blob: 97679b11e06cc6408dc509fad30b7294a86c75bc [file] [log] [blame]
//===--- Metadata.cpp - Metadata tests ------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Once.h"
#include "gtest/gtest.h"
#include <iterator>
#include <functional>
#include <sys/mman.h>
#include <vector>
#include <pthread.h>
#if !defined(_POSIX_BARRIERS) || _POSIX_BARRIERS < 0
// Implement pthread_barrier_* for platforms that don't implement them (Darwin)
#define PTHREAD_BARRIER_SERIAL_THREAD 1
struct pthread_barrier_t {
pthread_mutex_t mutex;
pthread_cond_t cond;
unsigned count;
unsigned numThreadsWaiting;
};
typedef void *pthread_barrierattr_t;
static int pthread_barrier_init(pthread_barrier_t *barrier,
pthread_barrierattr_t*, unsigned count) {
if (count == 0) {
errno = EINVAL;
return -1;
}
if (pthread_mutex_init(&barrier->mutex, nullptr) != 0) {
return -1;
}
if (pthread_cond_init(&barrier->cond, nullptr) != 0) {
pthread_mutex_destroy(&barrier->mutex);
return -1;
}
barrier->count = count;
barrier->numThreadsWaiting = 0;
return 0;
}
static int pthread_barrier_destroy(pthread_barrier_t *barrier) {
// want to destroy both even if destroying one fails.
int ret = 0;
if (pthread_cond_destroy(&barrier->cond) != 0) {
ret = -1;
}
if (pthread_mutex_destroy(&barrier->mutex) != 0) {
ret = -1;
}
return ret;
}
static int pthread_barrier_wait(pthread_barrier_t *barrier) {
if (pthread_mutex_lock(&barrier->mutex) != 0) {
return -1;
}
++barrier->numThreadsWaiting;
if (barrier->numThreadsWaiting < barrier->count) {
// Put the thread to sleep.
if (pthread_cond_wait(&barrier->cond, &barrier->mutex) != 0) {
return -1;
}
if (pthread_mutex_unlock(&barrier->mutex) != 0) {
return -1;
}
return 0;
} else {
// Reset thread count.
barrier->numThreadsWaiting = 0;
// Wake up all threads.
if (pthread_cond_broadcast(&barrier->cond) != 0) {
return -1;
}
if (pthread_mutex_unlock(&barrier->mutex) != 0) {
return -1;
}
return PTHREAD_BARRIER_SERIAL_THREAD;
}
}
#endif
using namespace swift;
// Race testing.
template <typename T>
struct RaceArgs {
std::function<T()> code;
pthread_barrier_t *go;
};
void *RaceThunk(void *vargs) {
RaceArgs<void*> *args = static_cast<RaceArgs<void*> *>(vargs);
// Signal ready. Wait for go.
pthread_barrier_wait(args->go);
return args->code();
}
/// RaceTest(code) runs code in many threads simultaneously,
/// and returns a vector of all returned results.
template <typename T, int NumThreads = 64>
std::vector<T>
RaceTest(std::function<T()> code)
{
const unsigned threadCount = NumThreads;
pthread_barrier_t go;
pthread_barrier_init(&go, nullptr, threadCount);
// Create the threads.
pthread_t threads[threadCount];
std::vector<RaceArgs<T>> args(threadCount, {code, &go});
for (unsigned i = 0; i < threadCount; i++) {
pthread_create(&threads[i], nullptr, &RaceThunk, &args[i]);
}
// Collect results.
std::vector<T> results;
for (unsigned i = 0; i < threadCount; i++) {
void *result;
pthread_join(threads[i], &result);
results.push_back(static_cast<T>(result));
}
pthread_barrier_destroy(&go);
return results;
}
/// RaceTest_ExpectEqual(code) runs code in many threads simultaneously,
/// verifies that they all returned the same value, and returns that value.
template<typename T>
T RaceTest_ExpectEqual(std::function<T()> code)
{
auto results = RaceTest<T>(code);
auto r0 = results[0];
for (auto r : results) {
EXPECT_EQ(r0, r);
}
return r0;
}
/// Some unique global pointers.
uint32_t Global1 = 0;
uint32_t Global2 = 0;
uint32_t Global3 = 0;
/// The general structure of a generic metadata.
template <typename Instance>
struct GenericMetadataTest {
GenericMetadata Header;
Instance Template;
};
GenericMetadataTest<StructMetadata> MetadataTest1 = {
// Header
{
// allocation function
[](GenericMetadata *pattern, const void *args) -> Metadata * {
auto metadata = swift_allocateGenericValueMetadata(pattern, args);
auto metadataWords = reinterpret_cast<const void**>(metadata);
auto argsWords = reinterpret_cast<const void* const*>(args);
metadataWords[2] = argsWords[0];
return metadata;
},
2 * sizeof(void*), // metadata size
1, // num arguments
0, // address point
{} // private data
},
// Fields
{
MetadataKind::Struct,
reinterpret_cast<const NominalTypeDescriptor*>(&Global1)
}
};
struct TestObjContainer {
swift_once_t token;
HeapObject obj;
};
TestObjContainer StaticTestObj;
HeapMetadata StaticTestMD;
TEST(StaticObjects, ini) {
RaceTest_ExpectEqual<const Metadata *>(
[&]() -> const Metadata * {
// Check if the object header is initialized once.
HeapObject *o = swift_initStaticObject(&StaticTestMD, &StaticTestObj.obj);
EXPECT_EQ(o, &StaticTestObj.obj);
EXPECT_EQ(StaticTestObj.obj.metadata, &StaticTestMD);
#ifdef __APPLE__
EXPECT_NE(StaticTestObj.token, 0);
#endif
const int NumRcOps = 1000;
for (int i = 0; i < NumRcOps; i++) {
swift_retain(&StaticTestObj.obj);
}
for (int i = 0; i < NumRcOps; i++) {
swift_release(&StaticTestObj.obj);
}
return StaticTestObj.obj.metadata;
});
EXPECT_EQ(swift_retainCount(&StaticTestObj.obj), 1u);
}
TEST(Concurrent, ConcurrentList) {
const int numElem = 100;
const int elemVal = 1;
ConcurrentList<int> List;
auto results = RaceTest<int*>(
[&]() -> int* {
for (int i = 0; i < numElem; i++)
List.push_front(elemVal);
return nullptr;
}
);
size_t ListLen = std::distance(List.begin(), List.end());
// Check that all of the values are initialized properly.
for (auto A : List) {
EXPECT_EQ(elemVal, A);
}
// Check that the length of the list is correct.
EXPECT_EQ(ListLen, results.size() * numElem);
}
TEST(Concurrent, ConcurrentMap) {
const int numElem = 100;
struct Entry {
size_t Key;
Entry(size_t key) : Key(key) {}
int compareWithKey(size_t key) const {
return (key == Key ? 0 : (key < Key ? -1 : 1));
}
static size_t getExtraAllocationSize(size_t key) { return 0; }
size_t getExtraAllocationSize() const { return 0; }
};
ConcurrentMap<Entry> Map;
// Add a bunch of numbers to the map concurrently.
auto results = RaceTest<int*>(
[&]() -> int* {
for (int i = 0; i < numElem; i++) {
size_t hash = (i * 123512) % 0xFFFF ;
Map.getOrInsert(hash);
}
return nullptr;
}
);
// Check that all of the values that we inserted are in the map.
for (int i=0; i < numElem; i++) {
size_t hash = (i * 123512) % 0xFFFF ;
EXPECT_TRUE(Map.find(hash));
}
}
TEST(MetadataTest, getGenericMetadata) {
auto metadataTemplate = (GenericMetadata*) &MetadataTest1;
void *args[] = { &Global2 };
auto result1 = RaceTest_ExpectEqual<const Metadata *>(
[&]() -> const Metadata * {
auto inst = static_cast<const StructMetadata*>
(swift_getGenericMetadata(metadataTemplate, args));
auto fields = reinterpret_cast<void * const *>(inst);
EXPECT_EQ(MetadataKind::Struct, inst->getKind());
EXPECT_EQ((const NominalTypeDescriptor*)&Global1,
inst->Description.get());
EXPECT_EQ(&Global2, fields[2]);
return inst;
});
args[0] = &Global3;
RaceTest_ExpectEqual<const Metadata *>(
[&]() -> const Metadata * {
auto inst = static_cast<const StructMetadata*>
(swift_getGenericMetadata(metadataTemplate, args));
EXPECT_NE(inst, result1);
auto fields = reinterpret_cast<void * const *>(inst);
EXPECT_EQ(MetadataKind::Struct, inst->getKind());
EXPECT_EQ((const NominalTypeDescriptor*)&Global1,
inst->Description.get());
EXPECT_EQ(&Global3, fields[2]);
return inst;
});
}
FullMetadata<ClassMetadata> MetadataTest2 = {
{ { nullptr }, { &VALUE_WITNESS_SYM(Bo) } },
{ { { MetadataKind::Class } }, nullptr, /*rodata*/ 1,
ClassFlags(), nullptr, 0, 0, 0, 0, 0 }
};
TEST(MetadataTest, getMetatypeMetadata) {
auto inst1 = RaceTest_ExpectEqual<const MetatypeMetadata *>(
[&]() -> const MetatypeMetadata * {
auto inst = swift_getMetatypeMetadata(&METADATA_SYM(Bi64_).base);
EXPECT_EQ(sizeof(void*), inst->getValueWitnesses()->size);
return inst;
});
auto inst2 = RaceTest_ExpectEqual<const MetatypeMetadata *>(
[&]() -> const MetatypeMetadata * {
auto inst = swift_getMetatypeMetadata(&METADATA_SYM(Bi32_).base);
EXPECT_EQ(sizeof(void*), inst->getValueWitnesses()->size);
return inst;
});
auto inst3 = RaceTest_ExpectEqual<const MetatypeMetadata *>(
[&]() -> const MetatypeMetadata * {
auto inst = swift_getMetatypeMetadata(&MetadataTest2);
EXPECT_EQ(sizeof(void*), inst->getValueWitnesses()->size);
return inst;
});
auto inst4 = RaceTest_ExpectEqual<const MetatypeMetadata *>(
[&]() -> const MetatypeMetadata * {
auto inst = swift_getMetatypeMetadata(inst3);
EXPECT_EQ(sizeof(void*), inst->getValueWitnesses()->size);
return inst;
});
auto inst5 = RaceTest_ExpectEqual<const MetatypeMetadata *>(
[&]() -> const MetatypeMetadata * {
auto inst = swift_getMetatypeMetadata(inst1);
EXPECT_EQ(sizeof(void*), inst->getValueWitnesses()->size);
return inst;
});
// After all this, the instance type fields should still be valid.
ASSERT_EQ(&METADATA_SYM(Bi64_).base, inst1->InstanceType);
ASSERT_EQ(&METADATA_SYM(Bi32_).base, inst2->InstanceType);
ASSERT_EQ(&MetadataTest2, inst3->InstanceType);
ASSERT_EQ(inst3, inst4->InstanceType);
ASSERT_EQ(inst1, inst5->InstanceType);
}
ProtocolDescriptor ProtocolA{
"_TMp8Metadata9ProtocolA",
nullptr,
ProtocolDescriptorFlags()
.withSwift(true)
.withClassConstraint(ProtocolClassConstraint::Any)
.withDispatchStrategy(ProtocolDispatchStrategy::Swift)
};
ProtocolDescriptor ProtocolB{
"_TMp8Metadata9ProtocolB",
nullptr,
ProtocolDescriptorFlags()
.withSwift(true)
.withClassConstraint(ProtocolClassConstraint::Any)
.withDispatchStrategy(ProtocolDispatchStrategy::Swift)
};
ProtocolDescriptor ProtocolError{
"_TMp8Metadata13ProtocolError",
nullptr,
ProtocolDescriptorFlags()
.withSwift(true)
.withClassConstraint(ProtocolClassConstraint::Any)
.withDispatchStrategy(ProtocolDispatchStrategy::Swift)
.withSpecialProtocol(SpecialProtocol::Error)
};
ProtocolDescriptor ProtocolClassConstrained{
"_TMp8Metadata24ProtocolClassConstrained",
nullptr,
ProtocolDescriptorFlags()
.withSwift(true)
.withClassConstraint(ProtocolClassConstraint::Class)
.withDispatchStrategy(ProtocolDispatchStrategy::Swift)
};
ProtocolDescriptor ProtocolNoWitnessTable{
"_TMp8Metadata22ProtocolNoWitnessTable",
nullptr,
ProtocolDescriptorFlags()
.withSwift(true)
.withClassConstraint(ProtocolClassConstraint::Class)
.withDispatchStrategy(ProtocolDispatchStrategy::ObjC)
};
TEST(MetadataTest, getExistentialMetadata) {
const ProtocolDescriptor *protoList1[] = {};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto any = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr,
0, protoList1);
EXPECT_EQ(MetadataKind::Existential, any->getKind());
EXPECT_EQ(0U, any->Flags.getNumWitnessTables());
EXPECT_EQ(ProtocolClassConstraint::Any, any->Flags.getClassConstraint());
EXPECT_EQ(0U, any->Protocols.NumProtocols);
EXPECT_EQ(SpecialProtocol::None,
any->Flags.getSpecialProtocol());
EXPECT_EQ(nullptr,
any->getSuperclassConstraint());
return any;
});
const ProtocolDescriptor *protoList2[] = {
&ProtocolA
};
auto exA = RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto a = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr,
1, protoList2);
EXPECT_EQ(MetadataKind::Existential, a->getKind());
EXPECT_EQ(1U, a->Flags.getNumWitnessTables());
EXPECT_EQ(ProtocolClassConstraint::Any, a->Flags.getClassConstraint());
EXPECT_EQ(1U, a->Protocols.NumProtocols);
EXPECT_EQ(&ProtocolA, a->Protocols[0]);
EXPECT_EQ(SpecialProtocol::None,
a->Flags.getSpecialProtocol());
EXPECT_EQ(nullptr,
a->getSuperclassConstraint());
return a;
});
const ProtocolDescriptor *protoList3[] = {
&ProtocolB
};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto b = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr,
1, protoList3);
EXPECT_NE(exA, b);
EXPECT_EQ(MetadataKind::Existential, b->getKind());
EXPECT_EQ(1U, b->Flags.getNumWitnessTables());
EXPECT_EQ(ProtocolClassConstraint::Any, b->Flags.getClassConstraint());
EXPECT_EQ(1U, b->Protocols.NumProtocols);
EXPECT_EQ(&ProtocolB, b->Protocols[0]);
EXPECT_EQ(SpecialProtocol::None,
b->Flags.getSpecialProtocol());
EXPECT_EQ(nullptr,
b->getSuperclassConstraint());
return b;
});
const ProtocolDescriptor *protoList6[] = {
&ProtocolClassConstrained,
};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto classConstrained
= swift_getExistentialTypeMetadata(ProtocolClassConstraint::Class,
/*superclass=*/nullptr,
1, protoList6);
EXPECT_EQ(MetadataKind::Existential, classConstrained->getKind());
EXPECT_EQ(1U, classConstrained->Flags.getNumWitnessTables());
EXPECT_EQ(ProtocolClassConstraint::Class,
classConstrained->Flags.getClassConstraint());
EXPECT_EQ(1U, classConstrained->Protocols.NumProtocols);
EXPECT_EQ(SpecialProtocol::None,
classConstrained->Flags.getSpecialProtocol());
EXPECT_EQ(&ProtocolClassConstrained, classConstrained->Protocols[0]);
EXPECT_EQ(nullptr,
classConstrained->getSuperclassConstraint());
return classConstrained;
});
const ProtocolDescriptor *protoList7[] = {
&ProtocolNoWitnessTable
};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto noWitnessTable
= swift_getExistentialTypeMetadata(ProtocolClassConstraint::Class,
/*superclass=*/nullptr,
1, protoList7);
EXPECT_EQ(MetadataKind::Existential, noWitnessTable->getKind());
EXPECT_EQ(0U, noWitnessTable->Flags.getNumWitnessTables());
EXPECT_EQ(ProtocolClassConstraint::Class,
noWitnessTable->Flags.getClassConstraint());
EXPECT_EQ(1U, noWitnessTable->Protocols.NumProtocols);
EXPECT_EQ(SpecialProtocol::None,
noWitnessTable->Flags.getSpecialProtocol());
EXPECT_EQ(&ProtocolNoWitnessTable, noWitnessTable->Protocols[0]);
EXPECT_EQ(nullptr,
noWitnessTable->getSuperclassConstraint());
return noWitnessTable;
});
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
const ProtocolDescriptor *protoList8[] = {
&ProtocolNoWitnessTable,
&ProtocolA,
&ProtocolB
};
auto mixedWitnessTable
= swift_getExistentialTypeMetadata(ProtocolClassConstraint::Class,
/*superclass=*/nullptr,
3, protoList8);
EXPECT_EQ(MetadataKind::Existential, mixedWitnessTable->getKind());
EXPECT_EQ(2U, mixedWitnessTable->Flags.getNumWitnessTables());
EXPECT_EQ(ProtocolClassConstraint::Class,
mixedWitnessTable->Flags.getClassConstraint());
EXPECT_EQ(3U, mixedWitnessTable->Protocols.NumProtocols);
EXPECT_EQ(SpecialProtocol::None,
mixedWitnessTable->Flags.getSpecialProtocol());
EXPECT_EQ(nullptr,
mixedWitnessTable->getSuperclassConstraint());
return mixedWitnessTable;
});
const ValueWitnessTable *ExpectedErrorValueWitnesses;
#if SWIFT_OBJC_INTEROP
ExpectedErrorValueWitnesses = &VALUE_WITNESS_SYM(BO);
#else
ExpectedErrorValueWitnesses = &VALUE_WITNESS_SYM(Bo);
#endif
const ProtocolDescriptor *protoList9[] = {
&ProtocolError
};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto special
= swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr,
1, protoList9);
EXPECT_EQ(MetadataKind::Existential, special->getKind());
EXPECT_EQ(1U, special->Flags.getNumWitnessTables());
EXPECT_EQ(SpecialProtocol::Error,
special->Flags.getSpecialProtocol());
EXPECT_EQ(ExpectedErrorValueWitnesses,
special->getValueWitnesses());
EXPECT_EQ(nullptr,
special->getSuperclassConstraint());
return special;
});
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
const ProtocolDescriptor *protoList10[] = {
&ProtocolError,
&ProtocolA
};
auto special
= swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr,
2, protoList10);
EXPECT_EQ(MetadataKind::Existential, special->getKind());
EXPECT_EQ(2U, special->Flags.getNumWitnessTables());
// Compositions of special protocols aren't special.
EXPECT_EQ(SpecialProtocol::None,
special->Flags.getSpecialProtocol());
EXPECT_NE(ExpectedErrorValueWitnesses,
special->getValueWitnesses());
EXPECT_EQ(nullptr,
special->getSuperclassConstraint());
return special;
});
}
static SWIFT_CC(swift) void destroySuperclass(SWIFT_CONTEXT HeapObject *toDestroy) {}
struct {
void *Prefix[4];
FullMetadata<ClassMetadata> Metadata;
} SuperclassWithPrefix = {
{ &Global1, &Global3, &Global2, &Global3 },
{ { { &destroySuperclass }, { &VALUE_WITNESS_SYM(Bo) } },
{ { { MetadataKind::Class } }, nullptr, /*rodata*/ 1, ClassFlags(), nullptr,
0, 0, 0, sizeof(SuperclassWithPrefix),
sizeof(SuperclassWithPrefix.Prefix) + sizeof(HeapMetadataHeader) } }
};
ClassMetadata * const SuperclassWithPrefix_AddressPoint =
&SuperclassWithPrefix.Metadata;
static SWIFT_CC(swift) void destroySubclass(SWIFT_CONTEXT HeapObject *toDestroy) {}
struct {
GenericMetadata Header;
FullMetadata<ClassMetadata> Pattern;
void *Suffix[3];
} GenericSubclass = {
{
// allocation function
[](GenericMetadata *pattern, const void *args) -> Metadata* {
auto metadata =
swift_allocateGenericClassMetadata(pattern, args,
SuperclassWithPrefix_AddressPoint);
char *bytes = (char*) metadata + sizeof(ClassMetadata);
auto metadataWords = reinterpret_cast<const void**>(bytes);
auto argsWords = reinterpret_cast<const void* const *>(args);
metadataWords[2] = argsWords[0];
return metadata;
},
sizeof(GenericSubclass.Pattern) + sizeof(GenericSubclass.Suffix), // pattern size
1, // num arguments
sizeof(HeapMetadataHeader), // address point
{} // private data
},
{ { { &destroySubclass }, { &VALUE_WITNESS_SYM(Bo) } },
{ { { MetadataKind::Class } }, nullptr, /*rodata*/ 1, ClassFlags(), nullptr,
0, 0, 0,
sizeof(GenericSubclass.Pattern) + sizeof(GenericSubclass.Suffix),
sizeof(HeapMetadataHeader) } },
{ &Global2, &Global1, &Global2 }
};
TEST(MetadataTest, getGenericMetadata_SuperclassWithUnexpectedPrefix) {
auto metadataTemplate = &GenericSubclass.Header;
void *args[] = { &Global3 };
RaceTest_ExpectEqual<const ClassMetadata *>(
[&]() -> const ClassMetadata * {
auto inst = static_cast<const ClassMetadata*>(
swift_getGenericMetadata(metadataTemplate, args));
void * const *fields = reinterpret_cast<void * const *>(inst);
// Assert that we copied the extra prefix data from the superclass.
EXPECT_EQ(&Global1, fields[-6]);
EXPECT_EQ(&Global3, fields[-5]);
EXPECT_EQ(&Global2, fields[-4]);
EXPECT_EQ(&Global3, fields[-3]);
// Assert that we copied the shared prefix data from the subclass.
EXPECT_EQ((void*) &destroySubclass, fields[-2]);
EXPECT_EQ(&VALUE_WITNESS_SYM(Bo), fields[-1]);
// Assert that we set the superclass field.
EXPECT_EQ(SuperclassWithPrefix_AddressPoint, fields[1]);
// Assert that we copied the subclass suffix data.
auto suffix = (void * const *) ((char*) inst + sizeof(ClassMetadata));
EXPECT_EQ(&Global2, suffix[0]);
EXPECT_EQ(&Global1, suffix[1]);
// This should have been overwritten by the creation function.
EXPECT_EQ(&Global3, suffix[2]);
EXPECT_EQ(7 * sizeof(void*) + sizeof(GenericSubclass.Pattern),
inst->getClassSize());
EXPECT_EQ(4 * sizeof(void*) + sizeof(HeapMetadataHeader),
inst->getClassAddressPoint());
// These are all expected to be equal.
return inst;
});
}
static ProtocolDescriptor OpaqueProto1 = { "OpaqueProto1", nullptr,
ProtocolDescriptorFlags().withSwift(true)
.withDispatchStrategy(ProtocolDispatchStrategy::Swift)
.withClassConstraint(ProtocolClassConstraint::Any)
};
static ProtocolDescriptor OpaqueProto2 = { "OpaqueProto2", nullptr,
ProtocolDescriptorFlags().withSwift(true)
.withDispatchStrategy(ProtocolDispatchStrategy::Swift)
.withClassConstraint(ProtocolClassConstraint::Any)
};
static ProtocolDescriptor OpaqueProto3 = { "OpaqueProto3", nullptr,
ProtocolDescriptorFlags().withSwift(true)
.withDispatchStrategy(ProtocolDispatchStrategy::Swift)
.withClassConstraint(ProtocolClassConstraint::Any)
};
static ProtocolDescriptor ClassProto1 = { "ClassProto1", nullptr,
ProtocolDescriptorFlags().withSwift(true)
.withDispatchStrategy(ProtocolDispatchStrategy::Swift)
.withClassConstraint(ProtocolClassConstraint::Class)
};
TEST(MetadataTest, getExistentialTypeMetadata_opaque) {
const ProtocolDescriptor *protoList1[] = {
&OpaqueProto1
};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto ex1 = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr,
1, protoList1);
EXPECT_EQ(MetadataKind::Existential, ex1->getKind());
EXPECT_EQ(5 * sizeof(void*), ex1->getValueWitnesses()->getSize());
EXPECT_EQ(alignof(void*), ex1->getValueWitnesses()->getAlignment());
EXPECT_FALSE(ex1->getValueWitnesses()->isPOD());
EXPECT_FALSE(ex1->getValueWitnesses()->isBitwiseTakable());
EXPECT_EQ(nullptr,
ex1->getSuperclassConstraint());
return ex1;
});
const ProtocolDescriptor *protoList2[] = {
&OpaqueProto1, &OpaqueProto2
};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto ex2 = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr,
2, protoList2);
EXPECT_EQ(MetadataKind::Existential, ex2->getKind());
EXPECT_EQ(6 * sizeof(void*), ex2->getValueWitnesses()->getSize());
EXPECT_EQ(alignof(void*), ex2->getValueWitnesses()->getAlignment());
EXPECT_FALSE(ex2->getValueWitnesses()->isPOD());
EXPECT_FALSE(ex2->getValueWitnesses()->isBitwiseTakable());
EXPECT_EQ(nullptr,
ex2->getSuperclassConstraint());
return ex2;
});
const ProtocolDescriptor *protoList3[] = {
&OpaqueProto1, &OpaqueProto2, &OpaqueProto3
};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto ex3 = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr,
3, protoList3);
EXPECT_EQ(MetadataKind::Existential, ex3->getKind());
EXPECT_EQ(7 * sizeof(void*), ex3->getValueWitnesses()->getSize());
EXPECT_EQ(alignof(void*), ex3->getValueWitnesses()->getAlignment());
EXPECT_FALSE(ex3->getValueWitnesses()->isPOD());
EXPECT_FALSE(ex3->getValueWitnesses()->isBitwiseTakable());
EXPECT_EQ(nullptr,
ex3->getSuperclassConstraint());
return ex3;
});
}
TEST(MetadataTest, getExistentialTypeMetadata_class) {
const ProtocolDescriptor *protoList1[] = {
&ClassProto1
};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto ex1 = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Class,
/*superclass=*/nullptr,
1, protoList1);
EXPECT_EQ(MetadataKind::Existential, ex1->getKind());
EXPECT_EQ(2 * sizeof(void*), ex1->getValueWitnesses()->getSize());
EXPECT_EQ(alignof(void*), ex1->getValueWitnesses()->getAlignment());
EXPECT_FALSE(ex1->getValueWitnesses()->isPOD());
EXPECT_TRUE(ex1->getValueWitnesses()->isBitwiseTakable());
EXPECT_EQ(nullptr,
ex1->getSuperclassConstraint());
return ex1;
});
const ProtocolDescriptor *protoList2[] = {
&OpaqueProto1, &ClassProto1
};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto ex2 = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Class,
/*superclass=*/nullptr,
2, protoList2);
EXPECT_EQ(MetadataKind::Existential, ex2->getKind());
EXPECT_EQ(3 * sizeof(void*), ex2->getValueWitnesses()->getSize());
EXPECT_EQ(alignof(void*), ex2->getValueWitnesses()->getAlignment());
EXPECT_FALSE(ex2->getValueWitnesses()->isPOD());
EXPECT_TRUE(ex2->getValueWitnesses()->isBitwiseTakable());
EXPECT_EQ(nullptr,
ex2->getSuperclassConstraint());
return ex2;
});
const ProtocolDescriptor *protoList3[] = {
&OpaqueProto1, &OpaqueProto2, &ClassProto1
};
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
auto ex3 = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Class,
/*superclass=*/nullptr,
3, protoList3);
EXPECT_EQ(MetadataKind::Existential, ex3->getKind());
EXPECT_EQ(4 * sizeof(void*), ex3->getValueWitnesses()->getSize());
EXPECT_EQ(alignof(void*), ex3->getValueWitnesses()->getAlignment());
EXPECT_FALSE(ex3->getValueWitnesses()->isPOD());
EXPECT_TRUE(ex3->getValueWitnesses()->isBitwiseTakable());
EXPECT_EQ(nullptr,
ex3->getSuperclassConstraint());
return ex3;
});
}
TEST(MetadataTest, getExistentialTypeMetadata_subclass) {
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
const ProtocolDescriptor *protoList1[] = {
&OpaqueProto1
};
auto ex1 = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Class,
/*superclass=*/&MetadataTest2,
1, protoList1);
EXPECT_EQ(MetadataKind::Existential, ex1->getKind());
EXPECT_EQ(2 * sizeof(void*), ex1->getValueWitnesses()->getSize());
EXPECT_EQ(alignof(void*), ex1->getValueWitnesses()->getAlignment());
EXPECT_FALSE(ex1->getValueWitnesses()->isPOD());
EXPECT_TRUE(ex1->getValueWitnesses()->isBitwiseTakable());
EXPECT_EQ(ProtocolClassConstraint::Class,
ex1->Flags.getClassConstraint());
EXPECT_EQ(1U, ex1->Protocols.NumProtocols);
EXPECT_EQ(&OpaqueProto1, ex1->Protocols[0]);
EXPECT_EQ(&MetadataTest2, ex1->getSuperclassConstraint());
return ex1;
});
RaceTest_ExpectEqual<const ExistentialTypeMetadata *>(
[&]() -> const ExistentialTypeMetadata * {
const ProtocolDescriptor *protoList2[] = {
&OpaqueProto1,
&ClassProto1
};
auto ex2 = swift_getExistentialTypeMetadata(ProtocolClassConstraint::Class,
/*superclass=*/&MetadataTest2,
2, protoList2);
EXPECT_EQ(MetadataKind::Existential, ex2->getKind());
EXPECT_EQ(3 * sizeof(void*), ex2->getValueWitnesses()->getSize());
EXPECT_EQ(alignof(void*), ex2->getValueWitnesses()->getAlignment());
EXPECT_FALSE(ex2->getValueWitnesses()->isPOD());
EXPECT_TRUE(ex2->getValueWitnesses()->isBitwiseTakable());
EXPECT_EQ(ProtocolClassConstraint::Class,
ex2->Flags.getClassConstraint());
EXPECT_EQ(2U, ex2->Protocols.NumProtocols);
EXPECT_TRUE(ex2->Protocols[0] == &OpaqueProto1 &&
ex2->Protocols[1] == &ClassProto1);
EXPECT_EQ(&MetadataTest2, ex2->getSuperclassConstraint());
return ex2;
});
}
namespace swift {
void installCommonValueWitnesses(ValueWitnessTable *vwtable);
} // namespace swift
TEST(MetadataTest, installCommonValueWitnesses_pod_indirect) {
ValueWitnessTable testTable;
FullMetadata<Metadata> testMetadata{{&testTable}, {MetadataKind::Opaque}};
// rdar://problem/21375421 - pod_indirect_initializeBufferWithTakeOfBuffer
// should move ownership of a fixed-size buffer.
testTable.size = sizeof(ValueBuffer) + 1;
testTable.flags = ValueWitnessFlags()
.withAlignment(alignof(ValueBuffer))
.withPOD(true)
.withBitwiseTakable(true)
.withInlineStorage(false);
testTable.stride = sizeof(ValueBuffer) + alignof(ValueBuffer);
installCommonValueWitnesses(&testTable);
// Replace allocateBuffer and destroyBuffer with logging versions.
struct {
ValueBuffer buffer;
uintptr_t canary;
} buf1{{}, 0x5A5A5A5AU}, buf2{{}, 0xA5A5A5A5U};
testMetadata.allocateBoxForExistentialIn(&buf1.buffer);
testTable.initializeBufferWithTakeOfBuffer(&buf2.buffer, &buf1.buffer,
&testMetadata);
// The existential's box reference should be copied.
EXPECT_EQ(buf1.buffer.PrivateData[0], buf2.buffer.PrivateData[0]);
// Ownership of the box should have been transferred.
auto *reference = reinterpret_cast<HeapObject *>(buf2.buffer.PrivateData[0]);
EXPECT_TRUE(swift_isUniquelyReferencedOrPinned_nonNull_native(reference));
EXPECT_EQ(buf1.canary, (uintptr_t)0x5A5A5A5AU);
EXPECT_EQ(buf2.canary, (uintptr_t)0xA5A5A5A5U);
// Release the buffer.
swift_release(reference);
}
// We cannot construct RelativeDirectPointer instances, so define
// a "shadow" struct for that purpose
struct GenericWitnessTableStorage {
uint16_t WitnessTableSizeInWords;
uint16_t WitnessTablePrivateSizeInWords;
int32_t Protocol;
int32_t Pattern;
int32_t Instantiator;
int32_t PrivateData;
};
template<typename T>
static void initializeRelativePointer(int32_t *ptr, T value) {
*ptr = (int32_t)(value == nullptr ? 0 : (uintptr_t) value - (uintptr_t) ptr);
}
// Tests for resilient witness table instantiation, with runtime-provided
// default requirements
static void witnessTableInstantiator(WitnessTable *instantiatedTable,
const Metadata *type,
void * const *instantiationArgs) {
EXPECT_EQ(type, nullptr);
EXPECT_EQ(instantiationArgs, nullptr);
EXPECT_EQ(((void **) instantiatedTable)[0], (void*) 123);
EXPECT_EQ(((void **) instantiatedTable)[1], (void*) 234);
// The last witness is computed dynamically at instantiation time.
((void **) instantiatedTable)[2] = (void *) 345;
}
static void fakeDefaultWitness1() {}
static void fakeDefaultWitness2() {}
// A mock protocol descriptor with some default witnesses at the end.
//
// Note: It is not standards-compliant to compare function pointers for
// equality, so we just use fake addresses instead.
struct TestProtocol {
ProtocolDescriptor descriptor;
union {
ProtocolRequirement requirements[5];
};
TestProtocol()
: descriptor("TestProtocol",
nullptr,
ProtocolDescriptorFlags().withResilient(true)) {
descriptor.NumMandatoryRequirements = 3;
descriptor.NumRequirements = 5;
initializeRelativePointer(
(int32_t *) &descriptor.Requirements,
requirements);
using Flags = ProtocolRequirementFlags;
requirements[0].Flags = Flags(Flags::Kind::Method);
requirements[0].DefaultImplementation = nullptr;
requirements[1].Flags = Flags(Flags::Kind::Method);
requirements[1].DefaultImplementation = nullptr;
requirements[2].Flags = Flags(Flags::Kind::Method);
requirements[2].DefaultImplementation = nullptr;
requirements[3].Flags = Flags(Flags::Kind::Method);
initializeRelativePointer(
(int32_t *) &requirements[3].DefaultImplementation,
fakeDefaultWitness1);
requirements[4].Flags = Flags(Flags::Kind::Method);
initializeRelativePointer(
(int32_t *) &requirements[4].DefaultImplementation,
fakeDefaultWitness2);
}
};
// All of these have to be global to relative reference each other, and
// the instantiator function.
TestProtocol testProtocol;
GenericWitnessTableStorage tableStorage1;
GenericWitnessTableStorage tableStorage2;
GenericWitnessTableStorage tableStorage3;
GenericWitnessTableStorage tableStorage4;
GenericWitnessTable::PrivateDataType tablePrivateData1;
GenericWitnessTable::PrivateDataType tablePrivateData2;
GenericWitnessTable::PrivateDataType tablePrivateData3;
GenericWitnessTable::PrivateDataType tablePrivateData4;
const void *witnesses[] = {
(void *) 123,
(void *) 234,
(void *) 0, // filled in by instantiator function
(void *) 456,
(void *) 567
};
TEST(WitnessTableTest, getGenericWitnessTable) {
EXPECT_EQ(sizeof(GenericWitnessTableStorage), sizeof(GenericWitnessTable));
EXPECT_EQ(testProtocol.descriptor.getDefaultWitness(3),
(void *) fakeDefaultWitness1);
EXPECT_EQ(testProtocol.descriptor.getDefaultWitness(4),
(void *) fakeDefaultWitness2);
// Conformance provides all requirements, and we don't have an
// instantiator, so we can just return the pattern.
{
tableStorage1.WitnessTableSizeInWords = 5;
tableStorage1.WitnessTablePrivateSizeInWords = 0;
initializeRelativePointer(&tableStorage1.Protocol, &testProtocol.descriptor);
initializeRelativePointer(&tableStorage1.Pattern, witnesses);
initializeRelativePointer(&tableStorage1.Instantiator, nullptr);
initializeRelativePointer(&tableStorage1.PrivateData, &tablePrivateData1);
GenericWitnessTable *table = reinterpret_cast<GenericWitnessTable *>(
&tableStorage1);
RaceTest_ExpectEqual<const WitnessTable *>(
[&]() -> const WitnessTable * {
const WitnessTable *instantiatedTable =
swift_getGenericWitnessTable(table, nullptr, nullptr);
EXPECT_EQ(instantiatedTable, table->Pattern.get());
return instantiatedTable;
});
}
// Conformance provides all requirements, but we have private storage
// and an initializer, so we must instantiate.
{
tableStorage2.WitnessTableSizeInWords = 5;
tableStorage2.WitnessTablePrivateSizeInWords = 1;
initializeRelativePointer(&tableStorage2.Protocol, &testProtocol.descriptor);
initializeRelativePointer(&tableStorage2.Pattern, witnesses);
initializeRelativePointer(&tableStorage2.Instantiator,
(const void *) witnessTableInstantiator);
initializeRelativePointer(&tableStorage2.PrivateData, &tablePrivateData2);
GenericWitnessTable *table = reinterpret_cast<GenericWitnessTable *>(
&tableStorage2);
RaceTest_ExpectEqual<const WitnessTable *>(
[&]() -> const WitnessTable * {
const WitnessTable *instantiatedTable =
swift_getGenericWitnessTable(table, nullptr, nullptr);
EXPECT_NE(instantiatedTable, table->Pattern.get());
EXPECT_EQ(((void **) instantiatedTable)[-1], (void *) 0);
EXPECT_EQ(((void **) instantiatedTable)[0], (void *) 123);
EXPECT_EQ(((void **) instantiatedTable)[1], (void *) 234);
EXPECT_EQ(((void **) instantiatedTable)[2], (void *) 345);
EXPECT_EQ(((void **) instantiatedTable)[3], (void *) 456);
EXPECT_EQ(((void **) instantiatedTable)[4], (void *) 567);
return instantiatedTable;
});
}
// Conformance needs one default requirement to be filled in
{
tableStorage3.WitnessTableSizeInWords = 4;
tableStorage3.WitnessTablePrivateSizeInWords = 1;
initializeRelativePointer(&tableStorage3.Protocol, &testProtocol.descriptor);
initializeRelativePointer(&tableStorage3.Pattern, witnesses);
initializeRelativePointer(&tableStorage3.Instantiator, witnessTableInstantiator);
initializeRelativePointer(&tableStorage3.PrivateData, &tablePrivateData3);
GenericWitnessTable *table = reinterpret_cast<GenericWitnessTable *>(
&tableStorage3);
RaceTest_ExpectEqual<const WitnessTable *>(
[&]() -> const WitnessTable * {
const WitnessTable *instantiatedTable =
swift_getGenericWitnessTable(table, nullptr, nullptr);
EXPECT_NE(instantiatedTable, table->Pattern.get());
EXPECT_EQ(((void **) instantiatedTable)[-1], (void *) 0);
EXPECT_EQ(((void **) instantiatedTable)[0], (void *) 123);
EXPECT_EQ(((void **) instantiatedTable)[1], (void *) 234);
EXPECT_EQ(((void **) instantiatedTable)[2], (void *) 345);
EXPECT_EQ(((void **) instantiatedTable)[3], (void *) 456);
EXPECT_EQ(((void **) instantiatedTable)[4], (void *) fakeDefaultWitness2);
return instantiatedTable;
});
}
// Third case: conformance needs both default requirements
// to be filled in
{
tableStorage4.WitnessTableSizeInWords = 3;
tableStorage4.WitnessTablePrivateSizeInWords = 1;
initializeRelativePointer(&tableStorage4.Protocol, &testProtocol.descriptor);
initializeRelativePointer(&tableStorage4.Pattern, witnesses);
initializeRelativePointer(&tableStorage4.Instantiator, witnessTableInstantiator);
initializeRelativePointer(&tableStorage4.PrivateData, &tablePrivateData4);
GenericWitnessTable *table = reinterpret_cast<GenericWitnessTable *>(
&tableStorage4);
RaceTest_ExpectEqual<const WitnessTable *>(
[&]() -> const WitnessTable * {
const WitnessTable *instantiatedTable =
swift_getGenericWitnessTable(table, nullptr, nullptr);
EXPECT_NE(instantiatedTable, table->Pattern.get());
EXPECT_EQ(((void **) instantiatedTable)[-1], (void *) 0);
EXPECT_EQ(((void **) instantiatedTable)[0], (void *) 123);
EXPECT_EQ(((void **) instantiatedTable)[1], (void *) 234);
EXPECT_EQ(((void **) instantiatedTable)[2], (void *) 345);
EXPECT_EQ(((void **) instantiatedTable)[3], (void *) fakeDefaultWitness1);
EXPECT_EQ(((void **) instantiatedTable)[4], (void *) fakeDefaultWitness2);
return instantiatedTable;
});
}
}
static void initialize_pod_witness_table(ValueWitnessTable &testTable) {
testTable.size = sizeof(ValueBuffer);
testTable.flags = ValueWitnessFlags()
.withAlignment(alignof(ValueBuffer))
.withPOD(true)
.withBitwiseTakable(true)
.withInlineStorage(true);
testTable.stride = sizeof(ValueBuffer);
installCommonValueWitnesses(&testTable);
}
TEST(TestOpaqueExistentialBox, test_assignWithCopy_pod) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_pod_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_pod_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
void *zeroPtr = nullptr;
void *otherPtr = &zeroPtr;
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox{{{zeroPtr, zeroPtr, zeroPtr}}, metadata, 0x5A5A5A5AU},
existBox2{{{otherPtr, otherPtr, zeroPtr}}, metadata2, 0xB5A5A5A5U};
anyVWT->assignWithCopy(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata2);
EXPECT_EQ(existBox.canary, 0x5A5A5A5AU);
EXPECT_EQ(existBox.buffer.PrivateData[0], otherPtr);
EXPECT_EQ(existBox.buffer.PrivateData[1], otherPtr);
EXPECT_EQ(existBox.buffer.PrivateData[2], zeroPtr);
}
TEST(TestOpaqueExistentialBox, test_assignWithTake_pod) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_pod_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_pod_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
void *zeroPtr = nullptr;
void *otherPtr = &zeroPtr;
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox{{{zeroPtr, zeroPtr, zeroPtr}}, metadata, 0x5A5A5A5AU},
existBox2{{{otherPtr, otherPtr, zeroPtr}}, metadata2, 0xB5A5A5A5U};
anyVWT->assignWithTake(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata2);
EXPECT_EQ(existBox.canary, 0x5A5A5A5AU);
EXPECT_EQ(existBox.buffer.PrivateData[0], otherPtr);
EXPECT_EQ(existBox.buffer.PrivateData[1], otherPtr);
EXPECT_EQ(existBox.buffer.PrivateData[2], zeroPtr);
}
static void initialize_indirect_witness_table(ValueWitnessTable &testTable) {
testTable.size = sizeof(ValueBuffer) + 1;
testTable.flags = ValueWitnessFlags()
.withAlignment(alignof(ValueBuffer))
.withPOD(true)
.withBitwiseTakable(true)
.withInlineStorage(false);
testTable.stride = sizeof(ValueBuffer) + 1;
installCommonValueWitnesses(&testTable);
}
TEST(TestOpaqueExistentialBox, test_assignWithCopy_indirect_indirect) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_indirect_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_indirect_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
auto refAndObjectAddr = BoxPair(swift_allocBox(metadata));
swift_retain(refAndObjectAddr.first);
auto refAndObjectAddr2 = BoxPair(swift_allocBox(metadata2));
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox{{{refAndObjectAddr.first, nullptr, nullptr}}, metadata, 0x5A5A5A5AU},
existBox2{{{refAndObjectAddr2.first, nullptr, nullptr}}, metadata2, 0xB5A5A5A5U};
anyVWT->assignWithCopy(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata2);
EXPECT_EQ(existBox.canary, 0x5A5A5A5AU);
EXPECT_EQ(existBox.buffer.PrivateData[0], refAndObjectAddr2.first);
EXPECT_EQ(swift_retainCount(refAndObjectAddr.first), 1u);
EXPECT_EQ(swift_retainCount(refAndObjectAddr2.first), 2u);
}
TEST(TestOpaqueExistentialBox, test_assignWithTake_indirect_indirect) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_indirect_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_indirect_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
auto refAndObjectAddr = BoxPair(swift_allocBox(metadata));
swift_retain(refAndObjectAddr.first);
auto refAndObjectAddr2 = BoxPair(swift_allocBox(metadata2));
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox{{{refAndObjectAddr.first, nullptr, nullptr}}, metadata, 0x5A5A5A5AU},
existBox2{{{refAndObjectAddr2.first, nullptr, nullptr}}, metadata2, 0xB5A5A5A5U};
anyVWT->assignWithTake(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata2);
EXPECT_EQ(existBox.canary, 0x5A5A5A5AU);
EXPECT_EQ(existBox.buffer.PrivateData[0], refAndObjectAddr2.first);
EXPECT_EQ(swift_retainCount(refAndObjectAddr.first), 1u);
EXPECT_EQ(swift_retainCount(refAndObjectAddr2.first), 1u);
}
TEST(TestOpaqueExistentialBox, test_assignWithCopy_pod_indirect) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_pod_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_indirect_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
auto refAndObjectAddr2 = BoxPair(swift_allocBox(metadata2));
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox{{{nullptr, nullptr, nullptr}}, metadata, 0x5A5A5A5AU},
existBox2{{{refAndObjectAddr2.first, nullptr, nullptr}}, metadata2, 0xB5A5A5A5U};
anyVWT->assignWithCopy(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata2);
EXPECT_EQ(existBox.canary, 0x5A5A5A5AU);
EXPECT_EQ(existBox.buffer.PrivateData[0], refAndObjectAddr2.first);
EXPECT_EQ(swift_retainCount(refAndObjectAddr2.first), 2u);
}
TEST(TestOpaqueExistentialBox, test_assignWithTake_pod_indirect) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_pod_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_indirect_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
auto refAndObjectAddr2 = BoxPair(swift_allocBox(metadata2));
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox{{{nullptr, nullptr, nullptr}}, metadata, 0x5A5A5A5AU},
existBox2{{{refAndObjectAddr2.first, nullptr, nullptr}}, metadata2, 0xB5A5A5A5U};
anyVWT->assignWithTake(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata2);
EXPECT_EQ(existBox.canary, 0x5A5A5A5AU);
EXPECT_EQ(existBox.buffer.PrivateData[0], refAndObjectAddr2.first);
EXPECT_EQ(swift_retainCount(refAndObjectAddr2.first), 1u);
}
TEST(TestOpaqueExistentialBox, test_assignWithCopy_indirect_pod) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_pod_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_indirect_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
auto refAndObjectAddr2 = BoxPair(swift_allocBox(metadata2));
void *someAddr = &anyVWT;
swift_retain(refAndObjectAddr2.first);
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox2{{{someAddr, nullptr, someAddr}}, metadata, 0x5A5A5A5AU},
existBox{{{refAndObjectAddr2.first, nullptr, nullptr}}, metadata2, 0xB5A5A5A5U};
anyVWT->assignWithCopy(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata);
EXPECT_EQ(existBox.canary, 0xB5A5A5A5U);
EXPECT_EQ(existBox.buffer.PrivateData[0], someAddr);
EXPECT_EQ(existBox.buffer.PrivateData[1], nullptr);
EXPECT_EQ(existBox.buffer.PrivateData[2], someAddr);
EXPECT_EQ(swift_retainCount(refAndObjectAddr2.first), 1u);
}
TEST(TestOpaqueExistentialBox, test_assignWithTake_indirect_pod) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_pod_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_indirect_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
auto refAndObjectAddr2 = BoxPair(swift_allocBox(metadata2));
void *someAddr = &anyVWT;
swift_retain(refAndObjectAddr2.first);
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox2{{{someAddr, nullptr, someAddr}}, metadata, 0x5A5A5A5AU},
existBox{{{refAndObjectAddr2.first, nullptr, nullptr}}, metadata2, 0xB5A5A5A5U};
anyVWT->assignWithTake(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata);
EXPECT_EQ(existBox.canary, 0xB5A5A5A5U);
EXPECT_EQ(existBox.buffer.PrivateData[0], someAddr);
EXPECT_EQ(existBox.buffer.PrivateData[1], nullptr);
EXPECT_EQ(existBox.buffer.PrivateData[2], someAddr);
EXPECT_EQ(swift_retainCount(refAndObjectAddr2.first), 1u);
}
TEST(TestOpaqueExistentialBox, test_initWithCopy_pod) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_pod_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_pod_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
void *zeroPtr = nullptr;
void *otherPtr = &zeroPtr;
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox{{{zeroPtr, zeroPtr, zeroPtr}}, metadata, 0x5A5A5A5AU},
existBox2{{{otherPtr, otherPtr, zeroPtr}}, metadata2, 0xB5A5A5A5U};
anyVWT->initializeWithCopy(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata2);
EXPECT_EQ(existBox.canary, 0x5A5A5A5AU);
EXPECT_EQ(existBox.buffer.PrivateData[0], otherPtr);
EXPECT_EQ(existBox.buffer.PrivateData[1], otherPtr);
EXPECT_EQ(existBox.buffer.PrivateData[2], zeroPtr);
}
TEST(TestOpaqueExistentialBox, test_initWithTake_pod) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_pod_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_pod_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
void *zeroPtr = nullptr;
void *otherPtr = &zeroPtr;
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox{{{zeroPtr, zeroPtr, zeroPtr}}, metadata, 0x5A5A5A5AU},
existBox2{{{otherPtr, otherPtr, zeroPtr}}, metadata2, 0xB5A5A5A5U};
anyVWT->initializeWithTake(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata2);
EXPECT_EQ(existBox.canary, 0x5A5A5A5AU);
EXPECT_EQ(existBox.buffer.PrivateData[0], otherPtr);
EXPECT_EQ(existBox.buffer.PrivateData[1], otherPtr);
EXPECT_EQ(existBox.buffer.PrivateData[2], zeroPtr);
}
TEST(TestOpaqueExistentialBox, test_initWithCopy_indirect) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_pod_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_indirect_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
auto refAndObjectAddr2 = BoxPair(swift_allocBox(metadata2));
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox{{{nullptr, nullptr, nullptr}}, metadata, 0x5A5A5A5AU},
existBox2{{{refAndObjectAddr2.first, nullptr, nullptr}}, metadata2, 0xB5A5A5A5U};
anyVWT->initializeWithCopy(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata2);
EXPECT_EQ(existBox.canary, 0x5A5A5A5AU);
EXPECT_EQ(existBox.buffer.PrivateData[0], refAndObjectAddr2.first);
EXPECT_EQ(swift_retainCount(refAndObjectAddr2.first), 2u);
}
TEST(TestOpaqueExistentialBox, test_initWithTake_indirect) {
auto any =
swift_getExistentialTypeMetadata(ProtocolClassConstraint::Any,
/*superclass=*/nullptr, 0, nullptr);
auto anyVWT = any->getValueWitnesses();
ValueWitnessTable testTable;
initialize_pod_witness_table(testTable);
FullOpaqueMetadata testMetadata = {{&testTable}, {{MetadataKind::Opaque}}};
Metadata *metadata = &testMetadata.base;
ValueWitnessTable testTable2;
initialize_indirect_witness_table(testTable2);
FullOpaqueMetadata testMetadata2 = {{&testTable2}, {{MetadataKind::Opaque}}};
Metadata *metadata2 = &testMetadata2.base;
auto refAndObjectAddr2 = BoxPair(swift_allocBox(metadata2));
struct {
ValueBuffer buffer;
Metadata *type;
uintptr_t canary;
} existBox{{{nullptr, nullptr, nullptr}}, metadata, 0x5A5A5A5AU},
existBox2{{{refAndObjectAddr2.first, nullptr, nullptr}}, metadata2, 0xB5A5A5A5U};
anyVWT->initializeWithTake(reinterpret_cast<OpaqueValue *>(&existBox),
reinterpret_cast<OpaqueValue *>(&existBox2), any);
EXPECT_EQ(existBox.type, metadata2);
EXPECT_EQ(existBox.canary, 0x5A5A5A5AU);
EXPECT_EQ(existBox.buffer.PrivateData[0], refAndObjectAddr2.first);
EXPECT_EQ(swift_retainCount(refAndObjectAddr2.first), 1u);
}