassMetadata.
struct TypeMetadataHeader {
/// A pointer to the value-witnesses for this type. This is only
/// present for type metadata.
const ValueWitnessTable *ValueWitnesses;
};
/// A "full" metadata pointer is simply an adjusted address point on a
/// metadata object; it points to the beginning of the metadata's
/// allocation, rather than to the canonical address point of the
/// metadata object.
template <class T> struct FullMetadata : T::HeaderType, T {
typedef typename T::HeaderType HeaderType;
FullMetadata() = default;
constexpr FullMetadata(const HeaderType &header, const T &metadata)
: HeaderType(header), T(metadata) {}
};
/// Given a canonical metadata pointer, produce the adjusted metadata pointer.
template <class T>
static inline FullMetadata<T> *asFullMetadata(T *metadata) {
return (FullMetadata<T>*) (((typename T::HeaderType*) metadata) - 1);
}
template <class T>
static inline const FullMetadata<T> *asFullMetadata(const T *metadata) {
return asFullMetadata(const_cast<T*>(metadata));
}
// std::result_of is busted in Xcode 5. This is a simplified reimplementation
// that isn't SFINAE-safe.
namespace {
template<typename T> struct _ResultOf;
template<typename R, typename...A>
struct _ResultOf<R(*)(A...)> {
using type = R;
};
}
namespace heap_object_abi {
// The extra inhabitants and spare bits of heap object pointers.
// These must align with the values in IRGen's SwiftTargetInfo.cpp.
#if defined(__x86_64__)
# ifdef __APPLE__
static const uintptr_t LeastValidPointerValue =
SWIFT_ABI_DARWIN_X86_64_LEAST_VALID_POINTER;
# else
static const uintptr_t LeastValidPointerValue =
SWIFT_ABI_DEFAULT_LEAST_VALID_POINTER;
# endif
static const uintptr_t SwiftSpareBitsMask =
SWIFT_ABI_X86_64_SWIFT_SPARE_BITS_MASK;
static const uintptr_t ObjCReservedBitsMask =
SWIFT_ABI_X86_64_OBJC_RESERVED_BITS_MASK;
static const unsigned ObjCReservedLowBits =
SWIFT_ABI_X86_64_OBJC_NUM_RESERVED_LOW_BITS;
#elif defined(__arm64__)
# ifdef __APPLE__
static const uintptr_t LeastValidPointerValue =
SWIFT_ABI_DARWIN_ARM64_LEAST_VALID_POINTER;
# else
static const uintptr_t LeastValidPointerValue =
SWIFT_ABI_DEFAULT_LEAST_VALID_POINTER;
# endif
static const uintptr_t SwiftSpareBitsMask =
SWIFT_ABI_ARM64_SWIFT_SPARE_BITS_MASK;
static const uintptr_t ObjCReservedBitsMask =
SWIFT_ABI_ARM64_OBJC_RESERVED_BITS_MASK;
static const unsigned ObjCReservedLowBits =
SWIFT_ABI_ARM64_OBJC_NUM_RESERVED_LOW_BITS;
#elif defined(__powerpc64__)
static const uintptr_t LeastValidPointerValue =
SWIFT_ABI_DEFAULT_LEAST_VALID_POINTER;
static const uintptr_t SwiftSpareBitsMask =
SWIFT_ABI_POWERPC64_SWIFT_SPARE_BITS_MASK;
static const uintptr_t ObjCReservedBitsMask =
SWIFT_ABI_DEFAULT_OBJC_RESERVED_BITS_MASK;
static const unsigned ObjCReservedLowBits =
SWIFT_ABI_DEFAULT_OBJC_NUM_RESERVED_LOW_BITS;
#elif defined(__s390x__)
static const uintptr_t LeastValidPointerValue =
SWIFT_ABI_DEFAULT_LEAST_VALID_POINTER;
static const uintptr_t SwiftSpareBitsMask =
SWIFT_ABI_S390X_SWIFT_SPARE_BITS_MASK;
static const uintptr_t ObjCReservedBitsMask =
SWIFT_ABI_DEFAULT_OBJC_RESERVED_BITS_MASK;
static const unsigned ObjCReservedLowBits =
SWIFT_ABI_DEFAULT_OBJC_NUM_RESERVED_LOW_BITS;
#else
static const uintptr_t LeastValidPointerValue =
SWIFT_ABI_DEFAULT_LEAST_VALID_POINTER;
static const uintptr_t SwiftSpareBitsMask =
# if __i386__
SWIFT_ABI_I386_SWIFT_SPARE_BITS_MASK
# elif __arm__
SWIFT_ABI_ARM_SWIFT_SPARE_BITS_MASK
# else
SWIFT_ABI_DEFAULT_SWIFT_SPARE_BITS_MASK
# endif
;
static const uintptr_t ObjCReservedBitsMask =
SWIFT_ABI_DEFAULT_OBJC_RESERVED_BITS_MASK;
static const unsigned ObjCReservedLowBits =
SWIFT_ABI_DEFAULT_OBJC_NUM_RESERVED_LOW_BITS;
#endif
}
template <typename Runtime> struct TargetNominalTypeDescriptor;
template <typename Runtime> struct TargetGenericMetadata;
template <typename Runtime> struct TargetClassMetadata;
template <typename Runtime> struct TargetStructMetadata;
template <typename Runtime> struct TargetOpaqueMetadata;
// FIXME: https://bugs.swift.org/browse/SR-1155
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winvalid-offsetof"
extern uint64_t RelativeDirectPointerNullPtr;
#define RelativeDirectPointerNullPtrRef \
*reinterpret_cast<ConstTargetFarRelativeDirectPointer< \
Runtime, TargetNominalTypeDescriptor, /*nullable*/ true> *>( \
&RelativeDirectPointerNullPtr)
/// The common structure of all type metadata.
template <typename Runtime>
struct TargetMetadata {
using StoredPointer = typename Runtime::StoredPointer;
constexpr TargetMetadata()
: Kind(static_cast<StoredPointer>(MetadataKind::Class)) {}
constexpr TargetMetadata(MetadataKind Kind)
: Kind(static_cast<StoredPointer>(Kind)) {}
/// The basic header type.
typedef TypeMetadataHeader HeaderType;
private:
/// The kind. Only valid for non-class metadata; getKind() must be used to get
/// the kind value.
StoredPointer Kind;
public:
/// Get the metadata kind.
MetadataKind getKind() const {
return getEnumeratedMetadataKind(Kind);
}
/// Set the metadata kind.
void setKind(MetadataKind kind) {
Kind = static_cast<StoredPointer>(kind);
}
/// Is this a class object--the metadata record for a Swift class (which also
/// serves as the class object), or the class object for an ObjC class (which
/// is not metadata)?
bool isClassObject() const {
return static_cast<MetadataKind>(getKind()) == MetadataKind::Class;
}
/// Does the given metadata kind represent metadata for some kind of class?
static bool isAnyKindOfClass(MetadataKind k) {
switch (k) {
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass:
return true;
case MetadataKind::Function:
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
case MetadataKind::Existential:
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
return false;
}
swift_runtime_unreachable("Unhandled MetadataKind in switch.");
}
/// Is this metadata for an existential type?
bool isAnyExistentialType() const {
switch (getKind()) {
case MetadataKind::ExistentialMetatype:
case MetadataKind::Existential:
return true;
case MetadataKind::Metatype:
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass:
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
return false;
}
swift_runtime_unreachable("Unhandled MetadataKind in switch.");
}
/// Is this either type metadata or a class object for any kind of class?
bool isAnyClass() const {
return isAnyKindOfClass(getKind());
}
const ValueWitnessTable *getValueWitnesses() const {
return asFullMetadata(this)->ValueWitnesses;
}
const TypeLayout *getTypeLayout() const {
return getValueWitnesses()->getTypeLayout();
}
void setValueWitnesses(const ValueWitnessTable *table) {
asFullMetadata(this)->ValueWitnesses = table;
}
// Define forwarders for value witnesses. These invoke this metadata's value
// witness table with itself as the 'self' parameter.
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define FUNCTION_VALUE_WITNESS(WITNESS, UPPER, RET_TYPE, PARAM_TYPES) \
template<typename...A> \
_ResultOf<value_witness_types::WITNESS>::type \
vw_##WITNESS(A &&...args) const { \
return getValueWitnesses()->WITNESS(std::forward<A>(args)..., this); \
}
#define DATA_VALUE_WITNESS(LOWER, UPPER, TYPE)
#include "swift/ABI/ValueWitness.def"
int vw_getExtraInhabitantIndex(const OpaqueValue *value) const {
return getValueWitnesses()->_asXIVWT()->getExtraInhabitantIndex(value, this);
}
void vw_storeExtraInhabitant(OpaqueValue *value, int index) const {
getValueWitnesses()->_asXIVWT()->storeExtraInhabitant(value, index, this);
}
int vw_getEnumTag(const OpaqueValue *value) const {
return getValueWitnesses()->_asEVWT()->getEnumTag(const_cast<OpaqueValue*>(value), this);
}
void vw_destructiveProjectEnumData(OpaqueValue *value) const {
getValueWitnesses()->_asEVWT()->destructiveProjectEnumData(value, this);
}
void vw_destructiveInjectEnumTag(OpaqueValue *value, unsigned tag) const {
getValueWitnesses()->_asEVWT()->destructiveInjectEnumTag(value, tag, this);
}
/// Allocate an out-of-line buffer if values of this type don't fit in the
/// ValueBuffer.
/// NOTE: This is not a box for copy-on-write existentials.
OpaqueValue *allocateBufferIn(ValueBuffer *buffer) const;
/// Deallocate an out-of-line buffer stored in 'buffer' if values of this type
/// are not stored inline in the ValueBuffer.
void deallocateBufferIn(ValueBuffer *buffer) const;
// Allocate an out-of-line buffer box (reference counted) if values of this
// type don't fit in the ValueBuffer.
// NOTE: This *is* a box for copy-on-write existentials.
OpaqueValue *allocateBoxForExistentialIn(ValueBuffer *Buffer) const;
/// Get the nominal type descriptor if this metadata describes a nominal type,
/// or return null if it does not.
const ConstTargetFarRelativeDirectPointer<Runtime,
TargetNominalTypeDescriptor,
/*nullable*/ true> &
getNominalTypeDescriptor() const {
switch (getKind()) {
case MetadataKind::Class: {
const auto cls = static_cast<const TargetClassMetadata<Runtime> *>(this);
if (!cls->isTypeMetadata())
return RelativeDirectPointerNullPtrRef;
if (cls->isArtificialSubclass())
return RelativeDirectPointerNullPtrRef;
return cls->getDescription();
}
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
return static_cast<const TargetStructMetadata<Runtime> *>(this)->Description;
case MetadataKind::ForeignClass:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
case MetadataKind::Function:
case MetadataKind::Existential:
case MetadataKind::ExistentialMetatype:
case MetadataKind::Metatype:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
return RelativeDirectPointerNullPtrRef;
}
swift_runtime_unreachable("Unhandled MetadataKind in switch.");
}
/// Get the generic metadata pattern from which this generic type instance was
/// instantiated, or null if the type is not generic.
const TargetGenericMetadata<Runtime> *getGenericPattern() const;
/// Get the class object for this type if it has one, or return null if the
/// type is not a class (or not a class with a class object).
const TargetClassMetadata<Runtime> *getClassObject() const;
#if SWIFT_OBJC_INTEROP
/// Get the ObjC class object for this type if it has one, or return null if
/// the type is not a class (or not a class with a class object).
/// This is allowed for InProcess values only.
template <typename R = Runtime>
typename std::enable_if<std::is_same<R, InProcess>::value, Class>::type
getObjCClassObject() const {
return reinterpret_cast<Class>(
const_cast<TargetClassMetadata<InProcess>*>(
getClassObject()));
}
#endif
protected:
friend struct TargetOpaqueMetadata<Runtime>;
/// Metadata should not be publicly copied or moved.
constexpr TargetMetadata(const TargetMetadata &) = default;
TargetMetadata &operator=(const TargetMetadata &) = default;
constexpr TargetMetadata(TargetMetadata &&) = default;
TargetMetadata &operator=(TargetMetadata &&) = default;
};
/// The common structure of opaque metadata. Adds nothing.
template <typename Runtime>
struct TargetOpaqueMetadata {
typedef TypeMetadataHeader HeaderType;
// We have to represent this as a member so we can list-initialize it.
TargetMetadata<Runtime> base;
};
using OpaqueMetadata = TargetOpaqueMetadata<InProcess>;
// Standard POD opaque metadata.
// The "Int" metadata are used for arbitrary POD data with the
// matching characteristics.
using FullOpaqueMetadata = FullMetadata<OpaqueMetadata>;
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(Bi8_); // Builtin.Int8
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(Bi16_); // Builtin.Int16
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(Bi32_); // Builtin.Int32
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(Bi64_); // Builtin.Int64
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(Bi128_); // Builtin.Int128
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(Bi256_); // Builtin.Int256
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(Bi512_); // Builtin.Int512
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(Bo); // Builtin.NativeObject
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(Bb); // Builtin.BridgeObject
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(Bp); // Builtin.RawPointer
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(BB); // Builtin.UnsafeValueBuffer
#if SWIFT_OBJC_INTEROP
SWIFT_RUNTIME_EXPORT
const FullOpaqueMetadata METADATA_SYM(BO); // Builtin.UnknownObject
#endif
/// The prefix on a heap metadata.
struct HeapMetadataHeaderPrefix {
/// Destroy the object, returning the allocated size of the object
/// or 0 if the object shouldn't be deallocated.
SWIFT_CC(swift) void (*destroy)(SWIFT_CONTEXT HeapObject *);
};
/// The header present on all heap metadata.
struct HeapMetadataHeader : HeapMetadataHeaderPrefix, TypeMetadataHeader {
constexpr HeapMetadataHeader(const HeapMetadataHeaderPrefix &heapPrefix,
const TypeMetadataHeader &typePrefix)
: HeapMetadataHeaderPrefix(heapPrefix), TypeMetadataHeader(typePrefix) {}
};
/// The common structure of all metadata for heap-allocated types. A
/// pointer to one of these can be retrieved by loading the 'isa'
/// field of any heap object, whether it was managed by Swift or by
/// Objective-C. However, when loading from an Objective-C object,
/// this metadata may not have the heap-metadata header, and it may
/// not be the Swift type metadata for the object's dynamic type.
template <typename Runtime>
struct TargetHeapMetadata : TargetMetadata<Runtime> {
typedef HeapMetadataHeader HeaderType;
TargetHeapMetadata() = default;
constexpr TargetHeapMetadata(const TargetMetadata<Runtime> &base)
: TargetMetadata<Runtime>(base) {}
};
using HeapMetadata = TargetHeapMetadata<InProcess>;
/// Header for a generic parameter descriptor. This is a variable-sized
/// structure that describes how to find and parse a generic parameter vector
/// within the type metadata for an instance of a nominal type.
struct GenericParameterDescriptor {
/// The offset to the first generic argument from the start of
/// metadata record.
///
/// This is meaningful if either NumGenericRequirements is nonzero or
/// (for classes) if Flags.hasParent() is true.
uint32_t Offset;
/// The amount of generic requirement data in the metadata record, in
/// words, excluding the lexical parent type. A value of zero means
/// there is no generic requirement data.
///
/// This may include protocol witness tables for type parameters or
/// their associated types.
uint32_t NumGenericRequirements;
/// The number of primary type parameters. This is always less than or equal
/// to NumGenericRequirements; it counts only the type parameters
/// and not any required witness tables.
uint32_t NumPrimaryParams;
/// Flags for this generic parameter descriptor.
GenericParameterDescriptorFlags Flags;
/// True if the nominal type has generic requirements other than its
/// parent metadata.
bool hasGenericRequirements() const { return NumGenericRequirements > 0; }
/// True if the nominal type is generic in any way.
bool isGeneric() const {
return hasGenericRequirements() || Flags.hasGenericParent();
}
// TODO: add meaningful descriptions of the generic requirements.
};
template <typename Runtime>
struct TargetMethodDescriptor {
/// The method implementation.
TargetRelativeDirectPointer<Runtime, void> Impl;
/// Flags describing the method.
MethodDescriptorFlags Flags;
// TODO: add method types or anything else needed for reflection.
};
/// Header for a class vtable descriptor. This is a variable-sized
/// structure that describes how to find and parse a vtable
/// within the type metadata for a class.
template <typename Runtime>
struct TargetVTableDescriptor {
/// The offset of the vtable for this class in its metadata, if any.
uint32_t VTableOffset;
/// The number of vtable entries, in words.
uint32_t VTableSize;
using MethodDescriptor = TargetMethodDescriptor<Runtime>;
MethodDescriptor VTable[];
void *getMethod(unsigned index) const {
return VTable[index].Impl.get();
}
};
/// Common information about all nominal types. For generic types, this
/// descriptor is shared for all instantiations of the generic type.
template <typename Runtime>
struct TargetNominalTypeDescriptor {
using StoredPointer = typename Runtime::StoredPointer;
/// The mangled name of the nominal type.
TargetRelativeDirectPointer<Runtime, const char> Name;
/// The following fields are kind-dependent.
union {
/// Information about class types.
struct {
/// The number of stored properties in the class, not including its
/// superclasses. If there is a field offset vector, this is its length.
uint32_t NumFields;
/// The offset of the field offset vector for this class's stored
/// properties in its metadata, if any. 0 means there is no field offset
/// vector.
///
/// To deal with resilient superclasses correctly, this will
/// eventually need to be relative to the start of this class's
/// metadata area.
uint32_t FieldOffsetVectorOffset;
/// The field names. A doubly-null-terminated list of strings, whose
/// length and order is consistent with that of the field offset vector.
RelativeDirectPointer<const char, /*nullable*/ true> FieldNames;
/// The field type vector accessor. Returns a pointer to an array of
/// type metadata references whose order is consistent with that of the
/// field offset vector.
RelativeDirectPointer<const FieldType *
(const TargetMetadata<Runtime> *)> GetFieldTypes;
/// True if metadata records for this type have a field offset vector for
/// its stored properties.
bool hasFieldOffsetVector() const { return FieldOffsetVectorOffset != 0; }
} Class;
/// Information about struct types.
struct {
/// The number of stored properties in the class, not including its
/// superclasses. If there is a field offset vector, this is its length.
uint32_t NumFields;
/// The offset of the field offset vector for this class's stored
/// properties in its metadata, if any. 0 means there is no field offset
/// vector.
uint32_t FieldOffsetVectorOffset;
/// The field names. A doubly-null-terminated list of strings, whose
/// length and order is consistent with that of the field offset vector.
RelativeDirectPointer<const char, /*nullable*/ true> FieldNames;
/// The field type vector accessor. Returns a pointer to an array of
/// type metadata references whose order is consistent with that of the
/// field offset vector.
RelativeDirectPointer<const FieldType *
(const TargetMetadata<Runtime> *)> GetFieldTypes;
/// True if metadata records for this type have a field offset vector for
/// its stored properties.
bool hasFieldOffsetVector() const { return FieldOffsetVectorOffset != 0; }
} Struct;
/// Information about enum types.
struct {
/// The number of non-empty cases in the enum are in the low 24 bits;
/// the offset of the payload size in the metadata record in words,
/// if any, is stored in the high 8 bits.
uint32_t NumPayloadCasesAndPayloadSizeOffset;
/// The number of empty cases in the enum.
uint32_t NumEmptyCases;
/// The names of the cases. A doubly-null-terminated list of strings,
/// whose length is NumNonEmptyCases + NumEmptyCases. Cases are named in
/// tag order, non-empty cases first, followed by empty cases.
RelativeDirectPointer<const char, /*nullable*/ true> CaseNames;
/// The field type vector accessor. Returns a pointer to an array of
/// type metadata references whose order is consistent with that of the
/// CaseNames. Only types for payload cases are provided.
RelativeDirectPointer<
const FieldType * (const TargetMetadata<Runtime> *)>
GetCaseTypes;
uint32_t getNumPayloadCases() const {
return NumPayloadCasesAndPayloadSizeOffset & 0x00FFFFFFU;
}
uint32_t getNumEmptyCases() const {
return NumEmptyCases;
}
uint32_t getNumCases() const {
return getNumPayloadCases() + NumEmptyCases;
}
size_t getPayloadSizeOffset() const {
return ((NumPayloadCasesAndPayloadSizeOffset & 0xFF000000U) >> 24);
}
bool hasPayloadSizeOffset() const {
return getPayloadSizeOffset() != 0;
}
} Enum;
};
RelativeDirectPointerIntPair<TargetGenericMetadata<Runtime>,
NominalTypeKind, /*Nullable*/ true>
GenericMetadataPatternAndKind;
using NonGenericMetadataAccessFunction = const Metadata *();
/// A pointer to the metadata access function for this type.
///
/// The type of the returned function is speculative; in reality, it
/// takes one argument for each of the generic requirements, in the order
/// they are listed. Therefore, the function type is correct only if
/// this type is non-generic.
///
/// Not all type metadata have access functions.
TargetRelativeDirectPointer<Runtime, NonGenericMetadataAccessFunction,
/*Nullable*/ true> AccessFunction;
/// A pointer to the generic metadata pattern that is used to instantiate
/// instances of this type. Zero if the type is not generic.
TargetGenericMetadata<Runtime> *getGenericMetadataPattern() const {
return const_cast<TargetGenericMetadata<Runtime>*>(
GenericMetadataPatternAndKind.getPointer());
}
NonGenericMetadataAccessFunction *getAccessFunction() const {
return AccessFunction.get();
}
NominalTypeKind getKind() const {
return GenericMetadataPatternAndKind.getInt();
}
int32_t offsetToNameOffset() const {
return offsetof(TargetNominalTypeDescriptor<Runtime>, Name);
}
using VTableDescriptor = TargetVTableDescriptor<Runtime>;
const VTableDescriptor *getVTableDescriptor() const {
if (getKind() != NominalTypeKind::Class ||
!GenericParams.Flags.hasVTable())
return nullptr;
auto asWords = reinterpret_cast<const void * const*>(this + 1);
// TODO: Once we emit reflective descriptions of generic requirements,
// skip the right number of words here.
return reinterpret_cast<const VTableDescriptor *>(asWords);
}
/// The generic parameter descriptor header. This describes how to find and
/// parse the generic parameter vector in metadata records for this nominal
/// type.
GenericParameterDescriptor GenericParams;
// NOTE: GenericParams ends with a tail-allocated array, so it cannot be
// followed by additional fields.
};
using NominalTypeDescriptor = TargetNominalTypeDescriptor<InProcess>;
typedef SWIFT_CC(swift) void (*ClassIVarDestroyer)(SWIFT_CONTEXT HeapObject *);
/// The structure of all class metadata. This structure is embedded
/// directly within the class's heap metadata structure and therefore
/// cannot be extended without an ABI break.
///
/// Note that the layout of this type is compatible with the layout of
/// an Objective-C class.
template <typename Runtime>
struct TargetClassMetadata : public TargetHeapMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
using StoredSize = typename Runtime::StoredSize;
friend class ReflectionContext;
TargetClassMetadata() = default;
constexpr TargetClassMetadata(const TargetHeapMetadata<Runtime> &base,
ConstTargetMetadataPointer<Runtime, swift::TargetClassMetadata> superClass,
StoredPointer data,
ClassFlags flags,
ClassIVarDestroyer ivarDestroyer,
StoredPointer size, StoredPointer addressPoint,
StoredPointer alignMask,
StoredPointer classSize, StoredPointer classAddressPoint)
: TargetHeapMetadata<Runtime>(base), SuperClass(superClass),
CacheData {0, 0}, Data(data),
Flags(flags), InstanceAddressPoint(addressPoint),
InstanceSize(size), InstanceAlignMask(alignMask),
Reserved(0), ClassSize(classSize), ClassAddressPoint(classAddressPoint),
Description(nullptr), IVarDestroyer(ivarDestroyer) {}
// Description's copy ctor is deleted so we have to do this the hard way.
TargetClassMetadata(const TargetClassMetadata& other)
: TargetHeapMetadata<Runtime>(other),
SuperClass(other.SuperClass),
CacheData{other.CacheData[0], other.CacheData[1]},
Data(other.Data),
Flags(other.Flags),
InstanceAddressPoint(other.InstanceAddressPoint),
InstanceSize(other.InstanceSize),
InstanceAlignMask(other.InstanceAlignMask),
Reserved(other.Reserved),
ClassSize(other.ClassSize),
ClassAddressPoint(other.ClassAddressPoint),
Description(other.Description.get()),
IVarDestroyer(other.IVarDestroyer) {}
/// The metadata for the superclass. This is null for the root class.
ConstTargetMetadataPointer<Runtime, swift::TargetClassMetadata> SuperClass;
/// The cache data is used for certain dynamic lookups; it is owned
/// by the runtime and generally needs to interoperate with
/// Objective-C's use.
StoredPointer CacheData[2];
/// The data pointer is used for out-of-line metadata and is
/// generally opaque, except that the compiler sets the low bit in
/// order to indicate that this is a Swift metatype and therefore
/// that the type metadata header is present.
StoredPointer Data;
static constexpr StoredPointer offsetToData() {
return offsetof(TargetClassMetadata, Data);
}
/// Is this object a valid swift type metadata?
bool isTypeMetadata() const {
return (Data & 1);
}
/// A different perspective on the same bit
bool isPureObjC() const {
return !isTypeMetadata();
}
private:
// The remaining fields are valid only when isTypeMetadata().
// The Objective-C runtime knows the offsets to some of these fields.
// Be careful when changing them.
/// Swift-specific class flags.
ClassFlags Flags;
/// The address point of instances of this type.
uint32_t InstanceAddressPoint;
/// The required size of instances of this type.
/// 'InstanceAddressPoint' bytes go before the address point;
/// 'InstanceSize - InstanceAddressPoint' bytes go after it.
uint32_t InstanceSize;
/// The alignment mask of the address point of instances of this type.
uint16_t InstanceAlignMask;
/// Reserved for runtime use.
uint16_t Reserved;
/// The total size of the class object, including prefix and suffix
/// extents.
uint32_t ClassSize;
/// The offset of the address point within the class object.
uint32_t ClassAddressPoint;
/// An out-of-line Swift-specific description of the type, or null
/// if this is an artificial subclass. We currently provide no
/// supported mechanism for making a non-artificial subclass
/// dynamically.
ConstTargetFarRelativeDirectPointer<Runtime, TargetNominalTypeDescriptor,
/*nullable*/ true> Description;
/// A function for destroying instance variables, used to clean up
/// after an early return from a constructor.
ClassIVarDestroyer IVarDestroyer; // TODO: Make target-agnostic size
// After this come the class members, laid out as follows:
// - class members for the superclass (recursively)
// - metadata reference for the parent, if applicable
// - generic parameters for this class
// - class variables (if we choose to support these)
// - "tabulated" virtual methods
public:
const ConstTargetFarRelativeDirectPointer<Runtime,
TargetNominalTypeDescriptor,
/*nullable*/ true> &
getDescription() const {
assert(isTypeMetadata());
assert(!isArtificialSubclass());
return Description;
}
void setDescription(const TargetNominalTypeDescriptor<Runtime> *
description) {
Description = description;
}
ClassIVarDestroyer getIVarDestroyer() const {
assert(isTypeMetadata());
return IVarDestroyer;
}
/// Is this class an artificial subclass, such as one dynamically
/// created for various dynamic purposes like KVO?
bool isArtificialSubclass() const {
assert(isTypeMetadata());
return Description == 0;
}
void setArtificialSubclass() {
assert(isTypeMetadata());
Description = 0;
}
ClassFlags getFlags() const {
assert(isTypeMetadata());
return Flags;
}
void setFlags(ClassFlags flags) {
assert(isTypeMetadata());
Flags = flags;
}
StoredSize getInstanceSize() const {
assert(isTypeMetadata());
return InstanceSize;
}
void setInstanceSize(StoredSize size) {
assert(isTypeMetadata());
InstanceSize = size;
}
StoredPointer getInstanceAddressPoint() const {
assert(isTypeMetadata());
return InstanceAddressPoint;
}
void setInstanceAddressPoint(StoredSize size) {
assert(isTypeMetadata());
InstanceAddressPoint = size;
}
StoredPointer getInstanceAlignMask() const {
assert(isTypeMetadata());
return InstanceAlignMask;
}
void setInstanceAlignMask(StoredSize mask) {
assert(isTypeMetadata());
InstanceAlignMask = mask;
}
StoredPointer getClassSize() const {
assert(isTypeMetadata());
return ClassSize;
}
void setClassSize(StoredSize size) {
assert(isTypeMetadata());
ClassSize = size;
}
StoredPointer getClassAddressPoint() const {
assert(isTypeMetadata());
return ClassAddressPoint;
}
void setClassAddressPoint(StoredSize offset) {
assert(isTypeMetadata());
ClassAddressPoint = offset;
}
uint16_t getRuntimeReservedData() const {
assert(isTypeMetadata());
return Reserved;
}
void setRuntimeReservedData(uint16_t data) {
assert(isTypeMetadata());
Reserved = data;
}
/// Get a pointer to the field offset vector, if present, or null.
const StoredPointer *getFieldOffsets() const {
assert(isTypeMetadata());
auto offset = getDescription()->Class.FieldOffsetVectorOffset;
if (offset == 0)
return nullptr;
auto asWords = reinterpret_cast<const void * const*>(this);
return reinterpret_cast<const StoredPointer *>(asWords + offset);
}
/// Get a pointer to the field type vector, if present, or null.
const FieldType *getFieldTypes() const {
assert(isTypeMetadata());
auto *getter = getDescription()->Class.GetFieldTypes.get();
if (!getter)
return nullptr;
return getter(this);
}
/// Return the parent type for a given level in the class hierarchy, or
/// null if that level does not have a parent type.
const TargetMetadata<Runtime> *
getParentType(const TargetNominalTypeDescriptor<Runtime> *theClass) const {
if (!theClass->GenericParams.Flags.hasParent())
return nullptr;
auto metadataAsWords = reinterpret_cast<const Metadata * const *>(this);
return metadataAsWords[theClass->GenericParams.Offset - 1];
}
StoredPointer offsetToDescriptorOffset() const {
return offsetof(TargetClassMetadata<Runtime>, Description);
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Class;
}
};
using ClassMetadata = TargetClassMetadata<InProcess>;
/// The structure of metadata for heap-allocated local variables.
/// This is non-type metadata.
template <typename Runtime>
struct TargetHeapLocalVariableMetadata
: public TargetHeapMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
uint32_t OffsetToFirstCapture;
TargetPointer<Runtime, const char> CaptureDescription;
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::HeapLocalVariable;
}
constexpr TargetHeapLocalVariableMetadata()
: TargetHeapMetadata<Runtime>(MetadataKind::HeapLocalVariable),
OffsetToFirstCapture(0), CaptureDescription(nullptr) {}
};
using HeapLocalVariableMetadata
= TargetHeapLocalVariableMetadata<InProcess>;
/// The structure of wrapper metadata for Objective-C classes. This
/// is used as a type metadata pointer when the actual class isn't
/// Swift-compiled.
template <typename Runtime>
struct TargetObjCClassWrapperMetadata : public TargetMetadata<Runtime> {
ConstTargetMetadataPointer<Runtime, TargetClassMetadata> Class;
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::ObjCClassWrapper;
}
};
using ObjCClassWrapperMetadata
= TargetObjCClassWrapperMetadata<InProcess>;
/// The structure of metadata for foreign types where the source
/// language doesn't provide any sort of more interesting metadata for
/// us to use.
template <typename Runtime>
struct TargetForeignTypeMetadata : public TargetMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
using StoredSize = typename Runtime::StoredSize;
using InitializationFunction_t =
void (*)(TargetForeignTypeMetadata<Runtime> *selectedMetadata);
using RuntimeMetadataPointer =
ConstTargetMetadataPointer<Runtime, swift::TargetForeignTypeMetadata>;
/// Foreign type metadata may have extra header fields depending on
/// the flags.
struct HeaderPrefix {
/// An optional callback performed when a particular metadata object
/// is chosen as the unique structure.
/// If there is no initialization function, this metadata record can be
/// assumed to be immutable (except for the \c Unique invasive cache
/// field).
InitializationFunction_t InitializationFunction;
/// The Swift-mangled name of the type. This is the uniquing key for the
/// type.
TargetPointer<Runtime, const char> Name;
/// A pointer to the actual, runtime-uniqued metadata for this
/// type. This is essentially an invasive cache for the lookup
/// structure.
mutable std::atomic<RuntimeMetadataPointer> Unique;
/// Various flags.
enum : StoredSize {
/// This metadata has an initialization callback function. If
/// this flag is not set, the metadata object needn't actually
/// have a InitializationFunction field.
HasInitializationFunction = 0x1,
} Flags;
};
struct HeaderType : HeaderPrefix, TypeMetadataHeader {};
static constexpr int OffsetToName =
(int) offsetof(HeaderType, Name) - (int) sizeof(HeaderType);
TargetPointer<Runtime, const char> getName() const {
return reinterpret_cast<TargetPointer<Runtime, const char>>(
asFullMetadata(this)->Name);
}
RuntimeMetadataPointer getCachedUniqueMetadata() const {
#if __alpha__
// TODO: This can be a relaxed-order load if there is no initialization
// function. On platforms we care about, consume is no more expensive than
// relaxed, so there's no reason to branch here (and LLVM isn't smart
// enough to eliminate it when it's not needed).
if (!hasInitializationFunction())
return asFullMetadata(this)->Unique.load(std::memory_order_relaxed);
#endif
return asFullMetadata(this)->Unique.load(SWIFT_MEMORY_ORDER_CONSUME);
}
void setCachedUniqueMetadata(RuntimeMetadataPointer unique) const {
assert((static_cast<RuntimeMetadataPointer>(asFullMetadata(this)->Unique) ==
nullptr ||
asFullMetadata(this)->Unique == unique) &&
"already set unique metadata");
// If there is no initialization function, this can be a relaxed store.
if (!hasInitializationFunction())
asFullMetadata(this)->Unique.store(unique, std::memory_order_relaxed);
// Otherwise, we need a release store to publish the result of
// initialization
else
asFullMetadata(this)->Unique.store(unique, std::memory_order_release);
}
StoredSize getFlags() const {
return asFullMetadata(this)->Flags;
}
bool hasInitializationFunction() const {
return getFlags() & HeaderPrefix::HasInitializationFunction;
}
InitializationFunction_t getInitializationFunction() const {
assert(hasInitializationFunction());
return asFullMetadata(this)->InitializationFunction;
}
};
using ForeignTypeMetadata = TargetForeignTypeMetadata<InProcess>;
/// The structure of metadata objects for foreign class types.
/// A foreign class is a foreign type with reference semantics and
/// Swift-supported reference counting. Generally this requires
/// special logic in the importer.
///
/// We assume for now that foreign classes are entirely opaque
/// to Swift introspection.
template <typename Runtime>
struct TargetForeignClassMetadata
: public TargetForeignTypeMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
/// The superclass of the foreign class, if any.
ConstTargetMetadataPointer<Runtime, swift::TargetForeignClassMetadata>
SuperClass;
/// Reserved space. For now, these should be zero-initialized.
StoredPointer Reserved[3];
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::ForeignClass;
}
};
using ForeignClassMetadata = TargetForeignClassMetadata<InProcess>;
/// The common structure of metadata for structs and enums.
template <typename Runtime>
struct TargetValueMetadata : public TargetMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
TargetValueMetadata(MetadataKind Kind,
ConstTargetMetadataPointer<Runtime, TargetNominalTypeDescriptor>
description,
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> parent)
: TargetMetadata<Runtime>(Kind),
Description(description),
Parent(parent)
{}
/// An out-of-line description of the type.
ConstTargetFarRelativeDirectPointer<Runtime, TargetNominalTypeDescriptor>
Description;
/// The parent type of this member type, or null if this is not a
/// member type. It's acceptable to make this a direct pointer because
/// parent types are relatively uncommon.
TargetPointer<Runtime, const TargetMetadata<Runtime>> Parent;
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Struct
|| metadata->getKind() == MetadataKind::Enum
|| metadata->getKind() == MetadataKind::Optional;
}
/// Retrieve the generic arguments of this type.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> const *
getGenericArgs() const {
if (!Description->GenericParams.hasGenericRequirements())
return nullptr;
auto asWords = reinterpret_cast<
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> const *>(this);
return (asWords + Description->GenericParams.Offset);
}
const TargetNominalTypeDescriptor<Runtime> *getDescription() const {
return Description.get();
}
StoredPointer offsetToDescriptorOffset() const {
return offsetof(TargetValueMetadata<Runtime>, Description);
}
StoredPointer offsetToParentOffset() const {
return offsetof(TargetValueMetadata<Runtime>, Parent);
}
};
using ValueMetadata = TargetValueMetadata<InProcess>;
/// The structure of type metadata for structs.
template <typename Runtime>
struct TargetStructMetadata : public TargetValueMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
using TargetValueMetadata<Runtime>::TargetValueMetadata;
/// Get a pointer to the field offset vector, if present, or null.
const StoredPointer *getFieldOffsets() const {
auto offset = this->Description->Struct.FieldOffsetVectorOffset;
if (offset == 0)
return nullptr;
auto asWords = reinterpret_cast<const void * const*>(this);
return reinterpret_cast<const StoredPointer *>(asWords + offset);
}
/// Get a pointer to the field type vector, if present, or null.
const FieldType *getFieldTypes() const {
auto *getter = this->Description->Struct.GetFieldTypes.get();
if (!getter)
return nullptr;
return getter(this);
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Struct;
}
};
using StructMetadata = TargetStructMetadata<InProcess>;
/// The structure of type metadata for enums.
template <typename Runtime>
struct TargetEnumMetadata : public TargetValueMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
using StoredSize = typename Runtime::StoredSize;
using TargetValueMetadata<Runtime>::TargetValueMetadata;
/// True if the metadata records the size of the payload area.
bool hasPayloadSize() const {
return this->Description->Enum.hasPayloadSizeOffset();
}
/// Retrieve the size of the payload area.
///
/// `hasPayloadSize` must be true for this to be valid.
StoredSize getPayloadSize() const {
assert(hasPayloadSize());
auto offset = this->Description->Enum.getPayloadSizeOffset();
const StoredSize *asWords = reinterpret_cast<const StoredSize *>(this);
asWords += offset;
return *asWords;
}
StoredSize &getPayloadSize() {
assert(hasPayloadSize());
auto offset = this->Description->Enum.getPayloadSizeOffset();
StoredSize *asWords = reinterpret_cast<StoredSize *>(this);
asWords += offset;
return *asWords;
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Enum
|| metadata->getKind() == MetadataKind::Optional;
}
};
using EnumMetadata = TargetEnumMetadata<InProcess>;
/// The structure of function type metadata.
template <typename Runtime>
struct TargetFunctionTypeMetadata : public TargetMetadata<Runtime> {
using StoredSize = typename Runtime::StoredSize;
// TODO: Make this target agnostic
using Argument = FlaggedPointer<const TargetMetadata<Runtime> *, 0>;
TargetFunctionTypeFlags<StoredSize> Flags;
/// The type metadata for the result type.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> ResultType;
TargetPointer<Runtime, Argument> getArguments() {
return reinterpret_cast<TargetPointer<Runtime, Argument>>(this + 1);
}
TargetPointer<Runtime, const Argument> getArguments() const {
return reinterpret_cast<TargetPointer<Runtime, const Argument>>(this + 1);
}
StoredSize getNumArguments() const {
return Flags.getNumArguments();
}
FunctionMetadataConvention getConvention() const {
return Flags.getConvention();
}
bool throws() const { return Flags.throws(); }
static constexpr StoredSize OffsetToFlags = sizeof(TargetMetadata<Runtime>);
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Function;
}
};
using FunctionTypeMetadata = TargetFunctionTypeMetadata<InProcess>;
/// The structure of metadata for metatypes.
template <typename Runtime>
struct TargetMetatypeMetadata : public TargetMetadata<Runtime> {
/// The type metadata for the element.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> InstanceType;
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Metatype;
}
};
using MetatypeMetadata = TargetMetatypeMetadata<InProcess>;
/// The structure of tuple type metadata.
template <typename Runtime>
struct TargetTupleTypeMetadata : public TargetMetadata<Runtime> {
using StoredSize = typename Runtime::StoredSize;
TargetTupleTypeMetadata() = default;
constexpr TargetTupleTypeMetadata(const TargetMetadata<Runtime> &base,
StoredSize numElements,
TargetPointer<Runtime, const char> labels)
: TargetMetadata<Runtime>(base),
NumElements(numElements),
Labels(labels) {}
/// The number of elements.
StoredSize NumElements;
/// The labels string; see swift_getTupleTypeMetadata.
TargetPointer<Runtime, const char> Labels;
struct Element {
/// The type of the element.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> Type;
/// The offset of the tuple element within the tuple.
StoredSize Offset;
OpaqueValue *findIn(OpaqueValue *tuple) const {
return (OpaqueValue*) (((char*) tuple) + Offset);
}
};
Element *getElements() {
return reinterpret_cast<Element*>(this + 1);
}
const Element *getElements() const {
return reinterpret_cast<const Element*>(this + 1);
}
const Element &getElement(unsigned i) const {
return getElements()[i];
}
Element &getElement(unsigned i) {
return getElements()[i];
}
static constexpr StoredSize OffsetToNumElements = sizeof(TargetMetadata<Runtime>);
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Tuple;
}
};
using TupleTypeMetadata = TargetTupleTypeMetadata<InProcess>;
/// The standard metadata for the empty tuple type.
SWIFT_RUNTIME_EXPORT
const
FullMetadata<TupleTypeMetadata> METADATA_SYM(EMPTY_TUPLE_MANGLING);
template <typename Runtime> struct TargetProtocolDescriptor;
/// An array of protocol descriptors with a header and tail-allocated elements.
template <typename Runtime>
struct TargetProtocolDescriptorList {
using StoredPointer = typename Runtime::StoredPointer;
StoredPointer NumProtocols;
ConstTargetMetadataPointer<Runtime, TargetProtocolDescriptor> *
getProtocols() {
return reinterpret_cast<
ConstTargetMetadataPointer<
Runtime, TargetProtocolDescriptor> *>(this + 1);
}
ConstTargetMetadataPointer<Runtime, TargetProtocolDescriptor> const *
getProtocols() const {
return reinterpret_cast<
ConstTargetMetadataPointer<
Runtime, TargetProtocolDescriptor> const *>(this + 1);
}
ConstTargetMetadataPointer<Runtime, TargetProtocolDescriptor> const &
operator[](size_t i) const {
return getProtocols()[i];
}
ConstTargetMetadataPointer<Runtime, TargetProtocolDescriptor> &
operator[](size_t i) {
return getProtocols()[i];
}
constexpr TargetProtocolDescriptorList() : NumProtocols(0) {}
protected:
constexpr TargetProtocolDescriptorList(StoredPointer NumProtocols)
: NumProtocols(NumProtocols) {}
};
using ProtocolDescriptorList = TargetProtocolDescriptorList<InProcess>;
/// A literal class for creating constant protocol descriptors in the runtime.
template<typename Runtime, uintptr_t NUM_PROTOCOLS>
struct TargetLiteralProtocolDescriptorList
: TargetProtocolDescriptorList<Runtime> {
const TargetProtocolDescriptorList<Runtime> *Protocols[NUM_PROTOCOLS];
template<typename...DescriptorPointers>
constexpr TargetLiteralProtocolDescriptorList(DescriptorPointers...elements)
: TargetProtocolDescriptorList<Runtime>(NUM_PROTOCOLS),
Protocols{elements...}
{}
};
using LiteralProtocolDescriptorList = TargetProtocolDescriptorList<InProcess>;
template <typename Runtime>
struct TargetProtocolRequirement {
ProtocolRequirementFlags Flags;
// TODO: name, type
/// The optional default implementation of the protocol.
RelativeDirectPointer<void, /*nullable*/ true> DefaultImplementation;
};
using ProtocolRequirement = TargetProtocolRequirement<InProcess>;
/// A protocol descriptor. This is not type metadata, but is referenced by
/// existential type metadata records to describe a protocol constraint.
/// Its layout is compatible with the Objective-C runtime's 'protocol_t' record
/// layout.
template <typename Runtime>
struct TargetProtocolDescriptor {
using StoredPointer = typename Runtime::StoredPointer;
/// Unused by the Swift runtime.
TargetPointer<Runtime, const void> _ObjC_Isa;
/// The mangled name of the protocol.
TargetPointer<Runtime, const char> Name;
/// The list of protocols this protocol refines.
ConstTargetMetadataPointer<Runtime, TargetProtocolDescriptorList>
InheritedProtocols;
/// Unused by the Swift runtime.
TargetPointer<Runtime, const void>
_ObjC_InstanceMethods,
_ObjC_ClassMethods,
_ObjC_OptionalInstanceMethods,
_ObjC_OptionalClassMethods,
_ObjC_InstanceProperties;
/// Size of the descriptor record.
uint32_t DescriptorSize;
/// Additional flags.
ProtocolDescriptorFlags Flags;
/// The number of non-defaultable requirements in the protocol.
uint16_t NumMandatoryRequirements;
/// The number of requirements described by the Requirements array.
/// If any requirements beyond MinimumWitnessTableSizeInWords are present
/// in the witness table template, they will be not be overwritten with
/// defaults.
uint16_t NumRequirements;
/// Requirement descriptions.
RelativeDirectPointer<TargetProtocolRequirement<Runtime>> Requirements;
void *getDefaultWitness(unsigned index) const {
return Requirements.get()[index].DefaultImplementation.get();
}
// This is only used in unittests/Metadata.cpp.
constexpr TargetProtocolDescriptor<Runtime>(const char *Name,
const TargetProtocolDescriptorList<Runtime> *Inherited,
ProtocolDescriptorFlags Flags)
: _ObjC_Isa(nullptr), Name(Name), InheritedProtocols(Inherited),
_ObjC_InstanceMethods(nullptr), _ObjC_ClassMethods(nullptr),
_ObjC_OptionalInstanceMethods(nullptr),
_ObjC_OptionalClassMethods(nullptr),
_ObjC_InstanceProperties(nullptr),
DescriptorSize(sizeof(TargetProtocolDescriptor<Runtime>)),
Flags(Flags),
NumMandatoryRequirements(0),
NumRequirements(0),
Requirements(nullptr)
{}
};
using ProtocolDescriptor = TargetProtocolDescriptor<InProcess>;
/// A witness table for a protocol. This type is intentionally opaque because
/// the layout of a witness table is dependent on the protocol being
/// represented.
struct WitnessTable;
/// The basic layout of an opaque (non-class-bounded) existential type.
template <typename Runtime>
struct TargetOpaqueExistentialContainer {
ValueBuffer Buffer;
const TargetMetadata<Runtime> *Type;
// const void *WitnessTables[];
const WitnessTable **getWitnessTables() {
return reinterpret_cast<const WitnessTable **>(this + 1);
}
const WitnessTable * const *getWitnessTables() const {
return reinterpret_cast<const WitnessTable * const *>(this + 1);
}
void copyTypeInto(swift::TargetOpaqueExistentialContainer<Runtime> *dest,
unsigned numTables) const {
dest->Type = Type;
for (unsigned i = 0; i != numTables; ++i)
dest->getWitnessTables()[i] = getWitnessTables()[i];
}
};
using OpaqueExistentialContainer
= TargetOpaqueExistentialContainer<InProcess>;
/// The basic layout of a class-bounded existential type.
template <typename ContainedValue>
struct ClassExistentialContainerImpl {
ContainedValue Value;
const WitnessTable **getWitnessTables() {
return reinterpret_cast<const WitnessTable**>(this + 1);
}
const WitnessTable * const *getWitnessTables() const {
return reinterpret_cast<const WitnessTable* const *>(this + 1);
}
void copyTypeInto(ClassExistentialContainerImpl *dest,
unsigned numTables) const {
for (unsigned i = 0; i != numTables; ++i)
dest->getWitnessTables()[i] = getWitnessTables()[i];
}
};
using ClassExistentialContainer = ClassExistentialContainerImpl<void *>;
using WeakClassExistentialContainer =
ClassExistentialContainerImpl<WeakReference>;
/// The possible physical representations of existential types.
enum class ExistentialTypeRepresentation {
/// The type uses an opaque existential representation.
Opaque,
/// The type uses a class existential representation.
Class,
/// The type uses the Error boxed existential representation.
Error,
};
/// The structure of existential type metadata.
template <typename Runtime>
struct TargetExistentialTypeMetadata : public TargetMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
/// The number of witness tables and class-constrained-ness of the type.
ExistentialTypeFlags Flags;
/// The protocol constraints.
TargetProtocolDescriptorList<Runtime> Protocols;
/// NB: Protocols has a tail-emplaced array; additional fields cannot follow.
constexpr TargetExistentialTypeMetadata()
: TargetMetadata<Runtime>(MetadataKind::Existential),
Flags(ExistentialTypeFlags()), Protocols() {}
/// Get the representation form this existential type uses.
ExistentialTypeRepresentation getRepresentation() const;
/// True if it's valid to take ownership of the value in the existential
/// container if we own the container.
bool mayTakeValue(const OpaqueValue *container) const;
/// Clean up an existential container whose value is uninitialized.
void deinitExistentialContainer(OpaqueValue *container) const;
/// Project the value pointer from an existential container of the type
/// described by this metadata.
const OpaqueValue *projectValue(const OpaqueValue *container) const;
OpaqueValue *projectValue(OpaqueValue *container) const {
return const_cast<OpaqueValue *>(projectValue((const OpaqueValue*)container));
}
/// Get the dynamic type from an existential container of the type described
/// by this metadata.
const TargetMetadata<Runtime> *
getDynamicType(const OpaqueValue *container) const;
/// Get a witness table from an existential container of the type described
/// by this metadata.
const WitnessTable * getWitnessTable(const OpaqueValue *container,
unsigned i) const;
/// Return true iff all the protocol constraints are @objc.
bool isObjC() const {
return isClassBounded() && Flags.getNumWitnessTables() == 0;
}
bool isClassBounded() const {
return Flags.getClassConstraint() == ProtocolClassConstraint::Class;
}
const TargetMetadata<Runtime> *getSuperclassConstraint() const {
if (!Flags.hasSuperclassConstraint())
return nullptr;
// Get a pointer to tail-allocated storage for this metadata record.
auto Pointer = reinterpret_cast<
ConstTargetMetadataPointer<Runtime, TargetMetadata> const *>(this + 1);
// The superclass immediately follows the list of protocol descriptors.
return Pointer[Protocols.NumProtocols];
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Existential;
}
static constexpr StoredPointer
OffsetToNumProtocols = sizeof(TargetMetadata<Runtime>) + sizeof(ExistentialTypeFlags);
};
using ExistentialTypeMetadata
= TargetExistentialTypeMetadata<InProcess>;
/// The basic layout of an existential metatype type.
template <typename Runtime>
struct TargetExistentialMetatypeContainer {
const TargetMetadata<Runtime> *Value;
const WitnessTable **getWitnessTables() {
return reinterpret_cast<const WitnessTable**>(this + 1);
}
const WitnessTable * const *getWitnessTables() const {
return reinterpret_cast<const WitnessTable* const *>(this + 1);
}
void copyTypeInto(TargetExistentialMetatypeContainer *dest,
unsigned numTables) const {
for (unsigned i = 0; i != numTables; ++i)
dest->getWitnessTables()[i] = getWitnessTables()[i];
}
};
using ExistentialMetatypeContainer
= TargetExistentialMetatypeContainer<InProcess>;
/// The structure of metadata for existential metatypes.
template <typename Runtime>
struct TargetExistentialMetatypeMetadata
: public TargetMetadata<Runtime> {
/// The type metadata for the element.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> InstanceType;
/// The number of witness tables and class-constrained-ness of the
/// underlying type.
ExistentialTypeFlags Flags;
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::ExistentialMetatype;
}
/// Return true iff all the protocol constraints are @objc.
bool isObjC() const {
return isClassBounded() && Flags.getNumWitnessTables() == 0;
}
bool isClassBounded() const {
return Flags.getClassConstraint() == ProtocolClassConstraint::Class;
}
};
using ExistentialMetatypeMetadata
= TargetExistentialMetatypeMetadata<InProcess>;
/// \brief The header in front of a generic metadata template.
///
/// This is optimized so that the code generation pattern
/// requires the minimal number of independent arguments.
/// For example, we want to be able to allocate a generic class
/// Dictionary<T,U> like so:
/// extern GenericMetadata Dictionary_metadata_header;
/// void *arguments[] = { typeid(T), typeid(U) };
/// void *metadata = swift_getGenericMetadata(&Dictionary_metadata_header,
/// &arguments);
/// void *object = swift_allocObject(metadata);
///
/// Note that the metadata header is *not* const data; it includes 8
/// pointers worth of implementation-private data.
///
/// Both the metadata header and the arguments buffer are guaranteed
/// to be pointer-aligned.
template <typename Runtime>
struct TargetGenericMetadata {
/// The fill function. Receives a pointer to the instantiated metadata and
/// the argument pointer passed to swift_getGenericMetadata.
TargetMetadata<Runtime> *(*CreateFunction)
(TargetGenericMetadata<Runtime> *pattern, const void *arguments);
/// The size of the template in bytes.
uint32_t MetadataSize;
/// The number of generic arguments that we need to unique on,
/// in words. The first 'NumArguments * sizeof(void*)' bytes of
/// the arguments buffer are the key. There may be additional private-contract
/// data used by FillFunction not used for uniquing.
uint16_t NumKeyArguments;
/// The offset of the address point in the template in bytes.
uint16_t AddressPoint;
/// Data that the runtime can use for its own purposes. It is guaranteed
/// to be zero-filled by the compiler.
TargetPointer<Runtime, void>
PrivateData[swift::NumGenericMetadataPrivateDataWords];
// Here there is a variably-sized field:
// char alignas(void*) MetadataTemplate[MetadataSize];
/// Return the starting address of the metadata template data.
TargetPointer<Runtime, const void> getMetadataTemplate() const {
return reinterpret_cast<TargetPointer<Runtime, const void>>(this + 1);
}
/// Return the nominal type descriptor for the template metadata
ConstTargetMetadataPointer<Runtime, TargetNominalTypeDescriptor>
getTemplateDescription() const {
auto bytes = reinterpret_cast<const uint8_t *>(getMetadataTemplate());
auto metadata = reinterpret_cast<
const TargetMetadata<Runtime> *>(bytes + AddressPoint);
return metadata->getNominalTypeDescriptor();
}
};
using GenericMetadata = TargetGenericMetadata<InProcess>;
/// Heap metadata for a box, which may have been generated statically by the
/// compiler or by the runtime.
template <typename Runtime>
struct TargetBoxHeapMetadata : public TargetHeapMetadata<Runtime> {
/// The offset from the beginning of a box to its value.
unsigned Offset;
constexpr TargetBoxHeapMetadata(MetadataKind kind, unsigned offset)
: TargetHeapMetadata<Runtime>(kind), Offset(offset) {}
};
using BoxHeapMetadata = TargetBoxHeapMetadata<InProcess>;
/// Heap metadata for runtime-instantiated generic boxes.
template <typename Runtime>
struct TargetGenericBoxHeapMetadata : public TargetBoxHeapMetadata<Runtime> {
using super = TargetBoxHeapMetadata<Runtime>;
using super::Offset;
/// The type inside the box.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> BoxedType;
constexpr
TargetGenericBoxHeapMetadata(MetadataKind kind, unsigned offset,
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> boxedType)
: TargetBoxHeapMetadata<Runtime>(kind, offset), BoxedType(boxedType)
{}
static unsigned getHeaderOffset(const Metadata *boxedType) {
// Round up the header size to alignment.
unsigned alignMask = boxedType->getValueWitnesses()->getAlignmentMask();
return (sizeof(HeapObject) + alignMask) & ~alignMask;
}
/// Project the value out of a box of this type.
OpaqueValue *project(HeapObject *box) const {
auto bytes = reinterpret_cast<char*>(box);
return reinterpret_cast<OpaqueValue *>(bytes + Offset);
}
/// Get the allocation size of this box.
unsigned getAllocSize() const {
return Offset + BoxedType->getValueWitnesses()->getSize();
}
/// Get the allocation alignment of this box.
unsigned getAllocAlignMask() const {
// Heap allocations are at least pointer aligned.
return BoxedType->getValueWitnesses()->getAlignmentMask()
| (alignof(void*) - 1);
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::HeapGenericLocalVariable;
}
};
using GenericBoxHeapMetadata = TargetGenericBoxHeapMetadata<InProcess>;
/// \brief The control structure of a generic or resilient protocol
/// conformance.
///
/// Witness tables need to be instantiated at runtime in these cases:
/// - For a generic conforming type, associated type requirements might be
/// dependent on the conforming type.
/// - For a type conforming to a resilient protocol, the runtime size of
/// the witness table is not known because default requirements can be
/// added resiliently.
///
/// One per conformance.
template <typename Runtime>
struct TargetGenericWitnessTable {
/// The size of the witness table in words. This amount is copied from
/// the witness table template into the instantiated witness table.
uint16_t WitnessTableSizeInWords;
/// The amount of private storage to allocate before the address point,
/// in words. This memory is zeroed out in the instantiated witness table
/// template.
uint16_t WitnessTablePrivateSizeInWords;
/// The protocol descriptor. Only used for resilient conformances.
RelativeIndirectablePointer<ProtocolDescriptor,
/*nullable*/ true> Protocol;
/// The pattern.
RelativeDirectPointer<const WitnessTable> Pattern;
/// The instantiation function, which is called after the template is copied.
RelativeDirectPointer<void(WitnessTable *instantiatedTable,
const TargetMetadata<Runtime> *type,
void * const *instantiationArgs),
/*nullable*/ true> Instantiator;
using PrivateDataType = void *[swift::NumGenericMetadataPrivateDataWords];
/// Private data for the instantiator. Out-of-line so that the rest
/// of this structure can be constant.
RelativeDirectPointer<PrivateDataType> PrivateData;
};
using GenericWitnessTable = TargetGenericWitnessTable<InProcess>;
/// The structure of a type metadata record.
///
/// This contains enough static information to recover type metadata from a
/// name. It is only emitted for types that do not have an explicit protocol
/// conformance record.
///
/// This structure is notionally a subtype of a protocol conformance record
/// but as we cannot change the conformance record layout we have to make do
/// with some duplicated code.
template <typename Runtime>
struct TargetTypeMetadataRecord {
private:
// Some description of the type that is resolvable at runtime.
union {
/// A direct reference to the metadata.
RelativeDirectPointer<const TargetMetadata<Runtime>> DirectType;
/// The nominal type descriptor for a resilient or generic type.
RelativeDirectPointer<TargetNominalTypeDescriptor<Runtime>>
TypeDescriptor;
};
/// Flags describing the type metadata record.
TypeMetadataRecordFlags Flags;
public:
TypeMetadataRecordKind getTypeKind() const {
return Flags.getTypeKind();
}
const TargetMetadata<Runtime> *getDirectType() const {
switch (Flags.getTypeKind()) {
case TypeMetadataRecordKind::Universal:
return nullptr;
case TypeMetadataRecordKind::UniqueDirectType:
case TypeMetadataRecordKind::NonuniqueDirectType:
case TypeMetadataRecordKind::UniqueDirectClass:
break;
case TypeMetadataRecordKind::UniqueIndirectClass:
case TypeMetadataRecordKind::UniqueNominalTypeDescriptor:
assert(false && "not direct type metadata");
}
return this->DirectType;
}
const TargetNominalTypeDescriptor<Runtime> *
getNominalTypeDescriptor() const {
switch (Flags.getTypeKind()) {
case TypeMetadataRecordKind::Universal:
return nullptr;
case TypeMetadataRecordKind::UniqueNominalTypeDescriptor:
break;
case TypeMetadataRecordKind::UniqueDirectClass:
case TypeMetadataRecordKind::UniqueIndirectClass:
case TypeMetadataRecordKind::UniqueDirectType:
case TypeMetadataRecordKind::NonuniqueDirectType:
assert(false && "not generic metadata pattern");
}
return this->TypeDescriptor;
}
/// Get the canonical metadata for the type referenced by this record, or
/// return null if the record references a generic or universal type.
const TargetMetadata<Runtime> *getCanonicalTypeMetadata() const;
};
using TypeMetadataRecord = TargetTypeMetadataRecord<InProcess>;
/// The structure of a protocol conformance record.
///
/// This contains enough static information to recover the witness table for a
/// type's conformance to a protocol.
template <typename Runtime>
struct TargetProtocolConformanceRecord {
public:
using WitnessTableAccessorFn
= const WitnessTable *(const TargetMetadata<Runtime>*);
private:
/// The protocol being conformed to.
RelativeIndirectablePointer<ProtocolDescriptor> Protocol;
// Some description of the type that conforms to the protocol.
union {
/// A direct reference to the metadata.
///
/// Depending on the conformance kind, this may not be usable
/// metadata without being first processed by the runtime.
RelativeIndirectablePointer<TargetMetadata<Runtime>> DirectType;
/// An indirect reference to the metadata.
RelativeIndirectablePointer<const TargetClassMetadata<Runtime> *>
IndirectClass;
/// The nominal type descriptor for a resilient or generic type which has
/// instances that conform to the protocol.
RelativeIndirectablePointer<TargetNominalTypeDescriptor<Runtime>>
TypeDescriptor;
};
// The conformance, or a generator function for the conformance.
union {
/// A direct reference to the witness table for the conformance.
RelativeDirectPointer<const WitnessTable> WitnessTable;
/// A function that produces the witness table given an instance of the
/// type. The function may return null if a specific instance does not
/// conform to the protocol.
RelativeDirectPointer<WitnessTableAccessorFn> WitnessTableAccessor;
};
/// Flags describing the protocol conformance.
ProtocolConformanceFlags Flags;
public:
const ProtocolDescriptor *getProtocol() const {
return Protocol;
}
ProtocolConformanceFlags getFlags() const {
return Flags;
}
TypeMetadataRecordKind getTypeKind() const {
return Flags.getTypeKind();
}
ProtocolConformanceReferenceKind getConformanceKind() const {
return Flags.getConformanceKind();
}
const TargetMetadata<Runtime> *getDirectType() const {
switch (Flags.getTypeKind()) {
case TypeMetadataRecordKind::Universal:
return nullptr;
case TypeMetadataRecordKind::UniqueDirectType:
case TypeMetadataRecordKind::NonuniqueDirectType:
break;
case TypeMetadataRecordKind::UniqueDirectClass:
case TypeMetadataRecordKind::UniqueIndirectClass:
case TypeMetadataRecordKind::UniqueNominalTypeDescriptor:
assert(false && "not direct type metadata");
}
return DirectType;
}
// FIXME: This shouldn't exist
const TargetClassMetadata<Runtime> *getDirectClass() const {
switch (Flags.getTypeKind()) {
case TypeMetadataRecordKind::Universal:
return nullptr;
case TypeMetadataRecordKind::UniqueDirectClass:
break;
case TypeMetadataRecordKind::UniqueDirectType:
case TypeMetadataRecordKind::NonuniqueDirectType:
case TypeMetadataRecordKind::UniqueNominalTypeDescriptor:
case TypeMetadataRecordKind::UniqueIndirectClass:
assert(false && "not direct class object");
}
const TargetMetadata<Runtime> *metadata = DirectType;
return static_cast<const TargetClassMetadata<Runtime>*>(metadata);
}
const TargetClassMetadata<Runtime> * const *getIndirectClass() const {
switch (Flags.getTypeKind()) {
case TypeMetadataRecordKind::Universal:
return nullptr;
case TypeMetadataRecordKind::UniqueIndirectClass:
break;
case TypeMetadataRecordKind::UniqueDirectType:
case TypeMetadataRecordKind::UniqueDirectClass:
case TypeMetadataRecordKind::NonuniqueDirectType:
case TypeMetadataRecordKind::UniqueNominalTypeDescriptor:
assert(false && "not indirect class object");
}
return IndirectClass;
}
const TargetNominalTypeDescriptor<Runtime> *
getNominalTypeDescriptor() const {
switch (Flags.getTypeKind()) {
case TypeMetadataRecordKind::Universal:
return nullptr;
case TypeMetadataRecordKind::UniqueNominalTypeDescriptor:
break;
case TypeMetadataRecordKind::UniqueDirectClass:
case TypeMetadataRecordKind::UniqueIndirectClass:
case TypeMetadataRecordKind::UniqueDirectType:
case TypeMetadataRecordKind::NonuniqueDirectType:
assert(false && "not generic metadata pattern");
}
return TypeDescriptor;
}
/// Get the directly-referenced static witness table.
const swift::WitnessTable *getStaticWitnessTable() const {
switch (Flags.getConformanceKind()) {
case ProtocolConformanceReferenceKind::WitnessTable:
break;
case ProtocolConformanceReferenceKind::WitnessTableAccessor:
assert(false && "not witness table");
}
return WitnessTable;
}
WitnessTableAccessorFn *getWitnessTableAccessor() const {
switch (Flags.getConformanceKind()) {
case ProtocolConformanceReferenceKind::WitnessTableAccessor:
break;
case ProtocolConformanceReferenceKind::WitnessTable:
assert(false && "not witness table accessor");
}
return WitnessTableAccessor;
}
/// Get the canonical metadata for the type referenced by this record, or
/// return null if the record references a generic or universal type.
const TargetMetadata<Runtime> *getCanonicalTypeMetadata() const;
/// Get the witness table for the specified type, realizing it if
/// necessary, or return null if the conformance does not apply to the
/// type.
const swift::WitnessTable *
getWitnessTable(const TargetMetadata<Runtime> *type) const;
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
void dump() const;
#endif
};
using ProtocolConformanceRecord
= TargetProtocolConformanceRecord<InProcess>;
/// \brief Fetch a uniqued metadata object for a generic nominal type.
///
/// The basic algorithm for fetching a metadata object is:
/// func swift_getGenericMetadata(header, arguments) {
/// if (metadata = getExistingMetadata(&header.PrivateData,
/// arguments[0..header.NumArguments]))
/// return metadata
/// metadata = malloc(header.MetadataSize)
/// memcpy(metadata, header.MetadataTemplate, header.MetadataSize)
/// for (i in 0..header.NumFillInstructions)
/// metadata[header.FillInstructions[i].ToIndex]
/// = arguments[header.FillInstructions[i].FromIndex]
/// setExistingMetadata(&header.PrivateData,
/// arguments[0..header.NumArguments],
/// metadata)
/// return metadata
/// }
SWIFT_RT_ENTRY_VISIBILITY
const Metadata *
swift_getGenericMetadata(GenericMetadata *pattern,
const void *arguments)
SWIFT_CC(RegisterPreservingCC);
// Callback to allocate a generic class metadata object.
SWIFT_RUNTIME_EXPORT
ClassMetadata *
swift_allocateGenericClassMetadata(GenericMetadata *pattern,
const void *arguments,
ClassMetadata *superclass);
// Callback to allocate a generic struct/enum metadata object.
SWIFT_RUNTIME_EXPORT
ValueMetadata *
swift_allocateGenericValueMetadata(GenericMetadata *pattern,
const void *arguments);
/// Instantiate a resilient or generic protocol witness table.
///
/// \param genericTable - The witness table template for the
/// conformance. It may either have fields that require runtime
/// initialization, or be missing requirements at the end for
/// which default witnesses are available.
///
/// \param type - The conforming type, used to form a uniquing key
/// for the conformance. If the witness table is not dependent on
/// the substituted type of the conformance, this can be set to
/// nullptr, in which case there will only be one instantiated
/// witness table per witness table template.
///
/// \param instantiationArgs - An opaque pointer that's forwarded to
/// the instantiation function, used for conditional conformances.
/// This API implicitly embeds an assumption that these arguments
/// never form part of the uniquing key for the conformance, which
/// is ultimately a statement about the user model of overlapping
/// conformances.
SWIFT_RT_ENTRY_VISIBILITY
const WitnessTable *
swift_getGenericWitnessTable(GenericWitnessTable *genericTable,
const Metadata *type,
void * const *instantiationArgs)
SWIFT_CC(RegisterPreservingCC);
/// \brief Fetch a uniqued metadata for a function type.
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getFunctionTypeMetadata(const void *flagsArgsAndResult[]);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getFunctionTypeMetadata1(FunctionTypeFlags flags,
const void *arg0,
const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getFunctionTypeMetadata2(FunctionTypeFlags flags,
const void *arg0,
const void *arg1,
const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getFunctionTypeMetadata3(FunctionTypeFlags flags,
const void *arg0,
const void *arg1,
const void *arg2,
const Metadata *resultMetadata);
/// \brief Fetch a uniqued metadata for a thin function type.
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getThinFunctionTypeMetadata(size_t numArguments,
const void * argsAndResult []);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getThinFunctionTypeMetadata0(const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getThinFunctionTypeMetadata1(const void *arg0,
const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getThinFunctionTypeMetadata2(const void *arg0,
const void *arg1,
const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getThinFunctionTypeMetadata3(const void *arg0,
const void *arg1,
const void *arg2,
const Metadata *resultMetadata);
/// \brief Fetch a uniqued metadata for a C function type.
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getCFunctionTypeMetadata(size_t numArguments,
const void * argsAndResult []);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getCFunctionTypeMetadata0(const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getCFunctionTypeMetadata1(const void *arg0,
const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getCFunctionTypeMetadata2(const void *arg0,
const void *arg1,
const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getCFunctionTypeMetadata3(const void *arg0,
const void *arg1,
const void *arg2,
const Metadata *resultMetadata);
#if SWIFT_OBJC_INTEROP
/// \brief Fetch a uniqued metadata for a block type.
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getBlockTypeMetadata(size_t numArguments,
const void *argsAndResult []);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getBlockTypeMetadata0(const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getBlockTypeMetadata1(const void *arg0,
const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getBlockTypeMetadata2(const void *arg0,
const void *arg1,
const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
const FunctionTypeMetadata *
swift_getBlockTypeMetadata3(const void *arg0,
const void *arg1,
const void *arg2,
const Metadata *resultMetadata);
SWIFT_RUNTIME_EXPORT
void
swift_instantiateObjCClass(const ClassMetadata *theClass);
#endif
/// \brief Fetch a uniqued type metadata for an ObjC class.
SWIFT_RUNTIME_EXPORT
const Metadata *
swift_getObjCClassMetadata(const ClassMetadata *theClass);
/// \brief Fetch a unique type metadata object for a foreign type.
SWIFT_RUNTIME_EXPORT
const ForeignTypeMetadata *
swift_getForeignTypeMetadata(ForeignTypeMetadata *nonUnique);
/// \brief Fetch a uniqued metadata for a tuple type.
///
/// The labels argument is null if and only if there are no element
/// labels in the tuple. Otherwise, it is a null-terminated
/// concatenation of space-terminated NFC-normalized UTF-8 strings,
/// assumed to point to constant global memory.
///
/// That is, for the tuple type (a : Int, Int, c : Int), this
/// argument should be:
/// "a c \0"
///
/// This representation allows label strings to be efficiently
/// (1) uniqued within a linkage unit and (2) compared with strcmp.
/// In other words, it's optimized for code size and uniquing
/// efficiency, not for the convenience of actually consuming
/// these strings.
///
/// \param elements - potentially invalid if numElements is zero;
/// otherwise, an array of metadata pointers.
/// \param labels - the labels string
/// \param proposedWitnesses - an optional proposed set of value witnesses.
/// This is useful when working with a non-dependent tuple type
/// where the entrypoint is just being used to unique the metadata.
SWIFT_RUNTIME_EXPORT
const TupleTypeMetadata *
swift_getTupleTypeMetadata(size_t numElements,
const Metadata * const *elements,
const char *labels,
const ValueWitnessTable *proposedWitnesses);
SWIFT_RUNTIME_EXPORT
const TupleTypeMetadata *
swift_getTupleTypeMetadata2(const Metadata *elt0, const Metadata *elt1,
const char *labels,
const ValueWitnessTable *proposedWitnesses);
SWIFT_RUNTIME_EXPORT
const TupleTypeMetadata *
swift_getTupleTypeMetadata3(const Metadata *elt0, const Metadata *elt1,
const Metadata *elt2, const char *labels,
const ValueWitnessTable *proposedWitnesses);
/// Initialize the value witness table and struct field offset vector for a
/// struct, using the "Universal" layout strategy.
SWIFT_RUNTIME_EXPORT
void swift_initStructMetadata_UniversalStrategy(size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets,
ValueWitnessTable *vwtable);
/// Initialize the field offset vector for a dependent-layout class, using the
/// "Universal" layout strategy.
///
/// This will relocate the metadata if it doesn't have enough space
/// for its superclass. Note that swift_allocateGenericClassMetadata will
/// never produce a metadata that requires relocation.
SWIFT_RUNTIME_EXPORT
ClassMetadata *
swift_initClassMetadata_UniversalStrategy(ClassMetadata *self,
size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets);
/// \brief Fetch a uniqued metadata for a metatype type.
SWIFT_RUNTIME_EXPORT
const MetatypeMetadata *
swift_getMetatypeMetadata(const Metadata *instanceType);
/// \brief Fetch a uniqued metadata for an existential metatype type.
SWIFT_RUNTIME_EXPORT
const ExistentialMetatypeMetadata *
swift_getExistentialMetatypeMetadata(const Metadata *instanceType);
/// \brief Fetch a uniqued metadata for an existential type. The array
/// referenced by \c protocols will be sorted in-place.
SWIFT_RT_ENTRY_VISIBILITY
const ExistentialTypeMetadata *
swift_getExistentialTypeMetadata(ProtocolClassConstraint classConstraint,
const Metadata *superclassConstraint,
size_t numProtocols,
const ProtocolDescriptor **protocols)
SWIFT_CC(RegisterPreservingCC);
/// \brief Perform a copy-assignment from one existential container to another.
/// Both containers must be of the same existential type representable with the
/// same number of witness tables.
SWIFT_RUNTIME_EXPORT
OpaqueValue *swift_assignExistentialWithCopy(OpaqueValue *dest,
const OpaqueValue *src,
const Metadata *type);
/// \brief Perform a copy-assignment from one existential container to another.
/// Both containers must be of the same existential type representable with no
/// witness tables.
OpaqueValue *swift_assignExistentialWithCopy0(OpaqueValue *dest,
const OpaqueValue *src,
const Metadata *type);
/// \brief Perform a copy-assignment from one existential container to another.
/// Both containers must be of the same existential type representable with one
/// witness table.
OpaqueValue *swift_assignExistentialWithCopy1(OpaqueValue *dest,
const OpaqueValue *src,
const Metadata *type);
/// Calculate the numeric index of an extra inhabitant of a heap object
/// pointer in memory.
inline int swift_getHeapObjectExtraInhabitantIndex(HeapObject * const* src) {
// This must be consistent with the getHeapObjectExtraInhabitantIndex
// implementation in IRGen's ExtraInhabitants.cpp.
using namespace heap_object_abi;
uintptr_t value = reinterpret_cast<uintptr_t>(*src);
if (value >= LeastValidPointerValue)
return -1;
// Check for tagged pointers on appropriate platforms. Knowing that
// value < LeastValidPointerValue tells us a lot.
#if SWIFT_OBJC_INTEROP
if (value & ((uintptr_t(1) << ObjCReservedLowBits) - 1))
return -1;
#endif
return (int) (value >> ObjCReservedLowBits);
}
/// Store an extra inhabitant of a heap object pointer to memory,
/// in the style of a value witness.
inline void swift_storeHeapObjectExtraInhabitant(HeapObject **dest, int index) {
// This must be consistent with the storeHeapObjectExtraInhabitant
// implementation in IRGen's ExtraInhabitants.cpp.
auto value = uintptr_t(index) << heap_object_abi::ObjCReservedLowBits;
*dest = reinterpret_cast<HeapObject*>(value);
}
/// Return the number of extra inhabitants in a heap object pointer.
inline constexpr unsigned swift_getHeapObjectExtraInhabitantCount() {
// This must be consistent with the getHeapObjectExtraInhabitantCount
// implementation in IRGen's ExtraInhabitants.cpp.
using namespace heap_object_abi;
// The runtime needs no more than INT_MAX inhabitants.
return (LeastValidPointerValue >> ObjCReservedLowBits) > INT_MAX
? (unsigned)INT_MAX
: (unsigned)(LeastValidPointerValue >> ObjCReservedLowBits);
}
/// Calculate the numeric index of an extra inhabitant of a function
/// pointer in memory.
inline int swift_getFunctionPointerExtraInhabitantIndex(void * const* src) {
// This must be consistent with the getFunctionPointerExtraInhabitantIndex
// implementation in IRGen's ExtraInhabitants.cpp.
uintptr_t value = reinterpret_cast<uintptr_t>(*src);
return (value < heap_object_abi::LeastValidPointerValue
? (int) value : -1);
}
/// Store an extra inhabitant of a function pointer to memory, in the
/// style of a value witness.
inline void swift_storeFunctionPointerExtraInhabitant(void **dest, int index) {
// This must be consistent with the storeFunctionPointerExtraInhabitantIndex
// implementation in IRGen's ExtraInhabitants.cpp.
*dest = reinterpret_cast<void*>(static_cast<uintptr_t>(index));
}
/// Return the number of extra inhabitants in a function pointer.
inline constexpr unsigned swift_getFunctionPointerExtraInhabitantCount() {
// This must be consistent with the getFunctionPointerExtraInhabitantCount
// implementation in IRGen's ExtraInhabitants.cpp.
using namespace heap_object_abi;
// The runtime needs no more than INT_MAX inhabitants.
return (LeastValidPointerValue) > INT_MAX
? (unsigned)INT_MAX
: (unsigned)(LeastValidPointerValue);
}
/// Return the type name for a given type metadata.
std::string nameForMetadata(const Metadata *type,
bool qualified = true);
/// Register a block of protocol conformance records for dynamic lookup.
SWIFT_RUNTIME_EXPORT
void swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end);
/// Register a block of type metadata records dynamic lookup.
SWIFT_RUNTIME_EXPORT
void swift_registerTypeMetadataRecords(const TypeMetadataRecord *begin,
const TypeMetadataRecord *end);
/// Return the superclass, if any. The result is nullptr for root
/// classes and class protocol types.
SWIFT_CC(swift)
SWIFT_RUNTIME_STDLIB_INTERFACE
const Metadata *_swift_class_getSuperclass(const Metadata *theClass);
} // end namespace swift
#pragma clang diagnostic pop
#endif /* SWIFT_RUNTIME_METADATA_H */