blob: 8f1ca5a57f107c15181a3ec40c2289800149a4bc [file] [log] [blame]
//===--- Casting.cpp - Swift Language Dynamic Casting Support -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Implementations of the dynamic cast runtime functions.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Demangle.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/Config.h"
#include "swift/Runtime/Enum.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "swift/Runtime/Debug.h"
#include "ErrorObject.h"
#include "ExistentialMetadataImpl.h"
#include "Private.h"
#include "../SwiftShims/RuntimeShims.h"
#include "stddef.h"
#if defined(__APPLE__) && defined(__MACH__)
#include <mach-o/dyld.h>
#include <mach-o/getsect.h>
#elif defined(__ELF__)
#include <elf.h>
#include <link.h>
#endif
#include <dlfcn.h>
#include <cstring>
#include <mutex>
#include <atomic>
#include <type_traits>
// FIXME: Clang defines max_align_t in stddef.h since 3.6.
// Remove this hack when we don't care about older Clangs on all platforms.
#ifdef __APPLE__
typedef std::max_align_t swift_max_align_t;
#else
typedef long double swift_max_align_t;
#endif
using namespace swift;
using namespace metadataimpl;
#if SWIFT_OBJC_INTEROP
//#include <objc/objc-runtime.h>
#include <objc/NSObject.h>
#include <objc/runtime.h>
#include <objc/message.h>
#include <objc/objc.h>
// Aliases for Objective-C runtime entry points.
const char *class_getName(const ClassMetadata* type) {
return class_getName(
reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
}
// Aliases for Swift runtime entry points for Objective-C types.
extern "C" const void *swift_dynamicCastObjCProtocolConditional(
const void *object,
size_t numProtocols,
const ProtocolDescriptor * const *protocols);
#endif
namespace {
enum class TypeSyntaxLevel {
/// Any type syntax is valid.
Type,
/// Function types must be parenthesized.
TypeSimple,
};
}
static void _buildNameForMetadata(const Metadata *type,
TypeSyntaxLevel level,
bool qualified,
std::string &result);
static void _buildNominalTypeName(const NominalTypeDescriptor *ntd,
const Metadata *type,
bool qualified,
std::string &result) {
auto options = Demangle::DemangleOptions();
options.DisplayDebuggerGeneratedModule = false;
options.QualifyEntities = qualified;
// Demangle the basic type name.
result += Demangle::demangleTypeAsString(ntd->Name,
strlen(ntd->Name),
options);
// If generic, demangle the type parameters.
if (ntd->GenericParams.NumPrimaryParams > 0) {
result += "<";
auto typeBytes = reinterpret_cast<const char *>(type);
auto genericParam = reinterpret_cast<const Metadata * const *>(
typeBytes + sizeof(void*) * ntd->GenericParams.Offset);
for (unsigned i = 0, e = ntd->GenericParams.NumPrimaryParams;
i < e; ++i, ++genericParam) {
if (i > 0)
result += ", ";
_buildNameForMetadata(*genericParam, TypeSyntaxLevel::Type, qualified,
result);
}
result += ">";
}
}
static const char *_getProtocolName(const ProtocolDescriptor *protocol) {
const char *name = protocol->Name;
// An Objective-C protocol's name is unmangled.
#if SWIFT_OBJC_INTEROP
if (!protocol->Flags.isSwift())
return name;
#endif
// Protocol names are emitted with the _Tt prefix so that ObjC can
// recognize them as mangled Swift names.
assert(name[0] == '_' && name[1] == 'T' && name[2] == 't');
return name + 3;
}
static void _buildExistentialTypeName(const ProtocolDescriptorList *protocols,
bool qualified,
std::string &result) {
auto options = Demangle::DemangleOptions();
options.QualifyEntities = qualified;
options.DisplayDebuggerGeneratedModule = false;
// If there's only one protocol, the existential type name is the protocol
// name.
auto descriptors = protocols->getProtocols();
if (protocols->NumProtocols == 1) {
auto name = _getProtocolName(descriptors[0]);
result += Demangle::demangleTypeAsString(name,
strlen(name),
options);
return;
}
result += "protocol<";
for (unsigned i = 0, e = protocols->NumProtocols; i < e; ++i) {
if (i > 0)
result += ", ";
auto name = _getProtocolName(descriptors[i]);
result += Demangle::demangleTypeAsString(name,
strlen(name),
options);
}
result += ">";
}
static void _buildFunctionTypeName(const FunctionTypeMetadata *func,
bool qualified,
std::string &result) {
if (func->getNumArguments() == 1) {
auto firstArgument = func->getArguments()[0].getPointer();
bool isInout = func->getArguments()[0].getFlag();
// This could be a single input tuple, with one or more arguments inside,
// but guaranteed to not have inout types.
if (auto tupleMetadata = dyn_cast<TupleTypeMetadata>(firstArgument)) {
_buildNameForMetadata(tupleMetadata,
TypeSyntaxLevel::TypeSimple,
qualified,
result);
} else {
if (isInout)
result += "inout ";
_buildNameForMetadata(firstArgument,
TypeSyntaxLevel::TypeSimple,
qualified,
result);
}
} else {
result += "(";
for (size_t i = 0; i < func->getNumArguments(); ++i) {
auto arg = func->getArguments()[i].getPointer();
bool isInout = func->getArguments()[i].getFlag();
if (isInout)
result += "inout ";
_buildNameForMetadata(arg, TypeSyntaxLevel::TypeSimple,
qualified, result);
if (i < func->getNumArguments() - 1) {
result += ", ";
}
}
result += ")";
}
if (func->throws()) {
result += " throws";
}
result += " -> ";
_buildNameForMetadata(func->ResultType,
TypeSyntaxLevel::Type,
qualified,
result);
}
// Build a user-comprehensible name for a type.
static void _buildNameForMetadata(const Metadata *type,
TypeSyntaxLevel level,
bool qualified,
std::string &result) {
auto options = Demangle::DemangleOptions();
options.DisplayDebuggerGeneratedModule = false;
switch (type->getKind()) {
case MetadataKind::Class: {
auto classType = static_cast<const ClassMetadata *>(type);
#if SWIFT_OBJC_INTEROP
// Look through artificial subclasses.
while (classType->isTypeMetadata() && classType->isArtificialSubclass())
classType = classType->SuperClass;
// Ask the Objective-C runtime to name ObjC classes.
if (!classType->isTypeMetadata()) {
result += class_getName(classType);
return;
}
#endif
return _buildNominalTypeName(classType->getDescription(),
classType, qualified,
result);
}
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Struct: {
auto structType = static_cast<const StructMetadata *>(type);
return _buildNominalTypeName(structType->Description,
type, qualified, result);
}
case MetadataKind::ObjCClassWrapper: {
#if SWIFT_OBJC_INTEROP
auto objcWrapper = static_cast<const ObjCClassWrapperMetadata *>(type);
result += class_getName(objcWrapper->Class);
#else
assert(false && "no ObjC interop");
#endif
return;
}
case MetadataKind::ForeignClass: {
auto foreign = static_cast<const ForeignClassMetadata *>(type);
const char *name = foreign->getName();
size_t len = strlen(name);
result += Demangle::demangleTypeAsString(name, len, options);
return;
}
case MetadataKind::Existential: {
auto exis = static_cast<const ExistentialTypeMetadata *>(type);
_buildExistentialTypeName(&exis->Protocols, qualified, result);
return;
}
case MetadataKind::ExistentialMetatype: {
auto metatype = static_cast<const ExistentialMetatypeMetadata *>(type);
_buildNameForMetadata(metatype->InstanceType, TypeSyntaxLevel::TypeSimple,
qualified,
result);
result += ".Type";
return;
}
case MetadataKind::Function: {
if (level >= TypeSyntaxLevel::TypeSimple)
result += "(";
auto func = static_cast<const FunctionTypeMetadata *>(type);
switch (func->getConvention()) {
case FunctionMetadataConvention::Swift:
break;
case FunctionMetadataConvention::Thin:
result += "@convention(thin) ";
break;
case FunctionMetadataConvention::Block:
result += "@convention(block) ";
break;
case FunctionMetadataConvention::CFunctionPointer:
result += "@convention(c) ";
break;
}
_buildFunctionTypeName(func, qualified, result);
if (level >= TypeSyntaxLevel::TypeSimple)
result += ")";
return;
}
case MetadataKind::Metatype: {
auto metatype = static_cast<const MetatypeMetadata *>(type);
_buildNameForMetadata(metatype->InstanceType, TypeSyntaxLevel::TypeSimple,
qualified, result);
if (metatype->InstanceType->isAnyExistentialType())
result += ".Protocol";
else
result += ".Type";
return;
}
case MetadataKind::Tuple: {
auto tuple = static_cast<const TupleTypeMetadata *>(type);
result += "(";
auto elts = tuple->getElements();
for (unsigned i = 0, e = tuple->NumElements; i < e; ++i) {
if (i > 0)
result += ", ";
_buildNameForMetadata(elts[i].Type, TypeSyntaxLevel::Type, qualified,
result);
}
result += ")";
return;
}
case MetadataKind::Opaque: {
// TODO
result += "<<<opaque type>>>";
return;
}
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
break;
}
result += "<<<invalid type>>>";
}
/// Return a user-comprehensible name for the given type.
std::string swift::nameForMetadata(const Metadata *type,
bool qualified) {
std::string result;
_buildNameForMetadata(type, TypeSyntaxLevel::Type, qualified, result);
return result;
}
extern "C"
TwoWordPair<const char *, uintptr_t>::Return
swift_getTypeName(const Metadata *type, bool qualified) {
using Pair = TwoWordPair<const char *, uintptr_t>;
using Key = llvm::PointerIntPair<const Metadata *, 1, bool>;
static pthread_rwlock_t TypeNameCacheLock = PTHREAD_RWLOCK_INITIALIZER;
static Lazy<llvm::DenseMap<Key, std::pair<const char *, size_t>>>
TypeNameCache;
Key key(type, qualified);
auto &cache = TypeNameCache.get();
pthread_rwlock_rdlock(&TypeNameCacheLock);
auto found = cache.find(key);
if (found != cache.end()) {
auto result = found->second;
pthread_rwlock_unlock(&TypeNameCacheLock);
return Pair{result.first, result.second};
}
pthread_rwlock_unlock(&TypeNameCacheLock);
pthread_rwlock_wrlock(&TypeNameCacheLock);
// Someone may have beaten us to the write lock.
found = cache.find(key);
if (found != cache.end()) {
auto result = found->second;
pthread_rwlock_unlock(&TypeNameCacheLock);
return Pair{result.first, result.second};
}
// Build the metadata name.
auto name = nameForMetadata(type, qualified);
// Copy it to memory we can reference forever.
auto size = name.size();
auto result = (char*)malloc(size + 1);
memcpy(result, name.data(), size);
result[size] = 0;
cache.insert({key, {result, size}});
pthread_rwlock_unlock(&TypeNameCacheLock);
return Pair{result, size};
}
/// Report a dynamic cast failure.
// This is noinline with asm("") to preserve this frame in stack traces.
// We want "dynamicCastFailure" to appear in crash logs even we crash
// during the diagnostic because some Metadata is invalid.
LLVM_ATTRIBUTE_NORETURN
LLVM_ATTRIBUTE_NOINLINE
void
swift::swift_dynamicCastFailure(const void *sourceType, const char *sourceName,
const void *targetType, const char *targetName,
const char *message) {
asm("");
swift::fatalError("Could not cast value of type '%s' (%p) to '%s' (%p)%s%s\n",
sourceName, sourceType,
targetName, targetType,
message ? ": " : ".",
message ? message : "");
}
LLVM_ATTRIBUTE_NORETURN
void
swift::swift_dynamicCastFailure(const Metadata *sourceType,
const Metadata *targetType,
const char *message) {
std::string sourceName = nameForMetadata(sourceType);
std::string targetName = nameForMetadata(targetType);
swift_dynamicCastFailure(sourceType, sourceName.c_str(),
targetType, targetName.c_str(), message);
}
/// Report a corrupted type object.
LLVM_ATTRIBUTE_NORETURN
LLVM_ATTRIBUTE_ALWAYS_INLINE // Minimize trashed registers
static void _failCorruptType(const Metadata *type) {
swift::crash("Corrupt Swift type object");
}
#if SWIFT_OBJC_INTEROP
// Objective-c bridging helpers.
namespace {
struct _ObjectiveCBridgeableWitnessTable;
}
static const _ObjectiveCBridgeableWitnessTable *
findBridgeWitness(const Metadata *T);
static bool _dynamicCastValueToClassViaObjCBridgeable(
OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const Metadata *targetType,
const _ObjectiveCBridgeableWitnessTable *srcBridgeWitness,
DynamicCastFlags flags);
static bool _dynamicCastValueToClassExistentialViaObjCBridgeable(
OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const ExistentialTypeMetadata *targetType,
const _ObjectiveCBridgeableWitnessTable *srcBridgeWitness,
DynamicCastFlags flags);
static bool _dynamicCastClassToValueViaObjCBridgeable(
OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const Metadata *targetType,
const _ObjectiveCBridgeableWitnessTable *targetBridgeWitness,
DynamicCastFlags flags);
#endif
/// A convenient method for failing out of a dynamic cast.
static bool _fail(OpaqueValue *srcValue, const Metadata *srcType,
const Metadata *targetType, DynamicCastFlags flags) {
if (flags & DynamicCastFlags::Unconditional)
swift_dynamicCastFailure(srcType, targetType);
if (flags & DynamicCastFlags::DestroyOnFailure)
srcType->vw_destroy(srcValue);
return false;
}
/// A convenient method for succeeding at a dynamic cast.
static bool _succeed(OpaqueValue *dest, OpaqueValue *src,
const Metadata *srcType, DynamicCastFlags flags) {
if (flags & DynamicCastFlags::TakeOnSuccess) {
srcType->vw_initializeWithTake(dest, src);
} else {
srcType->vw_initializeWithCopy(dest, src);
}
return true;
}
/// Dynamically cast a class metatype to a Swift class metatype.
static const ClassMetadata *
_dynamicCastClassMetatype(const ClassMetadata *sourceType,
const ClassMetadata *targetType) {
do {
if (sourceType == targetType) {
return sourceType;
}
sourceType = _swift_getSuperclass(sourceType);
} while (sourceType);
return nullptr;
}
/// Dynamically cast a class instance to a Swift class type.
const void *
swift::swift_dynamicCastClass(const void *object,
const ClassMetadata *targetType) {
#if SWIFT_OBJC_INTEROP
assert(!targetType->isPureObjC());
// Swift native classes never have a tagged-pointer representation.
if (isObjCTaggedPointerOrNull(object)) {
return nullptr;
}
#endif
auto isa = _swift_getClassOfAllocated(object);
if (_dynamicCastClassMetatype(isa, targetType))
return object;
return nullptr;
}
/// Dynamically cast a class object to a Swift class type.
const void *
swift::swift_dynamicCastClassUnconditional(const void *object,
const ClassMetadata *targetType) {
auto value = swift_dynamicCastClass(object, targetType);
if (value) return value;
swift_dynamicCastFailure(_swift_getClass(object), targetType);
}
#if SWIFT_OBJC_INTEROP
static bool _unknownClassConformsToObjCProtocol(const OpaqueValue *value,
const ProtocolDescriptor *protocol) {
const void *object
= *reinterpret_cast<const void * const *>(value);
return swift_dynamicCastObjCProtocolConditional(object, 1, &protocol);
}
#endif
/// Check whether a type conforms to a protocol.
///
/// \param value - can be null, in which case the question should
/// be answered abstractly if possible
/// \param conformance - if non-null, and the protocol requires a
/// witness table, and the type implements the protocol, the witness
/// table will be placed here
static bool _conformsToProtocol(const OpaqueValue *value,
const Metadata *type,
const ProtocolDescriptor *protocol,
const WitnessTable **conformance) {
// Handle AnyObject directly.
if (protocol->Flags.getSpecialProtocol() == SpecialProtocol::AnyObject) {
switch (type->getKind()) {
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass:
// Classes conform to AnyObject.
return true;
case MetadataKind::Existential: {
auto sourceExistential = cast<ExistentialTypeMetadata>(type);
// The existential conforms to AnyObject if it's class-constrained.
// FIXME: It also must not carry witness tables.
return sourceExistential->isClassBounded();
}
case MetadataKind::ExistentialMetatype:
case MetadataKind::Metatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
return false;
}
_failCorruptType(type);
}
// Look up the witness table for protocols that need them.
if (protocol->Flags.needsWitnessTable()) {
auto witness = swift_conformsToProtocol(type, protocol);
if (!witness)
return false;
if (conformance)
*conformance = witness;
return true;
}
// For Objective-C protocols, check whether we have a class that
// conforms to the given protocol.
switch (type->getKind()) {
case MetadataKind::Class:
#if SWIFT_OBJC_INTEROP
if (value) {
return _unknownClassConformsToObjCProtocol(value, protocol);
} else {
return classConformsToObjCProtocol(type, protocol);
}
#endif
return false;
case MetadataKind::ObjCClassWrapper: {
#if SWIFT_OBJC_INTEROP
if (value) {
return _unknownClassConformsToObjCProtocol(value, protocol);
} else {
auto wrapper = cast<ObjCClassWrapperMetadata>(type);
return classConformsToObjCProtocol(wrapper->Class, protocol);
}
#endif
return false;
}
case MetadataKind::ForeignClass:
#if SWIFT_OBJC_INTEROP
if (value)
return _unknownClassConformsToObjCProtocol(value, protocol);
return false;
#else
_failCorruptType(type);
#endif
case MetadataKind::Existential: // FIXME
case MetadataKind::ExistentialMetatype: // FIXME
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
return false;
}
return false;
}
/// Check whether a type conforms to the given protocols, filling in a
/// list of conformances.
static bool _conformsToProtocols(const OpaqueValue *value,
const Metadata *type,
const ProtocolDescriptorList &protocols,
const WitnessTable **conformances) {
for (unsigned i = 0, n = protocols.NumProtocols; i != n; ++i) {
const ProtocolDescriptor *protocol = protocols[i];
if (!_conformsToProtocol(value, type, protocol, conformances))
return false;
if (protocol->Flags.needsWitnessTable()) {
assert(*conformances != nullptr);
++conformances;
}
}
return true;
}
static bool shouldDeallocateSource(bool castSucceeded, DynamicCastFlags flags) {
return (castSucceeded && (flags & DynamicCastFlags::TakeOnSuccess)) ||
(!castSucceeded && (flags & DynamicCastFlags::DestroyOnFailure));
}
/// Given that a cast operation is complete, maybe deallocate an
/// opaque existential value.
static void _maybeDeallocateOpaqueExistential(OpaqueValue *srcExistential,
bool castSucceeded,
DynamicCastFlags flags) {
if (shouldDeallocateSource(castSucceeded, flags)) {
auto container =
reinterpret_cast<OpaqueExistentialContainer *>(srcExistential);
container->Type->vw_deallocateBuffer(&container->Buffer);
}
}
/// Given a possibly-existential value, find its dynamic type and the
/// address of its storage.
static void findDynamicValueAndType(OpaqueValue *value, const Metadata *type,
OpaqueValue *&outValue,
const Metadata *&outType,
bool &inoutCanTake) {
switch (type->getKind()) {
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass: {
// TODO: avoid unnecessary repeat lookup of
// ObjCClassWrapper/ForeignClass when the type matches.
outValue = value;
outType = swift_getObjectType(*reinterpret_cast<HeapObject**>(value));
return;
}
case MetadataKind::Existential: {
auto existentialType = cast<ExistentialTypeMetadata>(type);
switch (existentialType->getRepresentation()) {
case ExistentialTypeRepresentation::Class: {
// Class existentials can't recursively contain existential containers,
// so we can fast-path by not bothering to recur.
auto existential =
reinterpret_cast<ClassExistentialContainer*>(value);
outValue = (OpaqueValue*) &existential->Value;
outType = swift_getObjectType((HeapObject*) existential->Value);
return;
}
case ExistentialTypeRepresentation::Opaque:
case ExistentialTypeRepresentation::ErrorType: {
OpaqueValue *innerValue
= existentialType->projectValue(value);
const Metadata *innerType = existentialType->getDynamicType(value);
inoutCanTake &= existentialType->mayTakeValue(value);
return findDynamicValueAndType(innerValue, innerType,
outValue, outType, inoutCanTake);
}
}
}
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype: {
auto storedType = *(const Metadata **) value;
outValue = value;
outType = swift_getMetatypeMetadata(storedType);
return;
}
// Non-polymorphic types.
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
outValue = value;
outType = type;
return;
}
_failCorruptType(type);
}
extern "C" const Metadata *
swift::swift_getDynamicType(OpaqueValue *value, const Metadata *self) {
OpaqueValue *outValue;
const Metadata *outType;
bool canTake = false;
findDynamicValueAndType(value, self, outValue, outType, canTake);
return outType;
}
/// Given a possibly-existential value, deallocate any buffer in its storage.
static void deallocateDynamicValue(OpaqueValue *value, const Metadata *type) {
switch (type->getKind()) {
case MetadataKind::Existential: {
auto existentialType = cast<ExistentialTypeMetadata>(type);
switch (existentialType->getRepresentation()) {
case ExistentialTypeRepresentation::Class:
// Nothing to clean up.
break;
case ExistentialTypeRepresentation::ErrorType:
// TODO: We could clean up from a reclaimed uniquely-referenced error box.
break;
case ExistentialTypeRepresentation::Opaque:
auto existential =
reinterpret_cast<OpaqueExistentialContainer*>(value);
// Handle the possibility of nested existentials.
OpaqueValue *existentialValue =
existential->Type->vw_projectBuffer(&existential->Buffer);
deallocateDynamicValue(existentialValue, existential->Type);
// Deallocate the buffer.
existential->Type->vw_deallocateBuffer(&existential->Buffer);
break;
}
return;
}
// None of the rest of these require deallocation.
case MetadataKind::Class:
case MetadataKind::ForeignClass:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
return;
}
_failCorruptType(type);
}
#if SWIFT_OBJC_INTEROP
extern "C" id
swift_dynamicCastMetatypeToObjectConditional(const Metadata *metatype) {
switch (metatype->getKind()) {
case MetadataKind::Class:
// Swift classes are objects in and of themselves.
return (id)metatype;
case MetadataKind::ObjCClassWrapper: {
// Unwrap ObjC class objects.
auto wrapper = static_cast<const ObjCClassWrapperMetadata*>(metatype);
return (id)wrapper->getClassObject();
}
// Other kinds of metadata don't cast to AnyObject.
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
case MetadataKind::Function:
case MetadataKind::Existential:
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype:
case MetadataKind::ForeignClass:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
return nullptr;
}
}
extern "C" id
swift_dynamicCastMetatypeToObjectUnconditional(const Metadata *metatype) {
switch (metatype->getKind()) {
case MetadataKind::Class:
// Swift classes are objects in and of themselves.
return (id)metatype;
case MetadataKind::ObjCClassWrapper: {
// Unwrap ObjC class objects.
auto wrapper = static_cast<const ObjCClassWrapperMetadata*>(metatype);
return (id)wrapper->getClassObject();
}
// Other kinds of metadata don't cast to AnyObject.
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
case MetadataKind::Function:
case MetadataKind::Existential:
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype:
case MetadataKind::ForeignClass:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject: {
std::string sourceName = nameForMetadata(metatype);
swift_dynamicCastFailure(metatype, sourceName.c_str(),
nullptr, "AnyObject",
"only class metatypes can be converted to AnyObject");
}
}
}
#endif
/// Perform a dynamic cast to an existential type.
static bool _dynamicCastToExistential(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const ExistentialTypeMetadata *targetType,
DynamicCastFlags flags) {
#if SWIFT_OBJC_INTEROP
// This variable's lifetime needs to be for the whole function, but is
// only valid with Objective-C interop enabled.
id tmp;
#endif
// Find the actual type of the source.
OpaqueValue *srcDynamicValue;
const Metadata *srcDynamicType;
bool canTake = true;
findDynamicValueAndType(src, srcType, srcDynamicValue, srcDynamicType,
canTake);
auto maybeDeallocateSourceAfterSuccess = [&] {
if (shouldDeallocateSource(/*succeeded*/ true, flags)) {
// If we're able to take the dynamic value, then clean up any leftover
// buffers it may have been contained in.
if (canTake && src != srcDynamicValue)
deallocateDynamicValue(src, srcType);
// Otherwise, deallocate the original value wholesale if we couldn't take
// it.
else if (!canTake)
srcType->vw_destroy(src);
}
};
// The representation of an existential is different for some protocols.
switch (targetType->getRepresentation()) {
case ExistentialTypeRepresentation::Class: {
auto destExistential =
reinterpret_cast<ClassExistentialContainer*>(dest);
// If the source type is a value type, it cannot possibly conform
// to a class-bounded protocol.
switch (srcDynamicType->getKind()) {
case MetadataKind::ExistentialMetatype:
case MetadataKind::Metatype: {
#if SWIFT_OBJC_INTEROP
// Class metadata can be used as an object when ObjC interop is available.
auto metatypePtr = reinterpret_cast<const Metadata **>(src);
auto metatype = *metatypePtr;
tmp = swift_dynamicCastMetatypeToObjectConditional(metatype);
// If the cast succeeded, use the result value as the class instance
// below.
if (tmp) {
srcDynamicValue = reinterpret_cast<OpaqueValue*>(&tmp);
srcDynamicType = reinterpret_cast<const Metadata*>(tmp);
break;
}
#endif
// Otherwise, metatypes aren't class objects.
return _fail(src, srcType, targetType, flags);
}
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass:
case MetadataKind::Existential:
// Handle these cases below.
break;
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
#if SWIFT_OBJC_INTEROP
// If the source type is bridged to Objective-C, try to bridge.
if (auto srcBridgeWitness = findBridgeWitness(srcDynamicType)) {
DynamicCastFlags subFlags
= flags - (DynamicCastFlags::TakeOnSuccess |
DynamicCastFlags::DestroyOnFailure);
bool success = _dynamicCastValueToClassExistentialViaObjCBridgeable(
dest,
srcDynamicValue,
srcDynamicType,
targetType,
srcBridgeWitness,
subFlags);
// Destroy the source value, since we avoided taking or destroying
// it above.
if (shouldDeallocateSource(success, flags)) {
srcType->vw_destroy(src);
}
return success;
}
#endif
break;
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
// Will never succeed.
return _fail(src, srcType, targetType, flags);
}
// Check for protocol conformances and fill in the witness tables.
if (!_conformsToProtocols(srcDynamicValue, srcDynamicType,
targetType->Protocols,
destExistential->getWitnessTables())) {
return _fail(srcDynamicValue, srcDynamicType, targetType, flags);
}
auto object = *(reinterpret_cast<HeapObject**>(srcDynamicValue));
destExistential->Value = object;
if (!canTake || !(flags & DynamicCastFlags::TakeOnSuccess)) {
swift_retain(object);
}
maybeDeallocateSourceAfterSuccess();
return true;
}
case ExistentialTypeRepresentation::Opaque: {
auto destExistential =
reinterpret_cast<OpaqueExistentialContainer*>(dest);
// Check for protocol conformances and fill in the witness tables.
if (!_conformsToProtocols(srcDynamicValue, srcDynamicType,
targetType->Protocols,
destExistential->getWitnessTables()))
return _fail(srcDynamicValue, srcDynamicType, targetType, flags);
// Fill in the type and value.
destExistential->Type = srcDynamicType;
if (canTake && (flags & DynamicCastFlags::TakeOnSuccess)) {
srcDynamicType->vw_initializeBufferWithTake(&destExistential->Buffer,
srcDynamicValue);
} else {
srcDynamicType->vw_initializeBufferWithCopy(&destExistential->Buffer,
srcDynamicValue);
}
maybeDeallocateSourceAfterSuccess();
return true;
}
case ExistentialTypeRepresentation::ErrorType: {
auto destBoxAddr =
reinterpret_cast<SwiftError**>(dest);
// Check for the ErrorType protocol conformance, which should be the only
// one we need.
assert(targetType->Protocols.NumProtocols == 1);
const WitnessTable *errorWitness;
if (!_conformsToProtocols(srcDynamicValue, srcDynamicType,
targetType->Protocols,
&errorWitness))
return _fail(srcDynamicValue, srcDynamicType, targetType, flags);
BoxPair destBox = swift_allocError(srcDynamicType, errorWitness,
srcDynamicValue,
/*isTake*/ canTake && (flags & DynamicCastFlags::TakeOnSuccess));
*destBoxAddr = reinterpret_cast<SwiftError*>(destBox.first);
maybeDeallocateSourceAfterSuccess();
return true;
}
}
}
static const void *
_dynamicCastUnknownClassToExistential(const void *object,
const ExistentialTypeMetadata *targetType) {
for (unsigned i = 0, e = targetType->Protocols.NumProtocols; i < e; ++i) {
const ProtocolDescriptor *protocol = targetType->Protocols[i];
switch (protocol->Flags.getDispatchStrategy()) {
case ProtocolDispatchStrategy::Swift:
// If the target existential requires witness tables, we can't do this cast.
// The result type would not have a single-refcounted-pointer rep.
return nullptr;
case ProtocolDispatchStrategy::ObjC:
#if SWIFT_OBJC_INTEROP
// All classes conform to AnyObject.
if (protocol->Flags.getSpecialProtocol() == SpecialProtocol::AnyObject)
break;
if (!objectConformsToObjCProtocol(object, protocol))
return nullptr;
break;
#else
assert(false && "ObjC interop disabled?!");
return nullptr;
#endif
case ProtocolDispatchStrategy::Empty:
// The only non-@objc, non-witness-table-requiring protocol should be
// AnyObject for now.
assert(protocol->Flags.getSpecialProtocol() == SpecialProtocol::AnyObject
&& "swift protocols besides AnyObject should always require a "
"witness table");
break;
}
}
return object;
}
/// Perform a dynamic class of some sort of class instance to some
/// sort of class type.
const void *
swift::swift_dynamicCastUnknownClass(const void *object,
const Metadata *targetType) {
switch (targetType->getKind()) {
case MetadataKind::Class: {
auto targetClassType = static_cast<const ClassMetadata *>(targetType);
return swift_dynamicCastClass(object, targetClassType);
}
case MetadataKind::ObjCClassWrapper: {
#if SWIFT_OBJC_INTEROP
auto targetClassType
= static_cast<const ObjCClassWrapperMetadata *>(targetType)->Class;
return swift_dynamicCastObjCClass(object, targetClassType);
#else
_failCorruptType(targetType);
#endif
}
case MetadataKind::ForeignClass: {
#if SWIFT_OBJC_INTEROP
auto targetClassType = static_cast<const ForeignClassMetadata*>(targetType);
return swift_dynamicCastForeignClass(object, targetClassType);
#else
_failCorruptType(targetType);
#endif
}
case MetadataKind::Existential: {
return _dynamicCastUnknownClassToExistential(object,
static_cast<const ExistentialTypeMetadata *>(targetType));
}
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
return nullptr;
}
_failCorruptType(targetType);
}
/// Perform a dynamic class of some sort of class instance to some
/// sort of class type.
const void *
swift::swift_dynamicCastUnknownClassUnconditional(const void *object,
const Metadata *targetType) {
switch (targetType->getKind()) {
case MetadataKind::Class: {
auto targetClassType = static_cast<const ClassMetadata *>(targetType);
return swift_dynamicCastClassUnconditional(object, targetClassType);
}
case MetadataKind::ObjCClassWrapper: {
#if SWIFT_OBJC_INTEROP
auto targetClassType
= static_cast<const ObjCClassWrapperMetadata *>(targetType)->Class;
return swift_dynamicCastObjCClassUnconditional(object, targetClassType);
#else
_failCorruptType(targetType);
#endif
}
case MetadataKind::ForeignClass: {
#if SWIFT_OBJC_INTEROP
auto targetClassType = static_cast<const ForeignClassMetadata*>(targetType);
return swift_dynamicCastForeignClassUnconditional(object, targetClassType);
#else
_failCorruptType(targetType);
#endif
}
case MetadataKind::Existential: {
// We can cast to ObjC existentials. Non-ObjC existentials don't have
// a single-refcounted-pointer representation.
if (auto result = _dynamicCastUnknownClassToExistential(object,
static_cast<const ExistentialTypeMetadata *>(targetType)))
return result;
swift_dynamicCastFailure(_swift_getClass(object), targetType);
}
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
swift_dynamicCastFailure(_swift_getClass(object), targetType);
}
_failCorruptType(targetType);
}
const Metadata *
swift::swift_dynamicCastMetatype(const Metadata *sourceType,
const Metadata *targetType) {
auto origSourceType = sourceType;
switch (targetType->getKind()) {
case MetadataKind::ObjCClassWrapper:
// Get the actual class object.
targetType = static_cast<const ObjCClassWrapperMetadata*>(targetType)
->Class;
SWIFT_FALLTHROUGH;
case MetadataKind::Class:
// The source value must also be a class; otherwise the cast fails.
switch (sourceType->getKind()) {
case MetadataKind::ObjCClassWrapper:
// Get the actual class object.
sourceType = static_cast<const ObjCClassWrapperMetadata*>(sourceType)
->Class;
SWIFT_FALLTHROUGH;
case MetadataKind::Class: {
// Check if the source is a subclass of the target.
#if SWIFT_OBJC_INTEROP
// We go through ObjC lookup to deal with potential runtime magic in ObjC
// land.
if (swift_dynamicCastObjCClassMetatype((const ClassMetadata*)sourceType,
(const ClassMetadata*)targetType))
return origSourceType;
#else
if (_dynamicCastClassMetatype((const ClassMetadata*)sourceType,
(const ClassMetadata*)targetType))
return origSourceType;
#endif
return nullptr;
}
case MetadataKind::ForeignClass: {
// Check if the source is a subclass of the target.
if (swift_dynamicCastForeignClassMetatype(
(const ClassMetadata*)sourceType,
(const ClassMetadata*)targetType))
return origSourceType;
return nullptr;
}
case MetadataKind::Existential:
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
return nullptr;
}
break;
case MetadataKind::ForeignClass:
switch (sourceType->getKind()) {
case MetadataKind::ObjCClassWrapper:
// Get the actual class object.
sourceType = static_cast<const ObjCClassWrapperMetadata*>(sourceType)
->Class;
SWIFT_FALLTHROUGH;
case MetadataKind::Class:
case MetadataKind::ForeignClass:
// Check if the source is a subclass of the target.
if (swift_dynamicCastForeignClassMetatype(
(const ClassMetadata*)sourceType,
(const ClassMetadata*)targetType))
return origSourceType;
return nullptr;
case MetadataKind::Existential:
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
return nullptr;
}
break;
case MetadataKind::Existential:
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
// The cast succeeds only if the metadata pointers are statically
// equivalent.
if (sourceType != targetType)
return nullptr;
return origSourceType;
}
}
const Metadata *
swift::swift_dynamicCastMetatypeUnconditional(const Metadata *sourceType,
const Metadata *targetType) {
auto origSourceType = sourceType;
switch (targetType->getKind()) {
case MetadataKind::ObjCClassWrapper:
// Get the actual class object.
targetType = static_cast<const ObjCClassWrapperMetadata*>(targetType)
->Class;
SWIFT_FALLTHROUGH;
case MetadataKind::Class:
// The source value must also be a class; otherwise the cast fails.
switch (sourceType->getKind()) {
case MetadataKind::ObjCClassWrapper:
// Get the actual class object.
sourceType = static_cast<const ObjCClassWrapperMetadata*>(sourceType)
->Class;
SWIFT_FALLTHROUGH;
case MetadataKind::Class: {
// Check if the source is a subclass of the target.
#if SWIFT_OBJC_INTEROP
// We go through ObjC lookup to deal with potential runtime magic in ObjC
// land.
swift_dynamicCastObjCClassMetatypeUnconditional(
(const ClassMetadata*)sourceType,
(const ClassMetadata*)targetType);
#else
if (!_dynamicCastClassMetatype((const ClassMetadata*)sourceType,
(const ClassMetadata*)targetType))
swift_dynamicCastFailure(sourceType, targetType);
#endif
// If we returned, then the cast succeeded.
return origSourceType;
}
case MetadataKind::ForeignClass: {
// Check if the source is a subclass of the target.
swift_dynamicCastForeignClassMetatypeUnconditional(
(const ClassMetadata*)sourceType,
(const ClassMetadata*)targetType);
// If we returned, then the cast succeeded.
return origSourceType;
}
case MetadataKind::Existential:
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
swift_dynamicCastFailure(sourceType, targetType);
}
break;
case MetadataKind::ForeignClass:
// The source value must also be a class; otherwise the cast fails.
switch (sourceType->getKind()) {
case MetadataKind::ObjCClassWrapper:
// Get the actual class object.
sourceType = static_cast<const ObjCClassWrapperMetadata*>(sourceType)
->Class;
SWIFT_FALLTHROUGH;
case MetadataKind::Class:
case MetadataKind::ForeignClass:
// Check if the source is a subclass of the target.
swift_dynamicCastForeignClassMetatypeUnconditional(
(const ClassMetadata*)sourceType,
(const ClassMetadata*)targetType);
// If we returned, then the cast succeeded.
return origSourceType;
case MetadataKind::Existential:
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
swift_dynamicCastFailure(sourceType, targetType);
}
break;
case MetadataKind::Existential:
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
// The cast succeeds only if the metadata pointers are statically
// equivalent.
if (sourceType != targetType)
swift_dynamicCastFailure(sourceType, targetType);
return origSourceType;
}
}
#if SWIFT_OBJC_INTEROP
/// Do a dynamic cast to the target class.
static void *_dynamicCastUnknownClass(void *object,
const Metadata *targetType,
bool unconditional) {
// The unconditional path avoids some failure logic.
if (unconditional) {
return const_cast<void*>(
swift_dynamicCastUnknownClassUnconditional(object, targetType));
}
return const_cast<void*>(swift_dynamicCastUnknownClass(object, targetType));
}
#endif
static bool _dynamicCastUnknownClassIndirect(OpaqueValue *dest,
void *object,
const Metadata *targetType,
DynamicCastFlags flags) {
void **destSlot = reinterpret_cast<void **>(dest);
// The unconditional path avoids some failure logic.
if (flags & DynamicCastFlags::Unconditional) {
void *result = const_cast<void*>(
swift_dynamicCastUnknownClassUnconditional(object, targetType));
*destSlot = result;
if (!(flags & DynamicCastFlags::TakeOnSuccess)) {
swift_unknownRetain(result);
}
return true;
}
// Okay, we're doing a conditional cast.
void *result =
const_cast<void*>(swift_dynamicCastUnknownClass(object, targetType));
assert(result == nullptr || object == result);
// If the cast failed, destroy the input and return false.
if (!result) {
if (flags & DynamicCastFlags::DestroyOnFailure) {
swift_unknownRelease(object);
}
return false;
}
// Otherwise, store to the destination and return true.
*destSlot = result;
if (!(flags & DynamicCastFlags::TakeOnSuccess)) {
swift_unknownRetain(result);
}
return true;
}
#if SWIFT_OBJC_INTEROP
extern "C" const ProtocolDescriptor _TMps9ErrorType;
static const WitnessTable *findErrorTypeWitness(const Metadata *srcType) {
return swift_conformsToProtocol(srcType, &_TMps9ErrorType);
}
static const Metadata *getNSErrorTypeMetadata() {
return SWIFT_LAZY_CONSTANT(
swift_getObjCClassMetadata((const ClassMetadata *)getNSErrorClass()));
}
#endif
/// Perform a dynamic cast from an existential type to some kind of
/// class type.
static bool _dynamicCastToUnknownClassFromExistential(OpaqueValue *dest,
OpaqueValue *src,
const ExistentialTypeMetadata *srcType,
const Metadata *targetType,
DynamicCastFlags flags) {
switch (srcType->getRepresentation()) {
case ExistentialTypeRepresentation::Class: {
auto classContainer =
reinterpret_cast<ClassExistentialContainer*>(src);
void *obj = classContainer->Value;
#if SWIFT_OBJC_INTEROP
// If we're casting to NSError, we may need a representation change,
// so fall into the general swift_dynamicCast path.
if (targetType == getNSErrorTypeMetadata()) {
return swift_dynamicCast(dest, src, swift_getObjectType((HeapObject*)obj),
targetType, flags);
}
#endif
return _dynamicCastUnknownClassIndirect(dest, obj, targetType, flags);
}
case ExistentialTypeRepresentation::Opaque: {
auto opaqueContainer =
reinterpret_cast<OpaqueExistentialContainer*>(src);
auto srcCapturedType = opaqueContainer->Type;
OpaqueValue *srcValue =
srcCapturedType->vw_projectBuffer(&opaqueContainer->Buffer);
bool result = swift_dynamicCast(dest,
srcValue,
srcCapturedType,
targetType,
flags);
if (src != srcValue)
_maybeDeallocateOpaqueExistential(src, result, flags);
return result;
}
case ExistentialTypeRepresentation::ErrorType: {
const SwiftError *errorBox =
*reinterpret_cast<const SwiftError * const *>(src);
auto srcCapturedType = errorBox->getType();
const OpaqueValue *srcValue;
// A bridged NSError is itself the value.
if (errorBox->isPureNSError())
srcValue = src;
else
srcValue = errorBox->getValue();
// We can't take or destroy the value out of the box since it might be
// shared.
auto subFlags = flags - (DynamicCastFlags::TakeOnSuccess
| DynamicCastFlags::DestroyOnFailure);
bool result = swift_dynamicCast(dest,
const_cast<OpaqueValue*>(srcValue),
srcCapturedType, targetType,
subFlags);
if (shouldDeallocateSource(result, flags))
srcType->vw_destroy(src);
return result;
}
}
}
/// Perform a dynamic cast from an existential type to a
/// non-existential type.
static bool _dynamicCastFromExistential(OpaqueValue *dest,
OpaqueValue *src,
const ExistentialTypeMetadata *srcType,
const Metadata *targetType,
DynamicCastFlags flags) {
OpaqueValue *srcValue;
const Metadata *srcCapturedType;
bool isOutOfLine;
bool canTake;
switch (srcType->getRepresentation()) {
case ExistentialTypeRepresentation::Class: {
auto classContainer =
reinterpret_cast<const ClassExistentialContainer*>(src);
srcValue = (OpaqueValue*) &classContainer->Value;
void *obj = classContainer->Value;
srcCapturedType = swift_getObjectType(reinterpret_cast<HeapObject*>(obj));
isOutOfLine = false;
canTake = true;
break;
}
case ExistentialTypeRepresentation::Opaque: {
auto opaqueContainer = reinterpret_cast<OpaqueExistentialContainer*>(src);
srcCapturedType = opaqueContainer->Type;
srcValue = srcCapturedType->vw_projectBuffer(&opaqueContainer->Buffer);
isOutOfLine = (src != srcValue);
canTake = true;
break;
}
case ExistentialTypeRepresentation::ErrorType: {
const SwiftError *errorBox
= *reinterpret_cast<const SwiftError * const *>(src);
srcCapturedType = errorBox->getType();
// A bridged NSError is itself the value.
if (errorBox->isPureNSError())
srcValue = src;
else
srcValue = const_cast<OpaqueValue*>(errorBox->getValue());
// The value is out-of-line, but we can't take it, since it may be shared.
isOutOfLine = true;
canTake = false;
break;
}
}
auto subFlags = flags;
if (!canTake)
subFlags = subFlags - (DynamicCastFlags::DestroyOnFailure
| DynamicCastFlags::TakeOnSuccess);
bool result = swift_dynamicCast(dest, srcValue, srcCapturedType,
targetType, subFlags);
// Deallocate the existential husk if we took from it.
if (canTake && result && isOutOfLine)
_maybeDeallocateOpaqueExistential(src, result, flags);
// If we couldn't take, we still may need to destroy the whole value.
else if (!canTake && shouldDeallocateSource(result, flags))
srcType->vw_destroy(src);
return result;
}
/// Perform a dynamic cast of a metatype to a metatype.
///
/// Note that the check is whether 'metatype' is an *instance of*
/// 'targetType', not a *subtype of it*.
static bool _dynamicCastMetatypeToMetatype(OpaqueValue *dest,
const Metadata *metatype,
const MetatypeMetadata *targetType,
DynamicCastFlags flags) {
const Metadata *result;
if (flags & DynamicCastFlags::Unconditional) {
result = swift_dynamicCastMetatypeUnconditional(metatype,
targetType->InstanceType);
} else {
result = swift_dynamicCastMetatype(metatype, targetType->InstanceType);
if (!result) return false;
}
*((const Metadata **) dest) = result;
return true;
}
/// Check whether an unknown class instance is actually a class object.
static const Metadata *_getUnknownClassAsMetatype(void *object) {
#if SWIFT_OBJC_INTEROP
// Objective-C class metadata are objects, so an AnyObject (or NSObject)
// may refer to a class object.
// Test whether the object's isa is a metaclass, which indicates that the
// object is a class.
Class isa = object_getClass((id)object);
if (class_isMetaClass(isa)) {
return swift_getObjCClassMetadata((const ClassMetadata *)object);
}
#endif
// Class values are currently never metatypes in the native runtime.
return nullptr;
}
/// Perform a dynamic cast of a class value to a metatype type.
static bool _dynamicCastUnknownClassToMetatype(OpaqueValue *dest,
void *object,
const MetatypeMetadata *targetType,
DynamicCastFlags flags) {
if (auto metatype = _getUnknownClassAsMetatype(object))
return _dynamicCastMetatypeToMetatype(dest, metatype, targetType, flags);
if (flags & DynamicCastFlags::Unconditional)
swift_dynamicCastFailure(_swift_getClass(object), targetType);
if (flags & DynamicCastFlags::DestroyOnFailure)
swift_unknownRelease((HeapObject*) object);
return false;
}
/// Perform a dynamic cast to a metatype type.
static bool _dynamicCastToMetatype(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const MetatypeMetadata *targetType,
DynamicCastFlags flags) {
switch (srcType->getKind()) {
case MetadataKind::Metatype: {
const Metadata *srcMetatype = *(const Metadata * const *) src;
return _dynamicCastMetatypeToMetatype(dest, srcMetatype,
targetType, flags);
}
case MetadataKind::ExistentialMetatype: {
const Metadata *srcMetatype = *(const Metadata * const *) src;
return _dynamicCastMetatypeToMetatype(dest, srcMetatype,
targetType, flags);
}
case MetadataKind::Existential: {
auto srcExistentialType = cast<ExistentialTypeMetadata>(srcType);
switch (srcExistentialType->getRepresentation()) {
case ExistentialTypeRepresentation::Class: {
auto srcExistential = (ClassExistentialContainer*) src;
return _dynamicCastUnknownClassToMetatype(dest,
srcExistential->Value,
targetType, flags);
}
case ExistentialTypeRepresentation::Opaque: {
auto srcExistential = (OpaqueExistentialContainer*) src;
auto srcValueType = srcExistential->Type;
auto srcValue = srcValueType->vw_projectBuffer(&srcExistential->Buffer);
bool result = _dynamicCastToMetatype(dest, srcValue, srcValueType,
targetType, flags);
if (src != srcValue)
_maybeDeallocateOpaqueExistential(src, result, flags);
return result;
}
case ExistentialTypeRepresentation::ErrorType: {
const SwiftError *srcBox
= *reinterpret_cast<const SwiftError * const *>(src);
auto srcValueType = srcBox->getType();
const OpaqueValue *srcValue;
if (srcBox->isPureNSError())
srcValue = src;
else
srcValue = srcBox->getValue();
// Can't take from a box since the value may be shared.
auto subFlags = flags - (DynamicCastFlags::TakeOnSuccess
| DynamicCastFlags::DestroyOnFailure);
bool result = _dynamicCastToMetatype(dest,
const_cast<OpaqueValue*>(srcValue),
srcValueType,
targetType, subFlags);
if (shouldDeallocateSource(result, flags))
srcType->vw_destroy(src);
return result;
}
}
}
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass: {
void *object = *reinterpret_cast<void**>(src);
return _dynamicCastUnknownClassToMetatype(dest, object, targetType, flags);
}
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
return _fail(src, srcType, targetType, flags);
}
_failCorruptType(srcType);
}
/// Perform a dynamic cast of a metatype to an existential metatype type.
static bool _dynamicCastMetatypeToExistentialMetatype(OpaqueValue *dest,
const Metadata *srcMetatype,
const ExistentialMetatypeMetadata *targetType,
DynamicCastFlags flags,
bool writeDestMetatype = true) {
// The instance type of an existential metatype must be either an
// existential or an existential metatype.
auto destMetatype = reinterpret_cast<ExistentialMetatypeContainer*>(dest);
// If it's an existential, we need to check for conformances.
auto targetInstanceType = targetType->InstanceType;
if (auto targetInstanceTypeAsExistential =
dyn_cast<ExistentialTypeMetadata>(targetInstanceType)) {
// Check for conformance to all the protocols.
// TODO: collect the witness tables.
auto &protocols = targetInstanceTypeAsExistential->Protocols;
const WitnessTable **conformance
= writeDestMetatype ? destMetatype->getWitnessTables() : nullptr;
for (unsigned i = 0, n = protocols.NumProtocols; i != n; ++i) {
const ProtocolDescriptor *protocol = protocols[i];
if (!_conformsToProtocol(nullptr, srcMetatype, protocol, conformance)) {
if (flags & DynamicCastFlags::Unconditional)
swift_dynamicCastFailure(srcMetatype, targetType);
return false;
}
if (conformance && protocol->Flags.needsWitnessTable())
++conformance;
}
if (writeDestMetatype)
destMetatype->Value = srcMetatype;
return true;
}
// Otherwise, we're casting to SomeProtocol.Type.Type.
auto targetInstanceTypeAsMetatype =
cast<ExistentialMetatypeMetadata>(targetInstanceType);
// If the source type isn't a metatype, the cast fails.
auto srcMetatypeMetatype = dyn_cast<MetatypeMetadata>(srcMetatype);
if (!srcMetatypeMetatype) {
if (flags & DynamicCastFlags::Unconditional)
swift_dynamicCastFailure(srcMetatype, targetType);
return false;
}
// The representation of an existential metatype remains consistent
// arbitrarily deep: a metatype, followed by some protocols. The
// protocols are the same at every level, so we can just set the
// metatype correctly and then recurse, letting the recursive call
// fill in the conformance information correctly.
// Proactively set the destination metatype so that we can tail-recur,
// unless we've already done so. There's no harm in doing this even if
// the cast fails.
if (writeDestMetatype)
*((const Metadata **) dest) = srcMetatype;
// Recurse.
auto srcInstanceType = srcMetatypeMetatype->InstanceType;
return _dynamicCastMetatypeToExistentialMetatype(dest, srcInstanceType,
targetInstanceTypeAsMetatype,
flags,
/*overwrite*/ false);
}
/// Perform a dynamic cast of a class value to an existential metatype type.
static bool _dynamicCastUnknownClassToExistentialMetatype(OpaqueValue *dest,
void *object,
const ExistentialMetatypeMetadata *targetType,
DynamicCastFlags flags) {
if (auto metatype = _getUnknownClassAsMetatype(object))
return _dynamicCastMetatypeToExistentialMetatype(dest, metatype,
targetType, flags);
// Class values are currently never metatypes (?).
if (flags & DynamicCastFlags::Unconditional)
swift_dynamicCastFailure(_swift_getClass(object), targetType);
if (flags & DynamicCastFlags::DestroyOnFailure)
swift_unknownRelease((HeapObject*) object);
return false;
}
/// Perform a dynamic cast to an existential metatype type.
static bool _dynamicCastToExistentialMetatype(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const ExistentialMetatypeMetadata *targetType,
DynamicCastFlags flags) {
switch (srcType->getKind()) {
case MetadataKind::Metatype: {
const Metadata *srcMetatype = *(const Metadata * const *) src;
return _dynamicCastMetatypeToExistentialMetatype(dest, srcMetatype,
targetType, flags);
}
// TODO: take advantage of protocol conformances already known.
case MetadataKind::ExistentialMetatype: {
const Metadata *srcMetatype = *(const Metadata * const *) src;
return _dynamicCastMetatypeToExistentialMetatype(dest, srcMetatype,
targetType, flags);
}
case MetadataKind::Existential: {
auto srcExistentialType = cast<ExistentialTypeMetadata>(srcType);
switch (srcExistentialType->getRepresentation()) {
case ExistentialTypeRepresentation::Class: {
auto srcExistential = (ClassExistentialContainer*) src;
return _dynamicCastUnknownClassToExistentialMetatype(dest,
srcExistential->Value,
targetType, flags);
}
case ExistentialTypeRepresentation::Opaque: {
auto srcExistential = (OpaqueExistentialContainer*) src;
auto srcValueType = srcExistential->Type;
auto srcValue = srcValueType->vw_projectBuffer(&srcExistential->Buffer);
bool result = _dynamicCastToExistentialMetatype(dest, srcValue, srcValueType,
targetType, flags);
if (src != srcValue)
_maybeDeallocateOpaqueExistential(src, result, flags);
return result;
}
case ExistentialTypeRepresentation::ErrorType: {
const SwiftError *srcBox
= *reinterpret_cast<const SwiftError * const *>(src);
auto srcValueType = srcBox->getType();
const OpaqueValue *srcValue;
if (srcBox->isPureNSError())
srcValue = src;
else
srcValue = srcBox->getValue();
// Can't take from a box since the value may be shared.
auto subFlags = flags - (DynamicCastFlags::TakeOnSuccess
| DynamicCastFlags::DestroyOnFailure);
bool result = _dynamicCastToExistentialMetatype(dest,
const_cast<OpaqueValue*>(srcValue),
srcValueType,
targetType, subFlags);
if (shouldDeallocateSource(result, flags))
srcType->vw_destroy(src);
return result;
}
}
}
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass: {
void *object = *reinterpret_cast<void**>(src);
return _dynamicCastUnknownClassToExistentialMetatype(dest, object,
targetType, flags);
}
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
if (flags & DynamicCastFlags::Unconditional) {
swift_dynamicCastFailure(srcType, targetType);
}
return false;
}
_failCorruptType(srcType);
}
static bool _dynamicCastToFunction(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const FunctionTypeMetadata *targetType,
DynamicCastFlags flags) {
// Function casts succeed on exact matches, or if the target type is
// throwier than the source type.
//
// TODO: We could also allow ABI-compatible variance, such as casting
// a dynamic Base -> Derived to Derived -> Base. We wouldn't be able to
// perform a dynamic cast that required any ABI adjustment without a JIT
// though.
// Check for an exact type match first.
if (srcType == targetType) {
return _succeed(dest, src, srcType, flags);
}
switch (srcType->getKind()) {
case MetadataKind::Function: {
auto srcFn = static_cast<const FunctionTypeMetadata *>(srcType);
auto targetFn = static_cast<const FunctionTypeMetadata *>(targetType);
// Check that argument counts and convention match. "throws" can vary.
if (srcFn->Flags.withThrows(false) != targetFn->Flags.withThrows(false))
return _fail(src, srcType, targetType, flags);
// If the target type can't throw, neither can the source.
if (srcFn->throws() && !targetFn->throws())
return _fail(src, srcType, targetType, flags);
// The result and argument types must match.
if (srcFn->ResultType != targetFn->ResultType)
return _fail(src, srcType, targetType, flags);
if (srcFn->getNumArguments() != targetFn->getNumArguments())
return _fail(src, srcType, targetType, flags);
for (unsigned i = 0, e = srcFn->getNumArguments(); i < e; ++i)
if (srcFn->getArguments()[i] != targetFn->getArguments()[i])
return _fail(src, srcType, targetType, flags);
return _succeed(dest, src, srcType, flags);
}
case MetadataKind::Existential:
return _dynamicCastFromExistential(dest, src,
static_cast<const ExistentialTypeMetadata*>(srcType),
targetType, flags);
case MetadataKind::Class:
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass:
case MetadataKind::ExistentialMetatype:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
return _fail(src, srcType, targetType, flags);
}
}
#if SWIFT_OBJC_INTEROP
static id dynamicCastValueToNSError(OpaqueValue *src,
const Metadata *srcType,
const WitnessTable *srcErrorTypeWitness,
DynamicCastFlags flags) {
BoxPair errorBox = swift_allocError(srcType, srcErrorTypeWitness, src,
/*isTake*/ flags & DynamicCastFlags::TakeOnSuccess);
return swift_bridgeErrorTypeToNSError((SwiftError*)errorBox.first);
}
#endif
static bool canCastToExistential(OpaqueValue *dest, OpaqueValue *src,
const Metadata *srcType,
const Metadata *targetType) {
if (targetType->getKind() != MetadataKind::Existential)
return false;
return _dynamicCastToExistential(dest, src, srcType,
cast<ExistentialTypeMetadata>(targetType),
DynamicCastFlags::Default);
}
/// Perform a dynamic cast to an arbitrary type.
bool swift::swift_dynamicCast(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const Metadata *targetType,
DynamicCastFlags flags) {
// Check if the cast source is Optional and the target is not an existential
// that Optional conforms to. Unwrap one level of Optional and continue.
if (srcType->getKind() == MetadataKind::Optional
&& !canCastToExistential(dest, src, srcType, targetType)) {
const Metadata *payloadType =
cast<EnumMetadata>(srcType)->getGenericArgs()[0];
int enumCase =
swift_getEnumCaseSinglePayload(src, payloadType, 1 /*emptyCases=*/);
if (enumCase != -1) {
// Allow Optional<T>.None -> Optional<U>.None
if (targetType->getKind() != MetadataKind::Optional)
return _fail(src, srcType, targetType, flags);
// Inject the .None tag
swift_storeEnumTagSinglePayload(dest, payloadType, enumCase,
1 /*emptyCases=*/);
return _succeed(dest, src, srcType, flags);
}
// .Some
// Single payload enums are guaranteed layout compatible with their
// payload. Only the source's payload needs to be taken or destroyed.
srcType = payloadType;
}
switch (targetType->getKind()) {
// Handle wrapping an Optional target.
case MetadataKind::Optional: {
// Recursively cast into the layout compatible payload area.
const Metadata *payloadType =
cast<EnumMetadata>(targetType)->getGenericArgs()[0];
if (swift_dynamicCast(dest, src, srcType, payloadType, flags)) {
swift_storeEnumTagSinglePayload(dest, payloadType, -1 /*case*/,
1 /*emptyCases*/);
return true;
}
return false;
}
// Casts to class type.
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
#if SWIFT_OBJC_INTEROP
// If the destination type is an NSError, and the source type is an
// ErrorType, then the cast can succeed by NSError bridging.
if (targetType == getNSErrorTypeMetadata()) {
// Don't rebridge if the source is already some kind of NSError.
if (srcType->isAnyClass()
&& swift_dynamicCastObjCClass(*reinterpret_cast<id*>(src),
static_cast<const ObjCClassWrapperMetadata*>(targetType)->Class))
return _succeed(dest, src, srcType, flags);
if (auto srcErrorTypeWitness = findErrorTypeWitness(srcType)) {
auto error = dynamicCastValueToNSError(src, srcType,
srcErrorTypeWitness, flags);
*reinterpret_cast<id *>(dest) = error;
return true;
}
}
SWIFT_FALLTHROUGH;
#endif
case MetadataKind::ForeignClass:
switch (srcType->getKind()) {
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass: {
// Do a dynamic cast on the instance pointer.
void *object = *reinterpret_cast<void * const *>(src);
return _dynamicCastUnknownClassIndirect(dest, object,
targetType, flags);
}
case MetadataKind::Existential: {
auto srcExistentialType = cast<ExistentialTypeMetadata>(srcType);
return _dynamicCastToUnknownClassFromExistential(dest, src,
srcExistentialType,
targetType, flags);
}
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Struct: {
#if SWIFT_OBJC_INTEROP
// If the source type is bridged to Objective-C, try to bridge.
if (auto srcBridgeWitness = findBridgeWitness(srcType)) {
return _dynamicCastValueToClassViaObjCBridgeable(dest, src, srcType,
targetType,
srcBridgeWitness,
flags);
}
#endif
return _fail(src, srcType, targetType, flags);
}
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
return _fail(src, srcType, targetType, flags);
}
break;
case MetadataKind::Existential:
return _dynamicCastToExistential(dest, src, srcType,
cast<ExistentialTypeMetadata>(targetType),
flags);
case MetadataKind::Metatype:
return _dynamicCastToMetatype(dest, src, srcType,
cast<MetatypeMetadata>(targetType),
flags);
case MetadataKind::ExistentialMetatype:
return _dynamicCastToExistentialMetatype(dest, src, srcType,
cast<ExistentialMetatypeMetadata>(targetType),
flags);
// Function types.
case MetadataKind::Function: {
return _dynamicCastToFunction(dest, src, srcType,
cast<FunctionTypeMetadata>(targetType),
flags);
}
case MetadataKind::Struct:
case MetadataKind::Enum:
switch (srcType->getKind()) {
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass: {
#if SWIFT_OBJC_INTEROP
// If the target type is bridged to Objective-C, try to bridge.
if (auto targetBridgeWitness = findBridgeWitness(targetType)) {
return _dynamicCastClassToValueViaObjCBridgeable(dest, src, srcType,
targetType,
targetBridgeWitness,
flags);
}
// If the source is an NSError, and the target is a bridgeable ErrorType,
// try to bridge.
if (tryDynamicCastNSErrorToValue(dest, src, srcType, targetType, flags)) {
return true;
}
#endif
break;
}
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Existential:
case MetadataKind::ExistentialMetatype:
case MetadataKind::Function:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Metatype:
case MetadataKind::Opaque:
case MetadataKind::Struct:
case MetadataKind::Tuple:
break;
}
SWIFT_FALLTHROUGH;
// The non-polymorphic types.
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
// If there's an exact type match, we're done.
if (srcType == targetType)
return _succeed(dest, src, srcType, flags);
// If we have an existential, look at its dynamic type.
if (auto srcExistentialType = dyn_cast<ExistentialTypeMetadata>(srcType)) {
return _dynamicCastFromExistential(dest, src, srcExistentialType,
targetType, flags);
}
// Otherwise, we have a failure.
return _fail(src, srcType, targetType, flags);
}
_failCorruptType(srcType);
}
#if defined(NDEBUG) && SWIFT_OBJC_INTEROP
void ProtocolConformanceRecord::dump() const {
auto symbolName = [&](const void *addr) -> const char * {
Dl_info info;
int ok = dladdr(addr, &info);
if (!ok)
return "<unknown addr>";
return info.dli_sname;
};
switch (auto kind = getTypeKind()) {
case ProtocolConformanceTypeKind::Universal:
printf("universal");
break;
case ProtocolConformanceTypeKind::UniqueDirectType:
case ProtocolConformanceTypeKind::NonuniqueDirectType:
printf("%s direct type ",
kind == ProtocolConformanceTypeKind::UniqueDirectType
? "unique" : "nonunique");
if (auto ntd = getDirectType()->getNominalTypeDescriptor()) {
printf("%s", ntd->Name);
} else {
printf("<structural type>");
}
break;
case ProtocolConformanceTypeKind::UniqueDirectClass:
printf("unique direct class %s",
class_getName(getDirectClass()));
break;
case ProtocolConformanceTypeKind::UniqueIndirectClass:
printf("unique indirect class %s",
class_getName(*getIndirectClass()));
break;
case ProtocolConformanceTypeKind::UniqueGenericPattern:
printf("unique generic type %s", symbolName(getGenericPattern()));
break;
}
printf(" => ");
switch (getConformanceKind()) {
case ProtocolConformanceReferenceKind::WitnessTable:
printf("witness table %s\n", symbolName(getStaticWitnessTable()));
break;
case ProtocolConformanceReferenceKind::WitnessTableAccessor:
printf("witness table accessor %s\n",
symbolName((const void *)(uintptr_t)getWitnessTableAccessor()));
break;
}
}
#endif
/// Take the type reference inside a protocol conformance record and fetch the
/// canonical metadata pointer for the type it refers to.
/// Returns nil for universal or generic type references.
const Metadata *ProtocolConformanceRecord::getCanonicalTypeMetadata()
const {
switch (getTypeKind()) {
case ProtocolConformanceTypeKind::UniqueDirectType:
// Already unique.
return getDirectType();
case ProtocolConformanceTypeKind::NonuniqueDirectType:
// Ask the runtime for the unique metadata record we've canonized.
return swift_getForeignTypeMetadata((ForeignTypeMetadata*)getDirectType());
case ProtocolConformanceTypeKind::UniqueIndirectClass:
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata. The class additionally may be weak-linked, so we have to check
// for null.
if (auto *ClassMetadata = *getIndirectClass())
return swift_getObjCClassMetadata(ClassMetadata);
return nullptr;
case ProtocolConformanceTypeKind::UniqueDirectClass:
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata.
if (auto *ClassMetadata = getDirectClass())
return swift_getObjCClassMetadata(ClassMetadata);
return nullptr;
case ProtocolConformanceTypeKind::UniqueGenericPattern:
case ProtocolConformanceTypeKind::Universal:
// The record does not apply to a single type.
return nullptr;
}
}
const WitnessTable *ProtocolConformanceRecord::getWitnessTable(const Metadata *type)
const {
switch (getConformanceKind()) {
case ProtocolConformanceReferenceKind::WitnessTable:
return getStaticWitnessTable();
case ProtocolConformanceReferenceKind::WitnessTableAccessor:
return getWitnessTableAccessor()(type);
}
}
#if defined(__APPLE__) && defined(__MACH__)
#define SWIFT_PROTOCOL_CONFORMANCES_SECTION "__swift2_proto"
#elif defined(__ELF__)
#define SWIFT_PROTOCOL_CONFORMANCES_SECTION ".swift2_protocol_conformances_start"
#endif
namespace {
struct ConformanceSection {
const ProtocolConformanceRecord *Begin, *End;
const ProtocolConformanceRecord *begin() const {
return Begin;
}
const ProtocolConformanceRecord *end() const {
return End;
}
};
struct ConformanceCacheEntry {
private:
const void *Type;
const ProtocolDescriptor *Proto;
uintptr_t Data;
// All Darwin 64-bit platforms reserve the low 2^32 of address space, which
// is more than enough invalid pointer values for any realistic generation
// number. It's a little easier to overflow on 32-bit, so we need an extra
// bit there.
#if !__LP64__
bool Success;
#endif
ConformanceCacheEntry(const void *type,
const ProtocolDescriptor *proto,
uintptr_t Data, bool Success)
: Type(type), Proto(proto), Data(Data)
#if !__LP64__
, Success(Success)
#endif
{
#if __LP64__
# if __APPLE__
assert((!Success && Data <= 0xFFFFFFFFU) ||
(Success && Data > 0xFFFFFFFFU));
# elif __linux__ || __FreeBSD__
assert((!Success && Data <= 0x0FFFU) ||
(Success && Data > 0x0FFFU));
# else
# error "port me"
# endif
#endif
}
public:
ConformanceCacheEntry() = default;
static ConformanceCacheEntry createSuccess(
const void *type, const ProtocolDescriptor *proto,
const swift::WitnessTable *witness) {
return ConformanceCacheEntry(type, proto, (uintptr_t) witness, true);
}
static ConformanceCacheEntry createFailure(
const void *type, const ProtocolDescriptor *proto,
unsigned failureGeneration) {
return ConformanceCacheEntry(type, proto, (uintptr_t) failureGeneration,
false);
}
/// \returns true if the entry represents an entry for the pair \p type
/// and \p proto.
bool matches(const void *type, const ProtocolDescriptor *proto) {
return type == Type && Proto == proto;
}
bool isSuccessful() const {
#if __LP64__
# if __APPLE__
return Data > 0xFFFFFFFFU;
# elif __linux__ || __FreeBSD__
return Data > 0x0FFFU;
# else
# error "port me"
# endif
#else
return Success;
#endif
}
/// Get the cached witness table, if successful.
const WitnessTable *getWitnessTable() const {
assert(isSuccessful());
return (const WitnessTable *)Data;
}
/// Get the generation number under which this lookup failed.
unsigned getFailureGeneration() const {
assert(!isSuccessful());
return Data;
}
};
}
// Conformance Cache.
static void _initializeCallbacksToInspectDylib();
struct ConformanceState {
ConcurrentMap<size_t, ConformanceCacheEntry> Cache;
std::vector<ConformanceSection> SectionsToScan;
pthread_mutex_t SectionsToScanLock;
ConformanceState() {
SectionsToScan.reserve(16);
pthread_mutex_init(&SectionsToScanLock, nullptr);
_initializeCallbacksToInspectDylib();
}
};
static Lazy<ConformanceState> Conformances;
static void
_registerProtocolConformances(ConformanceState &C,
const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end) {
pthread_mutex_lock(&C.SectionsToScanLock);
C.SectionsToScan.push_back(ConformanceSection{begin, end});
pthread_mutex_unlock(&C.SectionsToScanLock);
}
static void _addImageProtocolConformancesBlock(const uint8_t *conformances,
size_t conformancesSize) {
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0
&& "weird-sized conformances section?!");
// If we have a section, enqueue the conformances for lookup.
auto recordsBegin
= reinterpret_cast<const ProtocolConformanceRecord*>(conformances);
auto recordsEnd
= reinterpret_cast<const ProtocolConformanceRecord*>
(conformances + conformancesSize);
// Conformance cache should always be sufficiently initialized by this point.
_registerProtocolConformances(Conformances.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
#if defined(__APPLE__) && defined(__MACH__)
static void _addImageProtocolConformances(const mach_header *mh,
intptr_t vmaddr_slide) {
#ifdef __LP64__
using mach_header_platform = mach_header_64;
assert(mh->magic == MH_MAGIC_64 && "loaded non-64-bit image?!");
#else
using mach_header_platform = mach_header;
#endif
// Look for a __swift2_proto section.
unsigned long conformancesSize;
const uint8_t *conformances =
getsectiondata(reinterpret_cast<const mach_header_platform *>(mh),
SEG_TEXT, SWIFT_PROTOCOL_CONFORMANCES_SECTION,
&conformancesSize);
if (!conformances)
return;
_addImageProtocolConformancesBlock(conformances, conformancesSize);
}
#elif defined(__ELF__)
static int _addImageProtocolConformances(struct dl_phdr_info *info,
size_t size, void * /*data*/) {
void *handle;
if (!info->dlpi_name || info->dlpi_name[0] == '\0') {
handle = dlopen(nullptr, RTLD_LAZY);
} else
handle = dlopen(info->dlpi_name, RTLD_LAZY | RTLD_NOLOAD);
auto conformances = reinterpret_cast<const uint8_t*>(
dlsym(handle, SWIFT_PROTOCOL_CONFORMANCES_SECTION));
if (!conformances) {
// if there are no conformances, don't hold this handle open.
dlclose(handle);
return 0;
}
// Extract the size of the conformances block from the head of the section
auto conformancesSize = *reinterpret_cast<const uint64_t*>(conformances);
conformances += sizeof(conformancesSize);
_addImageProtocolConformancesBlock(conformances, conformancesSize);
dlclose(handle);
return 0;
}
#endif
static void _initializeCallbacksToInspectDylib() {
#if defined(__APPLE__) && defined(__MACH__)
// Install our dyld callback.
// Dyld will invoke this on our behalf for all images that have already
// been loaded.
_dyld_register_func_for_add_image(_addImageProtocolConformances);
#elif defined(__ELF__)
// Search the loaded dls. Unlike the above, this only searches the already
// loaded ones.
// FIXME: Find a way to have this continue to happen after.
// rdar://problem/19045112
dl_iterate_phdr(_addImageProtocolConformances, nullptr);
#else
# error No known mechanism to inspect dynamic libraries on this platform.
#endif
}
// This variable is used to signal when a cache was generated and
// it is correct to avoid a new scan.
static unsigned ConformanceCacheGeneration = 0;
void
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end){
auto &C = Conformances.get();
_registerProtocolConformances(C, begin, end);
}
static size_t hashTypeProtocolPair(const void *type,
const ProtocolDescriptor *protocol) {
// A simple hash function for the conformance pair.
return (size_t)type + ((size_t)protocol >> 2);
}
/// Search the witness table in the ConformanceCache. \returns a pair of the
/// WitnessTable pointer and a boolean value True if a definitive value is
/// found. \returns false if the type or its superclasses were not found in
/// the cache.
static
std::pair<const WitnessTable *, bool>
searchInConformanceCache(const Metadata *type,
const ProtocolDescriptor *protocol,
ConformanceCacheEntry *&foundEntry) {
auto &C = Conformances.get();
auto origType = type;
foundEntry = nullptr;
recur_inside_cache_lock:
// See if we have a cached conformance. Try the specific type first.
// Hash and lookup the type-protocol pair in the cache.
size_t hash = hashTypeProtocolPair(type, protocol);
ConcurrentList<ConformanceCacheEntry> &Bucket =
C.Cache.findOrAllocateNode(hash);
// Check if the type-protocol entry exists in the cache entry that we found.
for (auto &Entry : Bucket) {
if (!Entry.matches(type, protocol)) continue;
if (Entry.isSuccessful()) {
return std::make_pair(Entry.getWitnessTable(), true);
}
if (type == origType)
foundEntry = &Entry;
// If we got a cached negative response, check the generation number.
if (Entry.getFailureGeneration() == C.SectionsToScan.size()) {
// We found an entry with a negative value.
return std::make_pair(nullptr, true);
}
}
// If the type is generic, see if there's a shared nondependent witness table
// for its instances.
if (auto generic = type->getGenericPattern()) {
// Hash and lookup the type-protocol pair in the cache.
size_t hash = hashTypeProtocolPair(generic, protocol);
ConcurrentList<ConformanceCacheEntry> &Bucket =
C.Cache.findOrAllocateNode(hash);
for (auto &Entry : Bucket) {
if (!Entry.matches(generic, protocol)) continue;
if (Entry.isSuccessful()) {
return std::make_pair(Entry.getWitnessTable(), true);
}
// We don't try to cache negative responses for generic
// patterns.
}
}
// If the type is a class, try its superclass.
if (const ClassMetadata *classType = type->getClassObject()) {
if (classHasSuperclass(classType)) {
type = swift_getObjCClassMetadata(classType->SuperClass);
goto recur_inside_cache_lock;
}
}
// We did not find an entry.
return std::make_pair(nullptr, false);
}
/// Checks if a given candidate is a type itself, one of its
/// superclasses or a related generic type.
/// This check is supposed to use the same logic that is used
/// by searchInConformanceCache.
static
bool isRelatedType(const Metadata *type, const void *candidate) {
while (true) {
if (type == candidate)
return true;
// If the type is generic, see if there's a shared nondependent witness table
// for its instances.
if (auto generic = type->getGenericPattern()) {
if (generic == candidate)
return true;
}
// If the type is a class, try its superclass.
if (const ClassMetadata *classType = type->getClassObject()) {
if (classHasSuperclass(classType)) {
type = swift_getObjCClassMetadata(classType->SuperClass);
if (type == candidate)
return true;
continue;
}
}
break;
}
return false;
}
const WitnessTable *
swift::swift_conformsToProtocol(const Metadata *type,
const ProtocolDescriptor *protocol) {
auto &C = Conformances.get();
// Install callbacks for tracking when a new dylib is loaded so we can
// scan it.
auto origType = type;
unsigned numSections = 0;
ConformanceCacheEntry *foundEntry;
recur:
// See if we have a cached conformance. The ConcurrentMap data structure
// allows us to insert and search the map concurrently without locking.
// We do lock the slow path because the SectionsToScan data structure is not
// concurrent.
auto FoundConformance = searchInConformanceCache(type, protocol, foundEntry);
// The negative answer does not always mean that there is no conformance,
// unless it is an exact match on the type. If it is not an exact match,
// it may mean that all of the superclasses do not have this conformance,
// but the actual type may still have this conformance.
if (FoundConformance.second) {
if (FoundConformance.first || foundEntry)
return FoundConformance.first;
}
unsigned failedGeneration = ConformanceCacheGeneration;
// If we didn't have an up-to-date cache entry, scan the conformance records.
pthread_mutex_lock(&C.SectionsToScanLock);
// If we have no new information to pull in (and nobody else pulled in
// new information while we waited on the lock), we're done.
if (C.SectionsToScan.size() == numSections) {
if (failedGeneration != ConformanceCacheGeneration) {
// Someone else pulled in new conformances while we were waiting.
// Start over with our newly-populated cache.
pthread_mutex_unlock(&C.SectionsToScanLock);
type = origType;
goto recur;
}
// Hash and lookup the type-protocol pair in the cache.
size_t hash = hashTypeProtocolPair(type, protocol);
ConcurrentList<ConformanceCacheEntry> &Bucket =
C.Cache.findOrAllocateNode(hash);
Bucket.push_front(ConformanceCacheEntry::createFailure(
type, protocol, C.SectionsToScan.size()));
pthread_mutex_unlock(&C.SectionsToScanLock);
return nullptr;
}
// Update the last known number of sections to scan.
numSections = C.SectionsToScan.size();
// Scan only sections that were not scanned yet.
unsigned sectionIdx = foundEntry ? foundEntry->getFailureGeneration() : 0;
unsigned endSectionIdx = C.SectionsToScan.size();
for (; sectionIdx < endSectionIdx; ++sectionIdx) {
auto &section = C.SectionsToScan[sectionIdx];
// Eagerly pull records for nondependent witnesses into our cache.
for (const auto &record : section) {
// If the record applies to a specific type, cache it.
if (auto metadata = record.getCanonicalTypeMetadata()) {
auto P = record.getProtocol();
// Look for an exact match.
if (protocol != P)
continue;
if (!isRelatedType(type, metadata))
continue;
// Hash and lookup the type-protocol pair in the cache.
size_t hash = hashTypeProtocolPair(metadata, P);
ConcurrentList<ConformanceCacheEntry> &Bucket =
C.Cache.findOrAllocateNode(hash);
auto witness = record.getWitnessTable(metadata);
if (witness)
Bucket.push_front(
ConformanceCacheEntry::createSuccess(metadata, P, witness));
else
Bucket.push_front(ConformanceCacheEntry::createFailure(
metadata, P, C.SectionsToScan.size()));
// If the record provides a nondependent witness table for all instances
// of a generic type, cache it for the generic pattern.
// TODO: "Nondependent witness table" probably deserves its own flag.
// An accessor function might still be necessary even if the witness table
// can be shared.
} else if (record.getTypeKind()
== ProtocolConformanceTypeKind::UniqueGenericPattern
&& record.getConformanceKind()
== ProtocolConformanceReferenceKind::WitnessTable) {
auto R = record.getGenericPattern();
auto P = record.getProtocol();
// Look for an exact match.
if (protocol != P)
continue;
if (!isRelatedType(type, R))
continue;
// Hash and lookup the type-protocol pair in the cache.
size_t hash = hashTypeProtocolPair(R, P);
ConcurrentList<ConformanceCacheEntry> &Bucket =
C.Cache.findOrAllocateNode(hash);
Bucket.push_front(ConformanceCacheEntry::createSuccess(
R, P, record.getStaticWitnessTable()));
}
}
}
++ConformanceCacheGeneration;
pthread_mutex_unlock(&C.SectionsToScanLock);
// Start over with our newly-populated cache.
type = origType;
goto recur;
}
// The return type is incorrect. It is only important that it is
// passed using 'sret'.
extern "C" OpaqueExistentialContainer
_TFs24_injectValueIntoOptionalU__FQ_GSqQ__(OpaqueValue *value,
const Metadata *T);
// The return type is incorrect. It is only important that it is
// passed using 'sret'.
extern "C" OpaqueExistentialContainer
_TFs26_injectNothingIntoOptionalU__FT_GSqQ__(const Metadata *T);
static inline bool swift_isClassOrObjCExistentialTypeImpl(const Metadata *T) {
auto kind = T->getKind();
// Classes.
if (Metadata::isAnyKindOfClass(kind))
return true;
#if SWIFT_OBJC_INTEROP
// ObjC existentials.
if (kind == MetadataKind::Existential &&
static_cast<const ExistentialTypeMetadata *>(T)->isObjC())
return true;
// Blocks are ObjC objects.
if (kind == MetadataKind::Function) {
auto fT = static_cast<const FunctionTypeMetadata *>(T);
return fT->getConvention() == FunctionMetadataConvention::Block;
}
#endif
return false;
}
#if SWIFT_OBJC_INTEROP
//===----------------------------------------------------------------------===//
// Bridging to and from Objective-C
//===----------------------------------------------------------------------===//
namespace {
// protocol _ObjectiveCBridgeable {
struct _ObjectiveCBridgeableWitnessTable {
// typealias _ObjectiveCType : class
const Metadata *ObjectiveCType;
// class func _isBridgedToObjectiveC() -> bool
bool (*isBridgedToObjectiveC)(const Metadata *value, const Metadata *T);
// class func _getObjectiveCType() -> Any.Type
const Metadata *(*getObjectiveCType)(const Metadata *self,
const Metadata *selfType);
// func _bridgeToObjectiveC() -> _ObjectiveCType
HeapObject *(*bridgeToObjectiveC)(OpaqueValue *self, const Metadata *Self);
// class func _forceBridgeFromObjectiveC(x: _ObjectiveCType,
// inout result: Self?)
void (*forceBridgeFromObjectiveC)(HeapObject *sourceValue,
OpaqueValue *result,
const Metadata *self,
const Metadata *selfType);
// class func _conditionallyBridgeFromObjectiveC(x: _ObjectiveCType,
// inout result: Self?) -> Bool
bool (*conditionallyBridgeFromObjectiveC)(HeapObject *sourceValue,
OpaqueValue *result,
const Metadata *self,
const Metadata *selfType);
};
// }
} // unnamed namespace
extern "C" const ProtocolDescriptor _TMps21_ObjectiveCBridgeable;
/// Dynamic cast from a value type that conforms to the _ObjectiveCBridgeable
/// protocol to a class type, first by bridging the value to its Objective-C
/// object representation and then by dynamic casting that object to the
/// resulting target type.
static bool _dynamicCastValueToClassViaObjCBridgeable(
OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const Metadata *targetType,
const _ObjectiveCBridgeableWitnessTable *srcBridgeWitness,
DynamicCastFlags flags) {
// Check whether the source is bridged to Objective-C.
if (!srcBridgeWitness->isBridgedToObjectiveC(srcType, srcType)) {
return _fail(src, srcType, targetType, flags);
}
// Bridge the source value to an object.
auto srcBridgedObject = srcBridgeWitness->bridgeToObjectiveC(src, srcType);
// Dynamic cast the object to the resulting class type.
bool success;
if (auto cast = _dynamicCastUnknownClass(srcBridgedObject, targetType,
flags & DynamicCastFlags::Unconditional)) {
*reinterpret_cast<void **>(dest) = cast;
success = true;
} else {
success = false;
}
// Clean up the source if we're supposed to.
if (shouldDeallocateSource(success, flags)) {
srcType->vw_destroy(src);
}
// We're done.
return success;
}
/// Dynamic cast from a value type that conforms to the
/// _ObjectiveCBridgeable protocol to a class-bounded existential,
/// first by bridging the value to its Objective-C object
/// representation and then by dynamic-casting that object to the
/// resulting target type.
static bool _dynamicCastValueToClassExistentialViaObjCBridgeable(
OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const ExistentialTypeMetadata *targetType,
const _ObjectiveCBridgeableWitnessTable *srcBridgeWitness,
DynamicCastFlags flags) {
// Check whether the source is bridged to Objective-C.
if (!srcBridgeWitness->isBridgedToObjectiveC(srcType, srcType)) {
return _fail(src, srcType, targetType, flags);
}
// Bridge the source value to an object.
auto srcBridgedObject = srcBridgeWitness->bridgeToObjectiveC(src, srcType);
// Try to cast the object to the destination existential.
DynamicCastFlags subFlags = DynamicCastFlags::TakeOnSuccess
| DynamicCastFlags::DestroyOnFailure;
if (flags & DynamicCastFlags::Unconditional)
subFlags |= DynamicCastFlags::Unconditional;
bool success = _dynamicCastToExistential(
dest,
(OpaqueValue *)&srcBridgedObject,
swift_getObjectType(srcBridgedObject),
targetType,
subFlags);
// Clean up the source if we're supposed to.
if (shouldDeallocateSource(success, flags)) {
srcType->vw_destroy(src);
}
// We're done.
return success;
}
/// Dynamic cast from a class type to a value type that conforms to the
/// _ObjectiveCBridgeable, first by dynamic casting the object to the
/// Objective-C class to which the value type is bridged, and then bridging
/// from that object to the value type via the witness table.
static bool _dynamicCastClassToValueViaObjCBridgeable(
OpaqueValue *dest,
OpaqueValue *src,
const Metadata *srcType,
const Metadata *targetType,
const _ObjectiveCBridgeableWitnessTable *targetBridgeWitness,
DynamicCastFlags flags) {
// Check whether the target is bridged to Objective-C.
if (!targetBridgeWitness->isBridgedToObjectiveC(targetType, targetType)) {
return _fail(src, srcType, targetType, flags);
}
// Determine the class type to which the target value type is bridged.
auto targetBridgedClass = targetBridgeWitness->getObjectiveCType(targetType,
targetType);
// Dynamic cast the source object to the class type to which the target value
// type is bridged. If we succeed, we can bridge from there; if we fail,
// there's nothing more to do.
void *srcObject = *reinterpret_cast<void * const *>(src);
if (!_dynamicCastUnknownClass(srcObject,
targetBridgedClass,
flags & DynamicCastFlags::Unconditional)) {
return _fail(src, srcType, targetType, flags);
}
// Unless we're always supposed to consume the input, retain the
// object because the witness takes it at +1.
bool alwaysConsumeSrc = (flags & DynamicCastFlags::TakeOnSuccess) &&
(flags & DynamicCastFlags::DestroyOnFailure);
if (!alwaysConsumeSrc) {
swift_unknownRetain(srcObject);
}
// Object that frees a buffer when it goes out of scope.
struct FreeBuffer {
void *Buffer = nullptr;
~FreeBuffer() { free(Buffer); }
} freeBuffer;
// Allocate a buffer to store the T? returned by bridging.
// The extra byte is for the tag.
const std::size_t inlineValueSize = 3 * sizeof(void*);
alignas(swift_max_align_t) char inlineBuffer[inlineValueSize + 1];
void *optDestBuffer;
if (targetType->getValueWitnesses()->getStride() <= inlineValueSize) {
// Use the inline buffer.
optDestBuffer = inlineBuffer;
} else {
// Allocate a buffer.
optDestBuffer = malloc(targetType->getValueWitnesses()->size);
freeBuffer.Buffer = optDestBuffer;
}
// Initialize the buffer as an empty optional.
swift_storeEnumTagSinglePayload((OpaqueValue *)optDestBuffer, targetType,
0, 1);
// Perform the bridging operation.
bool success;
if (flags & DynamicCastFlags::Unconditional) {
// For an unconditional dynamic cast, use forceBridgeFromObjectiveC.
targetBridgeWitness->forceBridgeFromObjectiveC(
(HeapObject *)srcObject, (OpaqueValue *)optDestBuffer,
targetType, targetType);
success = true;
} else {
// For a conditional dynamic cast, use conditionallyBridgeFromObjectiveC.
success = targetBridgeWitness->conditionallyBridgeFromObjectiveC(
(HeapObject *)srcObject, (OpaqueValue *)optDestBuffer,
targetType, targetType);
}
// If we succeeded, take from the optional buffer into the
// destination buffer.
if (success) {
targetType->vw_initializeWithTake(dest, (OpaqueValue *)optDestBuffer);
}
// Unless we're always supposed to consume the input, release the
// input if we need to now.
if (!alwaysConsumeSrc && shouldDeallocateSource(success, flags)) {
swift_unknownRelease(srcObject);
}
return success;
}
//===--- Bridging helpers for the Swift stdlib ----------------------------===//
// Functions that must discover and possibly use an arbitrary type's
// conformance to a given protocol. See ../core/BridgeObjectiveC.swift for
// documentation.
//===----------------------------------------------------------------------===//
extern "C" const _ObjectiveCBridgeableWitnessTable
_TWPVs19_BridgeableMetatypes21_ObjectiveCBridgeables;
static const _ObjectiveCBridgeableWitnessTable *
findBridgeWitness(const Metadata *T) {
auto w = swift_conformsToProtocol(T, &_TMps21_ObjectiveCBridgeable);
if (LLVM_LIKELY(w))
return reinterpret_cast<const _ObjectiveCBridgeableWitnessTable *>(w);
// Class and ObjC existential metatypes can be bridged, but metatypes can't
// directly conform to protocols yet. Use a stand-in conformance for a type
// that looks like a metatype value if the metatype can be bridged.
switch (T->getKind()) {
case MetadataKind::Metatype: {
auto metaTy = static_cast<const MetatypeMetadata *>(T);
if (metaTy->InstanceType->isAnyClass())
return &_TWPVs19_BridgeableMetatypes21_ObjectiveCBridgeables;
break;
}
case MetadataKind::ExistentialMetatype: {
auto existentialMetaTy =
static_cast<const ExistentialMetatypeMetadata *>(T);
if (existentialMetaTy->isObjC())
return &_TWPVs19_BridgeableMetatypes21_ObjectiveCBridgeables;
break;
}
case MetadataKind::Class:
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
case MetadataKind::Function:
case MetadataKind::Existential:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass:
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
break;
}
return nullptr;
}
/// \param value passed at +1, consumed.
extern "C" HeapObject *swift_bridgeNonVerbatimToObjectiveC(
OpaqueValue *value, const Metadata *T
) {
assert(!swift_isClassOrObjCExistentialTypeImpl(T));
if (const auto *bridgeWitness = findBridgeWitness(T)) {
if (!bridgeWitness->isBridgedToObjectiveC(T, T)) {
// Witnesses take 'self' at +0, so we still need to consume the +1 argument.
T->vw_destroy(value);
return nullptr;
}
auto result = bridgeWitness->bridgeToObjectiveC(value, T);
// Witnesses take 'self' at +0, so we still need to consume the +1 argument.
T->vw_destroy(value);
return result;
}
// Consume the +1 argument.
T->vw_destroy(value);
return nullptr;
}
extern "C" const Metadata *swift_getBridgedNonVerbatimObjectiveCType(
const Metadata *value, const Metadata *T
) {
// Classes and Objective-C existentials bridge verbatim.
assert(!swift_isClassOrObjCExistentialTypeImpl(T));
// Check if the type conforms to _BridgedToObjectiveC, in which case
// we'll extract its associated type.
if (const auto *bridgeWitness = findBridgeWitness(T)) {
return bridgeWitness->getObjectiveCType(T, T);
}
return nullptr;
}
// @_silgen_name("swift_bridgeNonVerbatimFromObjectiveC")
// func _bridgeNonVerbatimFromObjectiveC<NativeType>(
// x: AnyObject,
// nativeType: NativeType.Type
// inout result: T?
// )
extern "C" void
swift_bridgeNonVerbatimFromObjectiveC(
HeapObject *sourceValue,
const Metadata *nativeType,
OpaqueValue *destValue,
const Metadata *nativeType_
) {
// Check if the type conforms to _BridgedToObjectiveC.
if (const auto *bridgeWitness = findBridgeWitness(nativeType)) {
// if the type also conforms to _ConditionallyBridgedToObjectiveC,
// make sure it bridges at runtime
if (bridgeWitness->isBridgedToObjectiveC(nativeType, nativeType)) {
// Check if sourceValue has the _ObjectiveCType type required by the
// protocol.
const Metadata *objectiveCType =
bridgeWitness->getObjectiveCType(nativeType, nativeType);
auto sourceValueAsObjectiveCType =
const_cast<void*>(swift_dynamicCastUnknownClass(sourceValue,
objectiveCType));
if (sourceValueAsObjectiveCType) {
// The type matches. _forceBridgeFromObjectiveC returns `Self`, so
// we can just return it directly.
bridgeWitness->forceBridgeFromObjectiveC(
static_cast<HeapObject*>(sourceValueAsObjectiveCType),
destValue, nativeType, nativeType);
return;
}
}
}
// Fail.
swift::crash("value type is not bridged to Objective-C");
}
// @_silgen_name("swift_bridgeNonVerbatimFromObjectiveCConditional")
// func _bridgeNonVerbatimFromObjectiveCConditional<NativeType>(
// x: AnyObject,
// nativeType: T.Type,
// inout result: T?
// ) -> Bool
extern "C" bool
swift_bridgeNonVerbatimFromObjectiveCConditional(
HeapObject *sourceValue,
const Metadata *nativeType,
OpaqueValue *destValue,
const Metadata *nativeType_
) {
// Local function that releases the source and returns false.
auto fail = [&] () -> bool {
swift_unknownRelease(sourceValue);
return false;
};
// Check if the type conforms to _BridgedToObjectiveC.
const auto *bridgeWitness = findBridgeWitness(nativeType);
if (!bridgeWitness)
return fail();
// Dig out the Objective-C class type through which the native type
// is bridged.
const Metadata *objectiveCType =
bridgeWitness->getObjectiveCType(nativeType, nativeType);
// Check whether we can downcast the source value to the Objective-C
// type.
auto sourceValueAsObjectiveCType =
const_cast<void*>(swift_dynamicCastUnknownClass(sourceValue,
objectiveCType));
if (!sourceValueAsObjectiveCType)
return fail();
// If the type also conforms to _ConditionallyBridgedToObjectiveC,
// use conditional bridging.
return bridgeWitness->conditionallyBridgeFromObjectiveC(
static_cast<HeapObject*>(sourceValueAsObjectiveCType),
destValue, nativeType, nativeType);
}
// func isBridgedNonVerbatimToObjectiveC<T>(x: T.Type) -> Bool
extern "C" bool swift_isBridgedNonVerbatimToObjectiveC(
const Metadata *value, const Metadata *T
) {
assert(!swift_isClassOrObjCExistentialTypeImpl(T));
auto bridgeWitness = findBridgeWitness(T);
return bridgeWitness && bridgeWitness->isBridgedToObjectiveC(value, T);
}
#endif
// func isClassOrObjCExistential<T>(x: T.Type) -> Bool
extern "C" bool swift_isClassOrObjCExistentialType(const Metadata *value,
const Metadata *T) {
return swift_isClassOrObjCExistentialTypeImpl(T);
}
// func swift_class_getSuperclass(_: AnyClass) -> AnyClass?
extern "C" const Metadata *swift_class_getSuperclass(
const Metadata *theClass
) {
if (const ClassMetadata *classType = theClass->getClassObject())
if (classHasSuperclass(classType))
return swift_getObjCClassMetadata(classType->SuperClass);
return nullptr;
}
extern "C" bool swift_isClassType(const Metadata *type) {
return Metadata::isAnyKindOfClass(type->getKind());
}
extern "C" bool swift_isOptionalType(const Metadata *type) {
return type->getKind() == MetadataKind::Optional;
}