blob: 7501eeefea68e080145debc5d277b9a6bb7d5cf0 [file] [log] [blame]
//===--- RemoteAST.cpp ----------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the RemoteAST interface.
//
//===----------------------------------------------------------------------===//
#include "swift/RemoteAST/RemoteAST.h"
#include "swift/Remote/MetadataReader.h"
#include "swift/Subsystems.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/Types.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Mangler.h"
#include "swift/ClangImporter/ClangImporter.h"
// TODO: Develop a proper interface for this.
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/SILOptions.h"
#include "swift/SIL/SILModule.h"
#include "../IRGen/IRGenModule.h"
#include "../IRGen/FixedTypeInfo.h"
#include "../IRGen/GenClass.h"
#include "../IRGen/GenStruct.h"
#include "../IRGen/GenTuple.h"
#include "../IRGen/MemberAccessStrategy.h"
using namespace swift;
using namespace swift::remote;
using namespace swift::remoteAST;
using irgen::Alignment;
using irgen::Size;
static inline RemoteAddress operator+(RemoteAddress address, Size offset) {
return RemoteAddress(address.getAddressData() + offset.getValue());
}
namespace {
/// A "minimal" class for querying IRGen.
struct IRGenContext {
IRGenOptions IROpts;
SILOptions SILOpts;
std::unique_ptr<SILModule> SILMod;
llvm::LLVMContext LLVMContext;
irgen::IRGenerator IRGen;
irgen::IRGenModule IGM;
private:
IRGenContext(ASTContext &ctx, ModuleDecl *module)
: SILMod(SILModule::createEmptyModule(module, SILOpts)),
IRGen(IROpts, *SILMod),
IGM(IRGen, IRGen.createTargetMachine(), /*SourceFile*/ nullptr,
LLVMContext, "<fake module name>", "<fake output filename>") {
}
public:
static std::unique_ptr<IRGenContext>
create(ASTContext &ctx, DeclContext *nominalDC) {
auto module = nominalDC->getParentModule();
return std::unique_ptr<IRGenContext>(new IRGenContext(ctx, module));
}
};
/// An implementation of MetadataReader's BuilderType concept that
/// just finds and builds things in the AST.
class RemoteASTTypeBuilder {
ASTContext &Ctx;
/// The notional context in which we're writing and type-checking code.
/// Created lazily.
DeclContext *NotionalDC = nullptr;
Optional<Failure> CurFailure;
public:
using BuiltType = swift::Type;
using BuiltNominalTypeDecl = swift::NominalTypeDecl*;
explicit RemoteASTTypeBuilder(ASTContext &ctx) : Ctx(ctx) {}
std::unique_ptr<IRGenContext> createIRGenContext() {
return IRGenContext::create(Ctx, getNotionalDC());
}
template <class Result, class FailureKindTy, class... FailureArgTys>
Result fail(FailureKindTy kind, FailureArgTys &&...failureArgs) {
if (!CurFailure) {
CurFailure.emplace(kind, std::forward<FailureArgTys>(failureArgs)...);
}
return Result();
}
template <class T, class DefaultFailureKindTy, class... DefaultFailureArgTys>
Result<T> getFailureAsResult(DefaultFailureKindTy defaultFailureKind,
DefaultFailureArgTys &&...defaultFailureArgs) {
// If we already have a failure, use that.
if (CurFailure) {
Result<T> result = std::move(*CurFailure);
CurFailure.reset();
return result;
}
// Otherwise, use the default failure.
return Result<T>::emplaceFailure(defaultFailureKind,
std::forward<DefaultFailureArgTys>(defaultFailureArgs)...);
}
Type createBuiltinType(const std::string &mangledName) {
// TODO
return Type();
}
NominalTypeDecl *createNominalTypeDecl(StringRef mangledName) {
Demangle::Demangler Dem;
Demangle::NodePointer node = Dem.demangleType(mangledName);
if (!node) return nullptr;
return createNominalTypeDecl(node);
}
NominalTypeDecl *createNominalTypeDecl(const Demangle::NodePointer &node);
Type createNominalType(NominalTypeDecl *decl) {
// If the declaration is generic, fail.
if (decl->isGenericContext())
return Type();
return decl->getDeclaredType();
}
Type createNominalType(NominalTypeDecl *decl, Type parent) {
// If the declaration is generic, fail.
if (decl->getGenericParams())
return Type();
// Validate the parent type.
if (!validateNominalParent(decl, parent))
return Type();
return NominalType::get(decl, parent, Ctx);
}
Type createBoundGenericType(NominalTypeDecl *decl, ArrayRef<Type> args) {
// If the declaration isn't generic, fail.
if (!decl->isGenericContext())
return Type();
// Build a SubstitutionMap.
auto *genericSig = decl->getGenericSignature();
auto genericParams = genericSig->getSubstitutableParams();
if (genericParams.size() != args.size())
return Type();
auto subMap = genericSig->getSubstitutionMap(
[&](SubstitutableType *t) -> Type {
for (unsigned i = 0, e = genericParams.size(); i < e; ++i) {
if (t->isEqual(genericParams[i]))
return args[i];
}
return Type();
},
// FIXME: Wrong module
LookUpConformanceInModule(decl->getParentModule()));
auto origType = decl->getDeclaredInterfaceType();
// FIXME: We're not checking that the type satisfies the generic
// requirements of the signature here.
auto substType = origType.subst(subMap);
return substType;
}
Type createBoundGenericType(NominalTypeDecl *decl, ArrayRef<Type> args,
Type parent) {
// If the declaration isn't generic, fail.
if (!decl->getGenericParams())
return Type();
// Validate the parent type.
if (!validateNominalParent(decl, parent))
return Type();
// Make a generic type repr that's been resolved to this decl.
TypeReprList genericArgReprs(args);
GenericIdentTypeRepr genericRepr(SourceLoc(), decl->getName(),
genericArgReprs.getList(), SourceRange());
// FIXME
genericRepr.setValue(decl, nullptr);
Type genericType;
// If we have a parent type, we need to build a compound type repr.
if (parent) {
// Life would be much easier if we could just use a FixedTypeRepr for
// the parent. But we can't! So we have to recursively expand
// like this; and recursing with a lambda isn't impossible, so it gets
// even worse.
SmallVector<Type, 4> ancestry;
for (auto p = parent; p; p = p->getNominalParent()) {
ancestry.push_back(p);
}
struct GenericRepr {
TypeReprList GenericArgs;
GenericIdentTypeRepr Ident;
GenericRepr(BoundGenericType *type)
: GenericArgs(type->getGenericArgs()),
Ident(SourceLoc(), type->getDecl()->getName(),
GenericArgs.getList(), SourceRange()) {
// FIXME
Ident.setValue(type->getDecl(), nullptr);
}
// SmallVector::emplace_back will never need to call this because
// we reserve the right size, but it does try statically.
GenericRepr(const GenericRepr &other)
: GenericArgs({}),
Ident(SourceLoc(), Identifier(), {}, SourceRange()) {
llvm_unreachable("should not be called dynamically");
}
};
// Pre-allocate the component vectors so that we can form references
// into them safely.
SmallVector<SimpleIdentTypeRepr, 4> simpleComponents;
SmallVector<GenericRepr, 4> genericComponents;
simpleComponents.reserve(ancestry.size());
genericComponents.reserve(ancestry.size());
// Build the parent hierarchy.
SmallVector<ComponentIdentTypeRepr*, 4> componentReprs;
for (size_t i = ancestry.size(); i != 0; --i) {
Type p = ancestry[i - 1];
if (auto boundGeneric = p->getAs<BoundGenericType>()) {
genericComponents.emplace_back(boundGeneric);
componentReprs.push_back(&genericComponents.back().Ident);
} else {
auto nominal = p->castTo<NominalType>();
simpleComponents.emplace_back(SourceLoc(),
nominal->getDecl()->getName());
// FIXME
simpleComponents.back().setValue(nominal->getDecl(), nullptr);
componentReprs.push_back(&simpleComponents.back());
}
}
componentReprs.push_back(&genericRepr);
CompoundIdentTypeRepr compoundRepr(componentReprs);
genericType = checkTypeRepr(&compoundRepr);
} else {
genericType = checkTypeRepr(&genericRepr);
}
// If type-checking failed, we've failed.
if (!genericType) return Type();
// Validate that we used the right decl.
if (auto bgt = genericType->getAs<BoundGenericType>()) {
if (bgt->getDecl() != decl)
return Type();
}
return genericType;
}
Type createTupleType(ArrayRef<Type> eltTypes, StringRef labels,
bool isVariadic) {
// Just bail out on variadic tuples for now.
if (isVariadic) return Type();
SmallVector<TupleTypeElt, 4> elements;
elements.reserve(eltTypes.size());
for (auto eltType : eltTypes) {
Identifier label;
if (!labels.empty()) {
auto split = labels.split(' ');
if (!split.first.empty())
label = Ctx.getIdentifier(split.first);
labels = split.second;
}
elements.emplace_back(eltType, label);
}
return TupleType::get(elements, Ctx);
}
Type createFunctionType(ArrayRef<Type> args,
const std::vector<bool> &inOutArgs,
Type output, FunctionTypeFlags flags) {
assert(args.size() == inOutArgs.size());
FunctionTypeRepresentation representation;
switch (flags.getConvention()) {
case FunctionMetadataConvention::Swift:
representation = FunctionTypeRepresentation::Swift;
break;
case FunctionMetadataConvention::Block:
representation = FunctionTypeRepresentation::Block;
break;
case FunctionMetadataConvention::Thin:
representation = FunctionTypeRepresentation::Thin;
break;
case FunctionMetadataConvention::CFunctionPointer:
representation = FunctionTypeRepresentation::CFunctionPointer;
break;
}
auto einfo = AnyFunctionType::ExtInfo(representation,
/*throws*/ flags.throws());
// The result type must be materializable.
if (!output->isMaterializable()) return Type();
// All the argument types must be materializable (before inout is applied).
for (auto arg : args) {
if (!arg->isMaterializable()) return Type();
}
Type input;
if (args.size() == 1) {
input = args[0];
} else {
SmallVector<TupleTypeElt, 4> elts;
elts.reserve(args.size());
for (auto i : indices(args)) {
Type arg = args[i];
if (inOutArgs[i]) arg = InOutType::get(arg);
elts.push_back(arg);
}
}
return FunctionType::get(input, output, einfo);
}
Type createProtocolType(StringRef mangledName,
StringRef moduleName,
StringRef privateDiscriminator,
StringRef name) {
auto module = Ctx.getModuleByName(moduleName);
if (!module) return Type();
auto decl = findNominalTypeDecl(module,
Ctx.getIdentifier(name),
(privateDiscriminator.empty()
? Identifier()
: Ctx.getIdentifier(privateDiscriminator)),
Demangle::Node::Kind::Protocol);
if (!decl) return Type();
return decl->getDeclaredType();
}
Type createProtocolCompositionType(ArrayRef<Type> members,
bool hasExplicitAnyObject) {
for (auto member : members) {
if (!member->isExistentialType() &&
!member->getClassOrBoundGenericClass())
return Type();
}
return ProtocolCompositionType::get(Ctx, members, hasExplicitAnyObject);
}
Type createExistentialMetatypeType(Type instance) {
if (!instance->isAnyExistentialType())
return Type();
return ExistentialMetatypeType::get(instance);
}
Type createMetatypeType(Type instance, bool wasAbstract=false) {
// FIXME: Plumb through metatype representation and generalize silly
// 'wasAbstract' flag
return MetatypeType::get(instance);
}
Type createGenericTypeParameterType(unsigned depth, unsigned index) {
return GenericTypeParamType::get(depth, index, Ctx);
}
Type createDependentMemberType(StringRef member, Type base, Type protocol) {
if (!base->isTypeParameter())
return Type();
// TODO: look up protocol?
return DependentMemberType::get(base, Ctx.getIdentifier(member));
}
Type createUnownedStorageType(Type base) {
if (!base->allowsOwnership())
return Type();
return UnownedStorageType::get(base, Ctx);
}
Type createUnmanagedStorageType(Type base) {
if (!base->allowsOwnership())
return Type();
return UnmanagedStorageType::get(base, Ctx);
}
Type createWeakStorageType(Type base) {
if (!base->allowsOwnership())
return Type();
return WeakStorageType::get(base, Ctx);
}
Type createSILBoxType(Type base) {
return SILBoxType::get(base->getCanonicalType());
}
Type createObjCClassType(StringRef name) {
Identifier ident = Ctx.getIdentifier(name);
auto typeDecl =
findForeignNominalTypeDecl(ident, Demangle::Node::Kind::Class);
if (!typeDecl) return Type();
return createNominalType(typeDecl, /*parent*/ Type());
}
Type createForeignClassType(StringRef mangledName) {
auto typeDecl = createNominalTypeDecl(mangledName);
if (!typeDecl) return Type();
return createNominalType(typeDecl, /*parent*/ Type());
}
Type getUnnamedForeignClassType() {
return Type();
}
Type getOpaqueType() {
return Type();
}
private:
bool validateNominalParent(NominalTypeDecl *decl, Type parent) {
auto parentDecl =
decl->getDeclContext()->getAsNominalTypeOrNominalTypeExtensionContext();
// If we don't have a parent type, fast-path.
if (!parent) {
return parentDecl == nullptr;
}
// We do have a parent type. If the nominal type doesn't, it's an error.
if (!parentDecl) {
return false;
}
// FIXME: validate that the parent is a correct application of the
// enclosing context?
return true;
}
DeclContext *findDeclContext(const Demangle::NodePointer &node);
ModuleDecl *findModule(const Demangle::NodePointer &node);
Demangle::NodePointer findModuleNode(const Demangle::NodePointer &node);
bool isForeignModule(const Demangle::NodePointer &node);
NominalTypeDecl *findNominalTypeDecl(DeclContext *dc,
Identifier name,
Identifier privateDiscriminator,
Demangle::Node::Kind kind);
NominalTypeDecl *findForeignNominalTypeDecl(Identifier name,
Demangle::Node::Kind kind);
Type checkTypeRepr(TypeRepr *repr) {
DeclContext *dc = getNotionalDC();
TypeLoc loc(repr);
if (performTypeLocChecking(Ctx, loc, dc, /*diagnose*/ false))
return Type();
return loc.getType();
}
static NominalTypeDecl *getAcceptableNominalTypeCandidate(ValueDecl *decl,
Demangle::Node::Kind kind) {
if (kind == Demangle::Node::Kind::Class) {
return dyn_cast<ClassDecl>(decl);
} else if (kind == Demangle::Node::Kind::Enum) {
return dyn_cast<EnumDecl>(decl);
} else if (kind == Demangle::Node::Kind::Protocol) {
return dyn_cast<ProtocolDecl>(decl);
} else {
assert(kind == Demangle::Node::Kind::Structure);
return dyn_cast<StructDecl>(decl);
}
}
DeclContext *getNotionalDC() {
if (!NotionalDC) {
NotionalDC = ModuleDecl::create(Ctx.getIdentifier(".RemoteAST"), Ctx);
NotionalDC = new (Ctx) TopLevelCodeDecl(NotionalDC);
}
return NotionalDC;
}
class TypeReprList {
SmallVector<FixedTypeRepr, 4> Reprs;
SmallVector<TypeRepr*, 4> Refs;
public:
explicit TypeReprList(ArrayRef<Type> types) {
Reprs.reserve(types.size());
Refs.reserve(types.size());
for (auto type : types) {
Reprs.emplace_back(type, SourceLoc());
Refs.push_back(&Reprs.back());
}
}
ArrayRef<TypeRepr*> getList() const {
return Refs;
}
};
};
} // end anonymous namespace
NominalTypeDecl *
RemoteASTTypeBuilder::createNominalTypeDecl(const Demangle::NodePointer &node) {
auto DC = findDeclContext(node);
if (!DC) {
return fail<NominalTypeDecl*>(Failure::CouldNotResolveTypeDecl,
Demangle::mangleNode(node));
}
auto decl = dyn_cast<NominalTypeDecl>(DC);
if (!decl) return nullptr;
return decl;
}
ModuleDecl *RemoteASTTypeBuilder::findModule(const Demangle::NodePointer &node){
assert(node->getKind() == Demangle::Node::Kind::Module);
const auto &moduleName = node->getText();
return Ctx.getModuleByName(moduleName);
}
Demangle::NodePointer
RemoteASTTypeBuilder::findModuleNode(const Demangle::NodePointer &node) {
if (node->getKind() == Demangle::Node::Kind::Module)
return node;
if (!node->hasChildren()) return nullptr;
const auto &child = node->getFirstChild();
if (child->getKind() != Demangle::Node::Kind::DeclContext)
return nullptr;
return findModuleNode(child->getFirstChild());
}
bool RemoteASTTypeBuilder::isForeignModule(const Demangle::NodePointer &node) {
if (node->getKind() == Demangle::Node::Kind::DeclContext)
return isForeignModule(node->getFirstChild());
if (node->getKind() != Demangle::Node::Kind::Module)
return false;
return (node->getText() == "__ObjC");
}
DeclContext *
RemoteASTTypeBuilder::findDeclContext(const Demangle::NodePointer &node) {
switch (node->getKind()) {
case Demangle::Node::Kind::DeclContext:
case Demangle::Node::Kind::Type:
return findDeclContext(node->getFirstChild());
case Demangle::Node::Kind::Module:
return findModule(node);
case Demangle::Node::Kind::Class:
case Demangle::Node::Kind::Enum:
case Demangle::Node::Kind::Protocol:
case Demangle::Node::Kind::Structure: {
const auto &declNameNode = node->getChild(1);
// Handle local declarations.
if (declNameNode->getKind() == Demangle::Node::Kind::LocalDeclName) {
// Find the AST node for the defining module.
auto moduleNode = findModuleNode(node);
if (!moduleNode) return nullptr;
auto module = findModule(moduleNode);
if (!module) return nullptr;
// Look up the local type by its mangling.
auto mangledName = Demangle::mangleNode(node);
auto decl = module->lookupLocalType(mangledName);
if (!decl) return nullptr;
return dyn_cast<DeclContext>(decl);
}
Identifier name;
Identifier privateDiscriminator;
if (declNameNode->getKind() == Demangle::Node::Kind::Identifier) {
name = Ctx.getIdentifier(declNameNode->getText());
} else if (declNameNode->getKind() ==
Demangle::Node::Kind::PrivateDeclName) {
name = Ctx.getIdentifier(declNameNode->getChild(1)->getText());
privateDiscriminator =
Ctx.getIdentifier(declNameNode->getChild(0)->getText());
// Ignore any other decl-name productions for now.
} else {
return nullptr;
}
DeclContext *dc = findDeclContext(node->getChild(0));
if (!dc) {
// Do some backup logic for foreign type declarations.
if (privateDiscriminator.empty() &&
isForeignModule(node->getChild(0))) {
return findForeignNominalTypeDecl(name, node->getKind());
} else {
return nullptr;
}
}
return findNominalTypeDecl(dc, name, privateDiscriminator, node->getKind());
}
// Bail out on other kinds of contexts.
// TODO: extensions
// TODO: local contexts
default:
return nullptr;
}
}
NominalTypeDecl *
RemoteASTTypeBuilder::findNominalTypeDecl(DeclContext *dc,
Identifier name,
Identifier privateDiscriminator,
Demangle::Node::Kind kind) {
auto module = dc->getParentModule();
SmallVector<ValueDecl *, 4> lookupResults;
module->lookupMember(lookupResults, dc, name, privateDiscriminator);
NominalTypeDecl *result = nullptr;
for (auto decl : lookupResults) {
// Ignore results that are not the right kind of nominal type declaration.
NominalTypeDecl *candidate = getAcceptableNominalTypeCandidate(decl, kind);
if (!candidate)
continue;
// Ignore results that aren't actually from the defining module.
if (candidate->getParentModule() != module)
continue;
// This is a viable result.
// If we already have a viable result, it's ambiguous, so give up.
if (result) return nullptr;
result = candidate;
}
return result;
}
NominalTypeDecl *
RemoteASTTypeBuilder::findForeignNominalTypeDecl(Identifier name,
Demangle::Node::Kind kind) {
// Check to see if we have an importer loaded.
auto importer = static_cast<ClangImporter *>(Ctx.getClangModuleLoader());
if (!importer) return nullptr;
// Find the unique declaration that has the right kind.
struct Consumer : VisibleDeclConsumer {
Demangle::Node::Kind ExpectedKind;
NominalTypeDecl *Result = nullptr;
bool HadError = false;
explicit Consumer(Demangle::Node::Kind kind) : ExpectedKind(kind) {}
void foundDecl(ValueDecl *decl, DeclVisibilityKind reason) override {
if (HadError) return;
auto typeDecl = getAcceptableNominalTypeCandidate(decl, ExpectedKind);
if (!typeDecl) return;
if (typeDecl == Result) return;
if (!Result) {
Result = typeDecl;
} else {
HadError = true;
Result = nullptr;
}
}
} consumer(kind);
importer->lookupValue(name, consumer);
return consumer.Result;
}
namespace {
/// The basic implementation of the RemoteASTContext interface.
/// The template subclasses do target-specific logic.
class RemoteASTContextImpl {
std::unique_ptr<IRGenContext> IRGen;
public:
RemoteASTContextImpl() = default;
virtual ~RemoteASTContextImpl() = default;
virtual Result<Type>
getTypeForRemoteTypeMetadata(RemoteAddress metadata, bool skipArtificial) = 0;
virtual Result<MetadataKind>
getKindForRemoteTypeMetadata(RemoteAddress metadata) = 0;
virtual Result<NominalTypeDecl*>
getDeclForRemoteNominalTypeDescriptor(RemoteAddress descriptor) = 0;
virtual Result<RemoteAddress>
getHeapMetadataForObject(RemoteAddress object) = 0;
Result<uint64_t>
getOffsetOfMember(Type type, RemoteAddress optMetadata, StringRef memberName){
// Sanity check: obviously invalid arguments.
if (!type || memberName.empty())
return Result<uint64_t>::emplaceFailure(Failure::BadArgument);
// Sanity check: if the caller gave us a dependent type, there's no way
// we can handle that.
if (type->hasTypeParameter() || type->hasArchetype())
return Result<uint64_t>::emplaceFailure(Failure::DependentArgument);
// Split into cases.
if (auto typeDecl = type->getNominalOrBoundGenericNominal()) {
return getOffsetOfField(type, typeDecl, optMetadata, memberName);
} else if (auto tupleType = type->getAs<TupleType>()) {
return getOffsetOfTupleElement(tupleType, optMetadata, memberName);
} else {
return Result<uint64_t>::emplaceFailure(Failure::TypeHasNoSuchMember,
memberName);
}
}
protected:
template <class T>
Result<T> getFailure() {
return getBuilder().getFailureAsResult<T>(Failure::Unknown);
}
template <class T, class KindTy, class... ArgTys>
Result<T> fail(KindTy kind, ArgTys &&...args) {
return Result<T>::emplaceFailure(kind, std::forward<ArgTys>(args)...);
}
private:
virtual RemoteASTTypeBuilder &getBuilder() = 0;
virtual MemoryReader &getReader() = 0;
virtual bool readWordOffset(RemoteAddress address, int64_t *offset) = 0;
virtual std::unique_ptr<IRGenContext> createIRGenContext() = 0;
virtual Result<uint64_t>
getOffsetOfTupleElementFromMetadata(RemoteAddress metadata,
unsigned elementIndex) = 0;
virtual Result<uint64_t>
getOffsetOfFieldFromMetadata(RemoteAddress metadata,
StringRef memberName) = 0;
IRGenContext *getIRGen() {
if (!IRGen) IRGen = createIRGenContext();
return IRGen.get();
}
Result<uint64_t>
getOffsetOfField(Type type, NominalTypeDecl *typeDecl,
RemoteAddress optMetadata, StringRef memberName) {
if (!isa<StructDecl>(typeDecl) && !isa<ClassDecl>(typeDecl))
return fail<uint64_t>(Failure::Unimplemented,
"access members of this kind of type");
// Try to find the member.
VarDecl *member = findField(typeDecl, memberName);
// If we found a member, try to find its offset statically.
if (member) {
if (auto irgen = getIRGen()) {
return getOffsetOfFieldFromIRGen(irgen->IGM, type, typeDecl,
optMetadata, member);
}
}
// Try searching the metadata for a member with the given name.
if (optMetadata) {
return getOffsetOfFieldFromMetadata(optMetadata, memberName);
}
// Okay, that's everything we know how to try.
// Use a specialized diagnostic if we couldn't find any such member.
if (!member) {
return fail<uint64_t>(Failure::TypeHasNoSuchMember, memberName);
}
return fail<uint64_t>(Failure::Unknown);
}
/// Look for an instance property of the given nominal type that's
/// known to be stored.
VarDecl *findField(NominalTypeDecl *typeDecl, StringRef memberName) {
for (auto field : typeDecl->getStoredProperties()) {
if (field->getName().str() == memberName)
return field;
}
return nullptr;
}
using MemberAccessStrategy = irgen::MemberAccessStrategy;
Result<uint64_t>
getOffsetOfFieldFromIRGen(irgen::IRGenModule &IGM, Type type,
NominalTypeDecl *typeDecl,
RemoteAddress optMetadata, VarDecl *member) {
SILType loweredTy = IGM.getSILTypes().getLoweredType(type);
MemberAccessStrategy strategy =
(isa<StructDecl>(typeDecl)
? getPhysicalStructMemberAccessStrategy(IGM, loweredTy, member)
: getPhysicalClassMemberAccessStrategy(IGM, loweredTy, member));
switch (strategy.getKind()) {
case MemberAccessStrategy::Kind::Complex:
return fail<uint64_t>(Failure::Unimplemented,
"access members with complex storage");
case MemberAccessStrategy::Kind::DirectFixed:
return uint64_t(strategy.getDirectOffset().getValue());
case MemberAccessStrategy::Kind::DirectGlobal: {
RemoteAddress directOffsetAddress =
getReader().getSymbolAddress(strategy.getDirectGlobalSymbol());
if (!directOffsetAddress)
return getFailure<uint64_t>();
return readDirectOffset(directOffsetAddress,
strategy.getDirectOffsetKind());
}
case MemberAccessStrategy::Kind::IndirectFixed: {
// We can't apply indirect offsets without metadata.
if (!optMetadata)
return fail<uint64_t>(Failure::Unimplemented,
"access generically-offset members without "
"metadata");
Size indirectOffset = strategy.getIndirectOffset();
return readIndirectOffset(optMetadata, indirectOffset,
strategy.getDirectOffsetKind());
}
case MemberAccessStrategy::Kind::IndirectGlobal: {
// We can't apply indirect offsets without metadata.
if (!optMetadata)
return fail<uint64_t>(Failure::Unimplemented,
"access generically-offset members without "
"metadata");
RemoteAddress indirectOffsetAddress =
getReader().getSymbolAddress(strategy.getIndirectGlobalSymbol());
Size indirectOffset;
if (!readOffset(indirectOffsetAddress,
strategy.getIndirectOffsetKind(),
indirectOffset))
return getFailure<uint64_t>();
return readIndirectOffset(optMetadata, indirectOffset,
strategy.getDirectOffsetKind());
}
}
llvm_unreachable("bad member MemberAccessStrategy");
}
bool readOffset(RemoteAddress address,
MemberAccessStrategy::OffsetKind kind,
Size &offset) {
switch (kind) {
case MemberAccessStrategy::OffsetKind::Bytes_Word: {
int64_t rawOffset;
if (!readWordOffset(address, &rawOffset))
return false;
offset = Size(rawOffset);
return true;
}
}
llvm_unreachable("bad offset kind");
}
Result<uint64_t> readIndirectOffset(RemoteAddress metadata,
Size indirectOffset,
MemberAccessStrategy::OffsetKind kind) {
RemoteAddress directOffsetAddress = metadata + indirectOffset;
return readDirectOffset(directOffsetAddress, kind);
}
Result<uint64_t> readDirectOffset(RemoteAddress directOffsetAddress,
MemberAccessStrategy::OffsetKind kind) {
Size directOffset;
if (!readOffset(directOffsetAddress, kind, directOffset))
return getFailure<uint64_t>();
return uint64_t(directOffset.getValue());
}
/// Read the
Result<uint64_t>
getOffsetOfTupleElement(TupleType *type, RemoteAddress optMetadata,
StringRef memberName) {
// Check that the member "name" is a valid index into the tuple.
unsigned targetIndex;
if (memberName.getAsInteger(10, targetIndex) ||
targetIndex >= type->getNumElements())
return fail<uint64_t>(Failure::TypeHasNoSuchMember, memberName);
// Fast path: element 0 is always at offset 0.
if (targetIndex == 0) return uint64_t(0);
// Create an IRGen instance.
auto irgen = getIRGen();
if (!irgen) return Result<uint64_t>::emplaceFailure(Failure::Unknown);
auto &IGM = irgen->IGM;
SILType loweredTy = IGM.getSILTypes().getLoweredType(type);
// If the type has a statically fixed offset, return that.
if (auto offset =
irgen::getFixedTupleElementOffset(IGM, loweredTy, targetIndex))
return offset->getValue();
// If we have metadata, go load from that.
if (optMetadata)
return getOffsetOfTupleElementFromMetadata(optMetadata, targetIndex);
// Okay, reproduce tuple layout.
// Find the last element with a known offset. Note that we don't
// have to ask IRGen about element 0 because we know its size is zero.
Size lastOffset = Size(0);
unsigned lastIndex = targetIndex;
for (--lastIndex; lastIndex != 0; --lastIndex) {
if (auto offset =
irgen::getFixedTupleElementOffset(IGM, loweredTy, lastIndex)) {
lastOffset = *offset;
break;
}
}
// Okay, iteratively build up from there.
for (; ; ++lastIndex) {
// Try to get the size and alignment of this element.
SILType eltTy = loweredTy.getTupleElementType(lastIndex);
auto sizeAndAlignment = getTypeSizeAndAlignment(IGM, eltTy);
if (!sizeAndAlignment) return getFailure<uint64_t>();
// Round up to the alignment of the element.
lastOffset = lastOffset.roundUpToAlignment(sizeAndAlignment->second);
// If this is the target, we're done.
if (lastIndex == targetIndex)
return lastOffset.getValue();
// Otherwise, skip forward by the size of the element.
lastOffset += sizeAndAlignment->first;
}
llvm_unreachable("didn't reach target index");
}
/// Attempt to discover the size and alignment of the given type.
Optional<std::pair<Size, Alignment>>
getTypeSizeAndAlignment(irgen::IRGenModule &IGM, SILType eltTy) {
auto &eltTI = IGM.getTypeInfo(eltTy);
if (auto fixedTI = dyn_cast<irgen::FixedTypeInfo>(&eltTI)) {
return std::make_pair(fixedTI->getFixedSize(),
fixedTI->getFixedAlignment());
}
// TODO: handle resilient types
return None;
}
};
/// A template for generating target-specific implementations of the
/// RemoteASTContext interface.
template <class Runtime>
class RemoteASTContextConcreteImpl final : public RemoteASTContextImpl {
MetadataReader<Runtime, RemoteASTTypeBuilder> Reader;
RemoteASTTypeBuilder &getBuilder() override {
return Reader.Builder;
}
MemoryReader &getReader() override {
return *Reader.Reader;
}
bool readWordOffset(RemoteAddress address, int64_t *extendedOffset) override {
using unsigned_size_t = typename Runtime::StoredSize;
using signed_size_t = typename std::make_signed<unsigned_size_t>::type;
signed_size_t offset;
if (!getReader().readInteger(address, &offset))
return false;
*extendedOffset = offset;
return true;
}
public:
RemoteASTContextConcreteImpl(std::shared_ptr<MemoryReader> &&reader,
ASTContext &ctx)
: Reader(std::move(reader), ctx) {}
Result<Type> getTypeForRemoteTypeMetadata(RemoteAddress metadata,
bool skipArtificial) override {
if (auto result = Reader.readTypeFromMetadata(metadata.getAddressData(),
skipArtificial))
return result;
return getFailure<Type>();
}
Result<MetadataKind>
getKindForRemoteTypeMetadata(RemoteAddress metadata) override {
auto result = Reader.readKindFromMetadata(metadata.getAddressData());
if (result.first)
return result.second;
return getFailure<MetadataKind>();
}
Result<NominalTypeDecl*>
getDeclForRemoteNominalTypeDescriptor(RemoteAddress descriptor) override {
if (auto result =
Reader.readNominalTypeFromDescriptor(descriptor.getAddressData()))
return result;
return getFailure<NominalTypeDecl*>();
}
std::unique_ptr<IRGenContext> createIRGenContext() override {
return getBuilder().createIRGenContext();
}
Result<uint64_t>
getOffsetOfTupleElementFromMetadata(RemoteAddress metadata,
unsigned index) override {
typename Runtime::StoredSize offset;
if (Reader.readTupleElementOffset(metadata.getAddressData(),
index, &offset))
return uint64_t(offset);
return getFailure<uint64_t>();
}
Result<uint64_t>
getOffsetOfFieldFromMetadata(RemoteAddress metadata,
StringRef memberName) override {
// TODO: this would be useful for resilience
return fail<uint64_t>(Failure::Unimplemented,
"look up field offset by name");
}
Result<RemoteAddress>
getHeapMetadataForObject(RemoteAddress object) override {
auto result = Reader.readMetadataFromInstance(object.getAddressData());
if (result.first) return RemoteAddress(result.second);
return getFailure<RemoteAddress>();
}
};
} // end anonymous namespace
static RemoteASTContextImpl *createImpl(ASTContext &ctx,
std::shared_ptr<MemoryReader> &&reader) {
auto &target = ctx.LangOpts.Target;
assert(target.isArch32Bit() || target.isArch64Bit());
if (target.isArch32Bit()) {
using Target = External<RuntimeTarget<4>>;
return new RemoteASTContextConcreteImpl<Target>(std::move(reader), ctx);
} else {
using Target = External<RuntimeTarget<8>>;
return new RemoteASTContextConcreteImpl<Target>(std::move(reader), ctx);
}
}
static RemoteASTContextImpl *asImpl(void *impl) {
return static_cast<RemoteASTContextImpl*>(impl);
}
RemoteASTContext::RemoteASTContext(ASTContext &ctx,
std::shared_ptr<MemoryReader> reader)
: Impl(createImpl(ctx, std::move(reader))) {
}
RemoteASTContext::~RemoteASTContext() {
delete asImpl(Impl);
}
Result<Type>
RemoteASTContext::getTypeForRemoteTypeMetadata(RemoteAddress address,
bool skipArtificial) {
return asImpl(Impl)->getTypeForRemoteTypeMetadata(address, skipArtificial);
}
Result<MetadataKind>
RemoteASTContext::getKindForRemoteTypeMetadata(remote::RemoteAddress address) {
return asImpl(Impl)->getKindForRemoteTypeMetadata(address);
}
Result<NominalTypeDecl *>
RemoteASTContext::getDeclForRemoteNominalTypeDescriptor(RemoteAddress address) {
return asImpl(Impl)->getDeclForRemoteNominalTypeDescriptor(address);
}
Result<uint64_t>
RemoteASTContext::getOffsetOfMember(Type type, RemoteAddress optMetadata,
StringRef memberName) {
return asImpl(Impl)->getOffsetOfMember(type, optMetadata, memberName);
}
Result<remote::RemoteAddress>
RemoteASTContext::getHeapMetadataForObject(remote::RemoteAddress address) {
return asImpl(Impl)->getHeapMetadataForObject(address);
}