blob: 8128f8cf28389e59e1bbc06c38e91f9e58f75047 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// Swift Standard Prolog Library.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Standardized uninhabited type
//===----------------------------------------------------------------------===//
/// The return type of functions that do not return normally, that is, a type
/// with no values.
///
/// Use `Never` as the return type when declaring a closure, function, or
/// method that unconditionally throws an error, traps, or otherwise does
/// not terminate.
///
/// func crashAndBurn() -> Never {
/// fatalError("Something very, very bad happened")
/// }
@_fixed_layout
public enum Never {}
//===----------------------------------------------------------------------===//
// Standardized aliases
//===----------------------------------------------------------------------===//
/// The return type of functions that don't explicitly specify a return type,
/// that is, an empty tuple `()`.
///
/// When declaring a function or method, you don't need to specify a return
/// type if no value will be returned. However, the type of a function,
/// method, or closure always includes a return type, which is `Void` if
/// otherwise unspecified.
///
/// Use `Void` or an empty tuple as the return type when declaring a closure,
/// function, or method that doesn't return a value.
///
/// // No return type declared:
/// func logMessage(_ s: String) {
/// print("Message: \(s)")
/// }
///
/// let logger: (String) -> Void = logMessage
/// logger("This is a void function")
/// // Prints "Message: This is a void function"
public typealias Void = ()
//===----------------------------------------------------------------------===//
// Aliases for floating point types
//===----------------------------------------------------------------------===//
// FIXME: it should be the other way round, Float = Float32, Double = Float64,
// but the type checker loses sugar currently, and ends up displaying 'FloatXX'
// in diagnostics.
/// A 32-bit floating point type.
public typealias Float32 = Float
/// A 64-bit floating point type.
public typealias Float64 = Double
//===----------------------------------------------------------------------===//
// Default types for unconstrained literals
//===----------------------------------------------------------------------===//
/// The default type for an otherwise-unconstrained integer literal.
public typealias IntegerLiteralType = Int
/// The default type for an otherwise-unconstrained floating point literal.
public typealias FloatLiteralType = Double
/// The default type for an otherwise-unconstrained Boolean literal.
///
/// When you create a constant or variable using one of the Boolean literals
/// `true` or `false`, the resulting type is determined by the
/// `BooleanLiteralType` alias. For example:
///
/// let isBool = true
/// print("isBool is a '\(type(of: isBool))'")
/// // Prints "isBool is a 'Bool'"
///
/// The type aliased by `BooleanLiteralType` must conform to the
/// `ExpressibleByBooleanLiteral` protocol.
public typealias BooleanLiteralType = Bool
/// The default type for an otherwise-unconstrained unicode scalar literal.
public typealias UnicodeScalarType = String
/// The default type for an otherwise-unconstrained Unicode extended
/// grapheme cluster literal.
public typealias ExtendedGraphemeClusterType = String
/// The default type for an otherwise-unconstrained string literal.
public typealias StringLiteralType = String
//===----------------------------------------------------------------------===//
// Default types for unconstrained number literals
//===----------------------------------------------------------------------===//
// Integer literals are limited to 2048 bits.
// The intent is to have arbitrary-precision literals, but implementing that
// requires more work.
//
// Rationale: 1024 bits are enough to represent the absolute value of min/max
// IEEE Binary64, and we need 1 bit to represent the sign. Instead of using
// 1025, we use the next round number -- 2048.
public typealias _MaxBuiltinIntegerType = Builtin.Int2048
#if !os(Windows) && (arch(i386) || arch(x86_64))
public typealias _MaxBuiltinFloatType = Builtin.FPIEEE80
#else
public typealias _MaxBuiltinFloatType = Builtin.FPIEEE64
#endif
//===----------------------------------------------------------------------===//
// Standard protocols
//===----------------------------------------------------------------------===//
#if _runtime(_ObjC)
/// The protocol to which all classes implicitly conform.
///
/// You use `AnyObject` when you need the flexibility of an untyped object or
/// when you use bridged Objective-C methods and properties that return an
/// untyped result. `AnyObject` can be used as the concrete type for an
/// instance of any class, class type, or class-only protocol. For example:
///
/// class FloatRef {
/// let value: Float
/// init(_ value: Float) {
/// self.value = value
/// }
/// }
///
/// let x = FloatRef(2.3)
/// let y: AnyObject = x
/// let z: AnyObject = FloatRef.self
///
/// `AnyObject` can also be used as the concrete type for an instance of a type
/// that bridges to an Objective-C class. Many value types in Swift bridge to
/// Objective-C counterparts, like `String` and `Int`.
///
/// let s: AnyObject = "This is a bridged string." as NSString
/// print(s is NSString)
/// // Prints "true"
///
/// let v: AnyObject = 100 as NSNumber
/// print(type(of: v))
/// // Prints "__NSCFNumber"
///
/// The flexible behavior of the `AnyObject` protocol is similar to
/// Objective-C's `id` type. For this reason, imported Objective-C types
/// frequently use `AnyObject` as the type for properties, method parameters,
/// and return values.
///
/// Casting AnyObject Instances to a Known Type
/// ===========================================
///
/// Objects with a concrete type of `AnyObject` maintain a specific dynamic
/// type and can be cast to that type using one of the type-cast operators
/// (`as`, `as?`, or `as!`).
///
/// This example uses the conditional downcast operator (`as?`) to
/// conditionally cast the `s` constant declared above to an instance of
/// Swift's `String` type.
///
/// if let message = s as? String {
/// print("Successful cast to String: \(message)")
/// }
/// // Prints "Successful cast to String: This is a bridged string."
///
/// If you have prior knowledge that an `AnyObject` instance has a particular
/// type, you can use the unconditional downcast operator (`as!`). Performing
/// an invalid cast triggers a runtime error.
///
/// let message = s as! String
/// print("Successful cast to String: \(message)")
/// // Prints "Successful cast to String: This is a bridged string."
///
/// let badCase = v as! String
/// // Runtime error
///
/// Casting is always safe in the context of a `switch` statement.
///
/// let mixedArray: [AnyObject] = [s, v]
/// for object in mixedArray {
/// switch object {
/// case let x as String:
/// print("'\(x)' is a String")
/// default:
/// print("'\(object)' is not a String")
/// }
/// }
/// // Prints "'This is a bridged string.' is a String"
/// // Prints "'100' is not a String"
///
/// Accessing Objective-C Methods and Properties
/// ============================================
///
/// When you use `AnyObject` as a concrete type, you have at your disposal
/// every `@objc` method and property---that is, methods and properties
/// imported from Objective-C or marked with the `@objc` attribute. Because
/// Swift can't guarantee at compile time that these methods and properties
/// are actually available on an `AnyObject` instance's underlying type, these
/// `@objc` symbols are available as implicitly unwrapped optional methods and
/// properties, respectively.
///
/// This example defines an `IntegerRef` type with an `@objc` method named
/// `getIntegerValue()`.
///
/// class IntegerRef {
/// let value: Int
/// init(_ value: Int) {
/// self.value = value
/// }
///
/// @objc func getIntegerValue() -> Int {
/// return value
/// }
/// }
///
/// func getObject() -> AnyObject {
/// return IntegerRef(100)
/// }
///
/// let obj: AnyObject = getObject()
///
/// In the example, `obj` has a static type of `AnyObject` and a dynamic type
/// of `IntegerRef`. You can use optional chaining to call the `@objc` method
/// `getIntegerValue()` on `obj` safely. If you're sure of the dynamic type of
/// `obj`, you can call `getIntegerValue()` directly.
///
/// let possibleValue = obj.getIntegerValue?()
/// print(possibleValue)
/// // Prints "Optional(100)"
///
/// let certainValue = obj.getIntegerValue()
/// print(certainValue)
/// // Prints "100"
///
/// If the dynamic type of `obj` doesn't implement a `getIntegerValue()`
/// method, the system returns a runtime error when you initialize
/// `certainValue`.
///
/// Alternatively, if you need to test whether `obj.getIntegerValue()` exists,
/// use optional binding before calling the method.
///
/// if let f = obj.getIntegerValue {
/// print("The value of 'obj' is \(f())")
/// } else {
/// print("'obj' does not have a 'getIntegerValue()' method")
/// }
/// // Prints "The value of 'obj' is 100"
public typealias AnyObject = Builtin.AnyObject
#else
/// The protocol to which all classes implicitly conform.
public typealias AnyObject = Builtin.AnyObject
#endif
/// The protocol to which all class types implicitly conform.
///
/// You can use the `AnyClass` protocol as the concrete type for an instance of
/// any class. When you do, all known `@objc` class methods and properties are
/// available as implicitly unwrapped optional methods and properties,
/// respectively. For example:
///
/// class IntegerRef {
/// @objc class func getDefaultValue() -> Int {
/// return 42
/// }
/// }
///
/// func getDefaultValue(_ c: AnyClass) -> Int? {
/// return c.getDefaultValue?()
/// }
///
/// The `getDefaultValue(_:)` function uses optional chaining to safely call
/// the implicitly unwrapped class method on `c`. Calling the function with
/// different class types shows how the `getDefaultValue()` class method is
/// only conditionally available.
///
/// print(getDefaultValue(IntegerRef.self))
/// // Prints "Optional(42)"
///
/// print(getDefaultValue(NSString.self))
/// // Prints "nil"
public typealias AnyClass = AnyObject.Type
/// A type that supports standard bitwise arithmetic operators.
///
/// Types that conform to the `BitwiseOperations` protocol implement operators
/// for bitwise arithmetic. The integer types in the standard library all
/// conform to `BitwiseOperations` by default. When you use bitwise operators
/// with an integer, you perform operations on the raw data bits that store
/// the integer's value.
///
/// In the following examples, the binary representation of any values are
/// shown in a comment to the right, like this:
///
/// let x: UInt8 = 5 // 0b00000101
///
/// Here are the required operators for the `BitwiseOperations` protocol:
///
/// - The bitwise OR operator (`|`) returns a value that has each bit set to
/// `1` where *one or both* of its arguments had that bit set to `1`. This
/// is equivalent to the union of two sets. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x | y // 0b00001111
///
/// Performing a bitwise OR operation with a value and `allZeros` always
/// returns the same value.
///
/// print(x | .allZeros) // 0b00000101
/// // Prints "5"
///
/// - The bitwise AND operator (`&`) returns a value that has each bit set to
/// `1` where *both* of its arguments had that bit set to `1`. This is
/// equivalent to the intersection of two sets. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x & y // 0b00000100
///
/// Performing a bitwise AND operation with a value and `allZeros` always
/// returns `allZeros`.
///
/// print(x & .allZeros) // 0b00000000
/// // Prints "0"
///
/// - The bitwise XOR operator (`^`), or exclusive OR operator, returns a value
/// that has each bit set to `1` where *one or the other but not both* of
/// its operators has that bit set to `1`. This is equivalent to the
/// symmetric difference of two sets. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x ^ y // 0b00001011
///
/// Performing a bitwise XOR operation with a value and `allZeros` always
/// returns the same value.
///
/// print(x ^ .allZeros) // 0b00000101
/// // Prints "5"
///
/// - The bitwise NOT operator (`~`) is a prefix operator that returns a value
/// where all the bits of its argument are flipped: Bits that are `1` in the
/// argument are `0` in the result, and bits that are `0` in the argument
/// are `1` in the result. This is equivalent to the inverse of a set. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let notX = ~x // 0b11111010
///
/// Performing a bitwise NOT operation on `allZeros` returns a value with
/// every bit set to `1`.
///
/// let allOnes = ~UInt8.allZeros // 0b11111111
///
/// The `OptionSet` protocol uses a raw value that conforms to
/// `BitwiseOperations` to provide mathematical set operations like
/// `union(_:)`, `intersection(_:)` and `contains(_:)` with O(1) performance.
///
/// Conforming to the BitwiseOperations Protocol
/// ============================================
///
/// To make your custom type conform to `BitwiseOperations`, add a static
/// `allZeros` property and declare the four required operator functions. Any
/// type that conforms to `BitwiseOperations`, where `x` is an instance of the
/// conforming type, must satisfy the following conditions:
///
/// - `x | Self.allZeros == x`
/// - `x ^ Self.allZeros == x`
/// - `x & Self.allZeros == .allZeros`
/// - `x & ~Self.allZeros == x`
/// - `~x == x ^ ~Self.allZeros`
@available(swift, deprecated: 3.1, obsoleted: 4.0, message: "Use FixedWidthInteger protocol instead")
public typealias BitwiseOperations = _BitwiseOperations
public protocol _BitwiseOperations {
/// Returns the intersection of bits set in the two arguments.
///
/// The bitwise AND operator (`&`) returns a value that has each bit set to
/// `1` where *both* of its arguments had that bit set to `1`. This is
/// equivalent to the intersection of two sets. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x & y // 0b00000100
///
/// Performing a bitwise AND operation with a value and `allZeros` always
/// returns `allZeros`.
///
/// print(x & .allZeros) // 0b00000000
/// // Prints "0"
///
/// - Complexity: O(1).
static func & (lhs: Self, rhs: Self) -> Self
/// Returns the union of bits set in the two arguments.
///
/// The bitwise OR operator (`|`) returns a value that has each bit set to
/// `1` where *one or both* of its arguments had that bit set to `1`. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x | y // 0b00001111
///
/// Performing a bitwise OR operation with a value and `allZeros` always
/// returns the same value.
///
/// print(x | .allZeros) // 0b00000101
/// // Prints "5"
///
/// - Complexity: O(1).
static func | (lhs: Self, rhs: Self) -> Self
/// Returns the bits that are set in exactly one of the two arguments.
///
/// The bitwise XOR operator (`^`), or exclusive OR operator, returns a value
/// that has each bit set to `1` where *one or the other but not both* of
/// its operators has that bit set to `1`. This is equivalent to the
/// symmetric difference of two sets. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x ^ y // 0b00001011
///
/// Performing a bitwise XOR with a value and `allZeros` always returns the
/// same value:
///
/// print(x ^ .allZeros) // 0b00000101
/// // Prints "5"
///
/// - Complexity: O(1).
static func ^ (lhs: Self, rhs: Self) -> Self
/// Returns the inverse of the bits set in the argument.
///
/// The bitwise NOT operator (`~`) is a prefix operator that returns a value
/// in which all the bits of its argument are flipped: Bits that are `1` in the
/// argument are `0` in the result, and bits that are `0` in the argument
/// are `1` in the result. This is equivalent to the inverse of a set. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let notX = ~x // 0b11111010
///
/// Performing a bitwise NOT operation on `allZeros` returns a value with
/// every bit set to `1`.
///
/// let allOnes = ~UInt8.allZeros // 0b11111111
///
/// - Complexity: O(1).
static prefix func ~ (x: Self) -> Self
/// The empty bitset.
///
/// The `allZeros` static property is the [identity element][] for bitwise OR
/// and XOR operations and the [fixed point][] for bitwise AND operations.
/// For example:
///
/// let x: UInt8 = 5 // 0b00000101
///
/// // Identity
/// x | .allZeros // 0b00000101
/// x ^ .allZeros // 0b00000101
///
/// // Fixed point
/// x & .allZeros // 0b00000000
///
/// [identity element]:http://en.wikipedia.org/wiki/Identity_element
/// [fixed point]:http://en.wikipedia.org/wiki/Fixed_point_(mathematics)
@available(swift, deprecated: 3.1, obsoleted: 4.0, message: "Use 0 or init() of a type conforming to FixedWidthInteger")
static var allZeros: Self { get }
}
/// Calculates the union of bits sets in the two arguments and stores the result
/// in the first argument.
///
/// - Parameters:
/// - lhs: A value to update with the union of bits set in the two arguments.
/// - rhs: Another value.
@_inlineable // FIXME(sil-serialize-all)
public func |= <T : _BitwiseOperations>(lhs: inout T, rhs: T) {
lhs = lhs | rhs
}
/// Calculates the intersections of bits sets in the two arguments and stores
/// the result in the first argument.
///
/// - Parameters:
/// - lhs: A value to update with the intersections of bits set in the two
/// arguments.
/// - rhs: Another value.
@_inlineable // FIXME(sil-serialize-all)
public func &= <T : _BitwiseOperations>(lhs: inout T, rhs: T) {
lhs = lhs & rhs
}
/// Calculates the bits that are set in exactly one of the two arguments and
/// stores the result in the first argument.
///
/// - Parameters:
/// - lhs: A value to update with the bits that are set in exactly one of the
/// two arguments.
/// - rhs: Another value.
@_inlineable // FIXME(sil-serialize-all)
public func ^= <T : _BitwiseOperations>(lhs: inout T, rhs: T) {
lhs = lhs ^ rhs
}
//===----------------------------------------------------------------------===//
// Standard pattern matching forms
//===----------------------------------------------------------------------===//
/// Returns a Boolean value indicating whether two arguments match by value
/// equality.
///
/// The pattern-matching operator (`~=`) is used internally in `case`
/// statements for pattern matching. When you match against an `Equatable`
/// value in a `case` statement, this operator is called behind the scenes.
///
/// let weekday = 3
/// let lunch: String
/// switch weekday {
/// case 3:
/// lunch = "Taco Tuesday!"
/// default:
/// lunch = "Pizza again."
/// }
/// // lunch == "Taco Tuesday!"
///
/// In this example, the `case 3` expression uses this pattern-matching
/// operator to test whether `weekday` is equal to the value `3`.
///
/// - Note: In most cases, you should use the equal-to operator (`==`) to test
/// whether two instances are equal. The pattern-matching operator is
/// primarily intended to enable `case` statement pattern matching.
///
/// - Parameters:
/// - lhs: A value to compare.
/// - rhs: Another value to compare.
@_inlineable // FIXME(sil-serialize-all)
@_transparent
public func ~= <T : Equatable>(a: T, b: T) -> Bool {
return a == b
}
//===----------------------------------------------------------------------===//
// Standard precedence groups
//===----------------------------------------------------------------------===//
precedencegroup AssignmentPrecedence {
assignment: true
associativity: right
}
precedencegroup FunctionArrowPrecedence {
associativity: right
higherThan: AssignmentPrecedence
}
precedencegroup TernaryPrecedence {
associativity: right
higherThan: FunctionArrowPrecedence
}
precedencegroup DefaultPrecedence {
higherThan: TernaryPrecedence
}
precedencegroup LogicalDisjunctionPrecedence {
associativity: left
higherThan: TernaryPrecedence
}
precedencegroup LogicalConjunctionPrecedence {
associativity: left
higherThan: LogicalDisjunctionPrecedence
}
precedencegroup ComparisonPrecedence {
higherThan: LogicalConjunctionPrecedence
}
precedencegroup NilCoalescingPrecedence {
associativity: right
higherThan: ComparisonPrecedence
}
precedencegroup CastingPrecedence {
higherThan: NilCoalescingPrecedence
}
precedencegroup RangeFormationPrecedence {
higherThan: CastingPrecedence
}
precedencegroup AdditionPrecedence {
associativity: left
higherThan: RangeFormationPrecedence
}
precedencegroup MultiplicationPrecedence {
associativity: left
higherThan: AdditionPrecedence
}
precedencegroup BitwiseShiftPrecedence {
higherThan: MultiplicationPrecedence
}
//===----------------------------------------------------------------------===//
// Standard operators
//===----------------------------------------------------------------------===//
// Standard postfix operators.
postfix operator ++
postfix operator --
postfix operator ...
// Optional<T> unwrapping operator is built into the compiler as a part of
// postfix expression grammar.
//
// postfix operator !
// Standard prefix operators.
prefix operator ++
prefix operator --
prefix operator !
prefix operator ~
prefix operator +
prefix operator -
prefix operator ...
prefix operator ..<
// Standard infix operators.
// "Exponentiative"
infix operator << : BitwiseShiftPrecedence
infix operator &<< : BitwiseShiftPrecedence
infix operator >> : BitwiseShiftPrecedence
infix operator &>> : BitwiseShiftPrecedence
// "Multiplicative"
infix operator * : MultiplicationPrecedence
infix operator &* : MultiplicationPrecedence
infix operator / : MultiplicationPrecedence
infix operator % : MultiplicationPrecedence
infix operator & : MultiplicationPrecedence
// "Additive"
infix operator + : AdditionPrecedence
infix operator &+ : AdditionPrecedence
infix operator - : AdditionPrecedence
infix operator &- : AdditionPrecedence
infix operator | : AdditionPrecedence
infix operator ^ : AdditionPrecedence
// FIXME: is this the right precedence level for "..." ?
infix operator ... : RangeFormationPrecedence
infix operator ..< : RangeFormationPrecedence
// The cast operators 'as' and 'is' are hardcoded as if they had the
// following attributes:
// infix operator as : CastingPrecedence
// "Coalescing"
infix operator ?? : NilCoalescingPrecedence
// "Comparative"
infix operator < : ComparisonPrecedence
infix operator <= : ComparisonPrecedence
infix operator > : ComparisonPrecedence
infix operator >= : ComparisonPrecedence
infix operator == : ComparisonPrecedence
infix operator != : ComparisonPrecedence
infix operator === : ComparisonPrecedence
infix operator !== : ComparisonPrecedence
// FIXME: ~= will be built into the compiler.
infix operator ~= : ComparisonPrecedence
// "Conjunctive"
infix operator && : LogicalConjunctionPrecedence
// "Disjunctive"
infix operator || : LogicalDisjunctionPrecedence
// User-defined ternary operators are not supported. The ? : operator is
// hardcoded as if it had the following attributes:
// operator ternary ? : : TernaryPrecedence
// User-defined assignment operators are not supported. The = operator is
// hardcoded as if it had the following attributes:
// infix operator = : AssignmentPrecedence
// Compound
infix operator *= : AssignmentPrecedence
infix operator /= : AssignmentPrecedence
infix operator %= : AssignmentPrecedence
infix operator += : AssignmentPrecedence
infix operator -= : AssignmentPrecedence
infix operator <<= : AssignmentPrecedence
infix operator &<<= : AssignmentPrecedence
infix operator >>= : AssignmentPrecedence
infix operator &>>= : AssignmentPrecedence
infix operator &= : AssignmentPrecedence
infix operator ^= : AssignmentPrecedence
infix operator |= : AssignmentPrecedence
// Workaround for <rdar://problem/14011860> SubTLF: Default
// implementations in protocols. Library authors should ensure
// that this operator never needs to be seen by end-users. See
// test/Prototypes/GenericDispatch.swift for a fully documented
// example of how this operator is used, and how its use can be hidden
// from users.
infix operator ~>