blob: 9d9f08c911ea32e6735c2888fa2b1263095d2846 [file] [log] [blame]
//===--- CSSimplify.cpp - Constraint Simplification -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements simplifications of constraints within the constraint
// system.
//
//===----------------------------------------------------------------------===//
#include "ConstraintSystem.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/ParameterList.h"
#include "swift/Basic/StringExtras.h"
#include "swift/ClangImporter/ClangModule.h"
#include "llvm/Support/Compiler.h"
using namespace swift;
using namespace constraints;
MatchCallArgumentListener::~MatchCallArgumentListener() { }
void MatchCallArgumentListener::extraArgument(unsigned argIdx) { }
void MatchCallArgumentListener::missingArgument(unsigned paramIdx) { }
void MatchCallArgumentListener::missingLabel(unsigned paramIdx) {}
void MatchCallArgumentListener::outOfOrderArgument(unsigned argIdx,
unsigned prevArgIdx) {
}
bool MatchCallArgumentListener::relabelArguments(ArrayRef<Identifier> newNames){
return true;
}
/// Produce a score (smaller is better) comparing a parameter name and
/// potentially-typo'd argument name.
///
/// \param paramName The name of the parameter.
/// \param argName The name of the argument.
/// \param maxScore The maximum score permitted by this comparison, or
/// 0 if there is no limit.
///
/// \returns the score, if it is good enough to even consider this a match.
/// Otherwise, an empty optional.
///
static Optional<unsigned> scoreParamAndArgNameTypo(StringRef paramName,
StringRef argName,
unsigned maxScore) {
using namespace camel_case;
// Compute the edit distance.
unsigned dist = argName.edit_distance(paramName, /*AllowReplacements=*/true,
/*MaxEditDistance=*/maxScore);
// If the edit distance would be too long, we're done.
if (maxScore != 0 && dist > maxScore)
return None;
// The distance can be zero due to the "with" transformation above.
if (dist == 0)
return 1;
// Only allow about one typo for every two properly-typed characters, which
// prevents completely-wacky suggestions in many cases.
if (dist > (argName.size() + 1) / 3)
return None;
return dist;
}
bool constraints::
areConservativelyCompatibleArgumentLabels(ValueDecl *decl,
unsigned parameterDepth,
ArrayRef<Identifier> labels,
bool hasTrailingClosure) {
// Bail out conservatively if this isn't a function declaration.
auto fn = dyn_cast<AbstractFunctionDecl>(decl);
if (!fn) return true;
assert(parameterDepth < fn->getNumParameterLists());
ParameterList &params = *fn->getParameterList(parameterDepth);
SmallVector<CallArgParam, 8> argInfos;
for (auto argLabel : labels) {
argInfos.push_back(CallArgParam());
argInfos.back().Label = argLabel;
}
SmallVector<CallArgParam, 8> paramInfos;
for (auto param : params) {
paramInfos.push_back(CallArgParam());
paramInfos.back().Label = param->getArgumentName();
paramInfos.back().HasDefaultArgument = param->isDefaultArgument();
paramInfos.back().parameterFlags = ParameterTypeFlags::fromParameterType(
param->getInterfaceType(), param->isVariadic());
}
MatchCallArgumentListener listener;
SmallVector<ParamBinding, 8> unusedParamBindings;
return !matchCallArguments(argInfos, paramInfos, hasTrailingClosure,
/*allow fixes*/ false,
listener, unusedParamBindings);
}
/// Determine the default type-matching options to use when decomposing a
/// constraint into smaller constraints.
static ConstraintSystem::TypeMatchOptions getDefaultDecompositionOptions(
ConstraintSystem::TypeMatchOptions flags) {
return flags | ConstraintSystem::TMF_GenerateConstraints;
}
bool constraints::
matchCallArguments(ArrayRef<CallArgParam> args,
ArrayRef<CallArgParam> params,
bool hasTrailingClosure,
bool allowFixes,
MatchCallArgumentListener &listener,
SmallVectorImpl<ParamBinding> &parameterBindings) {
// Keep track of the parameter we're matching and what argument indices
// got bound to each parameter.
unsigned paramIdx, numParams = params.size();
parameterBindings.clear();
parameterBindings.resize(numParams);
// Keep track of which arguments we have claimed from the argument tuple.
unsigned nextArgIdx = 0, numArgs = args.size();
SmallVector<bool, 4> claimedArgs(numArgs, false);
SmallVector<Identifier, 4> actualArgNames;
unsigned numClaimedArgs = 0;
// Indicates whether any of the arguments are potentially out-of-order,
// requiring further checking at the end.
bool potentiallyOutOfOrder = false;
// Local function that claims the argument at \c argNumber, returning the
// index of the claimed argument. This is primarily a helper for
// \c claimNextNamed.
auto claim = [&](Identifier expectedName, unsigned argNumber,
bool ignoreNameClash = false) -> unsigned {
// Make sure we can claim this argument.
assert(argNumber != numArgs && "Must have a valid index to claim");
assert(!claimedArgs[argNumber] && "Argument already claimed");
if (!actualArgNames.empty()) {
// We're recording argument names; record this one.
actualArgNames[argNumber] = expectedName;
} else if (args[argNumber].Label != expectedName && !ignoreNameClash) {
// We have an argument name mismatch. Start recording argument names.
actualArgNames.resize(numArgs);
// Figure out previous argument names from the parameter bindings.
for (unsigned i = 0; i != numParams; ++i) {
const auto &param = params[i];
bool firstArg = true;
for (auto argIdx : parameterBindings[i]) {
actualArgNames[argIdx] = firstArg ? param.Label : Identifier();
firstArg = false;
}
}
// Record this argument name.
actualArgNames[argNumber] = expectedName;
}
claimedArgs[argNumber] = true;
++numClaimedArgs;
return argNumber;
};
// Local function that skips over any claimed arguments.
auto skipClaimedArgs = [&]() {
while (nextArgIdx != numArgs && claimedArgs[nextArgIdx])
++nextArgIdx;
};
// Local function that retrieves the next unclaimed argument with the given
// name (which may be empty). This routine claims the argument.
auto claimNextNamed
= [&](Identifier name, bool ignoreNameMismatch) -> Optional<unsigned> {
// Skip over any claimed arguments.
skipClaimedArgs();
// If we've claimed all of the arguments, there's nothing more to do.
if (numClaimedArgs == numArgs)
return None;
// When the expected name is empty, we claim the next argument if it has
// no name.
if (name.empty()) {
// Nothing to claim.
if (nextArgIdx == numArgs ||
claimedArgs[nextArgIdx] ||
(args[nextArgIdx].hasLabel() && !ignoreNameMismatch))
return None;
return claim(name, nextArgIdx);
}
// If the name matches, claim this argument.
if (nextArgIdx != numArgs &&
(ignoreNameMismatch || args[nextArgIdx].Label == name)) {
return claim(name, nextArgIdx);
}
// The name didn't match. Go hunting for an unclaimed argument whose name
// does match.
Optional<unsigned> claimedWithSameName;
for (unsigned i = nextArgIdx; i != numArgs; ++i) {
// Skip arguments where the name doesn't match.
if (args[i].Label != name)
continue;
// Skip claimed arguments.
if (claimedArgs[i]) {
// Note that we have already claimed an argument with the same name.
if (!claimedWithSameName)
claimedWithSameName = i;
continue;
}
// We found a match. If the match wasn't the next one, we have
// potentially out of order arguments.
if (i != nextArgIdx)
potentiallyOutOfOrder = true;
// Claim it.
return claim(name, i);
}
// If we're not supposed to attempt any fixes, we're done.
if (!allowFixes)
return None;
// Several things could have gone wrong here, and we'll check for each
// of them at some point:
// - The keyword argument might be redundant, in which case we can point
// out the issue.
// - The argument might be unnamed, in which case we try to fix the
// problem by adding the name.
// - The keyword argument might be a typo for an actual argument name, in
// which case we should find the closest match to correct to.
// Redundant keyword arguments.
if (claimedWithSameName) {
// FIXME: We can provide better diagnostics here.
return None;
}
// Missing a keyword argument name.
if (nextArgIdx != numArgs && !args[nextArgIdx].hasLabel() &&
ignoreNameMismatch) {
// Claim the next argument.
return claim(name, nextArgIdx);
}
// Typo correction is handled in a later pass.
return None;
};
// Local function that attempts to bind the given parameter to arguments in
// the list.
bool haveUnfulfilledParams = false;
auto bindNextParameter = [&](bool ignoreNameMismatch) {
const auto &param = params[paramIdx];
// Handle variadic parameters.
if (param.isVariadic()) {
// Claim the next argument with the name of this parameter.
auto claimed = claimNextNamed(param.Label, ignoreNameMismatch);
// If there was no such argument, leave the argument unf
if (!claimed) {
haveUnfulfilledParams = true;
return;
}
// Record the first argument for the variadic.
parameterBindings[paramIdx].push_back(*claimed);
// Claim any additional unnamed arguments.
while ((claimed = claimNextNamed(Identifier(), false))) {
parameterBindings[paramIdx].push_back(*claimed);
}
skipClaimedArgs();
return;
}
// Try to claim an argument for this parameter.
if (auto claimed = claimNextNamed(param.Label, ignoreNameMismatch)) {
parameterBindings[paramIdx].push_back(*claimed);
skipClaimedArgs();
return;
}
// There was no argument to claim. Leave the argument unfulfilled.
haveUnfulfilledParams = true;
};
// If we have a trailing closure, it maps to the last parameter.
if (hasTrailingClosure && numParams > 0) {
claimedArgs[numArgs-1] = true;
++numClaimedArgs;
parameterBindings[numParams-1].push_back(numArgs-1);
}
// Mark through the parameters, binding them to their arguments.
for (paramIdx = 0; paramIdx != numParams; ++paramIdx) {
if (parameterBindings[paramIdx].empty())
bindNextParameter(false);
}
// If we have any unclaimed arguments, complain about those.
if (numClaimedArgs != numArgs) {
// Find all of the named, unclaimed arguments.
llvm::SmallVector<unsigned, 4> unclaimedNamedArgs;
for (nextArgIdx = 0; skipClaimedArgs(), nextArgIdx != numArgs;
++nextArgIdx) {
if (args[nextArgIdx].hasLabel())
unclaimedNamedArgs.push_back(nextArgIdx);
}
if (!unclaimedNamedArgs.empty()) {
// Find all of the named, unfulfilled parameters.
llvm::SmallVector<unsigned, 4> unfulfilledNamedParams;
bool hasUnfulfilledUnnamedParams = false;
for (paramIdx = 0; paramIdx != numParams; ++paramIdx) {
if (parameterBindings[paramIdx].empty()) {
if (params[paramIdx].hasLabel())
unfulfilledNamedParams.push_back(paramIdx);
else
hasUnfulfilledUnnamedParams = true;
}
}
if (!unfulfilledNamedParams.empty()) {
// Use typo correction to find the best matches.
// FIXME: There is undoubtedly a good dynamic-programming algorithm
// to find the best assignment here.
for (auto argIdx : unclaimedNamedArgs) {
auto argName = args[argIdx].Label;
// Find the closest matching unfulfilled named parameter.
unsigned bestScore = 0;
unsigned best = 0;
for (unsigned i = 0, n = unfulfilledNamedParams.size(); i != n; ++i) {
unsigned param = unfulfilledNamedParams[i];
auto paramName = params[param].Label;
if (auto score = scoreParamAndArgNameTypo(paramName.str(),
argName.str(),
bestScore)) {
if (*score < bestScore || bestScore == 0) {
bestScore = *score;
best = i;
}
}
}
// If we found a parameter to fulfill, do it.
if (bestScore > 0) {
// Bind this parameter to the argument.
nextArgIdx = argIdx;
paramIdx = unfulfilledNamedParams[best];
bindNextParameter(true);
// Erase this parameter from the list of unfulfilled named
// parameters, so we don't try to fulfill it again.
unfulfilledNamedParams.erase(unfulfilledNamedParams.begin() + best);
if (unfulfilledNamedParams.empty())
break;
}
}
// Update haveUnfulfilledParams, because we may have fulfilled some
// parameters above.
haveUnfulfilledParams = hasUnfulfilledUnnamedParams ||
!unfulfilledNamedParams.empty();
}
}
// Find all of the unfulfilled parameters, and match them up
// semi-positionally.
if (numClaimedArgs != numArgs) {
// Restart at the first argument/parameter.
nextArgIdx = 0;
skipClaimedArgs();
haveUnfulfilledParams = false;
for (paramIdx = 0; paramIdx != numParams; ++paramIdx) {
// Skip fulfilled parameters.
if (!parameterBindings[paramIdx].empty())
continue;
bindNextParameter(true);
}
}
// If we still haven't claimed all of the arguments, fail.
if (numClaimedArgs != numArgs) {
nextArgIdx = 0;
skipClaimedArgs();
listener.extraArgument(nextArgIdx);
return true;
}
// FIXME: If we had the actual parameters and knew the body names, those
// matches would be best.
potentiallyOutOfOrder = true;
}
// If we have any unfulfilled parameters, check them now.
if (haveUnfulfilledParams) {
for (paramIdx = 0; paramIdx != numParams; ++paramIdx) {
// If we have a binding for this parameter, we're done.
if (!parameterBindings[paramIdx].empty())
continue;
const auto &param = params[paramIdx];
// Variadic parameters can be unfulfilled.
if (param.isVariadic())
continue;
// Parameters with defaults can be unfulfilled.
if (param.HasDefaultArgument)
continue;
listener.missingArgument(paramIdx);
return true;
}
}
// If any arguments were provided out-of-order, check whether we have
// violated any of the reordering rules.
if (potentiallyOutOfOrder) {
unsigned argIdx = 0;
// Enumerate the parameters and their bindings to see if any arguments are
// our of order
for (auto binding : parameterBindings) {
for (auto boundArgIdx : binding) {
if (boundArgIdx == argIdx) {
// If the argument is in the right location, just continue
argIdx++;
continue;
}
// Otherwise, we've found the (first) parameter that has an out of order
// argument, and know the indices of the argument the needs to move
// (fromArgIdx) and the argument location it should move to (toArgItd).
auto fromArgIdx = boundArgIdx;
auto toArgIdx = argIdx;
// First let's double check if out-of-order argument is nothing
// more than a simple label mismatch, because in situation where
// one argument requires label and another one doesn't, but caller
// doesn't provide either, problem is going to be identified as
// out-of-order argument instead of label mismatch.
auto &parameter = params[toArgIdx];
if (parameter.hasLabel()) {
auto expectedLabel = parameter.Label;
auto argumentLabel = args[fromArgIdx].Label;
// If there is a label but it's incorrect it can only mean
// situation like this: expected (x, _ y) got (y, _ x).
if (argumentLabel.empty() ||
(expectedLabel.compare(argumentLabel) != 0 &&
!args[toArgIdx].hasLabel())) {
listener.missingLabel(toArgIdx);
return true;
}
}
listener.outOfOrderArgument(fromArgIdx, toArgIdx);
return true;
}
}
}
// If no arguments were renamed, the call arguments match up with the
// parameters.
if (actualArgNames.empty())
return false;
// The arguments were relabeled; notify the listener.
return listener.relabelArguments(actualArgNames);
}
/// Find the callee declaration and uncurry level for a given call
/// locator.
static std::tuple<ValueDecl *, unsigned, ArrayRef<Identifier>, bool>
getCalleeDeclAndArgs(ConstraintSystem &cs,
ConstraintLocatorBuilder callLocator,
SmallVectorImpl<Identifier> &argLabelsScratch) {
ArrayRef<Identifier> argLabels;
bool hasTrailingClosure = false;
// Break down the call.
SmallVector<LocatorPathElt, 2> path;
auto callExpr = callLocator.getLocatorParts(path);
if (!callExpr)
return std::make_tuple(nullptr, 0, argLabels, hasTrailingClosure);
// Our remaining path can only be 'ApplyArgument' or 'SubscriptIndex'.
if (!path.empty() &&
!(path.size() == 1 &&
(path.back().getKind() == ConstraintLocator::ApplyArgument ||
path.back().getKind() == ConstraintLocator::SubscriptIndex)))
return std::make_tuple(nullptr, 0, argLabels, hasTrailingClosure);
// Dig out the callee.
Expr *calleeExpr;
if (auto call = dyn_cast<CallExpr>(callExpr)) {
calleeExpr = call->getDirectCallee();
argLabels = call->getArgumentLabels();
hasTrailingClosure = call->hasTrailingClosure();
} else if (auto unresolved = dyn_cast<UnresolvedMemberExpr>(callExpr)) {
calleeExpr = callExpr;
argLabels = unresolved->getArgumentLabels();
hasTrailingClosure = unresolved->hasTrailingClosure();
} else if (auto subscript = dyn_cast<SubscriptExpr>(callExpr)) {
calleeExpr = callExpr;
argLabels = subscript->getArgumentLabels();
hasTrailingClosure = subscript->hasTrailingClosure();
} else if (auto dynSubscript = dyn_cast<DynamicSubscriptExpr>(callExpr)) {
calleeExpr = callExpr;
argLabels = dynSubscript->getArgumentLabels();
hasTrailingClosure = dynSubscript->hasTrailingClosure();
} else {
if (auto apply = dyn_cast<ApplyExpr>(callExpr)) {
argLabels = apply->getArgumentLabels(argLabelsScratch);
assert(!apply->hasTrailingClosure());
} else if (auto objectLiteral = dyn_cast<ObjectLiteralExpr>(callExpr)) {
argLabels = objectLiteral->getArgumentLabels();
hasTrailingClosure = objectLiteral->hasTrailingClosure();
}
return std::make_tuple(nullptr, 0, argLabels, hasTrailingClosure);
}
// Determine the target locator.
// FIXME: Check whether the callee is of an expression kind that
// could describe a declaration. This is an optimization.
ConstraintLocator *targetLocator = cs.getConstraintLocator(calleeExpr);
// Find the overload choice corresponding to the callee locator.
// FIXME: This linearly walks the list of resolved overloads, which is
// potentially very expensive.
Optional<OverloadChoice> choice;
for (auto resolved = cs.getResolvedOverloadSets(); resolved;
resolved = resolved->Previous) {
// FIXME: Workaround null locators.
if (!resolved->Locator) continue;
auto resolvedLocator = resolved->Locator;
SmallVector<LocatorPathElt, 4> resolvedPath(
resolvedLocator->getPath().begin(),
resolvedLocator->getPath().end());
if (!resolvedPath.empty() &&
(resolvedPath.back().getKind() == ConstraintLocator::SubscriptMember ||
resolvedPath.back().getKind() == ConstraintLocator::Member ||
resolvedPath.back().getKind() == ConstraintLocator::UnresolvedMember ||
resolvedPath.back().getKind() ==
ConstraintLocator::ConstructorMember)) {
resolvedPath.pop_back();
resolvedLocator = cs.getConstraintLocator(
resolvedLocator->getAnchor(),
resolvedPath,
resolvedLocator->getSummaryFlags());
}
SourceRange range;
resolvedLocator = simplifyLocator(cs, resolvedLocator, range);
if (resolvedLocator == targetLocator) {
choice = resolved->Choice;
break;
}
}
// If we didn't find any matching overloads, we're done.
if (!choice)
return std::make_tuple(nullptr, 0, argLabels, hasTrailingClosure);
// If there's a declaration, return it.
if (choice->isDecl()) {
auto decl = choice->getDecl();
unsigned level = 0;
if (decl->getDeclContext()->isTypeContext()) {
if (auto function = dyn_cast<AbstractFunctionDecl>(decl)) {
// References to instance members on a metatype stay at level 0.
// Everything else is level 1.
if (!(function->isInstanceMember() &&
cs.getFixedTypeRecursive(choice->getBaseType(),
/*wantRValue=*/true)
->is<AnyMetatypeType>()))
level = 1;
} else if (isa<SubscriptDecl>(decl)) {
// Subscript level 1 == the indices.
level = 1;
}
}
return std::make_tuple(decl, level, argLabels, hasTrailingClosure);
}
return std::make_tuple(nullptr, 0, argLabels, hasTrailingClosure);
}
// Match the argument of a call to the parameter.
static ConstraintSystem::SolutionKind
matchCallArguments(ConstraintSystem &cs, ConstraintKind kind,
Type argType, Type paramType,
ConstraintLocatorBuilder locator) {
if (paramType->isAny()) {
if (argType->is<InOutType>())
return ConstraintSystem::SolutionKind::Error;
// If the param type is Any, the function can only have one argument.
// Check if exactly one argument was passed to this function, otherwise
// we obviously have a mismatch.
if (auto tupleArgType = dyn_cast<TupleType>(argType.getPointer())) {
// Total hack: In Swift 3 mode, argument labels are ignored when calling
// function type with a single Any parameter.
if (tupleArgType->getNumElements() != 1 ||
(!cs.getASTContext().isSwiftVersion3() &&
tupleArgType->getElement(0).hasName())) {
return ConstraintSystem::SolutionKind::Error;
}
}
return ConstraintSystem::SolutionKind::Solved;
}
// Extract the parameters.
ValueDecl *callee;
unsigned calleeLevel;
ArrayRef<Identifier> argLabels;
SmallVector<Identifier, 2> argLabelsScratch;
bool hasTrailingClosure = false;
std::tie(callee, calleeLevel, argLabels, hasTrailingClosure) =
getCalleeDeclAndArgs(cs, locator, argLabelsScratch);
auto params = decomposeParamType(paramType, callee, calleeLevel);
if (callee && cs.getASTContext().isSwiftVersion3()
&& argType->is<TupleType>()) {
// Hack: In Swift 3 mode, accept `foo(x, y)` for `foo((x, y))` when the
// callee is a function-typed property or an enum constructor whose
// argument is a single unlabeled type parameter.
if (auto *prop = dyn_cast<VarDecl>(callee)) {
auto *fnType = prop->getInterfaceType()->getAs<AnyFunctionType>();
if (fnType && fnType->getInput()->isTypeParameter())
argType = ParenType::get(cs.getASTContext(), argType);
} else if (auto *enumCtor = dyn_cast<EnumElementDecl>(callee)) {
if (enumCtor->getArgumentInterfaceType()->isTypeParameter())
argType = ParenType::get(cs.getASTContext(), argType);
}
}
// Extract the arguments.
auto args = decomposeArgType(argType, argLabels);
// Match up the call arguments to the parameters.
MatchCallArgumentListener listener;
SmallVector<ParamBinding, 4> parameterBindings;
if (constraints::matchCallArguments(args, params, hasTrailingClosure,
cs.shouldAttemptFixes(), listener,
parameterBindings))
return ConstraintSystem::SolutionKind::Error;
// Check the argument types for each of the parameters.
ConstraintSystem::TypeMatchOptions subflags =
ConstraintSystem::TMF_GenerateConstraints;
ConstraintKind subKind;
switch (kind) {
case ConstraintKind::ArgumentTupleConversion:
subKind = ConstraintKind::ArgumentConversion;
break;
case ConstraintKind::OperatorArgumentTupleConversion:
subKind = ConstraintKind::OperatorArgumentConversion;
break;
case ConstraintKind::Conversion:
case ConstraintKind::BridgingConversion:
case ConstraintKind::OperatorArgumentConversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Equal:
case ConstraintKind::Subtype:
case ConstraintKind::ApplicableFunction:
case ConstraintKind::BindOverload:
case ConstraintKind::CheckedCast:
case ConstraintKind::ConformsTo:
case ConstraintKind::Defaultable:
case ConstraintKind::Disjunction:
case ConstraintKind::DynamicTypeOf:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::KeyPath:
case ConstraintKind::KeyPathApplication:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::OptionalObject:
case ConstraintKind::SelfObjectOfProtocol:
case ConstraintKind::UnresolvedValueMember:
case ConstraintKind::ValueMember:
llvm_unreachable("Not a call argument constraint");
}
auto haveOneNonUserConversion =
(subKind != ConstraintKind::OperatorArgumentConversion);
for (unsigned paramIdx = 0, numParams = parameterBindings.size();
paramIdx != numParams; ++paramIdx){
// Skip unfulfilled parameters. There's nothing to do for them.
if (parameterBindings[paramIdx].empty())
continue;
// Determine the parameter type.
const auto &param = params[paramIdx];
auto paramTy = param.Ty;
// Compare each of the bound arguments for this parameter.
for (auto argIdx : parameterBindings[paramIdx]) {
auto loc = locator.withPathElement(LocatorPathElt::
getApplyArgToParam(argIdx,
paramIdx));
auto argTy = args[argIdx].Ty;
if (!haveOneNonUserConversion) {
subflags |= ConstraintSystem::TMF_ApplyingOperatorParameter;
}
switch (cs.matchTypes(argTy, paramTy, subKind, subflags, loc)) {
case ConstraintSystem::SolutionKind::Error:
return ConstraintSystem::SolutionKind::Error;
case ConstraintSystem::SolutionKind::Solved:
case ConstraintSystem::SolutionKind::Unsolved:
break;
}
}
}
return ConstraintSystem::SolutionKind::Solved;
}
ConstraintSystem::SolutionKind
ConstraintSystem::matchTupleTypes(TupleType *tuple1, TupleType *tuple2,
ConstraintKind kind, TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
// Equality and subtyping have fairly strict requirements on tuple matching,
// requiring element names to either match up or be disjoint.
if (kind < ConstraintKind::Conversion) {
if (tuple1->getNumElements() != tuple2->getNumElements())
return SolutionKind::Error;
for (unsigned i = 0, n = tuple1->getNumElements(); i != n; ++i) {
const auto &elt1 = tuple1->getElement(i);
const auto &elt2 = tuple2->getElement(i);
// If the names don't match, we may have a conflict.
if (elt1.getName() != elt2.getName()) {
// Same-type requirements require exact name matches.
if (kind <= ConstraintKind::Equal)
return SolutionKind::Error;
// For subtyping constraints, just make sure that this name isn't
// used at some other position.
if (elt2.hasName() && tuple1->getNamedElementId(elt2.getName()) != -1)
return SolutionKind::Error;
}
// Variadic bit must match.
if (elt1.isVararg() != elt2.isVararg())
return SolutionKind::Error;
// Compare the element types.
switch (matchTypes(elt1.getType(), elt2.getType(), kind, subflags,
locator.withPathElement(
LocatorPathElt::getTupleElement(i)))) {
case SolutionKind::Error:
return SolutionKind::Error;
case SolutionKind::Solved:
case SolutionKind::Unsolved:
break;
}
}
return SolutionKind::Solved;
}
assert(kind >= ConstraintKind::Conversion);
ConstraintKind subKind;
switch (kind) {
case ConstraintKind::ArgumentTupleConversion:
subKind = ConstraintKind::ArgumentConversion;
break;
case ConstraintKind::OperatorArgumentTupleConversion:
subKind = ConstraintKind::OperatorArgumentConversion;
break;
case ConstraintKind::OperatorArgumentConversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::Conversion:
subKind = ConstraintKind::Conversion;
break;
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Equal:
case ConstraintKind::Subtype:
case ConstraintKind::ApplicableFunction:
case ConstraintKind::BindOverload:
case ConstraintKind::CheckedCast:
case ConstraintKind::ConformsTo:
case ConstraintKind::Defaultable:
case ConstraintKind::Disjunction:
case ConstraintKind::DynamicTypeOf:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::KeyPath:
case ConstraintKind::KeyPathApplication:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::OptionalObject:
case ConstraintKind::SelfObjectOfProtocol:
case ConstraintKind::UnresolvedValueMember:
case ConstraintKind::ValueMember:
case ConstraintKind::BridgingConversion:
llvm_unreachable("Not a conversion");
}
// Compute the element shuffles for conversions.
SmallVector<int, 16> sources;
SmallVector<unsigned, 4> variadicArguments;
if (computeTupleShuffle(tuple1, tuple2, sources, variadicArguments))
return SolutionKind::Error;
// Check each of the elements.
bool hasVariadic = false;
unsigned variadicIdx = sources.size();
for (unsigned idx2 = 0, n = sources.size(); idx2 != n; ++idx2) {
// Default-initialization always allowed for conversions.
if (sources[idx2] == TupleShuffleExpr::DefaultInitialize) {
continue;
}
// Variadic arguments handled below.
if (sources[idx2] == TupleShuffleExpr::Variadic) {
assert(!hasVariadic && "Multiple variadic parameters");
hasVariadic = true;
variadicIdx = idx2;
continue;
}
assert(sources[idx2] >= 0);
unsigned idx1 = sources[idx2];
// Match up the types.
const auto &elt1 = tuple1->getElement(idx1);
const auto &elt2 = tuple2->getElement(idx2);
switch (matchTypes(elt1.getType(), elt2.getType(), subKind, subflags,
locator.withPathElement(
LocatorPathElt::getTupleElement(idx1)))) {
case SolutionKind::Error:
return SolutionKind::Error;
case SolutionKind::Solved:
case SolutionKind::Unsolved:
break;
}
}
// If we have variadic arguments to check, do so now.
if (hasVariadic) {
const auto &elt2 = tuple2->getElements()[variadicIdx];
auto eltType2 = elt2.getVarargBaseTy();
for (unsigned idx1 : variadicArguments) {
switch (matchTypes(tuple1->getElementType(idx1), eltType2, subKind,
subflags,
locator.withPathElement(
LocatorPathElt::getTupleElement(idx1)))) {
case SolutionKind::Error:
return SolutionKind::Error;
case SolutionKind::Solved:
case SolutionKind::Unsolved:
break;
}
}
}
return SolutionKind::Solved;
}
ConstraintSystem::SolutionKind
ConstraintSystem::matchScalarToTupleTypes(Type type1, TupleType *tuple2,
ConstraintKind kind, TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
int scalarFieldIdx = tuple2->getElementForScalarInit();
assert(scalarFieldIdx >= 0 && "Invalid tuple for scalar-to-tuple");
const auto &elt = tuple2->getElement(scalarFieldIdx);
auto scalarFieldTy = elt.isVararg()? elt.getVarargBaseTy() : elt.getType();
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
return matchTypes(type1, scalarFieldTy, kind, subflags,
locator.withPathElement(ConstraintLocator::ScalarToTuple));
}
// Returns 'false' (i.e. no error) if it is legal to match functions with the
// corresponding function type representations and the given match kind.
static bool matchFunctionRepresentations(FunctionTypeRepresentation rep1,
FunctionTypeRepresentation rep2,
ConstraintKind kind) {
switch (kind) {
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Equal:
return rep1 != rep2;
case ConstraintKind::Subtype:
case ConstraintKind::Conversion:
case ConstraintKind::BridgingConversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::ArgumentTupleConversion:
case ConstraintKind::OperatorArgumentTupleConversion:
case ConstraintKind::OperatorArgumentConversion:
case ConstraintKind::ApplicableFunction:
case ConstraintKind::BindOverload:
case ConstraintKind::CheckedCast:
case ConstraintKind::ConformsTo:
case ConstraintKind::Defaultable:
case ConstraintKind::Disjunction:
case ConstraintKind::DynamicTypeOf:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::KeyPath:
case ConstraintKind::KeyPathApplication:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::OptionalObject:
case ConstraintKind::SelfObjectOfProtocol:
case ConstraintKind::UnresolvedValueMember:
case ConstraintKind::ValueMember:
return false;
}
llvm_unreachable("Unhandled ConstraintKind in switch.");
}
ConstraintSystem::SolutionKind
ConstraintSystem::matchFunctionTypes(FunctionType *func1, FunctionType *func2,
ConstraintKind kind, TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
// An @autoclosure function type can be a subtype of a
// non-@autoclosure function type.
if (func1->isAutoClosure() != func2->isAutoClosure() &&
kind < ConstraintKind::Subtype)
return SolutionKind::Error;
// A non-throwing function can be a subtype of a throwing function.
if (func1->throws() != func2->throws()) {
// Cannot drop 'throws'.
if (func1->throws() || (func2->throws() && kind < ConstraintKind::Subtype))
return SolutionKind::Error;
}
// A non-@noescape function type can be a subtype of a @noescape function
// type.
if (func1->isNoEscape() != func2->isNoEscape() &&
(func1->isNoEscape() || kind < ConstraintKind::Subtype))
return SolutionKind::Error;
if (matchFunctionRepresentations(func1->getExtInfo().getRepresentation(),
func2->getExtInfo().getRepresentation(),
kind)) {
return SolutionKind::Error;
}
// Determine how we match up the input/result types.
ConstraintKind subKind;
switch (kind) {
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Equal:
subKind = kind;
break;
case ConstraintKind::Subtype:
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::ArgumentTupleConversion:
case ConstraintKind::OperatorArgumentTupleConversion:
case ConstraintKind::OperatorArgumentConversion:
subKind = ConstraintKind::Subtype;
break;
case ConstraintKind::ApplicableFunction:
case ConstraintKind::BindOverload:
case ConstraintKind::CheckedCast:
case ConstraintKind::ConformsTo:
case ConstraintKind::Defaultable:
case ConstraintKind::Disjunction:
case ConstraintKind::DynamicTypeOf:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::KeyPath:
case ConstraintKind::KeyPathApplication:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::OptionalObject:
case ConstraintKind::SelfObjectOfProtocol:
case ConstraintKind::UnresolvedValueMember:
case ConstraintKind::ValueMember:
case ConstraintKind::BridgingConversion:
llvm_unreachable("Not a relational constraint");
}
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
increaseScore(ScoreKind::SK_FunctionConversion);
// Add a very narrow exception to SE-0110 by allowing functions that
// take multiple arguments to be passed as an argument in places
// that expect a function that takes a single tuple (of the same
// arity).
auto func1Input = func1->getInput();
auto func2Input = func2->getInput();
if (!getASTContext().isSwiftVersion3()) {
if (auto elt = locator.last()) {
if (elt->getKind() == ConstraintLocator::ApplyArgToParam) {
if (auto *paren2 = dyn_cast<ParenType>(func2Input.getPointer())) {
func2Input = paren2->getUnderlyingType();
if (auto *paren1 = dyn_cast<ParenType>(func1Input.getPointer()))
func1Input = paren1->getUnderlyingType();
}
}
}
}
// Input types can be contravariant (or equal).
SolutionKind result =
matchTypes(func2Input, func1Input, subKind, subflags,
locator.withPathElement(ConstraintLocator::FunctionArgument));
if (result == SolutionKind::Error)
return SolutionKind::Error;
// Result type can be covariant (or equal).
return matchTypes(func1->getResult(), func2->getResult(), subKind,
subflags,
locator.withPathElement(
ConstraintLocator::FunctionResult));
}
ConstraintSystem::SolutionKind
ConstraintSystem::matchSuperclassTypes(Type type1, Type type2,
ConstraintKind kind,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
auto classDecl2 = type2->getClassOrBoundGenericClass();
bool done = false;
for (auto super1 = TC.getSuperClassOf(type1);
!done && super1;
super1 = TC.getSuperClassOf(super1)) {
if (super1->getClassOrBoundGenericClass() != classDecl2)
continue;
return matchTypes(super1, type2, ConstraintKind::Equal,
subflags, locator);
}
return SolutionKind::Error;
}
ConstraintSystem::SolutionKind
ConstraintSystem::matchDeepEqualityTypes(Type type1, Type type2,
ConstraintLocatorBuilder locator) {
TypeMatchOptions subflags = TMF_GenerateConstraints;
// Handle nominal types that are not directly generic.
if (auto nominal1 = type1->getAs<NominalType>()) {
auto nominal2 = type2->castTo<NominalType>();
assert((bool)nominal1->getParent() == (bool)nominal2->getParent() &&
"Mismatched parents of nominal types");
if (!nominal1->getParent())
return SolutionKind::Solved;
// Match up the parents, exactly.
return matchTypes(nominal1->getParent(), nominal2->getParent(),
ConstraintKind::Equal, subflags,
locator.withPathElement(ConstraintLocator::ParentType));
}
auto bound1 = type1->castTo<BoundGenericType>();
auto bound2 = type2->castTo<BoundGenericType>();
// Match up the parents, exactly, if there are parents.
assert((bool)bound1->getParent() == (bool)bound2->getParent() &&
"Mismatched parents of bound generics");
if (bound1->getParent()) {
switch (matchTypes(bound1->getParent(), bound2->getParent(),
ConstraintKind::Equal, subflags,
locator.withPathElement(ConstraintLocator::ParentType))){
case SolutionKind::Error:
return SolutionKind::Error;
case SolutionKind::Solved:
case SolutionKind::Unsolved:
break;
}
}
// Match up the generic arguments, exactly.
auto args1 = bound1->getGenericArgs();
auto args2 = bound2->getGenericArgs();
if (args1.size() != args2.size()) {
return SolutionKind::Error;
}
for (unsigned i = 0, n = args1.size(); i != n; ++i) {
switch (matchTypes(args1[i], args2[i], ConstraintKind::Equal,
subflags,
locator.withPathElement(
LocatorPathElt::getGenericArgument(i)))) {
case SolutionKind::Error:
return SolutionKind::Error;
case SolutionKind::Solved:
case SolutionKind::Unsolved:
break;
}
}
return SolutionKind::Solved;
}
ConstraintSystem::SolutionKind
ConstraintSystem::matchExistentialTypes(Type type1, Type type2,
ConstraintKind kind,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
// FIXME: Fees like a hack.
if (type1->is<InOutType>())
return SolutionKind::Error;
// Conformance to 'Any' always holds.
if (type2->isAny())
return SolutionKind::Solved;
// If the first type is a type variable or member thereof, there's nothing
// we can do now.
if (type1->isTypeVariableOrMember()) {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::create(*this, kind, type1, type2,
getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
}
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
// Handle existential metatypes.
if (auto meta1 = type1->getAs<MetatypeType>()) {
if (auto meta2 = type2->getAs<ExistentialMetatypeType>()) {
return matchExistentialTypes(meta1->getInstanceType(),
meta2->getInstanceType(), kind, subflags,
locator.withPathElement(
ConstraintLocator::InstanceType));
}
}
if (!type2->isExistentialType())
return SolutionKind::Error;
auto layout = type2->getExistentialLayout();
if (auto layoutConstraint = layout.getLayoutConstraint()) {
if (layoutConstraint->isClass()) {
if (kind == ConstraintKind::ConformsTo) {
// Conformance to AnyObject is defined by having a single
// retainable pointer representation:
//
// - @objc existentials
// - class constrained archetypes
// - classes
if (!type1->isObjCExistentialType() &&
!type1->mayHaveSuperclass())
return SolutionKind::Error;
} else {
// Subtype relation to AnyObject also allows class-bound
// existentials that are not @objc and therefore carry
// witness tables.
if (!type1->isClassExistentialType() &&
!type1->mayHaveSuperclass())
return SolutionKind::Error;
}
// Keep going.
}
}
if (layout.superclass) {
auto subKind = std::min(ConstraintKind::Subtype, kind);
switch (matchTypes(type1, layout.superclass, subKind, subflags, locator)) {
case SolutionKind::Solved:
case SolutionKind::Unsolved:
break;
case SolutionKind::Error:
return SolutionKind::Error;
}
}
for (auto *proto : layout.getProtocols()) {
auto *protoDecl = proto->getDecl();
switch (simplifyConformsToConstraint(type1, protoDecl, kind, locator,
subflags)) {
case SolutionKind::Solved:
case SolutionKind::Unsolved:
break;
case SolutionKind::Error:
return SolutionKind::Error;
}
}
return SolutionKind::Solved;
}
static bool isStringCompatiblePointerBaseType(TypeChecker &TC,
DeclContext *DC,
Type baseType) {
// Allow strings to be passed to pointer-to-byte or pointer-to-void types.
if (baseType->isEqual(TC.getInt8Type(DC)))
return true;
if (baseType->isEqual(TC.getUInt8Type(DC)))
return true;
if (baseType->isEqual(TC.Context.TheEmptyTupleType))
return true;
return false;
}
/// Determine whether this is an implicitly unwrapped optional type.
static OptionalTypeKind classifyAsOptionalType(Type type) {
if (auto boundGeneric = type->getAs<BoundGenericType>())
return boundGeneric->getDecl()->classifyAsOptionalType();
return OTK_None;
}
/// Determine whether the first type with the given number of optionals
/// is potentially more optional than the second type with its number of
/// optionals.
static bool isPotentiallyMoreOptionalThan(Type objType1,
unsigned numOptionals1,
Type objType2,
unsigned numOptionals2) {
if (numOptionals1 <= numOptionals2 && !objType1->isTypeVariableOrMember())
return false;
return true;
}
/// Enumerate all of the applicable optional conversion restrictions
static void enumerateOptionalConversionRestrictions(
Type type1, Type type2,
ConstraintKind kind, ConstraintLocatorBuilder locator,
llvm::function_ref<void(ConversionRestrictionKind)> fn) {
SmallVector<Type, 2> optionals1;
Type objType1 = type1->lookThroughAllAnyOptionalTypes(optionals1);
SmallVector<Type, 2> optionals2;
Type objType2 = type2->lookThroughAllAnyOptionalTypes(optionals2);
if (optionals1.empty() && optionals2.empty())
return;
// Optional-to-optional.
if (!optionals1.empty() && !optionals2.empty()) {
auto optionalKind1 = classifyAsOptionalType(optionals1.front());
auto optionalKind2 = classifyAsOptionalType(optionals2.front());
// Break cyclic conversions between T? and U! by only allowing it for
// conversion constraints.
if (kind >= ConstraintKind::Conversion ||
locator.isFunctionConversion() ||
!(optionalKind1 == OTK_Optional &&
optionalKind2 == OTK_ImplicitlyUnwrappedOptional))
fn(ConversionRestrictionKind::OptionalToOptional);
}
// Inject a value into an optional.
if (isPotentiallyMoreOptionalThan(objType2, optionals2.size(),
objType1, optionals1.size())) {
fn(ConversionRestrictionKind::ValueToOptional);
}
// Unwrap an implicitly-unwrapped optional.
if (!optionals1.empty() &&
classifyAsOptionalType(optionals1.front())
== OTK_ImplicitlyUnwrappedOptional &&
kind >= ConstraintKind::Conversion &&
isPotentiallyMoreOptionalThan(objType1, optionals1.size(),
objType2, optionals2.size())) {
fn(ConversionRestrictionKind::ForceUnchecked);
}
}
ConstraintSystem::SolutionKind
ConstraintSystem::matchTypes(Type type1, Type type2, ConstraintKind kind,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
bool isArgumentTupleConversion
= kind == ConstraintKind::ArgumentTupleConversion ||
kind == ConstraintKind::OperatorArgumentTupleConversion;
// If we're doing an argument tuple conversion, or just matching the input
// types of two function types, we have to be careful to preserve
// ParenType sugar.
bool isArgumentTupleMatch = isArgumentTupleConversion;
bool isSwiftVersion3 = getASTContext().isSwiftVersion3();
// ... but not in Swift 3 mode, where this behavior was broken.
if (!isSwiftVersion3)
if (auto elt = locator.last())
if (elt->getKind() == ConstraintLocator::FunctionArgument)
isArgumentTupleMatch = true;
// If we have type variables that have been bound to fixed types, look through
// to the fixed type.
type1 = getFixedTypeRecursive(type1, flags, kind == ConstraintKind::Equal,
isArgumentTupleMatch);
type2 = getFixedTypeRecursive(type2, flags, kind == ConstraintKind::Equal,
isArgumentTupleMatch);
auto desugar1 = type1->getDesugaredType();
auto desugar2 = type2->getDesugaredType();
TypeVariableType *typeVar1, *typeVar2;
if (isArgumentTupleMatch &&
!isSwiftVersion3) {
typeVar1 = dyn_cast<TypeVariableType>(type1.getPointer());
typeVar2 = dyn_cast<TypeVariableType>(type2.getPointer());
// If the types are obviously equivalent, we're done.
if (isa<ParenType>(type1.getPointer()) ==
isa<ParenType>(type2.getPointer()) &&
type1->isEqual(type2))
return SolutionKind::Solved;
} else {
typeVar1 = desugar1->getAs<TypeVariableType>();
typeVar2 = desugar2->getAs<TypeVariableType>();
// If the types are obviously equivalent, we're done.
if (desugar1->isEqual(desugar2))
return SolutionKind::Solved;
}
// Local function that should be used to produce the return value whenever
// this function was unable to resolve the constraint. It should be used
// within \c matchTypes() as
//
// return formUnsolvedResult();
//
// along any unsolved path. No other returns should produce
// SolutionKind::Unsolved or inspect TMF_GenerateConstraints.
auto formUnsolvedResult = [&] {
// If we're supposed to generate constraints (i.e., this is a
// newly-generated constraint), do so now.
if (flags.contains(TMF_GenerateConstraints)) {
// Add a new constraint between these types. We consider the current
// type-matching problem to the "solved" by this addition, because
// this new constraint will be solved at a later point.
// Obviously, this must not happen at the top level, or the
// algorithm would not terminate.
addUnsolvedConstraint(Constraint::create(*this, kind, type1, type2,
getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
};
// If either (or both) types are type variables, unify the type variables.
if (typeVar1 || typeVar2) {
switch (kind) {
case ConstraintKind::Bind:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Equal: {
if (typeVar1 && typeVar2) {
auto rep1 = getRepresentative(typeVar1);
auto rep2 = getRepresentative(typeVar2);
if (rep1 == rep2) {
// We already merged these two types, so this constraint is
// trivially solved.
return SolutionKind::Solved;
}
// If exactly one of the type variables can bind to an lvalue, we
// can't merge these two type variables.
if (rep1->getImpl().canBindToLValue()
!= rep2->getImpl().canBindToLValue())
return formUnsolvedResult();
// Merge the equivalence classes corresponding to these two variables.
mergeEquivalenceClasses(rep1, rep2);
return SolutionKind::Solved;
}
// Provide a fixed type for the type variable.
if (typeVar1) {
// Simplify the right-hand type and perform the "occurs" check.
typeVar1 = getRepresentative(typeVar1);
type2 = simplifyType(type2, flags);
if (typeVarOccursInType(typeVar1, type2))
return formUnsolvedResult();
// Equal constraints allow mixed LValue/RValue bindings, but
// if we bind a type to a type variable that can bind to
// LValues as part of simplifying the Equal constraint we may
// later block a binding of the opposite "LValue-ness" to the
// same type variable that happens as part of simplifying
// another constraint.
if (kind == ConstraintKind::Equal) {
if (typeVar1->getImpl().canBindToLValue())
return formUnsolvedResult();
type2 = type2->getRValueType();
}
// If the left-hand type variable cannot bind to an lvalue,
// but we still have an lvalue, fail.
if (!typeVar1->getImpl().canBindToLValue() &&
type2->isLValueType())
return SolutionKind::Error;
// Okay. Bind below.
// Check whether the type variable must be bound to a materializable
// type.
if (typeVar1->getImpl().mustBeMaterializable()) {
if (!type2->isMaterializable())
return SolutionKind::Error;
setMustBeMaterializableRecursive(type2);
}
// A constraint that binds any pointer to a void pointer is
// ineffective, since any pointer can be converted to a void pointer.
if (kind == ConstraintKind::BindToPointerType && type2->isVoid()) {
// Bind type1 to Void only as a last resort.
addConstraint(ConstraintKind::Defaultable, typeVar1, type2,
getConstraintLocator(locator));
return SolutionKind::Solved;
}
assignFixedType(typeVar1, type2);
return SolutionKind::Solved;
}
// Simplify the left-hand type and perform the "occurs" check.
typeVar2 = getRepresentative(typeVar2);
type1 = simplifyType(type1, flags);
if (typeVarOccursInType(typeVar2, type1))
return formUnsolvedResult();
// Equal constraints allow mixed LValue/RValue bindings, but
// if we bind a type to a type variable that can bind to
// LValues as part of simplifying the Equal constraint we may
// later block a binding of the opposite "LValue-ness" to the
// same type variable that happens as part of simplifying
// another constraint.
if (kind == ConstraintKind::Equal) {
if (typeVar2->getImpl().canBindToLValue())
return formUnsolvedResult();
type1 = type1->getRValueType();
}
if (!typeVar2->getImpl().canBindToLValue() &&
type1->isLValueType()) {
return SolutionKind::Error;
// Okay. Bind below.
}
assignFixedType(typeVar2, type1);
return SolutionKind::Solved;
}
case ConstraintKind::BindParam: {
if (typeVar2 && !typeVar1) {
// Simplify the left-hand type and perform the "occurs" check.
typeVar2 = getRepresentative(typeVar2);
type1 = simplifyType(type1, flags);
if (typeVarOccursInType(typeVar2, type1))
return formUnsolvedResult();
if (auto *iot = type1->getAs<InOutType>()) {
assignFixedType(typeVar2, LValueType::get(iot->getObjectType()));
} else {
assignFixedType(typeVar2, type1);
}
return SolutionKind::Solved;
} else if (typeVar1 && !typeVar2) {
// Simplify the right-hand type and perform the "occurs" check.
typeVar1 = getRepresentative(typeVar1);
type2 = simplifyType(type2, flags);
if (typeVarOccursInType(typeVar1, type2))
return formUnsolvedResult();
if (auto *lvt = type2->getAs<LValueType>()) {
assignFixedType(typeVar1, InOutType::get(lvt->getObjectType()));
} else {
assignFixedType(typeVar1, type2);
}
return SolutionKind::Solved;
} else if (typeVar1 && typeVar2) {
auto rep1 = getRepresentative(typeVar1);
auto rep2 = getRepresentative(typeVar2);
if (rep1 == rep2) {
return SolutionKind::Solved;
}
}
return formUnsolvedResult();
}
case ConstraintKind::ArgumentTupleConversion:
case ConstraintKind::Conversion:
if (typeVar1 && typeVar2) {
auto rep1 = getRepresentative(typeVar1);
auto rep2 = getRepresentative(typeVar2);
if (rep1 == rep2) {
// We already merged these two types, so this constraint is
// trivially solved.
return SolutionKind::Solved;
}
}
LLVM_FALLTHROUGH;
case ConstraintKind::Subtype:
// Subtype constraints are subject for edge contraction,
// which is inappropriate in this case, because it's going to
// erase/lose 'inout' modifier after merging equivalence classes
// (if inout constraints type var, see ConstraintGraph::contractEdges()),
// since right-hand side type variable must not be materializable
// it can simply get left-hand side as a fixed binding, otherwise fail.
if (type1->is<InOutType>() &&
type1->getInOutObjectType()->isTypeVariableOrMember() && typeVar2) {
// Left-hand side type is not materializable, so we need to
// check if it's even appropriate to have such a constraint
// between these two types, or fail early otherwise if right-hand
// side must be materializable.
if (typeVar2->getImpl().mustBeMaterializable())
return SolutionKind::Error;
// Constraints like `inout T0 subtype T1` where (T0 must be
// materializable) are created when closures are part of the generic
// function parameters e.g. `func foo<T>(_ t: T, (inout T) -> Void) {}`
// so when such function gets called e.g.
// ```
// var x = 42
// foo(x) { $0 = 0 }
// ```
// it's going to try and map closure parameters type (inout T0), where
// T0 is opened generic parameter T, to argument type (T1), which can
// be 'inout' but it's uncertain at this stage, but since closure
// 'declaration' `{ $0 = 0 }` is wrapped inside of a function call,
// it has to 'map' parameters to arguments instead of converting them,
// see `ConstraintSystem::matchFunctionTypes`.
assignFixedType(typeVar2, type1);
return SolutionKind::Solved;
}
LLVM_FALLTHROUGH;
case ConstraintKind::ArgumentConversion:
case ConstraintKind::OperatorArgumentTupleConversion:
case ConstraintKind::OperatorArgumentConversion:
// We couldn't solve this constraint. If only one of the types is a type
// variable, perhaps we can do something with it below.
if (typeVar1 && typeVar2) {
if (typeVar1 == typeVar2) return SolutionKind::Solved;
return formUnsolvedResult();
}
break;
case ConstraintKind::ApplicableFunction:
case ConstraintKind::BindOverload:
case ConstraintKind::BridgingConversion:
case ConstraintKind::CheckedCast:
case ConstraintKind::ConformsTo:
case ConstraintKind::Defaultable:
case ConstraintKind::Disjunction:
case ConstraintKind::DynamicTypeOf:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::KeyPath:
case ConstraintKind::KeyPathApplication:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::OptionalObject:
case ConstraintKind::SelfObjectOfProtocol:
case ConstraintKind::UnresolvedValueMember:
case ConstraintKind::ValueMember:
llvm_unreachable("Not a relational constraint");
}
}
// If this is an argument conversion, handle it directly. The rules are
// different from normal conversions.
if (kind == ConstraintKind::ArgumentTupleConversion ||
kind == ConstraintKind::OperatorArgumentTupleConversion) {
if (!typeVar2) {
return ::matchCallArguments(*this, kind, type1, type2, locator);
}
return formUnsolvedResult();
}
if (isArgumentTupleMatch &&
!isSwiftVersion3) {
if (!typeVar1 && !typeVar2) {
if (isa<ParenType>(type1.getPointer()) !=
isa<ParenType>(type2.getPointer())) {
return SolutionKind::Error;
}
}
}
bool isTypeVarOrMember1 = desugar1->isTypeVariableOrMember();
bool isTypeVarOrMember2 = desugar2->isTypeVariableOrMember();
llvm::SmallVector<RestrictionOrFix, 4> conversionsOrFixes;
bool concrete = !isTypeVarOrMember1 && !isTypeVarOrMember2;
// Decompose parallel structure.
TypeMatchOptions subflags =
getDefaultDecompositionOptions(flags) - TMF_ApplyingFix;
if (desugar1->getKind() == desugar2->getKind()) {
switch (desugar1->getKind()) {
#define SUGARED_TYPE(id, parent) case TypeKind::id:
#define TYPE(id, parent)
#include "swift/AST/TypeNodes.def"
llvm_unreachable("Type has not been desugared completely");
#define ARTIFICIAL_TYPE(id, parent) case TypeKind::id:
#define TYPE(id, parent)
#include "swift/AST/TypeNodes.def"
llvm_unreachable("artificial type in constraint");
#define BUILTIN_TYPE(id, parent) case TypeKind::id:
#define TYPE(id, parent)
#include "swift/AST/TypeNodes.def"
case TypeKind::Module:
if (desugar1 == desugar2) {
return SolutionKind::Solved;
}
return SolutionKind::Error;
case TypeKind::Error:
case TypeKind::Unresolved:
return SolutionKind::Error;
case TypeKind::GenericTypeParam:
llvm_unreachable("unmapped dependent type in type checker");
case TypeKind::DependentMember:
// Nothing we can solve.
return formUnsolvedResult();
case TypeKind::TypeVariable:
case TypeKind::Archetype:
// Nothing to do here; handle type variables and archetypes below.
break;
case TypeKind::Tuple: {
assert(!type2->is<LValueType>() && "Unexpected lvalue type!");
// Try the tuple-to-tuple conversion.
if (!type1->is<LValueType>())
conversionsOrFixes.push_back(ConversionRestrictionKind::TupleToTuple);
break;
}
case TypeKind::Enum:
case TypeKind::Struct:
case TypeKind::Class: {
auto nominal1 = cast<NominalType>(desugar1);
auto nominal2 = cast<NominalType>(desugar2);
assert(!type2->is<LValueType>() && "Unexpected lvalue type!");
if (!type1->is<LValueType>() &&
nominal1->getDecl() == nominal2->getDecl()) {
conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality);
}
// Check for CF <-> ObjectiveC bridging.
if (isa<ClassType>(desugar1) &&
kind >= ConstraintKind::Subtype) {
auto class1 = cast<ClassDecl>(nominal1->getDecl());
auto class2 = cast<ClassDecl>(nominal2->getDecl());
// CF -> Objective-C via toll-free bridging.
assert(!type2->is<LValueType>() && "Unexpected lvalue type!");
if (!type1->is<LValueType>() &&
class1->getForeignClassKind() == ClassDecl::ForeignKind::CFType &&
class2->getForeignClassKind() != ClassDecl::ForeignKind::CFType &&
class1->getAttrs().hasAttribute<ObjCBridgedAttr>()) {
conversionsOrFixes.push_back(
ConversionRestrictionKind::CFTollFreeBridgeToObjC);
}
// Objective-C -> CF via toll-free bridging.
assert(!type2->is<LValueType>() && "Unexpected lvalue type!");
if (!type1->is<LValueType>() &&
class2->getForeignClassKind() == ClassDecl::ForeignKind::CFType &&
class1->getForeignClassKind() != ClassDecl::ForeignKind::CFType &&
class2->getAttrs().hasAttribute<ObjCBridgedAttr>()) {
conversionsOrFixes.push_back(
ConversionRestrictionKind::ObjCTollFreeBridgeToCF);
}
}
break;
}
case TypeKind::DynamicSelf:
// FIXME: Deep equality? What is the rule between two DynamicSelfs?
break;
case TypeKind::Protocol:
// Nothing to do here; try existential and user-defined conversions below.
break;
case TypeKind::Metatype:
case TypeKind::ExistentialMetatype: {
auto meta1 = cast<AnyMetatypeType>(desugar1);
auto meta2 = cast<AnyMetatypeType>(desugar2);
ConstraintKind subKind = ConstraintKind::Equal;
// A.Type < B.Type if A < B and both A and B are classes.
if (isa<MetatypeType>(meta1) &&
meta1->getInstanceType()->mayHaveSuperclass() &&
meta2->getInstanceType()->getClassOrBoundGenericClass())
subKind = std::min(kind, ConstraintKind::Subtype);
// P.Type < Q.Type if P < Q, both P and Q are protocols, and P.Type
// and Q.Type are both existential metatypes.
else if (isa<ExistentialMetatypeType>(meta1))
subKind = std::min(kind, ConstraintKind::Subtype);
return matchTypes(meta1->getInstanceType(), meta2->getInstanceType(),
subKind, subflags,
locator.withPathElement(
ConstraintLocator::InstanceType));
}
case TypeKind::Function: {
auto func1 = cast<FunctionType>(desugar1);
auto func2 = cast<FunctionType>(desugar2);
// If the 2nd type is an autoclosure, then we don't actually want to
// treat these as parallel. The first type needs wrapping in a closure
// despite already being a function type.
if (!func1->isAutoClosure() && func2->isAutoClosure())
break;
return matchFunctionTypes(func1, func2, kind, flags, locator);
}
case TypeKind::GenericFunction:
llvm_unreachable("Polymorphic function type should have been opened");
case TypeKind::ProtocolComposition:
// Existential types handled below.
break;
case TypeKind::LValue:
if (kind == ConstraintKind::BindParam)
return SolutionKind::Error;
return matchTypes(cast<LValueType>(desugar1)->getObjectType(),
cast<LValueType>(desugar2)->getObjectType(),
ConstraintKind::Equal, subflags,
locator.withPathElement(
ConstraintLocator::ArrayElementType));
case TypeKind::InOut:
// If the RHS is an inout type, the LHS must be an @lvalue type.
if (kind == ConstraintKind::BindParam ||
kind >= ConstraintKind::OperatorArgumentConversion)
return SolutionKind::Error;
return matchTypes(cast<InOutType>(desugar1)->getObjectType(),
cast<InOutType>(desugar2)->getObjectType(),
ConstraintKind::Equal, subflags,
locator.withPathElement(ConstraintLocator::ArrayElementType));
case TypeKind::UnboundGeneric:
llvm_unreachable("Unbound generic type should have been opened");
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericEnum:
case TypeKind::BoundGenericStruct: {
auto bound1 = cast<BoundGenericType>(desugar1);
auto bound2 = cast<BoundGenericType>(desugar2);
assert(!type2->is<LValueType>() && "Unexpected lvalue type!");
if (!type1->is<LValueType>() && bound1->getDecl() == bound2->getDecl()) {
conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality);
}
break;
}
}
}
if (concrete && kind >= ConstraintKind::Subtype) {
auto tuple1 = type1->getAs<TupleType>();
auto tuple2 = type2->getAs<TupleType>();
// Detect when the source and destination are both permit scalar
// conversions, but the source has a name and the destination does not have
// the same name.
bool tuplesWithMismatchedNames = false;
if (tuple1 && tuple2) {
int scalar1 = tuple1->getElementForScalarInit();
int scalar2 = tuple2->getElementForScalarInit();
if (scalar1 >= 0 && scalar2 >= 0) {
auto name1 = tuple1->getElement(scalar1).getName();
auto name2 = tuple2->getElement(scalar2).getName();
tuplesWithMismatchedNames = !name1.empty() && name1 != name2;
}
}
if (tuple2 && !tuplesWithMismatchedNames) {
// A scalar type is a trivial subtype of a one-element, non-variadic tuple
// containing a single element if the scalar type is a subtype of
// the type of that tuple's element.
//
// A scalar type can be converted to an argument tuple so long as
// there is at most one non-defaulted element.
// For non-argument tuples, we can do the same conversion but not
// to a tuple with varargs.
if (!type1->is<LValueType>() &&
((tuple2->getNumElements() == 1 &&
!tuple2->getElement(0).isVararg()) ||
(kind >= ConstraintKind::Conversion &&
tuple2->getElementForScalarInit() >= 0 &&
(isArgumentTupleConversion ||
!tuple2->getVarArgsBaseType())))) {
conversionsOrFixes.push_back(
ConversionRestrictionKind::ScalarToTuple);
// FIXME: Prohibits some user-defined conversions for tuples.
goto commit_to_conversions;
}
}
// Subclass-to-superclass conversion.
if (type1->mayHaveSuperclass() &&
type2->getClassOrBoundGenericClass() &&
type1->getClassOrBoundGenericClass()
!= type2->getClassOrBoundGenericClass()) {
conversionsOrFixes.push_back(ConversionRestrictionKind::Superclass);
}
// Existential-to-superclass conversion.
if (type1->isClassExistentialType() &&
type2->getClassOrBoundGenericClass()) {
conversionsOrFixes.push_back(ConversionRestrictionKind::Superclass);
}
// Metatype-to-existential-metatype conversion.
//
// Equivalent to a conformance relation on the instance types.
if (type1->is<MetatypeType>() &&
type2->is<ExistentialMetatypeType>()) {
conversionsOrFixes.push_back(
ConversionRestrictionKind::MetatypeToExistentialMetatype);
}
// Existential-metatype-to-superclass-metatype conversion.
if (type2->is<MetatypeType>()) {
if (auto *meta1 = type1->getAs<ExistentialMetatypeType>()) {
if (meta1->getInstanceType()->isClassExistentialType()) {
conversionsOrFixes.push_back(
ConversionRestrictionKind::ExistentialMetatypeToMetatype);
}
}
}
// Concrete value to existential conversion.
if (!type1->is<LValueType>() &&
type2->isExistentialType()) {
// Penalize conversions to Any.
if (kind >= ConstraintKind::Conversion && type2->isAny())
increaseScore(ScoreKind::SK_EmptyExistentialConversion);
conversionsOrFixes.push_back(ConversionRestrictionKind::Existential);
}
// T -> AnyHashable.
if (isAnyHashableType(desugar2)) {
// Don't allow this in operator contexts or we'll end up allowing
// 'T() == U()' for unrelated T and U that just happen to be Hashable.
// We can remove this special case when we implement operator hiding.
if (!type1->is<LValueType>() &&
kind != ConstraintKind::OperatorArgumentConversion) {
assert(!type2->is<LValueType>() && "Unexpected lvalue type!");
conversionsOrFixes.push_back(
ConversionRestrictionKind::HashableToAnyHashable);
}
}
// Metatype to object conversion.
//
// Class and protocol metatypes are interoperable with certain Objective-C
// runtime classes, but only when ObjC interop is enabled.
if (TC.getLangOpts().EnableObjCInterop) {
// These conversions are between concrete types that don't need further
// resolution, so we can consider them immediately solved.
auto addSolvedRestrictedConstraint
= [&](ConversionRestrictionKind restriction) -> SolutionKind {
addRestrictedConstraint(ConstraintKind::Subtype, restriction,
type1, type2, locator);
return SolutionKind::Solved;
};
if (auto meta1 = type1->getAs<MetatypeType>()) {
if (meta1->getInstanceType()->mayHaveSuperclass()
&& type2->isAnyObject()) {
increaseScore(ScoreKind::SK_UserConversion);
return addSolvedRestrictedConstraint(
ConversionRestrictionKind::ClassMetatypeToAnyObject);
}
// Single @objc protocol value metatypes can be converted to the ObjC
// Protocol class type.
auto isProtocolClassType = [&](Type t) -> bool {
if (auto classDecl = t->getClassOrBoundGenericClass())
if (classDecl->getName() == getASTContext().Id_Protocol
&& classDecl->getModuleContext()->getName()
== getASTContext().Id_ObjectiveC)
return true;
return false;
};
if (auto protoTy = meta1->getInstanceType()->getAs<ProtocolType>()) {
if (protoTy->getDecl()->isObjC()
&& isProtocolClassType(type2)) {
increaseScore(ScoreKind::SK_UserConversion);
return addSolvedRestrictedConstraint(
ConversionRestrictionKind::ProtocolMetatypeToProtocolClass);
}
}
}
if (auto meta1 = type1->getAs<ExistentialMetatypeType>()) {
// Class-constrained existential metatypes can be converted to AnyObject.
if (meta1->getInstanceType()->isClassExistentialType()
&& type2->isAnyObject()) {
increaseScore(ScoreKind::SK_UserConversion);
return addSolvedRestrictedConstraint(
ConversionRestrictionKind::ExistentialMetatypeToAnyObject);
}
}
}
// Special implicit nominal conversions.
if (!type1->is<LValueType>() &&
kind >= ConstraintKind::Conversion) {
// Array -> Array.
if (isArrayType(desugar1) && isArrayType(desugar2)) {
assert(!type2->is<LValueType>() && "Unexpected lvalue type!");
conversionsOrFixes.push_back(ConversionRestrictionKind::ArrayUpcast);
// Dictionary -> Dictionary.
} else if (isDictionaryType(desugar1) && isDictionaryType(desugar2)) {
assert(!type2->is<LValueType>() && "Unexpected lvalue type!");
conversionsOrFixes.push_back(
ConversionRestrictionKind::DictionaryUpcast);
// Set -> Set.
} else if (isSetType(desugar1) && isSetType(desugar2)) {
assert(!type2->is<LValueType>() && "Unexpected lvalue type!");
conversionsOrFixes.push_back(
ConversionRestrictionKind::SetUpcast);
}
}
}
if (kind == ConstraintKind::BindToPointerType) {
if (desugar2->isEqual(getASTContext().TheEmptyTupleType))
return SolutionKind::Solved;
}
if (concrete && kind >= ConstraintKind::Conversion) {
// An lvalue of type T1 can be converted to a value of type T2 so long as
// T1 is convertible to T2 (by loading the value). Note that we cannot get
// a value of inout type as an lvalue though.
if (type1->is<LValueType>() && !type2->is<InOutType>())
conversionsOrFixes.push_back(
ConversionRestrictionKind::LValueToRValue);
// An expression can be converted to an auto-closure function type, creating
// an implicit closure.
if (auto function2 = type2->getAs<FunctionType>()) {
if (function2->isAutoClosure())
return matchTypes(type1, function2->getResult(), kind, subflags,
locator.withPathElement(ConstraintLocator::Load));
}
// Pointer arguments can be converted from pointer-compatible types.
if (kind >= ConstraintKind::ArgumentConversion) {
Type unwrappedType2 = type2;
OptionalTypeKind type2OptionalKind;
if (Type unwrapped = type2->getAnyOptionalObjectType(type2OptionalKind))
unwrappedType2 = unwrapped;
PointerTypeKind pointerKind;
if (Type pointeeTy =
unwrappedType2->getAnyPointerElementType(pointerKind)) {
switch (pointerKind) {
case PTK_UnsafeRawPointer:
case PTK_UnsafeMutableRawPointer:
case PTK_UnsafePointer:
case PTK_UnsafeMutablePointer:
// UnsafeMutablePointer can be converted from an inout reference to a
// scalar or array.
if (auto inoutType1 = dyn_cast<InOutType>(desugar1)) {
auto inoutBaseType = inoutType1->getInOutObjectType();
Type simplifiedInoutBaseType =
getFixedTypeRecursive(inoutBaseType,
kind == ConstraintKind::Equal,
isArgumentTupleConversion);
// FIXME: If the base is still a type variable, we can't tell
// what to do here. Might have to try \c ArrayToPointer and make it
// more robust.
if (isArrayType(simplifiedInoutBaseType)) {
conversionsOrFixes.push_back(
ConversionRestrictionKind::ArrayToPointer);
}
conversionsOrFixes.push_back(
ConversionRestrictionKind::InoutToPointer);
}
if (!flags.contains(TMF_ApplyingOperatorParameter) &&
// Operators cannot use these implicit conversions.
(kind == ConstraintKind::ArgumentConversion ||
kind == ConstraintKind::ArgumentTupleConversion)) {
// We can potentially convert from an UnsafeMutablePointer
// of a different type, if we're a void pointer.
Type unwrappedType1 = type1;
OptionalTypeKind type1OptionalKind;
if (Type unwrapped =
type1->getAnyOptionalObjectType(type1OptionalKind)) {
unwrappedType1 = unwrapped;
}
// Don't handle normal optional-related conversions here.
if (unwrappedType1->isEqual(unwrappedType2))
break;
PointerTypeKind type1PointerKind;
bool type1IsPointer{
unwrappedType1->getAnyPointerElementType(type1PointerKind)};
bool optionalityMatches =
type1OptionalKind == OTK_None || type2OptionalKind != OTK_None;
if (type1IsPointer && optionalityMatches) {
if (type1PointerKind == PTK_UnsafeMutablePointer) {
// Favor an UnsafeMutablePointer-to-UnsafeMutablePointer
// conversion.
if (type1PointerKind != pointerKind)
increaseScore(ScoreKind::SK_ScalarPointerConversion);
conversionsOrFixes.push_back(
ConversionRestrictionKind::PointerToPointer);
}
// UnsafeMutableRawPointer -> UnsafeRawPointer
else if (type1PointerKind == PTK_UnsafeMutableRawPointer &&
pointerKind == PTK_UnsafeRawPointer) {
if (type1PointerKind != pointerKind)
increaseScore(ScoreKind::SK_ScalarPointerConversion);
conversionsOrFixes.push_back(
ConversionRestrictionKind::PointerToPointer);
}
}
// UnsafePointer and UnsafeRawPointer can also be converted from an
// array or string value, or a UnsafePointer or
// AutoreleasingUnsafeMutablePointer.
if (pointerKind == PTK_UnsafePointer
|| pointerKind == PTK_UnsafeRawPointer) {
if (isArrayType(type1)) {
conversionsOrFixes.push_back(
ConversionRestrictionKind::ArrayToPointer);
}
// The pointer can be converted from a string, if the element type
// is compatible.
if (type1->isEqual(TC.getStringType(DC))) {
auto baseTy = getFixedTypeRecursive(pointeeTy, false);
if (baseTy->isTypeVariableOrMember() ||
isStringCompatiblePointerBaseType(TC, DC, baseTy))
conversionsOrFixes.push_back(
ConversionRestrictionKind::StringToPointer);
}
if (type1IsPointer && optionalityMatches &&
(type1PointerKind == PTK_UnsafePointer ||
type1PointerKind == PTK_AutoreleasingUnsafeMutablePointer)) {
conversionsOrFixes.push_back(
ConversionRestrictionKind::PointerToPointer);
}
}
}
break;
case PTK_AutoreleasingUnsafeMutablePointer:
// PTK_AutoreleasingUnsafeMutablePointer can be converted from an
// inout reference to a scalar.
if (type1->is<InOutType>()) {
conversionsOrFixes.push_back(
ConversionRestrictionKind::InoutToPointer);
}
break;
}
}
}
}
if (concrete && kind >= ConstraintKind::OperatorArgumentConversion) {
// If the RHS is an inout type, the LHS must be an @lvalue type.
if (auto *iot = type2->getAs<InOutType>()) {
return matchTypes(type1, LValueType::get(iot->getObjectType()),
kind, subflags,
locator.withPathElement(
ConstraintLocator::ArrayElementType));
}
}
// A value of type T! can be converted to type U if T is convertible
// to U by force-unwrapping the source value.
// A value of type T, T?, or T! can be converted to type U? or U! if
// T is convertible to U.
if (concrete && !type1->is<LValueType>() && kind >= ConstraintKind::Subtype) {
enumerateOptionalConversionRestrictions(
type1, type2, kind, locator,
[&](ConversionRestrictionKind restriction) {
conversionsOrFixes.push_back(restriction);
});
}
// Allow '() -> T' to '() -> ()' and '() -> Never' to '() -> T' for closure
// literals.
if (auto elt = locator.last()) {
if (elt->getKind() == ConstraintLocator::ClosureResult) {
if (concrete && kind >= ConstraintKind::Subtype &&
(type1->isUninhabited() || type2->isVoid())) {
increaseScore(SK_FunctionConversion);
return SolutionKind::Solved;
}
}
}
if (concrete && kind == ConstraintKind::BindParam) {
if (auto *iot = dyn_cast<InOutType>(desugar1)) {
if (auto *lvt = dyn_cast<LValueType>(desugar2)) {
return matchTypes(iot->getObjectType(), lvt->getObjectType(),
ConstraintKind::Bind, subflags,
locator.withPathElement(
ConstraintLocator::ArrayElementType));
}
}
}
commit_to_conversions:
// When we hit this point, we're committed to the set of potential
// conversions recorded thus far.
//
//
// FIXME: One should only jump to this label in the case where we want to
// cut off other potential conversions because we know none of them apply.
// Gradually, those gotos should go away as we can handle more kinds of
// conversions via disjunction constraints.
// If we should attempt fixes, add those to the list. They'll only be visited
// if there are no other possible solutions.
if (shouldAttemptFixes() && !isTypeVarOrMember1 && !isTypeVarOrMember2 &&
!flags.contains(TMF_ApplyingFix) && kind >= ConstraintKind::Conversion) {
Type objectType1 = type1->getRValueObjectType();
// If we have an optional type, try to force-unwrap it.
// FIXME: Should we also try '?'?
if (objectType1->getOptionalObjectType()) {
bool forceUnwrapPossible = true;
if (auto declRefExpr =
dyn_cast_or_null<DeclRefExpr>(locator.trySimplifyToExpr())) {
if (declRefExpr->getDecl()->isImplicit()) {
// The expression that provides the first type is implicit and never
// spelled out in source code, e.g. $match in an expression pattern.
// Thus we cannot force unwrap the first type
forceUnwrapPossible = false;
}
}
if (forceUnwrapPossible) {
conversionsOrFixes.push_back(FixKind::ForceOptional);
}
}
// If we have a value of type AnyObject that we're trying to convert to
// a class, force a downcast.
// FIXME: Also allow types bridged through Objective-C classes.
if (objectType1->isAnyObject() &&
type2->getClassOrBoundGenericClass()) {
conversionsOrFixes.push_back(Fix::getForcedDowncast(*this, type2));
}
// Look through IUO's.
auto type1WithoutIUO = objectType1;
if (auto elt = type1WithoutIUO->getImplicitlyUnwrappedOptionalObjectType())
type1WithoutIUO = elt;
// If we could perform a bridging cast, try it.
if (auto bridged =
TC.getDynamicBridgedThroughObjCClass(DC, type1WithoutIUO, type2)) {
// Note: don't perform this recovery for NSNumber;
bool useFix = true;
if (auto classType = bridged->getAs<ClassType>()) {
SmallString<16> scratch;
if (classType->getDecl()->isObjC() &&
classType->getDecl()->getObjCRuntimeName(scratch) == "NSNumber")
useFix = false;
}
if (useFix)
conversionsOrFixes.push_back(Fix::getForcedDowncast(*this, type2));
}
// If we're converting an lvalue to an inout type, add the missing '&'.
if (type2->getRValueType()->is<InOutType>() && type1->is<LValueType>()) {
conversionsOrFixes.push_back(FixKind::AddressOf);
}
}
if (conversionsOrFixes.empty()) {
// If one of the types is a type variable or member thereof, we leave this
// unsolved.
if (isTypeVarOrMember1 || isTypeVarOrMember2)
return formUnsolvedResult();
return SolutionKind::Error;
}
// Where there is more than one potential conversion, create a disjunction
// so that we'll explore all of the options.
if (conversionsOrFixes.size() > 1) {
auto fixedLocator = getConstraintLocator(locator);
SmallVector<Constraint *, 2> constraints;
for (auto potential : conversionsOrFixes) {
auto constraintKind = kind;
if (auto restriction = potential.getRestriction()) {
// Determine the constraint kind. For a deep equality constraint, only
// perform equality.
if (*restriction == ConversionRestrictionKind::DeepEquality)
constraintKind = ConstraintKind::Equal;
constraints.push_back(
Constraint::createRestricted(*this, constraintKind, *restriction,
type1, type2, fixedLocator));
continue;
}
// If the first thing we found is a fix, add a "don't fix" marker.
if (conversionsOrFixes.empty()) {
constraints.push_back(
Constraint::createFixed(*this, constraintKind, FixKind::None,
type1, type2, fixedLocator));
}
auto fix = *potential.getFix();
constraints.push_back(
Constraint::createFixed(*this, constraintKind, fix, type1, type2,
fixedLocator));
}
addDisjunctionConstraint(constraints, fixedLocator);
return SolutionKind::Solved;
}
// For a single potential conversion, directly recurse, so that we
// don't allocate a new constraint or constraint locator.
// Handle restrictions.
if (auto restriction = conversionsOrFixes[0].getRestriction()) {
return simplifyRestrictedConstraint(*restriction, type1, type2,
kind, subflags, locator);
}
// Handle fixes.
auto fix = *conversionsOrFixes[0].getFix();
return simplifyFixConstraint(fix, type1, type2, kind, subflags, locator);
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyConstructionConstraint(
Type valueType, FunctionType *fnType, TypeMatchOptions flags,
DeclContext *useDC,
FunctionRefKind functionRefKind, ConstraintLocator *locator) {
// Desugar the value type.
auto desugarValueType = valueType->getDesugaredType();
Type argType = fnType->getInput();
Type resultType = fnType->getResult();
switch (desugarValueType->getKind()) {
#define SUGARED_TYPE(id, parent) case TypeKind::id:
#define TYPE(id, parent)
#include "swift/AST/TypeNodes.def"
llvm_unreachable("Type has not been desugared completely");
#define ARTIFICIAL_TYPE(id, parent) case TypeKind::id:
#define TYPE(id, parent)
#include "swift/AST/TypeNodes.def"
llvm_unreachable("artificial type in constraint");
case TypeKind::Unresolved:
case TypeKind::Error:
return SolutionKind::Error;
case TypeKind::GenericFunction:
case TypeKind::GenericTypeParam:
llvm_unreachable("unmapped dependent type");
case TypeKind::TypeVariable:
case TypeKind::DependentMember:
return SolutionKind::Unsolved;
case TypeKind::Tuple: {
// Tuple construction is simply tuple conversion.
if (matchTypes(resultType, desugarValueType,
ConstraintKind::Bind,
flags,
ConstraintLocatorBuilder(locator)
.withPathElement(ConstraintLocator::ApplyFunction))
== SolutionKind::Error)
return SolutionKind::Error;
return matchTypes(argType, valueType, ConstraintKind::Conversion,
getDefaultDecompositionOptions(flags), locator);
}
case TypeKind::Enum:
case TypeKind::Struct:
case TypeKind::Class:
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericEnum:
case TypeKind::BoundGenericStruct:
case TypeKind::Archetype:
case TypeKind::DynamicSelf:
case TypeKind::ProtocolComposition:
case TypeKind::Protocol:
// Break out to handle the actual construction below.
break;
case TypeKind::UnboundGeneric:
llvm_unreachable("Unbound generic type should have been opened");
#define BUILTIN_TYPE(id, parent) case TypeKind::id:
#define TYPE(id, parent)
#include "swift/AST/TypeNodes.def"
case TypeKind::ExistentialMetatype:
case TypeKind::Metatype:
case TypeKind::Function:
case TypeKind::LValue:
case TypeKind::InOut:
case TypeKind::Module:
return SolutionKind::Error;
}
NameLookupOptions lookupOptions = defaultConstructorLookupOptions;
if (isa<AbstractFunctionDecl>(useDC))
lookupOptions |= NameLookupFlags::KnownPrivate;
auto instanceType = valueType;
if (auto *selfType = instanceType->getAs<DynamicSelfType>())
instanceType = selfType->getSelfType();
auto ctors = TC.lookupConstructors(useDC, instanceType, lookupOptions);
if (!ctors)
return SolutionKind::Error;
auto &context = getASTContext();
auto name = context.Id_init;
auto applyLocator = getConstraintLocator(locator,
ConstraintLocator::ApplyArgument);
auto fnLocator = getConstraintLocator(locator,
ConstraintLocator::ApplyFunction);
auto tv = createTypeVariable(applyLocator,
TVO_CanBindToLValue |
TVO_CanBindToInOut |
TVO_PrefersSubtypeBinding);
// The constructor will have function type T -> T2, for a fresh type
// variable T. T2 is the result type provided via the construction
// constraint itself.
addValueMemberConstraint(MetatypeType::get(valueType, TC.Context), name,
FunctionType::get(tv, resultType),
useDC, functionRefKind,
getConstraintLocator(
fnLocator,
ConstraintLocator::ConstructorMember));
// The first type must be convertible to the constructor's argument type.
addConstraint(ConstraintKind::ArgumentTupleConversion, argType, tv,
applyLocator);
return SolutionKind::Solved;
}
ConstraintSystem::SolutionKind ConstraintSystem::simplifyConformsToConstraint(
Type type,
Type protocol,
ConstraintKind kind,
ConstraintLocatorBuilder locator,
TypeMatchOptions flags) {
if (auto proto = protocol->getAs<ProtocolType>()) {
return simplifyConformsToConstraint(type, proto->getDecl(), kind,
locator, flags);
}
// Dig out the fixed type to which this type refers.
type = getFixedTypeRecursive(type, flags, /*wantRValue=*/true);
return matchExistentialTypes(type, protocol, kind, flags, locator);
}
ConstraintSystem::SolutionKind ConstraintSystem::simplifyConformsToConstraint(
Type type,
ProtocolDecl *protocol,
ConstraintKind kind,
ConstraintLocatorBuilder locator,
TypeMatchOptions flags) {
// Dig out the fixed type to which this type refers.
type = getFixedTypeRecursive(type, flags, /*wantRValue=*/true);
// If we hit a type variable without a fixed type, we can't
// solve this yet.
if (type->isTypeVariableOrMember()) {
// If we're supposed to generate constraints, do so.
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::create(*this, kind, type, protocol->getDeclaredType(),
getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
}
// For purposes of argument type matching, existential types don't need to
// conform -- they only need to contain the protocol, so check that
// separately.
switch (kind) {
case ConstraintKind::SelfObjectOfProtocol:
if (auto conformance =
TC.containsProtocol(type, protocol, DC,
ConformanceCheckFlags::InExpression)) {
CheckedConformances.push_back({getConstraintLocator(locator),
*conformance});
return SolutionKind::Solved;
}
break;
case ConstraintKind::ConformsTo:
case ConstraintKind::LiteralConformsTo: {
// Check whether this type conforms to the protocol.
if (auto conformance =
TC.conformsToProtocol(type, protocol, DC,
ConformanceCheckFlags::InExpression)) {
CheckedConformances.push_back({getConstraintLocator(locator),
*conformance});
return SolutionKind::Solved;
}
break;
}
default:
llvm_unreachable("bad constraint kind");
}
if (!shouldAttemptFixes())
return SolutionKind::Error;
// See if there's anything we can do to fix the conformance:
OptionalTypeKind optionalKind;
if (auto optionalObjectType = type->getAnyOptionalObjectType(optionalKind)) {
if (optionalKind == OTK_Optional) {
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
// The underlying type of an optional may conform to the protocol if the
// optional doesn't; suggest forcing if that's the case.
auto result = simplifyConformsToConstraint(
optionalObjectType, protocol, kind,
locator.withPathElement(LocatorPathElt::getGenericArgument(0)),
subflags);
if (result == SolutionKind::Solved) {
if (recordFix(FixKind::ForceOptional, getConstraintLocator(locator))) {
return SolutionKind::Error;
}
}
return result;
}
}
// There's nothing more we can do; fail.
return SolutionKind::Error;
}
/// Determine the kind of checked cast to perform from the given type to
/// the given type.
///
/// This routine does not attempt to check whether the cast can actually
/// succeed; that's the caller's responsibility.
static CheckedCastKind getCheckedCastKind(ConstraintSystem *cs,
Type fromType,
Type toType) {
// Array downcasts are handled specially.
if (cs->isArrayType(fromType) && cs->isArrayType(toType)) {
return CheckedCastKind::ArrayDowncast;
}
// Dictionary downcasts are handled specially.
if (cs->isDictionaryType(fromType) && cs->isDictionaryType(toType)) {
return CheckedCastKind::DictionaryDowncast;
}
// Set downcasts are handled specially.
if (cs->isSetType(fromType) && cs->isSetType(toType)) {
return CheckedCastKind::SetDowncast;
}
return CheckedCastKind::ValueCast;
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyCheckedCastConstraint(
Type fromType, Type toType,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
/// Form an unresolved result.
auto formUnsolved = [&] {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::create(*this, ConstraintKind::CheckedCast, fromType,
toType, getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
};
do {
// Dig out the fixed type this type refers to.
fromType = getFixedTypeRecursive(fromType, flags, /*wantRValue=*/true);
// If we hit a type variable without a fixed type, we can't
// solve this yet.
if (fromType->isTypeVariableOrMember())
return formUnsolved();
// Dig out the fixed type this type refers to.
toType = getFixedTypeRecursive(toType, flags, /*wantRValue=*/true);
// If we hit a type variable without a fixed type, we can't
// solve this yet.
if (toType->isTypeVariableOrMember())
return formUnsolved();
Type origFromType = fromType;
Type origToType = toType;
// Peel off optionals metatypes from the types, because we might cast through
// them.
toType = toType->lookThroughAllAnyOptionalTypes();
fromType = fromType->lookThroughAllAnyOptionalTypes();
// Peel off metatypes, since if we can cast two types, we can cast their
// metatypes.
while (auto toMetatype = toType->getAs<MetatypeType>()) {
auto fromMetatype = fromType->getAs<MetatypeType>();
if (!fromMetatype)
break;
toType = toMetatype->getInstanceType();
fromType = fromMetatype->getInstanceType();
}
// Peel off a potential layer of existential<->concrete metatype conversion.
if (auto toMetatype = toType->getAs<AnyMetatypeType>()) {
if (auto fromMetatype = fromType->getAs<MetatypeType>()) {
toType = toMetatype->getInstanceType();
fromType = fromMetatype->getInstanceType();
}
}
// We've decomposed the types further, so adopt the subflags.
flags = subflags;
// If nothing changed, we're done.
if (fromType.getPointer() == origFromType.getPointer() &&
toType.getPointer() == origToType.getPointer())
break;
} while (true);
auto kind = getCheckedCastKind(this, fromType, toType);
switch (kind) {
case CheckedCastKind::ArrayDowncast: {
auto fromBaseType = *isArrayType(fromType);
auto toBaseType = *isArrayType(toType);
return simplifyCheckedCastConstraint(fromBaseType, toBaseType, subflags,
locator);
}
case CheckedCastKind::DictionaryDowncast: {
Type fromKeyType, fromValueType;
std::tie(fromKeyType, fromValueType) = *isDictionaryType(fromType);
Type toKeyType, toValueType;
std::tie(toKeyType, toValueType) = *isDictionaryType(toType);
if (simplifyCheckedCastConstraint(fromKeyType, toKeyType, subflags,
locator) == SolutionKind::Error)
return SolutionKind::Error;
return simplifyCheckedCastConstraint(fromValueType, toValueType, subflags,
locator);
}
case CheckedCastKind::SetDowncast: {
auto fromBaseType = *isSetType(fromType);
auto toBaseType = *isSetType(toType);
return simplifyCheckedCastConstraint(fromBaseType, toBaseType, subflags,
locator);
}
case CheckedCastKind::ValueCast: {
// If casting among classes, and there are open
// type variables remaining, introduce a subtype constraint to help resolve
// them.
if (fromType->getClassOrBoundGenericClass()
&& toType->getClassOrBoundGenericClass()
&& (fromType->hasTypeVariable() || toType->hasTypeVariable())) {
addConstraint(ConstraintKind::Subtype, toType, fromType,
getConstraintLocator(locator));
}
return SolutionKind::Solved;
}
case CheckedCastKind::Coercion:
case CheckedCastKind::BridgingCoercion:
case CheckedCastKind::Swift3BridgingDowncast:
case CheckedCastKind::Unresolved:
llvm_unreachable("Not a valid result");
}
llvm_unreachable("Unhandled CheckedCastKind in switch.");
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyOptionalObjectConstraint(
Type first, Type second,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
// Resolve the optional type.
Type optLValueTy = getFixedTypeRecursive(first, flags, /*wantRValue=*/false);
Type optTy = optLValueTy->getRValueType();
if (optTy.getPointer() != optLValueTy.getPointer())
optTy = getFixedTypeRecursive(optTy, /*wantRValue=*/false);
if (optTy->isTypeVariableOrMember()) {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::create(*this, ConstraintKind::OptionalObject, optLValueTy,
second, getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
}
// If the base type is not optional, the constraint fails.
Type objectTy = optTy->getAnyOptionalObjectType();
if (!objectTy)
return SolutionKind::Error;
// The object type is an lvalue if the optional was.
if (optLValueTy->is<LValueType>())
objectTy = LValueType::get(objectTy);
// Equate it to the other type in the constraint.
addConstraint(ConstraintKind::Bind, objectTy, second, locator);
return SolutionKind::Solved;
}
/// Retrieve the argument labels that are provided for a member
/// reference at the given locator.
static Optional<ConstraintSystem::ArgumentLabelState>
getArgumentLabels(ConstraintSystem &cs, ConstraintLocatorBuilder locator) {
SmallVector<LocatorPathElt, 2> parts;
Expr *anchor = locator.getLocatorParts(parts);
if (!anchor)
return None;
while (!parts.empty()) {
if (parts.back().getKind() == ConstraintLocator::Member ||
parts.back().getKind() == ConstraintLocator::SubscriptMember) {
parts.pop_back();
continue;
}
if (parts.back().getKind() == ConstraintLocator::ApplyFunction) {
if (auto applyExpr = dyn_cast<ApplyExpr>(anchor)) {
anchor = applyExpr->getSemanticFn();
}
parts.pop_back();
continue;
}
if (parts.back().getKind() == ConstraintLocator::ConstructorMember) {
// FIXME: Workaround for strange anchor on ConstructorMember locators.
if (auto optionalWrapper = dyn_cast<BindOptionalExpr>(anchor))
anchor = optionalWrapper->getSubExpr();
else if (auto forceWrapper = dyn_cast<ForceValueExpr>(anchor))
anchor = forceWrapper->getSubExpr();
parts.pop_back();
continue;
}
break;
}
if (!parts.empty())
return None;
auto known = cs.ArgumentLabels.find(cs.getConstraintLocator(anchor));
if (known == cs.ArgumentLabels.end())
return None;
return known->second;
}
/// Given a ValueMember, UnresolvedValueMember, or TypeMember constraint,
/// perform a lookup into the specified base type to find a candidate list.
/// The list returned includes the viable candidates as well as the unviable
/// ones (along with reasons why they aren't viable).
///
/// If includeInaccessibleMembers is set to true, this burns compile time to
/// try to identify and classify inaccessible members that may be being
/// referenced.
MemberLookupResult ConstraintSystem::
performMemberLookup(ConstraintKind constraintKind, DeclName memberName,
Type baseTy, FunctionRefKind functionRefKind,
ConstraintLocator *memberLocator,
bool includeInaccessibleMembers) {
Type baseObjTy = baseTy->getRValueType();
// Dig out the instance type and figure out what members of the instance type
// we are going to see.
bool isMetatype = false;
bool isModule = false;
bool hasInstanceMembers = false;
bool hasInstanceMethods = false;
bool hasStaticMembers = false;
Type instanceTy = baseObjTy;
if (baseObjTy->is<ModuleType>()) {
hasStaticMembers = true;
isModule = true;
} else if (auto baseObjMeta = baseObjTy->getAs<AnyMetatypeType>()) {
instanceTy = baseObjMeta->getInstanceType();
isMetatype = true;
if (baseObjMeta->is<ExistentialMetatypeType>()) {
// An instance of an existential metatype is a concrete type conforming
// to the existential, say Self. Instance members of the concrete type
// have type Self -> T -> U, but we don't know what Self is at compile
// time so we cannot refer to them. Static methods are fine, on the other
// hand -- we already know that they do not have Self or associated type
// requirements, since otherwise we would not be able to refer to the
// existential metatype in the first place.
hasStaticMembers = true;
} else if (instanceTy->isExistentialType()) {
// A protocol metatype has instance methods with type P -> T -> U, but
// not instance properties or static members -- the metatype value itself
// doesn't give us a witness so there's no static method to bind.
hasInstanceMethods = true;
} else {
// Metatypes of nominal types and archetypes have instance methods and
// static members, but not instance properties.
// FIXME: partial application of properties
hasInstanceMethods = true;
hasStaticMembers = true;
}
// If we're at the root of an unevaluated context, we can
// reference instance members on the metatype.
if (memberLocator &&
UnevaluatedRootExprs.count(memberLocator->getAnchor())) {
hasInstanceMembers = true;
}
} else {
// Otherwise, we can access all instance members.
hasInstanceMembers = true;
hasInstanceMethods = true;
}
bool isExistential = instanceTy->isExistentialType();
if (instanceTy->isTypeVariableOrMember() ||
instanceTy->is<UnresolvedType>()) {
MemberLookupResult result;
result.OverallResult = MemberLookupResult::Unsolved;
return result;
}
// Okay, start building up the result list.
MemberLookupResult result;
result.OverallResult = MemberLookupResult::HasResults;
// If we're looking for a subscript, consider key path operations.
if (memberName.isSimpleName(getASTContext().Id_subscript)) {
result.ViableCandidates.push_back(
OverloadChoice(baseTy, OverloadChoiceKind::KeyPathApplication));
}
// If the base type is a tuple type, look for the named or indexed member
// of the tuple.
if (auto baseTuple = baseObjTy->getAs<TupleType>()) {
// Tuples don't have compound-name members.
if (!memberName.isSimpleName())
return result; // No result.
StringRef nameStr = memberName.getBaseIdentifier().str();
int fieldIdx = -1;
// Resolve a number reference into the tuple type.
unsigned Value = 0;
if (!nameStr.getAsInteger(10, Value) &&
Value < baseTuple->getNumElements()) {
fieldIdx = Value;
} else {
fieldIdx = baseTuple->getNamedElementId(memberName.getBaseIdentifier());
}
if (fieldIdx == -1)
return result; // No result.
// Add an overload set that selects this field.
result.ViableCandidates.push_back(OverloadChoice(baseTy, fieldIdx));
return result;
}
if (auto *selfTy = instanceTy->getAs<DynamicSelfType>())
instanceTy = selfTy->getSelfType();
if (!instanceTy->mayHaveMembers())
return result;
// If we have a simple name, determine whether there are argument
// labels we can use to restrict the set of lookup results.
Optional<ArgumentLabelState> argumentLabels;
if (memberName.isSimpleName()) {
argumentLabels = getArgumentLabels(*this,
ConstraintLocatorBuilder(memberLocator));
// If we're referencing AnyObject and we have argument labels, put
// the argument labels into the name: we don't want to look for
// anything else, because the cost of the general search is so
// high.
if (baseObjTy->isAnyObject() && argumentLabels) {
memberName = DeclName(TC.Context, memberName.getBaseName(),
argumentLabels->Labels);
argumentLabels.reset();
}
}
/// Determine whether the given declaration has compatible argument
/// labels.
auto hasCompatibleArgumentLabels = [&](ValueDecl *decl) -> bool {
if (!argumentLabels)
return true;
// This is a member lookup, which generally means that the call arguments
// (if we have any) will apply to the second level of parameters, with
// the member lookup binding the first level. But there are cases where
// we can get an unapplied declaration reference back.
unsigned parameterDepth;
if (isModule) {
parameterDepth = 0;
} else if (isMetatype && decl->isInstanceMember()) {
parameterDepth = 0;
} else {
parameterDepth = 1;
}
return areConservativelyCompatibleArgumentLabels(decl, parameterDepth,
argumentLabels->Labels,
argumentLabels->HasTrailingClosure);
};
// Handle initializers, they have their own approach to name lookup.
if (memberName.isSimpleName(TC.Context.Id_init)) {
// The constructors are only found on the metatype.
if (!isMetatype)
return result;
NameLookupOptions lookupOptions = defaultConstructorLookupOptions;
if (isa<AbstractFunctionDecl>(DC))
lookupOptions |= NameLookupFlags::KnownPrivate;
// If we're doing a lookup for diagnostics, include inaccessible members,
// the diagnostics machinery will sort it out.
if (includeInaccessibleMembers)
lookupOptions |= NameLookupFlags::IgnoreAccessibility;
// If a constructor is only visible as a witness for a protocol
// requirement, it must be an invalid override. Also, protocol
// extensions cannot yet define designated initializers.
lookupOptions -= NameLookupFlags::PerformConformanceCheck;
LookupResult ctors = TC.lookupConstructors(DC, instanceTy, lookupOptions);
if (!ctors)
return result; // No result.
TypeBase *favoredType = nullptr;
if (auto anchor = memberLocator->getAnchor()) {
if (auto applyExpr = dyn_cast<ApplyExpr>(anchor)) {
auto argExpr = applyExpr->getArg();
favoredType = getFavoredType(argExpr);
if (!favoredType) {
optimizeConstraints(argExpr);
favoredType = getFavoredType(argExpr);
}
}
}
// Introduce a new overload set.
retry_ctors_after_fail:
bool labelMismatch = false;
for (auto ctor : ctors) {
// If the constructor is invalid, we fail entirely to avoid error cascade.
TC.validateDecl(ctor);
if (ctor->isInvalid())
return result.markErrorAlreadyDiagnosed();
// FIXME: Deal with broken recursion
if (!ctor->hasInterfaceType())
continue;
// If the argument labels for this result are incompatible with
// the call site, skip it.
if (!hasCompatibleArgumentLabels(ctor)) {
labelMismatch = true;
result.addUnviable(ctor, MemberLookupResult::UR_LabelMismatch);
continue;
}
// If our base is an existential type, we can't make use of any
// constructor whose signature involves associated types.
if (isExistential) {
if (auto *proto = ctor->getDeclContext()
->getAsProtocolOrProtocolExtensionContext()) {
if (!proto->isAvailableInExistential(ctor)) {
result.addUnviable(ctor,
MemberLookupResult::UR_UnavailableInExistential);
continue;
}
}
}
// If the invocation's argument expression has a favored type,
// use that information to determine whether a specific overload for
// the initializer should be favored.
if (favoredType && result.FavoredChoice == ~0U) {
// Only try and favor monomorphic initializers.
if (auto fnTypeWithSelf =
ctor->getInterfaceType()->getAs<FunctionType>()) {
if (auto fnType =
fnTypeWithSelf->getResult()->getAs<FunctionType>()) {
auto argType = fnType->getInput()->getWithoutParens();
argType = ctor.Decl->getInnermostDeclContext()
->mapTypeIntoContext(argType);
if (argType->isEqual(favoredType))
if (!ctor->getAttrs().isUnavailable(getASTContext()))
result.FavoredChoice = result.ViableCandidates.size();
}
}
}
result.addViable(OverloadChoice(baseTy, ctor, functionRefKind));
}
// If we rejected some possibilities due to an argument-label
// mismatch and ended up with nothing, try again ignoring the
// labels. This allows us to perform typo correction on the labels.
if (result.ViableCandidates.empty() && labelMismatch &&
shouldAttemptFixes()) {
argumentLabels.reset();
goto retry_ctors_after_fail;
}
// FIXME: Should we look for constructors in bridged types?
return result;
}
// Look for members within the base.
LookupResult &lookup = lookupMember(instanceTy, memberName);
// The set of directly accessible types, which is only used when
// we're performing dynamic lookup into an existential type.
bool isDynamicLookup = instanceTy->isAnyObject();
// If the instance type is String bridged to NSString, compute
// the type we'll look in for bridging.
Type bridgedClass;
Type bridgedType;
if (instanceTy->getAnyNominal() == TC.Context.getStringDecl()) {
if (Type classType = TC.Context.getBridgedToObjC(DC, instanceTy)) {
bridgedClass = classType;
bridgedType = isMetatype ? MetatypeType::get(classType) : classType;
}
}
bool labelMismatch = false;
// Local function that adds the given declaration if it is a
// reasonable choice.
auto addChoice = [&](ValueDecl *cand, bool isBridged,
bool isUnwrappedOptional) {
// Destructors cannot be referenced manually
if (isa<DestructorDecl>(cand)) {
result.addUnviable(cand, MemberLookupResult::UR_DestructorInaccessible);
return;
}
// If the result is invalid, skip it.
TC.validateDecl(cand);
if (cand->isInvalid()) {
result.markErrorAlreadyDiagnosed();
return;
}
// FIXME: Deal with broken recursion
if (!cand->hasInterfaceType())
return;
// If the argument labels for this result are incompatible with
// the call site, skip it.
if (!hasCompatibleArgumentLabels(cand)) {
labelMismatch = true;
result.addUnviable(cand, MemberLookupResult::UR_LabelMismatch);
return;
}
// If our base is an existential type, we can't make use of any
// member whose signature involves associated types.
if (isExistential) {
if (auto *proto = cand->getDeclContext()
->getAsProtocolOrProtocolExtensionContext()) {
if (!proto->isAvailableInExistential(cand)) {
result.addUnviable(cand,
MemberLookupResult::UR_UnavailableInExistential);
return;
}
}
}
// See if we have an instance method, instance member or static method,
// and check if it can be accessed on our base type.
if (cand->isInstanceMember()) {
if ((isa<FuncDecl>(cand) && !hasInstanceMethods) ||
(!isa<FuncDecl>(cand) && !hasInstanceMembers)) {
result.addUnviable(cand, MemberLookupResult::UR_InstanceMemberOnType);
return;
}
// If the underlying type of a typealias is fully concrete, it is legal
// to access the type with a protocol metatype base.
} else if (isExistential &&
isa<TypeAliasDecl>(cand) &&
!cast<TypeAliasDecl>(cand)->getInterfaceType()->getCanonicalType()
->hasTypeParameter()) {
/* We're OK */
} else {
if (!hasStaticMembers) {
result.addUnviable(cand, MemberLookupResult::UR_TypeMemberOnInstance);
return;
}
}
// If we have an rvalue base, make sure that the result isn't 'mutating'
// (only valid on lvalues).
if (!isMetatype &&
!baseTy->is<LValueType>() && cand->isInstanceMember()) {
if (auto *FD = dyn_cast<FuncDecl>(cand))
if (FD->isMutating()) {
result.addUnviable(cand,
MemberLookupResult::UR_MutatingMemberOnRValue);
return;
}
// Subscripts and computed properties are ok on rvalues so long
// as the getter is nonmutating.
if (auto storage = dyn_cast<AbstractStorageDecl>(cand)) {
if (storage->isGetterMutating()) {
result.addUnviable(cand,
MemberLookupResult::UR_MutatingGetterOnRValue);
return;
}
}
}
// If the result's type contains delayed members, we need to force them now.
if (auto NT = dyn_cast<NominalType>(cand->getInterfaceType().getPointer())) {
if (auto *NTD = dyn_cast<NominalTypeDecl>(NT->getDecl())) {
TC.forceExternalDeclMembers(NTD);
}
}
// If we're looking into an existential type, check whether this
// result was found via dynamic lookup.
if (isDynamicLookup) {
assert(cand->getDeclContext()->isTypeContext() && "Dynamic lookup bug");
// We found this declaration via dynamic lookup, record it as such.
result.addViable(OverloadChoice::getDeclViaDynamic(baseTy, cand,
functionRefKind));
return;
}
// If we have a bridged type, we found this declaration via bridging.
if (isBridged) {
result.addViable(OverloadChoice::getDeclViaBridge(bridgedType, cand,
functionRefKind));
return;
}
// If we got the choice by unwrapping an optional type, unwrap the base
// type.
Type ovlBaseTy = baseTy;
if (isUnwrappedOptional) {
ovlBaseTy = MetatypeType::get(baseTy->castTo<MetatypeType>()
->getInstanceType()
->getAnyOptionalObjectType());
result.addViable(
OverloadChoice::getDeclViaUnwrappedOptional(ovlBaseTy, cand,
functionRefKind));
} else {
result.addViable(OverloadChoice(ovlBaseTy, cand, functionRefKind));
}
};
// Add all results from this lookup.
retry_after_fail:
labelMismatch = false;
for (auto result : lookup)
addChoice(result, /*isBridged=*/false, /*isUnwrappedOptional=*/false);
// If the instance type is a bridged to an Objective-C type, perform
// a lookup into that Objective-C type.
if (bridgedType) {
LookupResult &bridgedLookup = lookupMember(bridgedClass, memberName);
ModuleDecl *foundationModule = nullptr;
for (auto result : bridgedLookup) {
// Ignore results from the Objective-C "Foundation"
// module. Those core APIs are explicitly provided by the
// Foundation module overlay.
auto module = result->getModuleContext();
if (foundationModule) {
if (module == foundationModule)
continue;
} else if (ClangModuleUnit::hasClangModule(module) &&
module->getName().str() == "Foundation") {
// Cache the foundation module name so we don't need to look
// for it again.
foundationModule = module;
continue;
}
addChoice(result, /*isBridged=*/true, /*isUnwrappedOptional=*/false);
}
}
// If we're looking into a metatype for an unresolved member lookup, look
// through optional types.
//
// FIXME: The short-circuit here is lame.
if (result.ViableCandidates.empty() && isMetatype &&
constraintKind == ConstraintKind::UnresolvedValueMember) {
if (auto objectType = instanceTy->getAnyOptionalObjectType()) {
if (objectType->mayHaveMembers()) {
LookupResult &optionalLookup = lookupMember(objectType, memberName);
for (auto result : optionalLookup)
addChoice(result, /*bridged*/false, /*isUnwrappedOptional=*/true);
}
}
}
// If we rejected some possibilities due to an argument-label
// mismatch and ended up with nothing, try again ignoring the
// labels. This allows us to perform typo correction on the labels.
if (result.ViableCandidates.empty() && labelMismatch && shouldAttemptFixes()){
argumentLabels.reset();
goto retry_after_fail;
}
// If we have no viable or unviable candidates, and we're generating,
// diagnostics, rerun the query with inaccessible members included, so we can
// include them in the unviable candidates list.
if (result.ViableCandidates.empty() && result.UnviableCandidates.empty() &&
includeInaccessibleMembers) {
NameLookupOptions lookupOptions = defaultMemberLookupOptions;
// Ignore accessibility so we get candidates that might have been missed
// before.
lookupOptions |= NameLookupFlags::IgnoreAccessibility;
// This is only used for diagnostics, so always use KnownPrivate.
lookupOptions |= NameLookupFlags::KnownPrivate;
auto lookup = TC.lookupMember(DC, instanceTy,
memberName, lookupOptions);
for (auto cand : lookup) {
// If the result is invalid, skip it.
TC.validateDecl(cand);
if (cand->isInvalid()) {
result.markErrorAlreadyDiagnosed();
return result;
}
// FIXME: Deal with broken recursion
if (!cand->hasInterfaceType())
continue;
result.addUnviable(cand, MemberLookupResult::UR_Inaccessible);
}
}
return result;
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyMemberConstraint(ConstraintKind kind,
Type baseTy, DeclName member,
Type memberTy,
DeclContext *useDC,
FunctionRefKind functionRefKind,
TypeMatchOptions flags,
ConstraintLocatorBuilder locatorB) {
// Resolve the base type, if we can. If we can't resolve the base type,
// then we can't solve this constraint.
// FIXME: simplifyType() call here could be getFixedTypeRecursive?
baseTy = simplifyType(baseTy, flags);
Type baseObjTy = baseTy->getRValueType();
// Try to look through ImplicitlyUnwrappedOptional<T>; the result is
// always an l-value if the input was.
if (auto objTy = lookThroughImplicitlyUnwrappedOptionalType(baseObjTy)) {
increaseScore(SK_ForceUnchecked);
baseObjTy = objTy;
if (baseTy->is<LValueType>())
baseTy = LValueType::get(objTy);
else
baseTy = objTy;
}
auto locator = getConstraintLocator(locatorB);
MemberLookupResult result =
performMemberLookup(kind, member, baseTy, functionRefKind, locator,
/*includeInaccessibleMembers*/false);
switch (result.OverallResult) {
case MemberLookupResult::Unsolved:
// If requested, generate a constraint.
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::createMember(*this, kind, baseTy, memberTy, member, useDC,
functionRefKind, locator));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
case MemberLookupResult::ErrorAlreadyDiagnosed:
return SolutionKind::Error;
case MemberLookupResult::HasResults:
// Keep going!
break;
}
// If we found viable candidates, then we're done!
if (!result.ViableCandidates.empty()) {
addOverloadSet(memberTy, result.ViableCandidates, useDC, locator,
result.getFavoredChoice());
return SolutionKind::Solved;
}
// If we found some unviable results, then fail, but without recovery.
if (!result.UnviableCandidates.empty())
return SolutionKind::Error;
// If the lookup found no hits at all (either viable or unviable), diagnose it
// as such and try to recover in various ways.
auto instanceTy = baseObjTy;
if (auto MTT = instanceTy->getAs<MetatypeType>())
instanceTy = MTT->getInstanceType();
// Value member lookup has some hacks too.
if (shouldAttemptFixes() && baseObjTy->getOptionalObjectType()) {
// If the base type was an optional, look through it.
// Determine whether or not we want to provide an optional chaining fixit or
// a force unwrap fixit.
bool optionalChain;
if (!getContextualType())
optionalChain = !(Options & ConstraintSystemFlags::PreferForceUnwrapToOptional);
else
optionalChain = !getContextualType()->getOptionalObjectType().isNull();
auto fixKind = optionalChain ? FixKind::OptionalChaining : FixKind::ForceOptional;
// Note the fix.
if (recordFix(fixKind, locator))
return SolutionKind::Error;
// Look through one level of optional.
addValueMemberConstraint(baseObjTy->getOptionalObjectType(),
member, memberTy, useDC, functionRefKind, locator);
return SolutionKind::Solved;
}
return SolutionKind::Error;
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyDefaultableConstraint(
Type first, Type second,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
first = getFixedTypeRecursive(first, flags, true);
if (first->isTypeVariableOrMember()) {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::create(*this, ConstraintKind::Defaultable, first, second,
getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
}
// Otherwise, any type is fine.
return SolutionKind::Solved;
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyDynamicTypeOfConstraint(
Type type1, Type type2,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
// Local function to form an unsolved result.
auto formUnsolved = [&] {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::create(*this, ConstraintKind::DynamicTypeOf, type1, type2,
getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
};
// Solve forward.
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
if (!type2->isTypeVariableOrMember()) {
Type dynamicType2;
if (type2->isAnyExistentialType()) {
dynamicType2 = ExistentialMetatypeType::get(type2);
} else {
dynamicType2 = MetatypeType::get(type2);
}
return matchTypes(type1, dynamicType2, ConstraintKind::Bind, subflags,
locator);
}
// Okay, can't solve forward. See what we can do backwards.
type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true);
if (type1->isTypeVariableOrMember())
return formUnsolved();
// If we have an existential metatype, that's good enough to solve
// the constraint.
if (auto metatype1 = type1->getAs<ExistentialMetatypeType>())
return matchTypes(metatype1->getInstanceType(), type2,
ConstraintKind::Bind,
subflags, locator);
// If we have a normal metatype, we can't solve backwards unless we
// know what kind of object it is.
if (auto metatype1 = type1->getAs<MetatypeType>()) {
Type instanceType1 = getFixedTypeRecursive(metatype1->getInstanceType(),
true);
if (instanceType1->isTypeVariableOrMember())
return formUnsolved();
return matchTypes(instanceType1, type2, ConstraintKind::Bind, subflags,
locator);
}
// It's definitely not either kind of metatype, so we can
// report failure right away.
return SolutionKind::Error;
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyBridgingConstraint(Type type1,
Type type2,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
// There's no bridging without ObjC interop, so we shouldn't have set up
// bridging constraints without it.
assert(TC.Context.LangOpts.EnableObjCInterop
&& "bridging constraint w/o ObjC interop?!");
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
/// Form an unresolved result.
auto formUnsolved = [&] {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::create(*this, ConstraintKind::BridgingConversion, type1,
type2, getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
};
// Local function to look through optional types. It produces the
// fully-unwrapped type and a count of the total # of optional types that were
// unwrapped.
auto unwrapType = [&](Type type) -> std::pair<Type, unsigned> {
unsigned count = 0;
while (Type objectType = type->getAnyOptionalObjectType()) {
++count;
TypeMatchOptions unusedOptions;
type = getFixedTypeRecursive(objectType, unusedOptions, /*wantRValue=*/true);
}
return { type, count };
};
type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true);
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
if (type1->isTypeVariableOrMember() || type2->isTypeVariableOrMember())
return formUnsolved();
Type unwrappedFromType;
unsigned numFromOptionals;
std::tie(unwrappedFromType, numFromOptionals) = unwrapType(type1);
Type unwrappedToType;
unsigned numToOptionals;
std::tie(unwrappedToType, numToOptionals) = unwrapType(type2);
if (unwrappedFromType->isTypeVariableOrMember() ||
unwrappedToType->isTypeVariableOrMember())
return formUnsolved();
// Update the score.
increaseScore(SK_UserConversion); // FIXME: Use separate score kind?
if (worseThanBestSolution()) {
return SolutionKind::Error;
}
// Local function to count the optional injections that will be performed
// after the bridging conversion.
auto countOptionalInjections = [&] {
if (numToOptionals > numFromOptionals)
increaseScore(SK_ValueToOptional, numToOptionals - numFromOptionals);
};
// Anything can be explicitly converted to AnyObject using the universal
// bridging conversion. This allows both extraneous optionals in the source
// (because optionals themselves can be boxed for AnyObject) and in the
// destination (we'll perform the extra injections at the end).
if (unwrappedToType->isAnyObject()) {
countOptionalInjections();
return SolutionKind::Solved;
}
// Unwrap one extra level of implicitly-unwrapped optional on the source,
// if needed.
if (numFromOptionals == numToOptionals + 1 &&
!type1->getImplicitlyUnwrappedOptionalObjectType().isNull()) {
--numFromOptionals;
increaseScore(SK_ForceUnchecked);
if (worseThanBestSolution()) {
return SolutionKind::Error;
}
}
// The source cannot be more optional than the destination, because bridging
// conversions don't allow us to implicitly check for a value in the optional.
if (numFromOptionals > numToOptionals) {
return SolutionKind::Error;
}
// Explicit bridging from a value type to an Objective-C class type.
if (unwrappedFromType->isPotentiallyBridgedValueType() &&
unwrappedFromType->getAnyNominal()
!= TC.Context.getImplicitlyUnwrappedOptionalDecl() &&
!flags.contains(TMF_ApplyingOperatorParameter) &&
(unwrappedToType->isBridgeableObjectType() ||
(unwrappedToType->isExistentialType() &&
!unwrappedToType->isAny()))) {
countOptionalInjections();
if (Type classType = TC.Context.getBridgedToObjC(DC, unwrappedFromType)) {
return matchTypes(classType, unwrappedToType, ConstraintKind::Conversion,
subflags, locator);
}
}
// Bridging from an Objective-C class type to a value type.
// Note that specifically require a class or class-constrained archetype
// here, because archetypes cannot be bridged.
if (unwrappedFromType->mayHaveSuperclass() &&
unwrappedToType->isPotentiallyBridgedValueType() &&
unwrappedToType->getAnyNominal()
!= TC.Context.getImplicitlyUnwrappedOptionalDecl()) {
Type bridgedValueType;
if (auto objcClass = TC.Context.getBridgedToObjC(DC, unwrappedToType,
&bridgedValueType)) {
// Bridging NSNumber to NSValue is one-way, since there are multiple Swift
// value types that bridge to those object types. It requires a checked
// cast to get back.
// We accepted these coercions in Swift 3 mode, so we have to live with
// them (but give a warning) in that language mode.
if (!TC.Context.LangOpts.isSwiftVersion3()
&& TC.Context.isObjCClassWithMultipleSwiftBridgedTypes(objcClass))
return SolutionKind::Error;
// If the bridged value type is generic, the generic arguments
// must either match or be bridged.
// FIXME: This should be an associated type of the protocol.
if (auto fromBGT = unwrappedToType->getAs<BoundGenericType>()) {
if (fromBGT->getDecl() == TC.Context.getArrayDecl()) {
// [AnyObject]
addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[0],
TC.Context.getAnyObjectType(),
getConstraintLocator(
locator.withPathElement(
LocatorPathElt::getGenericArgument(0))));
} else if (fromBGT->getDecl() == TC.Context.getDictionaryDecl()) {
// [NSObject : AnyObject]
auto NSObjectType = TC.getNSObjectType(DC);
if (!NSObjectType) {
// Not a bridging case. Should we detect this earlier?
return SolutionKind::Error;
}
addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[0],
NSObjectType,
getConstraintLocator(
locator.withPathElement(
LocatorPathElt::getGenericArgument(0))));
addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[1],
TC.Context.getAnyObjectType(),
getConstraintLocator(
locator.withPathElement(
LocatorPathElt::getGenericArgument(1))));
} else if (fromBGT->getDecl() == TC.Context.getSetDecl()) {
auto NSObjectType = TC.getNSObjectType(DC);
if (!NSObjectType) {
// Not a bridging case. Should we detect this earlier?
return SolutionKind::Error;
}
addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[0],
NSObjectType,
getConstraintLocator(
locator.withPathElement(
LocatorPathElt::getGenericArgument(0))));
} else {
// Nothing special to do; matchTypes will match generic arguments.
}
}
// Make sure we have the bridged value type.
if (matchTypes(unwrappedToType, bridgedValueType, ConstraintKind::Equal,
subflags, locator)
== ConstraintSystem::SolutionKind::Error)
return SolutionKind::Error;
countOptionalInjections();
return matchTypes(unwrappedFromType, objcClass, ConstraintKind::Subtype,
subflags, locator);
}
}
// Bridging the elements of an array.
if (auto fromElement = isArrayType(unwrappedFromType)) {
if (auto toElement = isArrayType(unwrappedToType)) {
countOptionalInjections();
return simplifyBridgingConstraint(
*fromElement, *toElement, subflags,
locator.withPathElement(
LocatorPathElt::getGenericArgument(0)));
}
}
// Bridging the keys/values of a dictionary.
if (auto fromKeyValue = isDictionaryType(unwrappedFromType)) {
if (auto toKeyValue = isDictionaryType(unwrappedToType)) {
addExplicitConversionConstraint(fromKeyValue->first, toKeyValue->first,
/*allowFixes=*/false,
locator.withPathElement(
LocatorPathElt::getGenericArgument(0)));
addExplicitConversionConstraint(fromKeyValue->second, toKeyValue->second,
/*allowFixes=*/false,
locator.withPathElement(
LocatorPathElt::getGenericArgument(0)));
countOptionalInjections();
return SolutionKind::Solved;
}
}
// Bridging the elements of a set.
if (auto fromElement = isSetType(unwrappedFromType)) {
if (auto toElement = isSetType(unwrappedToType)) {
countOptionalInjections();
return simplifyBridgingConstraint(
*fromElement, *toElement, subflags,
locator.withPathElement(
LocatorPathElt::getGenericArgument(0)));
}
}
return SolutionKind::Error;
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyEscapableFunctionOfConstraint(
Type type1, Type type2,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
// Local function to form an unsolved result.
auto formUnsolved = [&] {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::create(*this, ConstraintKind::EscapableFunctionOf,
type1, type2, getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
};
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
if (auto fn2 = type2->getAs<FunctionType>()) {
// Solve forward by binding the other type variable to the escapable
// variation of this type.
auto fn1 = fn2->withExtInfo(fn2->getExtInfo().withNoEscape(false));
return matchTypes(type1, fn1, ConstraintKind::Bind, subflags, locator);
}
if (!type2->isTypeVariableOrMember())
// We definitely don't have a function, so bail.
return SolutionKind::Error;
type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true);
if (auto fn1 = type1->getAs<FunctionType>()) {
// We should have the escaping end of the relation.
if (fn1->getExtInfo().isNoEscape())
return SolutionKind::Error;
// Solve backward by binding the other type variable to the noescape
// variation of this type.
auto fn2 = fn1->withExtInfo(fn1->getExtInfo().withNoEscape(true));
return matchTypes(type2, fn2, ConstraintKind::Bind, subflags, locator);
}
if (!type1->isTypeVariableOrMember())
// We definitely don't have a function, so bail.
return SolutionKind::Error;
return formUnsolved();
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyOpenedExistentialOfConstraint(
Type type1, Type type2,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
if (type2->isAnyExistentialType()) {
// We have the existential side. Produce an opened archetype and bind
// type1 to it.
bool isMetatype = false;
auto instanceTy = type2;
if (auto metaTy = type2->getAs<ExistentialMetatypeType>()) {
isMetatype = true;
instanceTy = metaTy->getInstanceType();
}
assert(instanceTy->isExistentialType());
Type openedTy = ArchetypeType::getOpened(instanceTy);
if (isMetatype)
openedTy = MetatypeType::get(openedTy, TC.Context);
return matchTypes(type1, openedTy, ConstraintKind::Bind, subflags, locator);
}
if (!type2->isTypeVariableOrMember())
// We definitely don't have an existential, so bail.
return SolutionKind::Error;
// If type1 is constrained to anything concrete, the constraint fails.
// It can only be bound to a type we opened for it.
type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true);
if (!type1->isTypeVariableOrMember())
return SolutionKind::Error;
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::create(*this, ConstraintKind::OpenedExistentialOf,
type1, type2, getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyKeyPathConstraint(Type keyPathTy,
Type rootTy,
Type valueTy,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
auto subflags = getDefaultDecompositionOptions(flags);
// The constraint ought to have been anchored on a KeyPathExpr.
auto keyPath = cast<KeyPathExpr>(locator.getBaseLocator()->getAnchor());
// Gather overload choices for any key path components associated with this
// key path.
SmallVector<OverloadChoice, 4> choices;
choices.resize(keyPath->getComponents().size());
for (auto resolvedItem = resolvedOverloadSets; resolvedItem;
resolvedItem = resolvedItem->Previous) {
auto locator = resolvedItem->Locator;
if (locator->getAnchor() == keyPath
&& locator->getPath().size() == 1
&& locator->getPath()[0].getKind() == ConstraintLocator::KeyPathComponent) {
choices[locator->getPath()[0].getValue()] = resolvedItem->Choice;
}
}
keyPathTy = getFixedTypeRecursive(keyPathTy, /*want rvalue*/ true);
auto tryMatchRootAndValueFromKeyPathType =
[&](BoundGenericType *bgt, bool allowPartial) -> SolutionKind {
Type boundRoot, boundValue;
// We can get root and value from a concrete key path type.
if (bgt->getDecl() == getASTContext().getKeyPathDecl()
|| bgt->getDecl() == getASTContext().getWritableKeyPathDecl()
|| bgt->getDecl() == getASTContext().getReferenceWritableKeyPathDecl()) {
boundRoot = bgt->getGenericArgs()[0];
boundValue = bgt->getGenericArgs()[1];
} else if (bgt->getDecl() == getASTContext().getPartialKeyPathDecl()) {
if (allowPartial) {
// We can still get the root from a PartialKeyPath.
boundRoot = bgt->getGenericArgs()[0];
boundValue = Type();
} else {
return SolutionKind::Error;
}
} else {
// We can't bind anything from this type.
return SolutionKind::Solved;
}
if (matchTypes(boundRoot, rootTy,
ConstraintKind::Bind, subflags, locator) == SolutionKind::Error)
return SolutionKind::Error;
if (boundValue
&& matchTypes(boundValue, valueTy,
ConstraintKind::Bind, subflags, locator) == SolutionKind::Error)
return SolutionKind::Error;
return SolutionKind::Solved;
};
// If we're fixed to a bound generic type, trying harvesting context from it.
// However, we don't want a solution that fixes the expression type to
// PartialKeyPath; we'd rather that be represented using an upcast conversion.
if (auto keyPathBGT = keyPathTy->getAs<BoundGenericType>()) {
if (tryMatchRootAndValueFromKeyPathType(keyPathBGT, /*allowPartial*/false)
== SolutionKind::Error)
return SolutionKind::Error;
}
// If the expression has contextual type information, try using that too.
if (auto contextualTy = getContextualType(keyPath)) {
if (auto contextualBGT = contextualTy->getAs<BoundGenericType>()) {
if (tryMatchRootAndValueFromKeyPathType(contextualBGT,
/*allowPartial*/true)
== SolutionKind::Error)
return SolutionKind::Error;
}
}
// See if we resolved overloads for all the components involved.
enum {
ReadOnly,
Writable,
ReferenceWritable
} capability = Writable;
for (unsigned i : indices(keyPath->getComponents())) {
auto &component = keyPath->getComponents()[i];
switch (component.getKind()) {
case KeyPathExpr::Component::Kind::Invalid:
break;
case KeyPathExpr::Component::Kind::UnresolvedProperty:
case KeyPathExpr::Component::Kind::UnresolvedSubscript: {
// If no choice was made, leave the constraint unsolved.
if (choices[i].isInvalid()) {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(Constraint::create(*this,
ConstraintKind::KeyPath,
keyPathTy, rootTy, valueTy,
locator.getBaseLocator()));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
}
// Discarded unsupported non-decl member lookups.
if (!choices[i].isDecl()) {
return SolutionKind::Error;
}
auto storage = cast<AbstractStorageDecl>(choices[i].getDecl());
if (!storage->isSettable(DC)) {
// A non-settable component makes the key path read-only, unless
// a reference-writable component shows up later.
capability = ReadOnly;
continue;
}
// A nonmutating setter indicates a reference-writable base.
if (storage->isSetterNonMutating()) {
capability = ReferenceWritable;
continue;
}
// Otherwise, the key path maintains its current capability.
break;
}
case KeyPathExpr::Component::Kind::OptionalChain:
// Optional chains force the entire key path to be read-only.
capability = ReadOnly;
goto done;
case KeyPathExpr::Component::Kind::OptionalForce:
// Forcing an optional preserves its lvalue-ness.
break;
case KeyPathExpr::Component::Kind::Property:
case KeyPathExpr::Component::Kind::Subscript:
case KeyPathExpr::Component::Kind::OptionalWrap:
llvm_unreachable("already resolved");
}
}
done:
// Resolve the type.
NominalTypeDecl *kpDecl;
switch (capability) {
case ReadOnly:
kpDecl = getASTContext().getKeyPathDecl();
break;
case Writable:
kpDecl = getASTContext().getWritableKeyPathDecl();
break;
case ReferenceWritable:
kpDecl = getASTContext().getReferenceWritableKeyPathDecl();
break;
}
auto resolvedKPTy = BoundGenericType::get(kpDecl, nullptr,
{rootTy, valueTy});
return matchTypes(resolvedKPTy, keyPathTy, ConstraintKind::Subtype,
subflags, locator);
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyKeyPathApplicationConstraint(
Type keyPathTy,
Type rootTy,
Type valueTy,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
keyPathTy = getFixedTypeRecursive(keyPathTy, flags, /*wantRValue=*/true);
auto unsolved = [&]() -> SolutionKind {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(Constraint::create(*this,
ConstraintKind::KeyPathApplication,
keyPathTy, rootTy, valueTy, getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
};
if (auto clas = keyPathTy->getAs<NominalType>()) {
if (clas->getDecl() == getASTContext().getAnyKeyPathDecl()) {
// Read-only keypath, whose projected value is upcast to `Any?`.
// The root type can be anything.
Type resultTy = ProtocolCompositionType::get(getASTContext(), {},
/*explicit AnyObject*/ false);
resultTy = OptionalType::get(resultTy);
return matchTypes(resultTy, valueTy, ConstraintKind::Bind,
subflags, locator);
}
}
if (auto bgt = keyPathTy->getAs<BoundGenericType>()) {
// We have the key path type. Match it to the other ends of the constraint.
auto kpRootTy = bgt->getGenericArgs()[0];
// Try to match the root type.
rootTy = getFixedTypeRecursive(rootTy, flags, /*wantRValue=*/false);
auto rootMatches = matchTypes(kpRootTy, rootTy,
ConstraintKind::Equal,
subflags, locator);
switch (rootMatches) {
case SolutionKind::Error:
return SolutionKind::Error;
case SolutionKind::Solved:
break;
case SolutionKind::Unsolved:
llvm_unreachable("should have generated constraints");
}
if (bgt->getDecl() == getASTContext().getPartialKeyPathDecl()) {
// Read-only keypath, whose projected value is upcast to `Any`.
auto resultTy = ProtocolCompositionType::get(getASTContext(), {},
/*explicit AnyObject*/ false);
return matchTypes(resultTy, valueTy,
ConstraintKind::Bind, subflags, locator);
}
if (bgt->getGenericArgs().size() < 2)
return SolutionKind::Error;
auto kpValueTy = bgt->getGenericArgs()[1];
/// Solve for an rvalue base.
auto solveRValue = [&]() -> ConstraintSystem::SolutionKind {
return matchTypes(kpValueTy, valueTy,
ConstraintKind::Bind, subflags, locator);
};
/// Solve for a base whose lvalueness is to be determined.
auto solveUnknown = [&]() -> ConstraintSystem::SolutionKind {
if (matchTypes(kpValueTy, valueTy,
ConstraintKind::Equal, subflags, locator)
== SolutionKind::Error)
return SolutionKind::Error;
return unsolved();
};
/// Solve for an lvalue base.
auto solveLValue = [&]() -> ConstraintSystem::SolutionKind {
return matchTypes(LValueType::get(kpValueTy), valueTy,
ConstraintKind::Bind, subflags, locator);
};
if (bgt->getDecl() == getASTContext().getKeyPathDecl()) {
// Read-only keypath.
return solveRValue();
}
if (bgt->getDecl() == getASTContext().getWritableKeyPathDecl()) {
// Writable keypath. The result can be an lvalue if the root was.
if (rootTy->is<LValueType>())
return solveLValue();
if (rootTy->isTypeVariableOrMember())
// We don't know whether the value is an lvalue yet.
return solveUnknown();
return solveRValue();
}
if (bgt->getDecl() == getASTContext().getReferenceWritableKeyPathDecl()) {
// Reference-writable keypath. The result can always be an lvalue.
return solveLValue();
}
// Otherwise, we don't have a key path type at all.
return SolutionKind::Error;
}
if (!keyPathTy->isTypeVariableOrMember())
return SolutionKind::Error;
return unsolved();
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyApplicableFnConstraint(
Type type1,
Type type2,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
// By construction, the left hand side is a type that looks like the
// following: $T1 -> $T2.
assert(type1->is<FunctionType>());
// Drill down to the concrete type on the right hand side.
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
auto desugar2 = type2->getDesugaredType();
// Try to look through ImplicitlyUnwrappedOptional<T>: the result is always an
// r-value.
if (auto objTy = lookThroughImplicitlyUnwrappedOptionalType(desugar2)) {
type2 = getFixedTypeRecursive(objTy, flags, /*wantRValue=*/true);
desugar2 = type2->getDesugaredType();
}
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
// If the types are obviously equivalent, we're done.
if (type1.getPointer() == desugar2)
return SolutionKind::Solved;
// Local function to form an unsolved result.
auto formUnsolved = [&] {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::create(*this, ConstraintKind::ApplicableFunction, type1,
type2, getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
};
// If right-hand side is a type variable, the constraint is unsolved.
if (desugar2->isTypeVariableOrMember())
return formUnsolved();
// Strip the 'ApplyFunction' off the locator.
// FIXME: Perhaps ApplyFunction can go away entirely?
SmallVector<LocatorPathElt, 2> parts;
Expr *anchor = locator.getLocatorParts(parts);
assert(!parts.empty() && "Nonsensical applicable-function locator");
assert(parts.back().getKind() == ConstraintLocator::ApplyFunction);
assert(parts.back().getNewSummaryFlags() == 0);
parts.pop_back();
ConstraintLocatorBuilder outerLocator =
getConstraintLocator(anchor, parts, locator.getSummaryFlags());
retry:
// For a function, bind the output and convert the argument to the input.
auto func1 = type1->castTo<FunctionType>();
if (auto func2 = dyn_cast<FunctionType>(desugar2)) {
// If this application is part of an operator, then we allow an implicit
// lvalue to be compatible with inout arguments. This is used by
// assignment operators.
ConstraintKind ArgConv = ConstraintKind::ArgumentTupleConversion;
if (isa<PrefixUnaryExpr>(anchor) || isa<PostfixUnaryExpr>(anchor) ||
isa<BinaryExpr>(anchor))
ArgConv = ConstraintKind::OperatorArgumentTupleConversion;
// The argument type must be convertible to the input type.
if (matchTypes(func1->getInput(), func2->getInput(),
ArgConv, subflags,
outerLocator.withPathElement(
ConstraintLocator::ApplyArgument))
== SolutionKind::Error)
return SolutionKind::Error;
// The result types are equivalent.
if (matchTypes(func1->getResult(), func2->getResult(),
ConstraintKind::Bind,
subflags,
locator.withPathElement(ConstraintLocator::FunctionResult))
== SolutionKind::Error)
return SolutionKind::Error;
return SolutionKind::Solved;
}
// For a metatype, perform a construction.
if (auto meta2 = dyn_cast<AnyMetatypeType>(desugar2)) {
auto instance2 = getFixedTypeRecursive(meta2->getInstanceType(), true);
if (instance2->isTypeVariableOrMember())
return formUnsolved();
// Construct the instance from the input arguments.
return simplifyConstructionConstraint(instance2, func1, subflags,
/*FIXME?*/ DC,
FunctionRefKind::SingleApply,
getConstraintLocator(outerLocator));
}
if (!shouldAttemptFixes())
return SolutionKind::Error;
// If we're coming from an optional type, unwrap the optional and try again.
if (auto objectType2 = desugar2->getOptionalObjectType()) {
if (recordFix(FixKind::ForceOptional, getConstraintLocator(locator)))
return SolutionKind::Error;
type2 = objectType2;
desugar2 = type2->getDesugaredType();
goto retry;
}
return SolutionKind::Error;
}
static Type getBaseTypeForPointer(ConstraintSystem &cs, TypeBase *type) {
if (Type unwrapped = type->getAnyOptionalObjectType())
type = unwrapped.getPointer();
auto pointeeTy = type->getAnyPointerElementType();
assert(pointeeTy);
return pointeeTy;
}
void ConstraintSystem::addRestrictedConstraint(
ConstraintKind kind,
ConversionRestrictionKind restriction,
Type first, Type second,
ConstraintLocatorBuilder locator) {
(void)simplifyRestrictedConstraint(restriction, first, second, kind,
TMF_GenerateConstraints, locator);
}
/// Given that we have a conversion constraint between two types, and
/// that the given constraint-reduction rule applies between them at
/// the top level, apply it and generate any necessary recursive
/// constraints.
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyRestrictedConstraintImpl(
ConversionRestrictionKind restriction,
Type type1, Type type2,
ConstraintKind matchKind,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
// Add to the score based on context.
auto addContextualScore = [&] {
// Okay, we need to perform one or more conversions. If this
// conversion will cause a function conversion, score it as worse.
// This induces conversions to occur within closures instead of
// outside of them wherever possible.
if (locator.isFunctionConversion()) {
increaseScore(SK_FunctionConversion);
}
};
// Local function to form an unsolved result.
auto formUnsolved = [&] {
if (flags.contains(TMF_GenerateConstraints)) {
addUnsolvedConstraint(
Constraint::createRestricted(
*this, matchKind, restriction, type1, type2,
getConstraintLocator(locator)));
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
};
// We'll apply user conversions for operator arguments at the application
// site.
if (matchKind == ConstraintKind::OperatorArgumentConversion) {
flags |= TMF_ApplyingOperatorParameter;
}
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
switch (restriction) {
// for $< in { <, <c, <oc }:
// T_i $< U_i ===> (T_i...) $< (U_i...)
case ConversionRestrictionKind::TupleToTuple:
return matchTupleTypes(type1->castTo<TupleType>(),
type2->castTo<TupleType>(),
matchKind, subflags, locator);
// T <c U ===> T <c (U)
case ConversionRestrictionKind::ScalarToTuple:
return matchScalarToTupleTypes(type1, type2->castTo<TupleType>(),
matchKind, subflags, locator);
case ConversionRestrictionKind::DeepEquality:
return matchDeepEqualityTypes(type1, type2, locator);
case ConversionRestrictionKind::Superclass:
addContextualScore();
return matchSuperclassTypes(type1, type2, matchKind, subflags, locator);
case ConversionRestrictionKind::LValueToRValue:
return matchTypes(type1->getRValueType(), type2,
matchKind, subflags, locator);
// for $< in { <, <c, <oc }:
// T $< U, U : P_i ===> T $< protocol<P_i...>
case ConversionRestrictionKind::Existential:
addContextualScore();
return matchExistentialTypes(type1, type2,
ConstraintKind::SelfObjectOfProtocol,
subflags, locator);
// for $< in { <, <c, <oc }:
// for P protocol, Q protocol,
// P : Q ===> T.Protocol $< Q.Type
// for P protocol, Q protocol,
// P $< Q ===> P.Type $< Q.Type
case ConversionRestrictionKind::MetatypeToExistentialMetatype:
addContextualScore();
return matchExistentialTypes(
type1->castTo<MetatypeType>()->getInstanceType(),
type2->castTo<ExistentialMetatypeType>()->getInstanceType(),
ConstraintKind::ConformsTo,
subflags,
locator.withPathElement(ConstraintLocator::InstanceType));
// for $< in { <, <c, <oc }:
// for P protocol, C class, D class,
// (P & C) : D ===> (P & C).Type $< D.Type
case ConversionRestrictionKind::ExistentialMetatypeToMetatype: {
addContextualScore();
auto instance1 = type1->castTo<ExistentialMetatypeType>()->getInstanceType();
auto instance2 = type2->castTo<MetatypeType>()->getInstanceType();
auto superclass1 = TC.getSuperClassOf(instance1);
if (!superclass1)
return SolutionKind::Error;
return matchTypes(
superclass1,
instance2,
ConstraintKind::Subtype,
subflags,
locator.withPathElement(ConstraintLocator::InstanceType));
}
// for $< in { <, <c, <oc }:
// T $< U ===> T $< U?
case ConversionRestrictionKind::ValueToOptional: {
addContextualScore();
increaseScore(SK_ValueToOptional);
assert(matchKind >= ConstraintKind::Subtype);
if (type2->isTypeVariableOrMember())
return formUnsolved();
if (auto generic2 = type2->getAs<BoundGenericType>()) {
if (generic2->getDecl()->classifyAsOptionalType()) {
return matchTypes(type1, generic2->getGenericArgs()[0],
matchKind, subflags,
locator.withPathElement(
ConstraintLocator::OptionalPayload));
}
}
return SolutionKind::Error;
}
// for $< in { <, <c, <oc }:
// T $< U ===> T? $< U?
// T $< U ===> T! $< U!
// T $< U ===> T! $< U?
// also:
// T <c U ===> T? <c U!
case ConversionRestrictionKind::OptionalToOptional: {
addContextualScore();
if (type1->isTypeVariableOrMember() || type2->isTypeVariableOrMember())
return formUnsolved();
assert(matchKind >= ConstraintKind::Subtype);
if (auto generic1 = type1->getAs<BoundGenericType>()) {
if (auto generic2 = type2->getAs<BoundGenericType>()) {
if (generic1->getDecl()->classifyAsOptionalType() &&
generic2->getDecl()->classifyAsOptionalType())
return matchTypes(generic1->getGenericArgs()[0],
generic2->getGenericArgs()[0],
matchKind, subflags,
locator.withPathElement(
LocatorPathElt::getGenericArgument(0)));
}
}
return SolutionKind::Error;
}
// T <c U ===> T! <c U
//
// We don't want to allow this after user-defined conversions:
// - it gets really complex for users to understand why there's
// a dereference in their code
// - it would allow nil to be coercible to a non-optional type
// Fortunately, user-defined conversions only allow subtype
// conversions on their results.
case ConversionRestrictionKind::ForceUnchecked: {
addContextualScore();
assert(matchKind >= ConstraintKind::Conversion);
if (type1->isTypeVariableOrMember())
return formUnsolved();
if (auto boundGenericType1 = type1->getAs<BoundGenericType>()) {
if (boundGenericType1->getDecl()->classifyAsOptionalType()
== OTK_ImplicitlyUnwrappedOptional) {
assert(boundGenericType1->getGenericArgs().size() == 1);
Type valueType1 = boundGenericType1->getGenericArgs()[0];
increaseScore(SK_ForceUnchecked);
return matchTypes(valueType1, type2,
matchKind, subflags,
locator.withPathElement(
LocatorPathElt::getGenericArgument(0)));
}
}
return SolutionKind::Error;
}
case ConversionRestrictionKind::ClassMetatypeToAnyObject:
case ConversionRestrictionKind::ExistentialMetatypeToAnyObject:
case ConversionRestrictionKind::ProtocolMetatypeToProtocolClass: {
// Nothing more to solve.
addContextualScore();
return SolutionKind::Solved;
}
// T <p U ===> T[] <a UnsafeMutablePointer<U>
case ConversionRestrictionKind::ArrayToPointer: {
addContextualScore();
auto obj1 = type1;
// Unwrap an inout type.
if (auto inout1 = obj1->getAs<InOutType>()) {
obj1 = inout1->getObjectType();
}
obj1 = getFixedTypeRecursive(obj1, false, false);
auto t2 = type2->getDesugaredType();
auto baseType1 = getFixedTypeRecursive(*isArrayType(obj1), false, false);
auto baseType2 = getBaseTypeForPointer(*this, t2);
return matchTypes(baseType1, baseType2,
ConstraintKind::BindToPointerType,
subflags, locator);
}
// String ===> UnsafePointer<[U]Int8>
case ConversionRestrictionKind::StringToPointer: {
addContextualScore();
auto baseType2 = getBaseTypeForPointer(*this, type2->getDesugaredType());
// The pointer element type must be void or a byte-sized type.
// TODO: Handle different encodings based on pointer element type, such as
// UTF16 for [U]Int16 or UTF32 for [U]Int32. For now we only interop with
// Int8 pointers using UTF8 encoding.
baseType2 = getFixedTypeRecursive(baseType2, false, false);
// If we haven't resolved the element type, generate constraints.
if (baseType2->isTypeVariableOrMember()) {
if (flags.contains(TMF_GenerateConstraints)) {
increaseScore(SK_StringToPointerConversion);
auto int8Con = Constraint::create(*this, ConstraintKind::Bind,
baseType2, TC.getInt8Type(DC),
getConstraintLocator(locator));
auto uint8Con = Constraint::create(*this, ConstraintKind::Bind,
baseType2, TC.getUInt8Type(DC),
getConstraintLocator(locator));
auto voidCon = Constraint::create(*this, ConstraintKind::Bind,
baseType2, TC.Context.TheEmptyTupleType,
getConstraintLocator(locator));
Constraint *disjunctionChoices[] = {int8Con, uint8Con, voidCon};
addDisjunctionConstraint(disjunctionChoices, locator);
return SolutionKind::Solved;
}
return SolutionKind::Unsolved;
}
if (!isStringCompatiblePointerBaseType(TC, DC, baseType2)) {
return SolutionKind::Error;
}
increaseScore(SK_StringToPointerConversion);
return SolutionKind::Solved;
}
// T <p U ===> inout T <a UnsafeMutablePointer<U>
case ConversionRestrictionKind::InoutToPointer: {
addContextualScore();
auto t2 = type2->getDesugaredType();
auto baseType1 = type1->getInOutObjectType();
auto baseType2 = getBaseTypeForPointer(*this, t2);
// Set up the disjunction for the array or scalar cases.
return matchTypes(baseType1, baseType2,
ConstraintKind::BindToPointerType,
subflags, locator);
}
// T <p U ===> UnsafeMutablePointer<T> <a UnsafeMutablePointer<U>
case ConversionRestrictionKind::PointerToPointer: {
auto t1 = type1->getDesugaredType();
auto t2 = type2->getDesugaredType();
Type baseType1 = getBaseTypeForPointer(*this, t1);
Type baseType2 = getBaseTypeForPointer(*this, t2);
return matchTypes(baseType1, baseType2,
ConstraintKind::BindToPointerType,
subflags, locator);
}
// T < U or T is bridged to V where V < U ===> Array<T> <c Array<U>
case ConversionRestrictionKind::ArrayUpcast: {
Type baseType1 = *isArrayType(type1);
Type baseType2 = *isArrayType(type2);
increaseScore(SK_CollectionUpcastConversion);
return matchTypes(baseType1,
baseType2,
matchKind,
subflags,
locator.withPathElement(
ConstraintLocator::PathElement::getGenericArgument(0)));
}
// K1 < K2 && V1 < V2 || K1 bridges to K2 && V1 bridges to V2 ===>
// Dictionary<K1, V1> <c Dictionary<K2, V2>
case ConversionRestrictionKind::DictionaryUpcast: {
auto t1 = type1->getDesugaredType();
Type key1, value1;
std::tie(key1, value1) = *isDictionaryType(t1);
auto t2 = type2->getDesugaredType();
Type key2, value2;
std::tie(key2, value2) = *isDictionaryType(t2);
auto subMatchKind = matchKind; // TODO: Restrict this?
increaseScore(SK_CollectionUpcastConversion);
// The source key and value types must be subtypes of the destination
// key and value types, respectively.
auto result = matchTypes(key1, key2, subMatchKind, subflags,
locator.withPathElement(
ConstraintLocator::PathElement::getGenericArgument(0)));
if (result == SolutionKind::Error)
return result;
switch (matchTypes(value1, value2, subMatchKind, subflags,
locator.withPathElement(
ConstraintLocator::PathElement::getGenericArgument(1)))) {
case SolutionKind::Solved:
return result;
case SolutionKind::Unsolved:
return SolutionKind::Unsolved;
case SolutionKind::Error:
return SolutionKind::Error;
}
}
// T1 < T2 || T1 bridges to T2 ===> Set<T1> <c Set<T2>
case ConversionRestrictionKind::SetUpcast: {
Type baseType1 = *isSetType(type1);
Type baseType2 = *isSetType(type2);
increaseScore(SK_CollectionUpcastConversion);
return matchTypes(baseType1,
baseType2,
matchKind,
subflags,
locator.withPathElement(
ConstraintLocator::PathElement::getGenericArgument(0)));
}
// T1 <c T2 && T2 : Hashable ===> T1 <c AnyHashable
case ConversionRestrictionKind::HashableToAnyHashable: {
// We never want to do this if the LHS is already AnyHashable.
if (isAnyHashableType(
type1->getRValueType()->lookThroughAllAnyOptionalTypes())) {
return SolutionKind::Error;
}
addContextualScore();
increaseScore(SK_UserConversion); // FIXME: Use separate score kind?
if (worseThanBestSolution()) {
return SolutionKind::Error;
}
auto hashableProtocol =
TC.Context.getProtocol(KnownProtocolKind::Hashable);
if (!hashableProtocol)
return SolutionKind::Error;
auto constraintLocator = getConstraintLocator(locator);
auto tv = createTypeVariable(constraintLocator,
TVO_PrefersSubtypeBinding |
TVO_CanBindToInOut);
addConstraint(ConstraintKind::ConformsTo, tv,
hashableProtocol->getDeclaredType(), constraintLocator);
return matchTypes(type1, tv, ConstraintKind::Conversion, subflags,
locator);
}
// T' < U and T a toll-free-bridged to T' ===> T' <c U
case ConversionRestrictionKind::CFTollFreeBridgeToObjC: {
increaseScore(SK_UserConversion); // FIXME: Use separate score kind?
if (worseThanBestSolution()) {
return SolutionKind::Error;
}
auto nativeClass = type1->getClassOrBoundGenericClass();
auto bridgedObjCClass
= nativeClass->getAttrs().getAttribute<ObjCBridgedAttr>()->getObjCClass();
return matchTypes(bridgedObjCClass->getDeclaredInterfaceType(),
type2, ConstraintKind::Subtype, subflags, locator);
}
// T < U' and U a toll-free-bridged to U' ===> T <c U
case ConversionRestrictionKind::ObjCTollFreeBridgeToCF: {
increaseScore(SK_UserConversion); // FIXME: Use separate score kind?
if (worseThanBestSolution()) {
return SolutionKind::Error;
}
auto nativeClass = type2->getClassOrBoundGenericClass();
auto bridgedObjCClass
= nativeClass->getAttrs().getAttribute<ObjCBridgedAttr>()->getObjCClass();
return matchTypes(type1,
bridgedObjCClass->getDeclaredInterfaceType(),
ConstraintKind::Subtype, subflags, locator);
}
}
llvm_unreachable("bad conversion restriction");
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyRestrictedConstraint(
ConversionRestrictionKind restriction,
Type type1, Type type2,
ConstraintKind matchKind,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
switch (simplifyRestrictedConstraintImpl(restriction, type1, type2,
matchKind, flags, locator)) {
case SolutionKind::Solved:
ConstraintRestrictions.push_back(
std::make_tuple(type1, type2, restriction));
return SolutionKind::Solved;
case SolutionKind::Unsolved:
return SolutionKind::Unsolved;
case SolutionKind::Error:
return SolutionKind::Error;
}
llvm_unreachable("Unhandled SolutionKind in switch.");
}
bool ConstraintSystem::recordFix(Fix fix, ConstraintLocatorBuilder locator) {
auto &ctx = getASTContext();
if (ctx.LangOpts.DebugConstraintSolver) {
auto &log = ctx.TypeCheckerDebug->getStream();
log.indent(solverState ? solverState->depth * 2 + 2 : 0)
<< "(attempting fix ";
fix.print(log, this);
log << " @";
getConstraintLocator(locator)->dump(&ctx.SourceMgr, log);
log << ")\n";
}
// Record the fix.
if (fix.getKind() != FixKind::None) {
// Increase the score. If this would make the current solution worse than
// the best solution we've seen already, stop now.
increaseScore(SK_Fix);
if (worseThanBestSolution())
return true;
Fixes.push_back({fix, getConstraintLocator(locator)});
}
return false;
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyFixConstraint(Fix fix, Type type1, Type type2,
ConstraintKind matchKind,
TypeMatchOptions flags,
ConstraintLocatorBuilder locator) {
if (recordFix(fix, locator))
return SolutionKind::Error;
// Try with the fix.
TypeMatchOptions subflags =
getDefaultDecompositionOptions(flags) | TMF_ApplyingFix;
switch (fix.getKind()) {
case FixKind::None:
return matchTypes(type1, type2, matchKind, subflags, locator);
case FixKind::ForceOptional:
case FixKind::OptionalChaining:
// Assume that '!' was applied to the first type.
return matchTypes(type1->getRValueObjectType()->getOptionalObjectType(),
type2, matchKind, subflags, locator);
case FixKind::ForceDowncast:
// These work whenever they are suggested.
return SolutionKind::Solved;
case FixKind::AddressOf:
// Assume that '&' was applied to the first type, turning an lvalue into
// an inout.
return matchTypes(InOutType::get(type1->getRValueType()), type2,
matchKind, subflags, locator);
case FixKind::CoerceToCheckedCast:
llvm_unreachable("handled elsewhere");
}
llvm_unreachable("Unhandled FixKind in switch.");
}
ConstraintSystem::SolutionKind
ConstraintSystem::addConstraintImpl(ConstraintKind kind, Type first,
Type second,
ConstraintLocatorBuilder locator,
bool isFavored) {
assert(first && "Missing first type");
assert(second && "Missing second type");
TypeMatchOptions subflags = TMF_GenerateConstraints;
switch (kind) {
case ConstraintKind::Equal:
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Subtype:
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::ArgumentTupleConversion:
case ConstraintKind::OperatorArgumentTupleConversion:
case ConstraintKind::OperatorArgumentConversion:
return matchTypes(first, second, kind, subflags, locator);
case ConstraintKind::BridgingConversion:
return simplifyBridgingConstraint(first, second, subflags, locator);
case ConstraintKind::ApplicableFunction:
return simplifyApplicableFnConstraint(first, second, subflags, locator);
case ConstraintKind::DynamicTypeOf:
return simplifyDynamicTypeOfConstraint(first, second, subflags, locator);
case ConstraintKind::EscapableFunctionOf:
return simplifyEscapableFunctionOfConstraint(first, second,
subflags, locator);
case ConstraintKind::OpenedExistentialOf:
return simplifyOpenedExistentialOfConstraint(first, second,
subflags, locator);
case ConstraintKind::ConformsTo:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::SelfObjectOfProtocol:
return simplifyConformsToConstraint(first, second, kind, locator,
subflags);
case ConstraintKind::CheckedCast:
return simplifyCheckedCastConstraint(first, second, subflags, locator);
case ConstraintKind::OptionalObject:
return simplifyOptionalObjectConstraint(first, second, subflags, locator);
case ConstraintKind::Defaultable:
return simplifyDefaultableConstraint(first, second, subflags, locator);
case ConstraintKind::ValueMember:
case ConstraintKind::UnresolvedValueMember:
case ConstraintKind::BindOverload:
case ConstraintKind::Disjunction:
case ConstraintKind::KeyPath:
case ConstraintKind::KeyPathApplication:
llvm_unreachable("Use the correct addConstraint()");
}
llvm_unreachable("Unhandled ConstraintKind in switch.");
}
void
ConstraintSystem::addKeyPathApplicationConstraint(Type keypath,
Type root, Type value,
ConstraintLocatorBuilder locator,
bool isFavored) {
switch (simplifyKeyPathApplicationConstraint(keypath, root, value,
TMF_GenerateConstraints,
locator)) {
case SolutionKind::Error:
if (shouldAddNewFailingConstraint()) {
auto c = Constraint::create(*this, ConstraintKind::KeyPathApplication,
keypath, root, value,
getConstraintLocator(locator));
if (isFavored) c->setFavored();
addNewFailingConstraint(c);
}
return;
case SolutionKind::Solved:
return;
case SolutionKind::Unsolved:
llvm_unreachable("should have generated constraints");
}
}
void
ConstraintSystem::addKeyPathConstraint(Type keypath,
Type root, Type value,
ConstraintLocatorBuilder locator,
bool isFavored) {
switch (simplifyKeyPathConstraint(keypath, root, value,
TMF_GenerateConstraints,
locator)) {
case SolutionKind::Error:
if (shouldAddNewFailingConstraint()) {
auto c = Constraint::create(*this, ConstraintKind::KeyPath,
keypath, root, value,
getConstraintLocator(locator));
if (isFavored) c->setFavored();
addNewFailingConstraint(c);
}
return;
case SolutionKind::Solved:
return;
case SolutionKind::Unsolved:
llvm_unreachable("should have generated constraints");
}
}
void ConstraintSystem::addConstraint(ConstraintKind kind, Type first,
Type second,
ConstraintLocatorBuilder locator,
bool isFavored) {
switch (addConstraintImpl(kind, first, second, locator, isFavored)) {
case SolutionKind::Error:
// Add a failing constraint, if needed.
if (shouldAddNewFailingConstraint()) {
auto c = Constraint::create(*this, kind, first, second,
getConstraintLocator(locator));
if (isFavored) c->setFavored();
addNewFailingConstraint(c);
}
return;
case SolutionKind::Unsolved:
llvm_unreachable("should have generated constraints");
case SolutionKind::Solved:
return;
}
}
void ConstraintSystem::addExplicitConversionConstraint(
Type fromType, Type toType,
bool allowFixes,
ConstraintLocatorBuilder locator) {
SmallVector<Constraint *, 3> constraints;
auto locatorPtr = getConstraintLocator(locator);
// Coercion (the common case).
Constraint *coerceConstraint =
Constraint::create(*this, ConstraintKind::Conversion,
fromType, toType, locatorPtr);
coerceConstraint->setFavored();
constraints.push_back(coerceConstraint);
// Bridging.
if (getASTContext().LangOpts.EnableObjCInterop) {
// The source type can be explicitly converted to the destination type.
Constraint *bridgingConstraint =
Constraint::create(*this, ConstraintKind::BridgingConversion,
fromType, toType, locatorPtr);
constraints.push_back(bridgingConstraint);
}
if (allowFixes && shouldAttemptFixes()) {
Constraint *downcastConstraint =
Constraint::createFixed(*this, ConstraintKind::CheckedCast,
FixKind::CoerceToCheckedCast, fromType,
toType, locatorPtr);
constraints.push_back(downcastConstraint);
}
addDisjunctionConstraint(constraints, locator,
getASTContext().LangOpts.EnableObjCInterop && allowFixes ? RememberChoice
: ForgetChoice);
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyConstraint(const Constraint &constraint) {
switch (constraint.getKind()) {
case ConstraintKind::Bind:
case ConstraintKind::Equal:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Subtype:
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::ArgumentTupleConversion:
case ConstraintKind::OperatorArgumentTupleConversion:
case ConstraintKind::OperatorArgumentConversion: {
// Relational constraints.
auto matchKind = constraint.getKind();
// If there is a fix associated with this constraint, apply it.
if (auto fix = constraint.getFix()) {
return simplifyFixConstraint(*fix, constraint.getFirstType(),
constraint.getSecondType(), matchKind,
None, constraint.getLocator());
}
// If there is a restriction on this constraint, apply it directly rather
// than going through the general \c matchTypes() machinery.
if (auto restriction = constraint.getRestriction()) {
return simplifyRestrictedConstraint(*restriction,
constraint.getFirstType(),
constraint.getSecondType(),
matchKind, None,
constraint.getLocator());
}
return matchTypes(constraint.getFirstType(), constraint.getSecondType(),
matchKind, None, constraint.getLocator());
}
case ConstraintKind::BridgingConversion:
return simplifyBridgingConstraint(constraint.getFirstType(),
constraint.getSecondType(),
None, constraint.getLocator());
case ConstraintKind::ApplicableFunction:
return simplifyApplicableFnConstraint(constraint.getFirstType(),
constraint.getSecondType(),
None, constraint.getLocator());
case ConstraintKind::DynamicTypeOf:
return simplifyDynamicTypeOfConstraint(constraint.getFirstType(),
constraint.getSecondType(),
None,
constraint.getLocator());
case ConstraintKind::EscapableFunctionOf:
return simplifyEscapableFunctionOfConstraint(constraint.getFirstType(),
constraint.getSecondType(),
None,
constraint.getLocator());
case ConstraintKind::OpenedExistentialOf:
return simplifyOpenedExistentialOfConstraint(constraint.getFirstType(),
constraint.getSecondType(),
None,
constraint.getLocator());
case ConstraintKind::KeyPath:
return simplifyKeyPathConstraint(
constraint.getFirstType(), constraint.getSecondType(),
constraint.getThirdType(),
None, constraint.getLocator());
case ConstraintKind::KeyPathApplication:
return simplifyKeyPathApplicationConstraint(
constraint.getFirstType(), constraint.getSecondType(),
constraint.getThirdType(),
None, constraint.getLocator());
case ConstraintKind::BindOverload:
resolveOverload(constraint.getLocator(), constraint.getFirstType(),
constraint.getOverloadChoice(),
constraint.getOverloadUseDC());
return SolutionKind::Solved;
case ConstraintKind::ConformsTo:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::SelfObjectOfProtocol:
return simplifyConformsToConstraint(
constraint.getFirstType(),
constraint.getSecondType(),
constraint.getKind(),
constraint.getLocator(),
None);
case ConstraintKind::CheckedCast: {
auto result = simplifyCheckedCastConstraint(constraint.getFirstType(),
constraint.getSecondType(),
None,
constraint.getLocator());
// NOTE: simplifyCheckedCastConstraint() may return Unsolved, e.g. if the
// subexpression's type is unresolved. Don't record the fix until we
// successfully simplify the constraint.
if (result == SolutionKind::Solved) {
if (auto fix = constraint.getFix()) {
if (recordFix(*fix, constraint.getLocator())) {
return SolutionKind::Error;
}
}
}
return result;
}
case ConstraintKind::OptionalObject:
return simplifyOptionalObjectConstraint(constraint.getFirstType(),
constraint.getSecondType(),
TMF_GenerateConstraints,
constraint.getLocator());
case ConstraintKind::ValueMember:
case ConstraintKind::UnresolvedValueMember:
return simplifyMemberConstraint(constraint.getKind(),
constraint.getFirstType(),
constraint.getMember(),
constraint.getSecondType(),
constraint.getMemberUseDC(),
constraint.getFunctionRefKind(),
TMF_GenerateConstraints,
constraint.getLocator());
case ConstraintKind::Defaultable:
return simplifyDefaultableConstraint(constraint.getFirstType(),
constraint.getSecondType(),
TMF_GenerateConstraints,
constraint.getLocator());
case ConstraintKind::Disjunction:
// Disjunction constraints are never solved here.
return SolutionKind::Unsolved;
}
llvm_unreachable("Unhandled ConstraintKind in switch.");
}
void ConstraintSystem::simplifyDisjunctionChoice(Constraint *choice) {
// Simplify this term in the disjunction.
switch (simplifyConstraint(*choice)) {
case ConstraintSystem::SolutionKind::Error:
if (!failedConstraint)
failedConstraint = choice;
solverState->retireConstraint(choice);
break;
case ConstraintSystem::SolutionKind::Solved:
solverState->retireConstraint(choice);
break;
case ConstraintSystem::SolutionKind::Unsolved:
InactiveConstraints.push_back(choice);
CG.addConstraint(choice);
break;
}
// Record this as a generated constraint.
solverState->addGeneratedConstraint(choice);
}