blob: dd023fa0253d1e56bfb0a43eac8de95aa434df47 [file] [log] [blame]
//===--- ParseableInterfaceSupport.cpp - swiftinterface files ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/FileSystem.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/ParseableInterfaceSupport.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/Serialization/ModuleFormat.h"
#include "swift/Serialization/SerializationOptions.h"
#include "swift/Serialization/Validation.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/StringSaver.h"
using namespace swift;
version::Version swift::InterfaceFormatVersion({1, 0});
/// Diagnose any scoped imports in \p imports, i.e. those with a non-empty
/// access path. These are not yet supported by parseable interfaces, since the
/// information about the declaration kind is not preserved through the binary
/// serialization that happens as an intermediate step in non-whole-module
/// builds.
///
/// These come from declarations like `import class FooKit.MainFooController`.
static void diagnoseScopedImports(DiagnosticEngine &diags,
ArrayRef<ModuleDecl::ImportedModule> imports){
for (const ModuleDecl::ImportedModule &importPair : imports) {
if (importPair.first.empty())
continue;
diags.diagnose(importPair.first.front().second,
diag::parseable_interface_scoped_import_unsupported);
}
}
/// Prints to \p out a comment containing a format version number, tool version
/// string as well as any relevant command-line flags in \p Opts used to
/// construct \p M.
static void printToolVersionAndFlagsComment(raw_ostream &out,
ParseableInterfaceOptions const &Opts,
ModuleDecl *M) {
auto &Ctx = M->getASTContext();
auto ToolsVersion = swift::version::getSwiftFullVersion(
Ctx.LangOpts.EffectiveLanguageVersion);
out << "// " SWIFT_INTERFACE_FORMAT_VERSION_KEY ": "
<< InterfaceFormatVersion << "\n";
out << "// " SWIFT_TOOLS_VERSION_KEY ": "
<< ToolsVersion << "\n";
out << "// " SWIFT_MODULE_FLAGS_KEY ": "
<< Opts.ParseableInterfaceFlags << "\n";
}
llvm::Regex swift::getSwiftInterfaceFormatVersionRegex() {
return llvm::Regex("^// " SWIFT_INTERFACE_FORMAT_VERSION_KEY
": ([0-9\\.]+)$", llvm::Regex::Newline);
}
llvm::Regex swift::getSwiftInterfaceModuleFlagsRegex() {
return llvm::Regex("^// " SWIFT_MODULE_FLAGS_KEY ":(.*)$",
llvm::Regex::Newline);
}
/// Prints the imported modules in \p M to \p out in the form of \c import
/// source declarations.
static void printImports(raw_ostream &out, ModuleDecl *M) {
// FIXME: This is very similar to what's in Serializer::writeInputBlock, but
// it's not obvious what higher-level optimization would be factored out here.
ModuleDecl::ImportFilter allImportFilter;
allImportFilter |= ModuleDecl::ImportFilterKind::Public;
allImportFilter |= ModuleDecl::ImportFilterKind::Private;
SmallVector<ModuleDecl::ImportedModule, 8> allImports;
M->getImportedModules(allImports, allImportFilter);
ModuleDecl::removeDuplicateImports(allImports);
diagnoseScopedImports(M->getASTContext().Diags, allImports);
// Collect the public imports as a subset so that we can mark them with
// '@_exported'.
SmallVector<ModuleDecl::ImportedModule, 8> publicImports;
M->getImportedModules(publicImports, ModuleDecl::ImportFilterKind::Public);
llvm::SmallSet<ModuleDecl::ImportedModule, 8,
ModuleDecl::OrderImportedModules> publicImportSet;
publicImportSet.insert(publicImports.begin(), publicImports.end());
for (auto import : allImports) {
if (import.second->isOnoneSupportModule() ||
import.second->isBuiltinModule()) {
continue;
}
if (publicImportSet.count(import))
out << "@_exported ";
out << "import ";
import.second->getReverseFullModuleName().printForward(out);
// Write the access path we should be honoring but aren't.
// (See diagnoseScopedImports above.)
if (!import.first.empty()) {
out << "/*";
for (const auto &accessPathElem : import.first)
out << "." << accessPathElem.first;
out << "*/";
}
out << "\n";
}
}
// FIXME: Copied from ASTPrinter.cpp...
static bool isPublicOrUsableFromInline(const ValueDecl *VD) {
AccessScope scope =
VD->getFormalAccessScope(/*useDC*/nullptr,
/*treatUsableFromInlineAsPublic*/true);
return scope.isPublic();
}
static bool isPublicOrUsableFromInline(Type ty) {
// Note the double negative here: we're looking for any referenced decls that
// are *not* public-or-usableFromInline.
return !ty.findIf([](Type typePart) -> bool {
// FIXME: If we have an internal typealias for a non-internal type, we ought
// to be able to print it by desugaring.
if (auto *aliasTy = dyn_cast<TypeAliasType>(typePart.getPointer()))
return !isPublicOrUsableFromInline(aliasTy->getDecl());
if (auto *nominal = typePart->getAnyNominal())
return !isPublicOrUsableFromInline(nominal);
return false;
});
}
namespace {
/// Collects protocols that are conformed to by a particular nominal. Since
/// ASTPrinter will only print the public ones, the non-public ones get left by
/// the wayside. This is a problem when a non-public protocol inherits from a
/// public protocol; the generated parseable interface still needs to make that
/// dependency public.
///
/// The solution implemented here is to generate synthetic extensions that
/// declare the extra conformances. This isn't perfect (it loses the sugared
/// spelling of the protocol type, as well as the locality in the file), but it
/// does work.
class InheritedProtocolCollector {
static const StringLiteral DummyProtocolName;
/// Protocols that will be included by the ASTPrinter without any extra work.
SmallVector<ProtocolDecl *, 8> IncludedProtocols;
/// Protocols that will not be printed by the ASTPrinter.
SmallVector<ProtocolDecl *, 8> ExtraProtocols;
/// Protocols that can be printed, but whose conformances are constrained with
/// something that \e can't be printed.
SmallVector<const ProtocolType *, 8> ConditionalConformanceProtocols;
/// For each type in \p directlyInherited, classify the protocols it refers to
/// as included for printing or not, and record them in the appropriate
/// vectors.
void recordProtocols(ArrayRef<TypeLoc> directlyInherited) {
for (TypeLoc inherited : directlyInherited) {
Type inheritedTy = inherited.getType();
if (!inheritedTy || !inheritedTy->isExistentialType())
continue;
bool canPrintNormally = isPublicOrUsableFromInline(inheritedTy);
SmallVectorImpl<ProtocolDecl *> &whichProtocols =
canPrintNormally ? IncludedProtocols : ExtraProtocols;
ExistentialLayout layout = inheritedTy->getExistentialLayout();
for (ProtocolType *protoTy : layout.getProtocols())
whichProtocols.push_back(protoTy->getDecl());
// FIXME: This ignores layout constraints, but currently we don't support
// any of those besides 'AnyObject'.
}
}
/// For each type in \p directlyInherited, record any protocols that we would
/// have printed in ConditionalConformanceProtocols.
void recordConditionalConformances(ArrayRef<TypeLoc> directlyInherited) {
for (TypeLoc inherited : directlyInherited) {
Type inheritedTy = inherited.getType();
if (!inheritedTy || !inheritedTy->isExistentialType())
continue;
ExistentialLayout layout = inheritedTy->getExistentialLayout();
for (ProtocolType *protoTy : layout.getProtocols())
if (isPublicOrUsableFromInline(protoTy))
ConditionalConformanceProtocols.push_back(protoTy);
// FIXME: This ignores layout constraints, but currently we don't support
// any of those besides 'AnyObject'.
}
}
public:
using PerTypeMap = llvm::MapVector<const NominalTypeDecl *,
InheritedProtocolCollector>;
/// Given that we're about to print \p D, record its protocols in \p map.
///
/// \sa recordProtocols
static void collectProtocols(PerTypeMap &map, const Decl *D) {
ArrayRef<TypeLoc> directlyInherited;
const NominalTypeDecl *nominal;
const IterableDeclContext *memberContext;
if ((nominal = dyn_cast<NominalTypeDecl>(D))) {
directlyInherited = nominal->getInherited();
memberContext = nominal;
} else if (auto *extension = dyn_cast<ExtensionDecl>(D)) {
if (extension->isConstrainedExtension()) {
// Conditional conformances never apply to inherited protocols, nor
// can they provide unconditional conformances that might be used in
// other extensions.
return;
}
nominal = extension->getExtendedNominal();
directlyInherited = extension->getInherited();
memberContext = extension;
} else {
return;
}
if (!isPublicOrUsableFromInline(nominal))
return;
map[nominal].recordProtocols(directlyInherited);
// Recurse to find any nested types.
for (const Decl *member : memberContext->getMembers())
collectProtocols(map, member);
}
/// If \p D is an extension providing conditional conformances, record those
/// in \p map.
///
/// \sa recordConditionalConformances
static void collectSkippedConditionalConformances(PerTypeMap &map,
const Decl *D) {
auto *extension = dyn_cast<ExtensionDecl>(D);
if (!extension || !extension->isConstrainedExtension())
return;
const NominalTypeDecl *nominal = extension->getExtendedNominal();
if (!isPublicOrUsableFromInline(nominal))
return;
map[nominal].recordConditionalConformances(extension->getInherited());
// No recursion here because extensions are never nested.
}
/// Returns true if the conformance of \p nominal to \p proto is declared in
/// module \p M.
static bool conformanceDeclaredInModule(ModuleDecl *M,
const NominalTypeDecl *nominal,
ProtocolDecl *proto) {
SmallVector<ProtocolConformance *, 4> conformances;
nominal->lookupConformance(M, proto, conformances);
return llvm::all_of(conformances,
[M](const ProtocolConformance *conformance) -> bool {
return M == conformance->getDeclContext()->getParentModule();
});
}
/// If there were any public protocols that need to be printed (i.e. they
/// weren't conformed to explicitly or inherited by another printed protocol),
/// do so now by printing a dummy extension on \p nominal to \p out.
void
printSynthesizedExtensionIfNeeded(raw_ostream &out,
const PrintOptions &printOptions,
ModuleDecl *M,
const NominalTypeDecl *nominal) const {
if (ExtraProtocols.empty())
return;
SmallPtrSet<ProtocolDecl *, 16> handledProtocols;
// First record all protocols that have already been handled.
for (ProtocolDecl *proto : IncludedProtocols) {
proto->walkInheritedProtocols(
[&handledProtocols](ProtocolDecl *inherited) -> TypeWalker::Action {
handledProtocols.insert(inherited);
return TypeWalker::Action::Continue;
});
}
// Then walk the remaining ones, and see what we need to print.
// Note: We could do this in one pass, but the logic is easier to
// understand if we build up the list and then print it, even if it takes
// a bit more memory.
SmallVector<ProtocolDecl *, 16> protocolsToPrint;
for (ProtocolDecl *proto : ExtraProtocols) {
proto->walkInheritedProtocols(
[&](ProtocolDecl *inherited) -> TypeWalker::Action {
if (!handledProtocols.insert(inherited).second)
return TypeWalker::Action::SkipChildren;
if (isPublicOrUsableFromInline(inherited) &&
conformanceDeclaredInModule(M, nominal, inherited)) {
protocolsToPrint.push_back(inherited);
return TypeWalker::Action::SkipChildren;
}
return TypeWalker::Action::Continue;
});
}
if (protocolsToPrint.empty())
return;
out << "extension ";
nominal->getDeclaredType().print(out, printOptions);
out << " : ";
swift::interleave(protocolsToPrint,
[&out, &printOptions](ProtocolDecl *proto) {
proto->getDeclaredType()->print(out, printOptions);
}, [&out] { out << ", "; });
out << " {}\n";
}
/// If there were any conditional conformances that couldn't be printed,
/// make a dummy extension that conforms to all of them, constrained by a
/// fake protocol.
bool printInaccessibleConformanceExtensionIfNeeded(
raw_ostream &out, const PrintOptions &printOptions,
const NominalTypeDecl *nominal) const {
if (ConditionalConformanceProtocols.empty())
return false;
assert(nominal->isGenericContext());
out << "extension ";
nominal->getDeclaredType().print(out, printOptions);
out << " : ";
swift::interleave(ConditionalConformanceProtocols,
[&out, &printOptions](const ProtocolType *protoTy) {
protoTy->print(out, printOptions);
}, [&out] { out << ", "; });
out << " where "
<< nominal->getGenericSignature()->getGenericParams().front()->getName()
<< " : " << DummyProtocolName << " {}\n";
return true;
}
/// Print a fake protocol declaration for use by
/// #printInaccessibleConformanceExtensionIfNeeded.
static void printDummyProtocolDeclaration(raw_ostream &out) {
out << "\n@usableFromInline\ninternal protocol " << DummyProtocolName
<< " {}\n";
}
};
const StringLiteral InheritedProtocolCollector::DummyProtocolName =
"_ConstraintThatIsNotPartOfTheAPIOfThisLibrary";
} // end anonymous namespace
bool swift::emitParseableInterface(raw_ostream &out,
ParseableInterfaceOptions const &Opts,
ModuleDecl *M) {
assert(M);
printToolVersionAndFlagsComment(out, Opts, M);
printImports(out, M);
const PrintOptions printOptions = PrintOptions::printParseableInterfaceFile();
InheritedProtocolCollector::PerTypeMap inheritedProtocolMap;
SmallVector<Decl *, 16> topLevelDecls;
M->getTopLevelDecls(topLevelDecls);
for (const Decl *D : topLevelDecls) {
if (!D->shouldPrintInContext(printOptions) ||
!printOptions.CurrentPrintabilityChecker->shouldPrint(D, printOptions)){
InheritedProtocolCollector::collectSkippedConditionalConformances(
inheritedProtocolMap, D);
continue;
}
D->print(out, printOptions);
out << "\n";
InheritedProtocolCollector::collectProtocols(inheritedProtocolMap, D);
}
// Print dummy extensions for any protocols that were indirectly conformed to.
bool needDummyProtocolDeclaration = false;
for (const auto &nominalAndCollector : inheritedProtocolMap) {
const NominalTypeDecl *nominal = nominalAndCollector.first;
const InheritedProtocolCollector &collector = nominalAndCollector.second;
collector.printSynthesizedExtensionIfNeeded(out, printOptions, M, nominal);
needDummyProtocolDeclaration |=
collector.printInaccessibleConformanceExtensionIfNeeded(out,
printOptions,
nominal);
}
if (needDummyProtocolDeclaration)
InheritedProtocolCollector::printDummyProtocolDeclaration(out);
return false;
}