blob: 03be295fe8b52914b30fd50b3185f86a17b68fe6 [file] [log] [blame]
//===--- Integers.swift.gyb -----------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
//===--- Bits for the Stdlib ----------------------------------------------===//
//===----------------------------------------------------------------------===//
// FIXME(integers): This should go in the stdlib separately, probably.
extension ExpressibleByIntegerLiteral
where Self : _ExpressibleByBuiltinIntegerLiteral {
@_transparent
public init(integerLiteral value: Self) {
self = value
}
}
//===----------------------------------------------------------------------===//
//===--- AdditiveArithmetic -----------------------------------------------===//
//===----------------------------------------------------------------------===//
/// A type with values that support addition and subtraction.
///
/// The `AdditiveArithmetic` protocol provides a suitable basis for additive
/// arithmetic on scalar values, such as integers and floating-point numbers,
/// or vectors. You can write generic methods that operate on any numeric type
/// in the standard library by using the `AdditiveArithmetic` protocol as a
/// generic constraint.
///
/// The following code declares a method that calculates the total of any
/// sequence with `AdditiveArithmetic` elements.
///
/// extension Sequence where Element: AdditiveArithmetic {
/// func sum() -> Element {
/// return reduce(.zero, +)
/// }
/// }
///
/// The `sum()` method is now available on any sequence with values that
/// conform to `AdditiveArithmetic`, whether it is an array of `Double` or a
/// range of `Int`.
///
/// let arraySum = [1.1, 2.2, 3.3, 4.4, 5.5].sum()
/// // arraySum == 16.5
///
/// let rangeSum = (1..<10).sum()
/// // rangeSum == 45
///
/// Conforming to the AdditiveArithmetic Protocol
/// =============================================
///
/// To add `AdditiveArithmetic` protocol conformance to your own custom type,
/// implement the required operators, and provide a static `zero` property
/// using a type that can represent the magnitude of any value of your custom
/// type.
public protocol AdditiveArithmetic : Equatable {
/// The zero value.
///
/// Zero is the identity element for addition. For any value,
/// `x + .zero == x` and `.zero + x == x`.
static var zero: Self { get }
/// Adds two values and produces their sum.
///
/// The addition operator (`+`) calculates the sum of its two arguments. For
/// example:
///
/// 1 + 2 // 3
/// -10 + 15 // 5
/// -15 + -5 // -20
/// 21.5 + 3.25 // 24.75
///
/// You cannot use `+` with arguments of different types. To add values of
/// different types, convert one of the values to the other value's type.
///
/// let x: Int8 = 21
/// let y: Int = 1000000
/// Int(x) + y // 1000021
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
static func +(lhs: Self, rhs: Self) -> Self
/// Adds two values and stores the result in the left-hand-side variable.
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
static func +=(lhs: inout Self, rhs: Self)
/// Subtracts one value from another and produces their difference.
///
/// The subtraction operator (`-`) calculates the difference of its two
/// arguments. For example:
///
/// 8 - 3 // 5
/// -10 - 5 // -15
/// 100 - -5 // 105
/// 10.5 - 100.0 // -89.5
///
/// You cannot use `-` with arguments of different types. To subtract values
/// of different types, convert one of the values to the other value's type.
///
/// let x: UInt8 = 21
/// let y: UInt = 1000000
/// y - UInt(x) // 999979
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
static func -(lhs: Self, rhs: Self) -> Self
/// Subtracts the second value from the first and stores the difference in the
/// left-hand-side variable.
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
static func -=(lhs: inout Self, rhs: Self)
}
public extension AdditiveArithmetic where Self : ExpressibleByIntegerLiteral {
/// The zero value.
///
/// Zero is the identity element for addition. For any value,
/// `x + .zero == x` and `.zero + x == x`.
static var zero: Self {
return 0
}
}
//===----------------------------------------------------------------------===//
//===--- Numeric ----------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// A type with values that support multiplication.
///
/// The `Numeric` protocol provides a suitable basis for arithmetic on
/// scalar values, such as integers and floating-point numbers. You can write
/// generic methods that operate on any numeric type in the standard library
/// by using the `Numeric` protocol as a generic constraint.
///
/// The following example extends `Sequence` with a method that returns an
/// array with the sequence's values multiplied by two.
///
/// extension Sequence where Element: Numeric {
/// func doublingAll() -> [Element] {
/// return map { $0 * 2 }
/// }
/// }
///
/// With this extension, any sequence with elements that conform to `Numeric`
/// has the `doublingAll()` method. For example, you can double the elements of
/// an array of doubles or a range of integers:
///
/// let observations = [1.5, 2.0, 3.25, 4.875, 5.5]
/// let doubledObservations = observations.doublingAll()
/// // doubledObservations == [3.0, 4.0, 6.5, 9.75, 11.0]
///
/// let integers = 0..<8
/// let doubledIntegers = integers.doublingAll()
/// // doubledIntegers == [0, 2, 4, 6, 8, 10, 12, 14]
///
/// Conforming to the Numeric Protocol
/// ==================================
///
/// To add `Numeric` protocol conformance to your own custom type, implement
/// the required initializer and operators, and provide a `magnitude` property
/// using a type that can represent the magnitude of any value of your custom
/// type.
public protocol Numeric : AdditiveArithmetic, ExpressibleByIntegerLiteral {
/// Creates a new instance from the given integer, if it can be represented
/// exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `100`, while the attempt to initialize the
/// constant `y` from `1_000` fails because the `Int8` type can represent
/// `127` at maximum:
///
/// let x = Int8(exactly: 100)
/// // x == Optional(100)
/// let y = Int8(exactly: 1_000)
/// // y == nil
///
/// - Parameter source: A value to convert to this type.
init?<T : BinaryInteger>(exactly source: T)
/// A type that can represent the absolute value of any possible value of the
/// conforming type.
associatedtype Magnitude : Comparable, Numeric
/// The magnitude of this value.
///
/// For any numeric value `x`, `x.magnitude` is the absolute value of `x`.
/// You can use the `magnitude` property in operations that are simpler to
/// implement in terms of unsigned values, such as printing the value of an
/// integer, which is just printing a '-' character in front of an absolute
/// value.
///
/// let x = -200
/// // x.magnitude == 200
///
/// The global `abs(_:)` function provides more familiar syntax when you need
/// to find an absolute value. In addition, because `abs(_:)` always returns
/// a value of the same type, even in a generic context, using the function
/// instead of the `magnitude` property is encouraged.
var magnitude: Magnitude { get }
/// Multiplies two values and produces their product.
///
/// The multiplication operator (`*`) calculates the product of its two
/// arguments. For example:
///
/// 2 * 3 // 6
/// 100 * 21 // 2100
/// -10 * 15 // -150
/// 3.5 * 2.25 // 7.875
///
/// You cannot use `*` with arguments of different types. To multiply values
/// of different types, convert one of the values to the other value's type.
///
/// let x: Int8 = 21
/// let y: Int = 1000000
/// Int(x) * y // 21000000
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
static func *(lhs: Self, rhs: Self) -> Self
/// Multiplies two values and stores the result in the left-hand-side
/// variable.
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
static func *=(lhs: inout Self, rhs: Self)
}
/// A type that can represent both positive and negative values.
///
/// The `SignedNumeric` protocol extends the operations defined by the
/// `Numeric` protocol to include a value's additive inverse.
///
/// Conforming to the SignedNumeric Protocol
/// ========================================
///
/// Because the `SignedNumeric` protocol provides default implementations of
/// both of its required methods, you don't need to do anything beyond
/// declaring conformance to the protocol and ensuring that the values of your
/// type support negation. To customize your type's implementation, provide
/// your own mutating `negate()` method.
///
/// When the additive inverse of a value is unrepresentable in a conforming
/// type, the operation should either trap or return an exceptional value. For
/// example, using the negation operator (prefix `-`) with `Int.min` results in
/// a runtime error.
///
/// let x = Int.min
/// let y = -x
/// // Overflow error
public protocol SignedNumeric : Numeric {
/// Returns the additive inverse of the specified value.
///
/// The negation operator (prefix `-`) returns the additive inverse of its
/// argument.
///
/// let x = 21
/// let y = -x
/// // y == -21
///
/// The resulting value must be representable in the same type as the
/// argument. In particular, negating a signed, fixed-width integer type's
/// minimum results in a value that cannot be represented.
///
/// let z = -Int8.min
/// // Overflow error
///
/// - Returns: The additive inverse of this value.
static prefix func - (_ operand: Self) -> Self
/// Replaces this value with its additive inverse.
///
/// The following example uses the `negate()` method to negate the value of
/// an integer `x`:
///
/// var x = 21
/// x.negate()
/// // x == -21
///
/// The resulting value must be representable within the value's type. In
/// particular, negating a signed, fixed-width integer type's minimum
/// results in a value that cannot be represented.
///
/// var y = Int8.min
/// y.negate()
/// // Overflow error
mutating func negate()
}
extension SignedNumeric {
/// Returns the additive inverse of the specified value.
///
/// The negation operator (prefix `-`) returns the additive inverse of its
/// argument.
///
/// let x = 21
/// let y = -x
/// // y == -21
///
/// The resulting value must be representable in the same type as the
/// argument. In particular, negating a signed, fixed-width integer type's
/// minimum results in a value that cannot be represented.
///
/// let z = -Int8.min
/// // Overflow error
///
/// - Returns: The additive inverse of the argument.
@_transparent
public static prefix func - (_ operand: Self) -> Self {
var result = operand
result.negate()
return result
}
/// Replaces this value with its additive inverse.
///
/// The following example uses the `negate()` method to negate the value of
/// an integer `x`:
///
/// var x = 21
/// x.negate()
/// // x == -21
///
/// The resulting value must be representable within the value's type. In
/// particular, negating a signed, fixed-width integer type's minimum
/// results in a value that cannot be represented.
///
/// var y = Int8.min
/// y.negate()
/// // Overflow error
@_transparent
public mutating func negate() {
self = 0 - self
}
}
/// Returns the absolute value of the given number.
///
/// The absolute value of `x` must be representable in the same type. In
/// particular, the absolute value of a signed, fixed-width integer type's
/// minimum cannot be represented.
///
/// let x = Int8.min
/// // x == -128
/// let y = abs(x)
/// // Overflow error
///
/// - Parameter x: A signed number.
/// - Returns: The absolute value of `x`.
@inlinable
public func abs<T : SignedNumeric & Comparable>(_ x: T) -> T {
if T.self == T.Magnitude.self {
return unsafeBitCast(x.magnitude, to: T.self)
}
return x < (0 as T) ? -x : x
}
extension AdditiveArithmetic {
/// Returns the given number unchanged.
///
/// You can use the unary plus operator (`+`) to provide symmetry in your
/// code for positive numbers when also using the unary minus operator.
///
/// let x = -21
/// let y = +21
/// // x == -21
/// // y == 21
///
/// - Returns: The given argument without any changes.
@_transparent
public static prefix func + (x: Self) -> Self {
return x
}
}
//===----------------------------------------------------------------------===//
//===--- BinaryInteger ----------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An integer type with a binary representation.
///
/// The `BinaryInteger` protocol is the basis for all the integer types
/// provided by the standard library. All of the standard library's integer
/// types, such as `Int` and `UInt32`, conform to `BinaryInteger`.
///
/// Converting Between Numeric Types
/// ================================
///
/// You can create new instances of a type that conforms to the `BinaryInteger`
/// protocol from a floating-point number or another binary integer of any
/// type. The `BinaryInteger` protocol provides initializers for four
/// different kinds of conversion.
///
/// Range-Checked Conversion
/// ------------------------
///
/// You use the default `init(_:)` initializer to create a new instance when
/// you're sure that the value passed is representable in the new type. For
/// example, an instance of `Int16` can represent the value `500`, so the
/// first conversion in the code sample below succeeds. That same value is too
/// large to represent as an `Int8` instance, so the second conversion fails,
/// triggering a runtime error.
///
/// let x: Int = 500
/// let y = Int16(x)
/// // y == 500
///
/// let z = Int8(x)
/// // Error: Not enough bits to represent...
///
/// When you create a binary integer from a floating-point value using the
/// default initializer, the value is rounded toward zero before the range is
/// checked. In the following example, the value `127.75` is rounded to `127`,
/// which is representable by the `Int8` type. `128.25` is rounded to `128`,
/// which is not representable as an `Int8` instance, triggering a runtime
/// error.
///
/// let e = Int8(127.75)
/// // e == 127
///
/// let f = Int8(128.25)
/// // Error: Double value cannot be converted...
///
///
/// Exact Conversion
/// ----------------
///
/// Use the `init?(exactly:)` initializer to create a new instance after
/// checking whether the passed value is representable. Instead of trapping on
/// out-of-range values, using the failable `init?(exactly:)`
/// initializer results in `nil`.
///
/// let x = Int16(exactly: 500)
/// // x == Optional(500)
///
/// let y = Int8(exactly: 500)
/// // y == nil
///
/// When converting floating-point values, the `init?(exactly:)` initializer
/// checks both that the passed value has no fractional part and that the
/// value is representable in the resulting type.
///
/// let e = Int8(exactly: 23.0) // integral value, representable
/// // e == Optional(23)
///
/// let f = Int8(exactly: 23.75) // fractional value, representable
/// // f == nil
///
/// let g = Int8(exactly: 500.0) // integral value, nonrepresentable
/// // g == nil
///
/// Clamping Conversion
/// -------------------
///
/// Use the `init(clamping:)` initializer to create a new instance of a binary
/// integer type where out-of-range values are clamped to the representable
/// range of the type. For a type `T`, the resulting value is in the range
/// `T.min...T.max`.
///
/// let x = Int16(clamping: 500)
/// // x == 500
///
/// let y = Int8(clamping: 500)
/// // y == 127
///
/// let z = UInt8(clamping: -500)
/// // z == 0
///
/// Bit Pattern Conversion
/// ----------------------
///
/// Use the `init(truncatingIfNeeded:)` initializer to create a new instance
/// with the same bit pattern as the passed value, extending or truncating the
/// value's representation as necessary. Note that the value may not be
/// preserved, particularly when converting between signed to unsigned integer
/// types or when the destination type has a smaller bit width than the source
/// type. The following example shows how extending and truncating work for
/// nonnegative integers:
///
/// let q: Int16 = 850
/// // q == 0b00000011_01010010
///
/// let r = Int8(truncatingIfNeeded: q) // truncate 'q' to fit in 8 bits
/// // r == 82
/// // == 0b01010010
///
/// let s = Int16(truncatingIfNeeded: r) // extend 'r' to fill 16 bits
/// // s == 82
/// // == 0b00000000_01010010
///
/// Any padding is performed by *sign-extending* the passed value. When
/// nonnegative integers are extended, the result is padded with zeroes. When
/// negative integers are extended, the result is padded with ones. This
/// example shows several extending conversions of a negative value---note
/// that negative values are sign-extended even when converting to an unsigned
/// type.
///
/// let t: Int8 = -100
/// // t == -100
/// // t's binary representation == 0b10011100
///
/// let u = UInt8(truncatingIfNeeded: t)
/// // u == 156
/// // u's binary representation == 0b10011100
///
/// let v = Int16(truncatingIfNeeded: t)
/// // v == -100
/// // v's binary representation == 0b11111111_10011100
///
/// let w = UInt16(truncatingIfNeeded: t)
/// // w == 65436
/// // w's binary representation == 0b11111111_10011100
///
///
/// Comparing Across Integer Types
/// ==============================
///
/// You can use relational operators, such as the less-than and equal-to
/// operators (`<` and `==`), to compare instances of different binary integer
/// types. The following example compares instances of the `Int`, `UInt`, and
/// `UInt8` types:
///
/// let x: Int = -23
/// let y: UInt = 1_000
/// let z: UInt8 = 23
///
/// if x < y {
/// print("\(x) is less than \(y).")
/// }
/// // Prints "-23 is less than 1000."
///
/// if z > x {
/// print("\(z) is greater than \(x).")
/// }
/// // Prints "23 is greater than -23."
public protocol BinaryInteger :
Hashable, Numeric, CustomStringConvertible, Strideable
where Magnitude : BinaryInteger, Magnitude.Magnitude == Magnitude
{
/// A Boolean value indicating whether this type is a signed integer type.
///
/// *Signed* integer types can represent both positive and negative values.
/// *Unsigned* integer types can represent only nonnegative values.
static var isSigned: Bool { get }
/// Creates an integer from the given floating-point value, if it can be
/// represented exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `21.0`, while the attempt to initialize the
/// constant `y` from `21.5` fails:
///
/// let x = Int(exactly: 21.0)
/// // x == Optional(21)
/// let y = Int(exactly: 21.5)
/// // y == nil
///
/// - Parameter source: A floating-point value to convert to an integer.
init?<T : BinaryFloatingPoint>(exactly source: T)
/// Creates an integer from the given floating-point value, rounding toward
/// zero.
///
/// Any fractional part of the value passed as `source` is removed, rounding
/// the value toward zero.
///
/// let x = Int(21.5)
/// // x == 21
/// let y = Int(-21.5)
/// // y == -21
///
/// If `source` is outside the bounds of this type after rounding toward
/// zero, a runtime error may occur.
///
/// let z = UInt(-21.5)
/// // Error: ...the result would be less than UInt.min
///
/// - Parameter source: A floating-point value to convert to an integer.
/// `source` must be representable in this type after rounding toward
/// zero.
init<T : BinaryFloatingPoint>(_ source: T)
/// Creates a new instance from the given integer.
///
/// If the value passed as `source` is not representable in this type, a
/// runtime error may occur.
///
/// let x = -500 as Int
/// let y = Int32(x)
/// // y == -500
///
/// // -500 is not representable as a 'UInt32' instance
/// let z = UInt32(x)
/// // Error
///
/// - Parameter source: An integer to convert. `source` must be representable
/// in this type.
init<T : BinaryInteger>(_ source: T)
/// Creates a new instance from the bit pattern of the given instance by
/// sign-extending or truncating to fit this type.
///
/// When the bit width of `T` (the type of `source`) is equal to or greater
/// than this type's bit width, the result is the truncated
/// least-significant bits of `source`. For example, when converting a
/// 16-bit value to an 8-bit type, only the lower 8 bits of `source` are
/// used.
///
/// let p: Int16 = -500
/// // 'p' has a binary representation of 11111110_00001100
/// let q = Int8(truncatingIfNeeded: p)
/// // q == 12
/// // 'q' has a binary representation of 00001100
///
/// When the bit width of `T` is less than this type's bit width, the result
/// is *sign-extended* to fill the remaining bits. That is, if `source` is
/// negative, the result is padded with ones; otherwise, the result is
/// padded with zeros.
///
/// let u: Int8 = 21
/// // 'u' has a binary representation of 00010101
/// let v = Int16(truncatingIfNeeded: u)
/// // v == 21
/// // 'v' has a binary representation of 00000000_00010101
///
/// let w: Int8 = -21
/// // 'w' has a binary representation of 11101011
/// let x = Int16(truncatingIfNeeded: w)
/// // x == -21
/// // 'x' has a binary representation of 11111111_11101011
/// let y = UInt16(truncatingIfNeeded: w)
/// // y == 65515
/// // 'y' has a binary representation of 11111111_11101011
///
/// - Parameter source: An integer to convert to this type.
init<T : BinaryInteger>(truncatingIfNeeded source: T)
/// Creates a new instance with the representable value that's closest to the
/// given integer.
///
/// If the value passed as `source` is greater than the maximum representable
/// value in this type, the result is the type's `max` value. If `source` is
/// less than the smallest representable value in this type, the result is
/// the type's `min` value.
///
/// In this example, `x` is initialized as an `Int8` instance by clamping
/// `500` to the range `-128...127`, and `y` is initialized as a `UInt`
/// instance by clamping `-500` to the range `0...UInt.max`.
///
/// let x = Int8(clamping: 500)
/// // x == 127
/// // x == Int8.max
///
/// let y = UInt(clamping: -500)
/// // y == 0
///
/// - Parameter source: An integer to convert to this type.
init<T : BinaryInteger>(clamping source: T)
/// A type that represents the words of a binary integer.
///
/// The `Words` type must conform to the `RandomAccessCollection` protocol
/// with an `Element` type of `UInt` and `Index` type of `Int.
associatedtype Words : RandomAccessCollection
where Words.Element == UInt, Words.Index == Int
/// A collection containing the words of this value's binary
/// representation, in order from the least significant to most significant.
///
/// Negative values are returned in two's complement representation,
/// regardless of the type's underlying implementation.
var words: Words { get }
/// The least significant word in this value's binary representation.
var _lowWord: UInt { get }
/// The number of bits in the current binary representation of this value.
///
/// This property is a constant for instances of fixed-width integer
/// types.
var bitWidth: Int { get }
/// Returns the integer binary logarithm of this value.
///
/// If the value is negative or zero, a runtime error will occur.
func _binaryLogarithm() -> Int
/// The number of trailing zeros in this value's binary representation.
///
/// For example, in a fixed-width integer type with a `bitWidth` value of 8,
/// the number -8 has three trailing zeros.
///
/// let x = Int8(bitPattern: 0b1111_1000)
/// // x == -8
/// // x.trailingZeroBitCount == 3
var trailingZeroBitCount: Int { get }
/// Returns the quotient of dividing the first value by the second.
///
/// For integer types, any remainder of the division is discarded.
///
/// let x = 21 / 5
/// // x == 4
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by. `rhs` must not be zero.
static func /(lhs: Self, rhs: Self) -> Self
/// Divides the first value by the second and stores the quotient in the
/// left-hand-side variable.
///
/// For integer types, any remainder of the division is discarded.
///
/// var x = 21
/// x /= 5
/// // x == 4
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by. `rhs` must not be zero.
static func /=(lhs: inout Self, rhs: Self)
/// Returns the remainder of dividing the first value by the second.
///
/// The result of the remainder operator (`%`) has the same sign as `lhs` and
/// has a magnitude less than `rhs.magnitude`.
///
/// let x = 22 % 5
/// // x == 2
/// let y = 22 % -5
/// // y == 2
/// let z = -22 % -5
/// // z == -2
///
/// For any two integers `a` and `b`, their quotient `q`, and their remainder
/// `r`, `a == b * q + r`.
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by. `rhs` must not be zero.
static func %(lhs: Self, rhs: Self) -> Self
/// Divides the first value by the second and stores the remainder in the
/// left-hand-side variable.
///
/// The result has the same sign as `lhs` and has a magnitude less than
/// `rhs.magnitude`.
///
/// var x = 22
/// x %= 5
/// // x == 2
///
/// var y = 22
/// y %= -5
/// // y == 2
///
/// var z = -22
/// z %= -5
/// // z == -2
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by. `rhs` must not be zero.
static func %=(lhs: inout Self, rhs: Self)
/// Adds two values and produces their sum.
///
/// The addition operator (`+`) calculates the sum of its two arguments. For
/// example:
///
/// 1 + 2 // 3
/// -10 + 15 // 5
/// -15 + -5 // -20
/// 21.5 + 3.25 // 24.75
///
/// You cannot use `+` with arguments of different types. To add values of
/// different types, convert one of the values to the other value's type.
///
/// let x: Int8 = 21
/// let y: Int = 1000000
/// Int(x) + y // 1000021
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
override static func +(lhs: Self, rhs: Self) -> Self
/// Adds two values and stores the result in the left-hand-side variable.
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
override static func +=(lhs: inout Self, rhs: Self)
/// Subtracts one value from another and produces their difference.
///
/// The subtraction operator (`-`) calculates the difference of its two
/// arguments. For example:
///
/// 8 - 3 // 5
/// -10 - 5 // -15
/// 100 - -5 // 105
/// 10.5 - 100.0 // -89.5
///
/// You cannot use `-` with arguments of different types. To subtract values
/// of different types, convert one of the values to the other value's type.
///
/// let x: UInt8 = 21
/// let y: UInt = 1000000
/// y - UInt(x) // 999979
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
override static func -(lhs: Self, rhs: Self) -> Self
/// Subtracts the second value from the first and stores the difference in the
/// left-hand-side variable.
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
override static func -=(lhs: inout Self, rhs: Self)
/// Multiplies two values and produces their product.
///
/// The multiplication operator (`*`) calculates the product of its two
/// arguments. For example:
///
/// 2 * 3 // 6
/// 100 * 21 // 2100
/// -10 * 15 // -150
/// 3.5 * 2.25 // 7.875
///
/// You cannot use `*` with arguments of different types. To multiply values
/// of different types, convert one of the values to the other value's type.
///
/// let x: Int8 = 21
/// let y: Int = 1000000
/// Int(x) * y // 21000000
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
override static func *(lhs: Self, rhs: Self) -> Self
/// Multiplies two values and stores the result in the left-hand-side
/// variable.
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
override static func *=(lhs: inout Self, rhs: Self)
/// Returns the inverse of the bits set in the argument.
///
/// The bitwise NOT operator (`~`) is a prefix operator that returns a value
/// in which all the bits of its argument are flipped: Bits that are `1` in
/// the argument are `0` in the result, and bits that are `0` in the argument
/// are `1` in the result. This is equivalent to the inverse of a set. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let notX = ~x // 0b11111010
///
/// Performing a bitwise NOT operation on 0 returns a value with every bit
/// set to `1`.
///
/// let allOnes = ~UInt8.min // 0b11111111
///
/// - Complexity: O(1).
static prefix func ~ (_ x: Self) -> Self
/// Returns the result of performing a bitwise AND operation on the two given
/// values.
///
/// A bitwise AND operation results in a value that has each bit set to `1`
/// where *both* of its arguments have that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x & y // 0b00000100
/// // z == 4
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func &(lhs: Self, rhs: Self) -> Self
/// Stores the result of performing a bitwise AND operation on the two given
/// values in the left-hand-side variable.
///
/// A bitwise AND operation results in a value that has each bit set to `1`
/// where *both* of its arguments have that bit set to `1`. For example:
///
/// var x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// x &= y // 0b00000100
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func &=(lhs: inout Self, rhs: Self)
/// Returns the result of performing a bitwise OR operation on the two given
/// values.
///
/// A bitwise OR operation results in a value that has each bit set to `1`
/// where *one or both* of its arguments have that bit set to `1`. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x | y // 0b00001111
/// // z == 15
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func |(lhs: Self, rhs: Self) -> Self
/// Stores the result of performing a bitwise OR operation on the two given
/// values in the left-hand-side variable.
///
/// A bitwise OR operation results in a value that has each bit set to `1`
/// where *one or both* of its arguments have that bit set to `1`. For
/// example:
///
/// var x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// x |= y // 0b00001111
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func |=(lhs: inout Self, rhs: Self)
/// Returns the result of performing a bitwise XOR operation on the two given
/// values.
///
/// A bitwise XOR operation, also known as an exclusive OR operation, results
/// in a value that has each bit set to `1` where *one or the other but not
/// both* of its arguments had that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x ^ y // 0b00001011
/// // z == 11
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func ^(lhs: Self, rhs: Self) -> Self
/// Stores the result of performing a bitwise XOR operation on the two given
/// values in the left-hand-side variable.
///
/// A bitwise XOR operation, also known as an exclusive OR operation, results
/// in a value that has each bit set to `1` where *one or the other but not
/// both* of its arguments had that bit set to `1`. For example:
///
/// var x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// x ^= y // 0b00001011
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func ^=(lhs: inout Self, rhs: Self)
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right.
///
/// The `>>` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a left shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*. An overshift results in `-1` for a
/// negative value of `lhs` or `0` for a nonnegative value.
/// - Using any other value for `rhs` performs a right shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted right by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x >> 2
/// // y == 7 // 0b00000111
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x >> 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a left shift
/// using `abs(rhs)`.
///
/// let a = x >> -3
/// // a == 240 // 0b11110000
/// let b = x << 3
/// // b == 240 // 0b11110000
///
/// Right shift operations on negative values "fill in" the high bits with
/// ones instead of zeros.
///
/// let q: Int8 = -30 // 0b11100010
/// let r = q >> 2
/// // r == -8 // 0b11111000
///
/// let s = q >> 11
/// // s == -1 // 0b11111111
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right.
static func >> <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self
/// Stores the result of shifting a value's binary representation the
/// specified number of digits to the right in the left-hand-side variable.
///
/// The `>>=` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a left shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*. An overshift results in `-1` for a
/// negative value of `lhs` or `0` for a nonnegative value.
/// - Using any other value for `rhs` performs a right shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted right by two bits.
///
/// var x: UInt8 = 30 // 0b00011110
/// x >>= 2
/// // x == 7 // 0b00000111
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// var y: UInt8 = 30 // 0b00011110
/// y >>= 11
/// // y == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a left shift
/// using `abs(rhs)`.
///
/// var a: UInt8 = 30 // 0b00011110
/// a >>= -3
/// // a == 240 // 0b11110000
///
/// var b: UInt8 = 30 // 0b00011110
/// b <<= 3
/// // b == 240 // 0b11110000
///
/// Right shift operations on negative values "fill in" the high bits with
/// ones instead of zeros.
///
/// var q: Int8 = -30 // 0b11100010
/// q >>= 2
/// // q == -8 // 0b11111000
///
/// var r: Int8 = -30 // 0b11100010
/// r >>= 11
/// // r == -1 // 0b11111111
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right.
static func >>= <RHS: BinaryInteger>(lhs: inout Self, rhs: RHS)
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left.
///
/// The `<<` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a right shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*, resulting in zero.
/// - Using any other value for `rhs` performs a left shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted left by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x << 2
/// // y == 120 // 0b01111000
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x << 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a right shift
/// with `abs(rhs)`.
///
/// let a = x << -3
/// // a == 3 // 0b00000011
/// let b = x >> 3
/// // b == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left.
static func << <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self
/// Stores the result of shifting a value's binary representation the
/// specified number of digits to the left in the left-hand-side variable.
///
/// The `<<` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a right shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*, resulting in zero.
/// - Using any other value for `rhs` performs a left shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted left by two bits.
///
/// var x: UInt8 = 30 // 0b00011110
/// x <<= 2
/// // x == 120 // 0b01111000
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// var y: UInt8 = 30 // 0b00011110
/// y <<= 11
/// // y == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a right shift
/// with `abs(rhs)`.
///
/// var a: UInt8 = 30 // 0b00011110
/// a <<= -3
/// // a == 3 // 0b00000011
///
/// var b: UInt8 = 30 // 0b00011110
/// b >>= 3
/// // b == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left.
static func <<=<RHS: BinaryInteger>(lhs: inout Self, rhs: RHS)
/// Returns the quotient and remainder of this value divided by the given
/// value.
///
/// Use this method to calculate the quotient and remainder of a division at
/// the same time.
///
/// let x = 1_000_000
/// let (q, r) = x.quotientAndRemainder(dividingBy: 933)
/// // q == 1071
/// // r == 757
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: A tuple containing the quotient and remainder of this value
/// divided by `rhs`. The remainder has the same sign as `rhs`.
func quotientAndRemainder(dividingBy rhs: Self)
-> (quotient: Self, remainder: Self)
/// Returns `true` if this value is a multiple of the given value, and `false`
/// otherwise.
///
/// For two integers *a* and *b*, *a* is a multiple of *b* if there exists a
/// third integer *q* such that _a = q*b_. For example, *6* is a multiple of
/// *3* because _6 = 2*3_. Zero is a multiple of everything because _0 = 0*x_
/// for any integer *x*.
///
/// Two edge cases are worth particular attention:
/// - `x.isMultiple(of: 0)` is `true` if `x` is zero and `false` otherwise.
/// - `T.min.isMultiple(of: -1)` is `true` for signed integer `T`, even
/// though the quotient `T.min / -1` isn't representable in type `T`.
///
/// - Parameter other: The value to test.
func isMultiple(of other: Self) -> Bool
/// Returns `-1` if this value is negative and `1` if it's positive;
/// otherwise, `0`.
///
/// - Returns: The sign of this number, expressed as an integer of the same
/// type.
func signum() -> Self
}
extension BinaryInteger {
/// Creates a new value equal to zero.
@_transparent
public init() {
self = 0
}
/// Returns `-1` if this value is negative and `1` if it's positive;
/// otherwise, `0`.
///
/// - Returns: The sign of this number, expressed as an integer of the same
/// type.
@inlinable
public func signum() -> Self {
return (self > (0 as Self) ? 1 : 0) - (self < (0 as Self) ? 1 : 0)
}
@_transparent
public var _lowWord: UInt {
var it = words.makeIterator()
return it.next() ?? 0
}
@inlinable
public func _binaryLogarithm() -> Int {
_precondition(self > (0 as Self))
var (quotient, remainder) =
(bitWidth &- 1).quotientAndRemainder(dividingBy: UInt.bitWidth)
remainder = remainder &+ 1
var word = UInt(truncatingIfNeeded: self >> (bitWidth &- remainder))
// If, internally, a variable-width binary integer uses digits of greater
// bit width than that of Magnitude.Words.Element (i.e., UInt), then it is
// possible that `word` could be zero. Additionally, a signed variable-width
// binary integer may have a leading word that is zero to store a clear sign
// bit.
while word == 0 {
quotient = quotient &- 1
remainder = remainder &+ UInt.bitWidth
word = UInt(truncatingIfNeeded: self >> (bitWidth &- remainder))
}
// Note that the order of operations below is important to guarantee that
// we won't overflow.
return UInt.bitWidth &* quotient &+
(UInt.bitWidth &- (word.leadingZeroBitCount &+ 1))
}
/// Returns the quotient and remainder of this value divided by the given
/// value.
///
/// Use this method to calculate the quotient and remainder of a division at
/// the same time.
///
/// let x = 1_000_000
/// let (q, r) = x.quotientAndRemainder(dividingBy: 933)
/// // q == 1071
/// // r == 757
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: A tuple containing the quotient and remainder of this value
/// divided by `rhs`.
@inlinable
public func quotientAndRemainder(dividingBy rhs: Self)
-> (quotient: Self, remainder: Self) {
return (self / rhs, self % rhs)
}
@inlinable
public func isMultiple(of other: Self) -> Bool {
// Nothing but zero is a multiple of zero.
if other == 0 { return self == 0 }
// Do the test in terms of magnitude, which guarantees there are no other
// edge cases. If we write this as `self % other` instead, it could trap
// for types that are not symmetric around zero.
return self.magnitude % other.magnitude == 0
}
//===----------------------------------------------------------------------===//
//===--- Homogeneous ------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// Returns the result of performing a bitwise AND operation on the two given
/// values.
///
/// A bitwise AND operation results in a value that has each bit set to `1`
/// where *both* of its arguments have that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x & y // 0b00000100
/// // z == 4
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
@_transparent
public static func & (lhs: Self, rhs: Self) -> Self {
var lhs = lhs
lhs &= rhs
return lhs
}
/// Returns the result of performing a bitwise OR operation on the two given
/// values.
///
/// A bitwise OR operation results in a value that has each bit set to `1`
/// where *one or both* of its arguments have that bit set to `1`. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x | y // 0b00001111
/// // z == 15
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
@_transparent
public static func | (lhs: Self, rhs: Self) -> Self {
var lhs = lhs
lhs |= rhs
return lhs
}
/// Returns the result of performing a bitwise XOR operation on the two given
/// values.
///
/// A bitwise XOR operation, also known as an exclusive OR operation, results
/// in a value that has each bit set to `1` where *one or the other but not
/// both* of its arguments had that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x ^ y // 0b00001011
/// // z == 11
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
@_transparent
public static func ^ (lhs: Self, rhs: Self) -> Self {
var lhs = lhs
lhs ^= rhs
return lhs
}
//===----------------------------------------------------------------------===//
//===--- Heterogeneous non-masking shift in terms of shift-assignment -----===//
//===----------------------------------------------------------------------===//
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right.
///
/// The `>>` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a left shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*. An overshift results in `-1` for a
/// negative value of `lhs` or `0` for a nonnegative value.
/// - Using any other value for `rhs` performs a right shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted right by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x >> 2
/// // y == 7 // 0b00000111
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x >> 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a left shift
/// using `abs(rhs)`.
///
/// let a = x >> -3
/// // a == 240 // 0b11110000
/// let b = x << 3
/// // b == 240 // 0b11110000
///
/// Right shift operations on negative values "fill in" the high bits with
/// ones instead of zeros.
///
/// let q: Int8 = -30 // 0b11100010
/// let r = q >> 2
/// // r == -8 // 0b11111000
///
/// let s = q >> 11
/// // s == -1 // 0b11111111
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func >> <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self {
var r = lhs
r >>= rhs
return r
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left.
///
/// The `<<` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a right shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*, resulting in zero.
/// - Using any other value for `rhs` performs a left shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted left by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x << 2
/// // y == 120 // 0b01111000
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x << 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a right shift
/// with `abs(rhs)`.
///
/// let a = x << -3
/// // a == 3 // 0b00000011
/// let b = x >> 3
/// // b == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func << <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self {
var r = lhs
r <<= rhs
return r
}
}
//===----------------------------------------------------------------------===//
//===--- CustomStringConvertible conformance ------------------------------===//
//===----------------------------------------------------------------------===//
extension BinaryInteger {
internal func _description(radix: Int, uppercase: Bool) -> String {
_precondition(2...36 ~= radix, "Radix must be between 2 and 36")
if bitWidth <= 64 {
let radix_ = Int64(radix)
return Self.isSigned
? _int64ToString(
Int64(truncatingIfNeeded: self), radix: radix_, uppercase: uppercase)
: _uint64ToString(
UInt64(truncatingIfNeeded: self), radix: radix_, uppercase: uppercase)
}
if self == (0 as Self) { return "0" }
// Bit shifting can be faster than division when `radix` is a power of two
// (although not necessarily the case for builtin types).
let isRadixPowerOfTwo = radix.nonzeroBitCount == 1
let radix_ = Magnitude(radix)
func _quotientAndRemainder(_ value: Magnitude) -> (Magnitude, Magnitude) {
return isRadixPowerOfTwo
? (value >> radix.trailingZeroBitCount, value & (radix_ - 1))
: value.quotientAndRemainder(dividingBy: radix_)
}
let hasLetters = radix > 10
func _ascii(_ digit: UInt8) -> UInt8 {
let base: UInt8
if !hasLetters || digit < 10 {
base = UInt8(("0" as Unicode.Scalar).value)
} else if uppercase {
base = UInt8(("A" as Unicode.Scalar).value) &- 10
} else {
base = UInt8(("a" as Unicode.Scalar).value) &- 10
}
return base &+ digit
}
let isNegative = Self.isSigned && self < (0 as Self)
var value = magnitude
// TODO(FIXME JIRA): All current stdlib types fit in small. Use a stack
// buffer instead of an array on the heap.
var result: [UInt8] = []
while value != 0 {
let (quotient, remainder) = _quotientAndRemainder(value)
result.append(_ascii(UInt8(truncatingIfNeeded: remainder)))
value = quotient
}
if isNegative {
result.append(UInt8(("-" as Unicode.Scalar).value))
}
result.reverse()
return result.withUnsafeBufferPointer {
return String._fromASCII($0)
}
}
/// A textual representation of this value.
public var description: String {
return _description(radix: 10, uppercase: false)
}
}
//===----------------------------------------------------------------------===//
//===--- Strideable conformance -------------------------------------------===//
//===----------------------------------------------------------------------===//
extension BinaryInteger {
/// Returns the distance from this value to the given value, expressed as a
/// stride.
///
/// For two values `x` and `y`, and a distance `n = x.distance(to: y)`,
/// `x.advanced(by: n) == y`.
///
/// - Parameter other: The value to calculate the distance to.
/// - Returns: The distance from this value to `other`.
@inlinable
@inline(__always)
public func distance(to other: Self) -> Int {
if !Self.isSigned {
if self > other {
if let result = Int(exactly: self - other) {
return -result
}
} else {
if let result = Int(exactly: other - self) {
return result
}
}
} else {
let isNegative = self < (0 as Self)
if isNegative == (other < (0 as Self)) {
if let result = Int(exactly: other - self) {
return result
}
} else {
if let result = Int(exactly: self.magnitude + other.magnitude) {
return isNegative ? result : -result
}
}
}
_preconditionFailure("Distance is not representable in Int")
}
/// Returns a value that is offset the specified distance from this value.
///
/// Use the `advanced(by:)` method in generic code to offset a value by a
/// specified distance. If you're working directly with numeric values, use
/// the addition operator (`+`) instead of this method.
///
/// For a value `x`, a distance `n`, and a value `y = x.advanced(by: n)`,
/// `x.distance(to: y) == n`.
///
/// - Parameter n: The distance to advance this value.
/// - Returns: A value that is offset from this value by `n`.
@inlinable
@inline(__always)
public func advanced(by n: Int) -> Self {
if !Self.isSigned {
return n < (0 as Int)
? self - Self(-n)
: self + Self(n)
}
if (self < (0 as Self)) == (n < (0 as Self)) {
return self + Self(n)
}
return self.magnitude < n.magnitude
? Self(Int(self) + n)
: self + Self(n)
}
}
//===----------------------------------------------------------------------===//
//===--- Heterogeneous comparison -----------------------------------------===//
//===----------------------------------------------------------------------===//
extension BinaryInteger {
/// Returns a Boolean value indicating whether the two given values are
/// equal.
///
/// You can check the equality of instances of any `BinaryInteger` types
/// using the equal-to operator (`==`). For example, you can test whether
/// the first `UInt8` value in a string's UTF-8 encoding is equal to the
/// first `UInt32` value in its Unicode scalar view:
///
/// let gameName = "Red Light, Green Light"
/// if let firstUTF8 = gameName.utf8.first,
/// let firstScalar = gameName.unicodeScalars.first?.value {
/// print("First code values are equal: \(firstUTF8 == firstScalar)")
/// }
/// // Prints "First code values are equal: true"
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func == <
Other : BinaryInteger
>(lhs: Self, rhs: Other) -> Bool {
let lhsNegative = Self.isSigned && lhs < (0 as Self)
let rhsNegative = Other.isSigned && rhs < (0 as Other)
if lhsNegative != rhsNegative { return false }
// Here we know the values are of the same sign.
//
// There are a few possible scenarios from here:
//
// 1. Both values are negative
// - If one value is strictly wider than the other, then it is safe to
// convert to the wider type.
// - If the values are of the same width, it does not matter which type we
// choose to convert to as the values are already negative, and thus
// include the sign bit if two's complement representation already.
// 2. Both values are non-negative
// - If one value is strictly wider than the other, then it is safe to
// convert to the wider type.
// - If the values are of the same width, than signedness matters, as not
// unsigned types are 'wider' in a sense they don't need to 'waste' the
// sign bit. Therefore it is safe to convert to the unsigned type.
if lhs.bitWidth < rhs.bitWidth {
return Other(truncatingIfNeeded: lhs) == rhs
}
if lhs.bitWidth > rhs.bitWidth {
return lhs == Self(truncatingIfNeeded: rhs)
}
if Self.isSigned {
return Other(truncatingIfNeeded: lhs) == rhs
}
return lhs == Self(truncatingIfNeeded: rhs)
}
/// Returns a Boolean value indicating whether the two given values are not
/// equal.
///
/// You can check the inequality of instances of any `BinaryInteger` types
/// using the not-equal-to operator (`!=`). For example, you can test
/// whether the first `UInt8` value in a string's UTF-8 encoding is not
/// equal to the first `UInt32` value in its Unicode scalar view:
///
/// let gameName = "Red Light, Green Light"
/// if let firstUTF8 = gameName.utf8.first,
/// let firstScalar = gameName.unicodeScalars.first?.value {
/// print("First code values are different: \(firstUTF8 != firstScalar)")
/// }
/// // Prints "First code values are different: false"
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func != <
Other : BinaryInteger
>(lhs: Self, rhs: Other) -> Bool {
return !(lhs == rhs)
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is less than that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// less-than operator (`<`), even if the two instances are of different
/// types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func < <Other : BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
let lhsNegative = Self.isSigned && lhs < (0 as Self)
let rhsNegative = Other.isSigned && rhs < (0 as Other)
if lhsNegative != rhsNegative { return lhsNegative }
if lhs == (0 as Self) && rhs == (0 as Other) { return false }
// if we get here, lhs and rhs have the same sign. If they're negative,
// then Self and Other are both signed types, and one of them can represent
// values of the other type. Otherwise, lhs and rhs are positive, and one
// of Self, Other may be signed and the other unsigned.
let rhsAsSelf = Self(truncatingIfNeeded: rhs)
let rhsAsSelfNegative = rhsAsSelf < (0 as Self)
// Can we round-trip rhs through Other?
if Other(truncatingIfNeeded: rhsAsSelf) == rhs &&
// This additional check covers the `Int8.max < (128 as UInt8)` case.
// Since the types are of the same width, init(truncatingIfNeeded:)
// will result in a simple bitcast, so that rhsAsSelf would be -128, and
// `lhs < rhsAsSelf` will return false.
// We basically guard against that bitcast by requiring rhs and rhsAsSelf
// to be the same sign.
rhsNegative == rhsAsSelfNegative {
return lhs < rhsAsSelf
}
return Other(truncatingIfNeeded: lhs) < rhs
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is less than or equal to that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// less-than-or-equal-to operator (`<=`), even if the two instances are of
/// different types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func <= <Other : BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
return !(rhs < lhs)
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is greater than or equal to that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// greater-than-or-equal-to operator (`>=`), even if the two instances are
/// of different types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func >= <Other : BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
return !(lhs < rhs)
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is greater than that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// greater-than operator (`>`), even if the two instances are of different
/// types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func > <Other : BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
return rhs < lhs
}
}
//===----------------------------------------------------------------------===//
//===--- Ambiguity breakers -----------------------------------------------===//
//
// These two versions of the operators are not ordered with respect to one
// another, but the compiler choses the second one, and that results in infinite
// recursion.
//
// <T : Comparable>(T, T) -> Bool
// <T : BinaryInteger, U : BinaryInteger>(T, U) -> Bool
//
// so we define:
//
// <T : BinaryInteger>(T, T) -> Bool
//
//===----------------------------------------------------------------------===//
extension BinaryInteger {
@_transparent
public static func != (lhs: Self, rhs: Self) -> Bool {
return !(lhs == rhs)
}
@_transparent
public static func <= (lhs: Self, rhs: Self) -> Bool {
return !(rhs < lhs)
}
@_transparent
public static func >= (lhs: Self, rhs: Self) -> Bool {
return !(lhs < rhs)
}
@_transparent
public static func > (lhs: Self, rhs: Self) -> Bool {
return rhs < lhs
}
}
//===----------------------------------------------------------------------===//
//===--- FixedWidthInteger ------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An integer type that uses a fixed size for every instance.
///
/// The `FixedWidthInteger` protocol adds binary bitwise operations, bit
/// shifts, and overflow handling to the operations supported by the
/// `BinaryInteger` protocol.
///
/// Use the `FixedWidthInteger` protocol as a constraint or extension point
/// when writing operations that depend on bit shifting, performing bitwise
/// operations, catching overflows, or having access to the maximum or minimum
/// representable value of a type. For example, the following code provides a
/// `binaryString` property on every fixed-width integer that represents the
/// number's binary representation, split into 8-bit chunks.
///
/// extension FixedWidthInteger {
/// var binaryString: String {
/// var result: [String] = []
/// for i in 0..<(Self.bitWidth / 8) {
/// let byte = UInt8(truncatingIfNeeded: self >> (i * 8))
/// let byteString = String(byte, radix: 2)
/// let padding = String(repeating: "0",
/// count: 8 - byteString.count)
/// result.append(padding + byteString)
/// }
/// return "0b" + result.reversed().joined(separator: "_")
/// }
/// }
///
/// print(Int16.max.binaryString)
/// // Prints "0b01111111_11111111"
/// print((101 as UInt8).binaryString)
/// // Prints "0b11001001"
///
/// The `binaryString` implementation uses the static `bitWidth` property and
/// the right shift operator (`>>`), both of which are available to any type
/// that conforms to the `FixedWidthInteger` protocol.
///
/// The next example declares a generic `squared` function, which accepts an
/// instance `x` of any fixed-width integer type. The function uses the
/// `multipliedReportingOverflow(by:)` method to multiply `x` by itself and
/// check whether the result is too large to represent in the same type.
///
/// func squared<T: FixedWidthInteger>(_ x: T) -> T? {
/// let (result, overflow) = x.multipliedReportingOverflow(by: x)
/// if overflow {
/// return nil
/// }
/// return result
/// }
///
/// let (x, y): (Int8, Int8) = (9, 123)
/// print(squared(x))
/// // Prints "Optional(81)"
/// print(squared(y))
/// // Prints "nil"
///
/// Conforming to the FixedWidthInteger Protocol
/// ============================================
///
/// To make your own custom type conform to the `FixedWidthInteger` protocol,
/// declare the required initializers, properties, and methods. The required
/// methods that are suffixed with `ReportingOverflow` serve as the
/// customization points for arithmetic operations. When you provide just those
/// methods, the standard library provides default implementations for all
/// other arithmetic methods and operators.
public protocol FixedWidthInteger : BinaryInteger, LosslessStringConvertible
where Magnitude : FixedWidthInteger & UnsignedInteger,
Stride : FixedWidthInteger & SignedInteger {
/// The number of bits used for the underlying binary representation of
/// values of this type.
///
/// An unsigned, fixed-width integer type can represent values from 0 through
/// `(2 ** bitWidth) - 1`, where `**` is exponentiation. A signed,
/// fixed-width integer type can represent values from
/// `-(2 ** (bitWidth - 1))` through `(2 ** (bitWidth - 1)) - 1`. For example,
/// the `Int8` type has a `bitWidth` value of 8 and can store any integer in
/// the range `-128...127`.
static var bitWidth: Int { get }
/// The maximum representable integer in this type.
///
/// For unsigned integer types, this value is `(2 ** bitWidth) - 1`, where
/// `**` is exponentiation. For signed integer types, this value is
/// `(2 ** (bitWidth - 1)) - 1`.
static var max: Self { get }
/// The minimum representable integer in this type.
///
/// For unsigned integer types, this value is always `0`. For signed integer
/// types, this value is `-(2 ** (bitWidth - 1))`, where `**` is
/// exponentiation.
static var min: Self { get }
/// Returns the sum of this value and the given value, along with a Boolean
/// value indicating whether overflow occurred in the operation.
///
/// - Parameter rhs: The value to add to this value.
/// - Returns: A tuple containing the result of the addition along with a
/// Boolean value indicating whether overflow occurred. If the `overflow`
/// component is `false`, the `partialValue` component contains the entire
/// sum. If the `overflow` component is `true`, an overflow occurred and
/// the `partialValue` component contains the truncated sum of this value
/// and `rhs`.
func addingReportingOverflow(
_ rhs: Self
) -> (partialValue: Self, overflow: Bool)
/// Returns the difference obtained by subtracting the given value from this
/// value, along with a Boolean value indicating whether overflow occurred in
/// the operation.
///
/// - Parameter rhs: The value to subtract from this value.
/// - Returns: A tuple containing the result of the subtraction along with a
/// Boolean value indicating whether overflow occurred. If the `overflow`
/// component is `false`, the `partialValue` component contains the entire
/// difference. If the `overflow` component is `true`, an overflow occurred
/// and the `partialValue` component contains the truncated result of `rhs`
/// subtracted from this value.
func subtractingReportingOverflow(
_ rhs: Self
) -> (partialValue: Self, overflow: Bool)
/// Returns the product of this value and the given value, along with a
/// Boolean value indicating whether overflow occurred in the operation.
///
/// - Parameter rhs: The value to multiply by this value.
/// - Returns: A tuple containing the result of the multiplication along with
/// a Boolean value indicating whether overflow occurred. If the `overflow`
/// component is `false`, the `partialValue` component contains the entire
/// product. If the `overflow` component is `true`, an overflow occurred and
/// the `partialValue` component contains the truncated product of this
/// value and `rhs`.
func multipliedReportingOverflow(
by rhs: Self
) -> (partialValue: Self, overflow: Bool)
/// Returns the quotient obtained by dividing this value by the given value,
/// along with a Boolean value indicating whether overflow occurred in the
/// operation.
///
/// Dividing by zero is not an error when using this method. For a value `x`,
/// the result of `x.dividedReportingOverflow(by: 0)` is `(x, true)`.
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: A tuple containing the result of the division along with a
/// Boolean value indicating whether overflow occurred. If the `overflow`
/// component is `false`, the `partialValue` component contains the entire
/// quotient. If the `overflow` component is `true`, an overflow occurred
/// and the `partialValue` component contains either the truncated quotient
/// or, if the quotient is undefined, the dividend.
func dividedReportingOverflow(
by rhs: Self
) -> (partialValue: Self, overflow: Bool)
/// Returns the remainder after dividing this value by the given value, along
/// with a Boolean value indicating whether overflow occurred during division.
///
/// Dividing by zero is not an error when using this method. For a value `x`,
/// the result of `x.remainderReportingOverflow(dividingBy: 0)` is
/// `(x, true)`.
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: A tuple containing the result of the operation along with a
/// Boolean value indicating whether overflow occurred. If the `overflow`
/// component is `false`, the `partialValue` component contains the entire
/// remainder. If the `overflow` component is `true`, an overflow occurred
/// during division and the `partialValue` component contains either the
/// entire remainder or, if the remainder is undefined, the dividend.
func remainderReportingOverflow(
dividingBy rhs: Self
) -> (partialValue: Self, overflow: Bool)
/// Returns a tuple containing the high and low parts of the result of
/// multiplying this value by the given value.
///
/// Use this method to calculate the full result of a product that would
/// otherwise overflow. Unlike traditional truncating multiplication, the
/// `multipliedFullWidth(by:)` method returns a tuple containing both the
/// `high` and `low` parts of the product of this value and `other`. The
/// following example uses this method to multiply two `Int8` values that
/// normally overflow when multiplied:
///
/// let x: Int8 = 48
/// let y: Int8 = -40
/// let result = x.multipliedFullWidth(by: y)
/// // result.high == -8
/// // result.low == 128
///
/// The product of `x` and `y` is `-1920`, which is too large to represent in
/// an `Int8` instance. The `high` and `low` compnents of the `result` value
/// represent `-1920` when concatenated to form a double-width integer; that
/// is, using `result.high` as the high byte and `result.low` as the low byte
/// of an `Int16` instance.
///
/// let z = Int16(result.high) << 8 | Int16(result.low)
/// // z == -1920
///
/// - Parameter other: The value to multiply this value by.
/// - Returns: A tuple containing the high and low parts of the result of
/// multiplying this value and `other`.
func multipliedFullWidth(by other: Self) -> (high: Self, low: Self.Magnitude)
/// Returns a tuple containing the quotient and remainder obtained by dividing
/// the given value by this value.
///
/// The resulting quotient must be representable within the bounds of the
/// type. If the quotient is too large to represent in the type, a runtime
/// error may occur.
///
/// The following example divides a value that is too large to be represented
/// using a single `Int` instance by another `Int` value. Because the quotient
/// is representable as an `Int`, the division succeeds.
///
/// // 'dividend' represents the value 0x506f70652053616e74612049494949
/// let dividend = (22640526660490081, 7959093232766896457 as UInt)
/// let divisor = 2241543570477705381
///
/// let (quotient, remainder) = divisor.dividingFullWidth(dividend)
/// // quotient == 186319822866995413
/// // remainder == 0
///
/// - Parameter dividend: A tuple containing the high and low parts of a
/// double-width integer.
/// - Returns: A tuple containing the quotient and remainder obtained by
/// dividing `dividend` by this value.
func dividingFullWidth(_ dividend: (high: Self, low: Self.Magnitude))
-> (quotient: Self, remainder: Self)
init(_truncatingBits bits: UInt)
/// The number of bits equal to 1 in this value's binary representation.
///
/// For example, in a fixed-width integer type with a `bitWidth` value of 8,
/// the number *31* has five bits equal to *1*.
///
/// let x: Int8 = 0b0001_1111
/// // x == 31
/// // x.nonzeroBitCount == 5
var nonzeroBitCount: Int { get }
/// The number of leading zeros in this value's binary representation.
///
/// For example, in a fixed-width integer type with a `bitWidth` value of 8,
/// the number *31* has three leading zeros.
///
/// let x: Int8 = 0b0001_1111
/// // x == 31
/// // x.leadingZeroBitCount == 3
var leadingZeroBitCount: Int { get }
/// Creates an integer from its big-endian representation, changing the byte
/// order if necessary.
///
/// - Parameter value: A value to use as the big-endian representation of the
/// new integer.
init(bigEndian value: Self)
/// Creates an integer from its little-endian representation, changing the
/// byte order if necessary.
///
/// - Parameter value: A value to use as the little-endian representation of
/// the new integer.
init(littleEndian value: Self)
/// The big-endian representation of this integer.
///
/// If necessary, the byte order of this value is reversed from the typical
/// byte order of this integer type. On a big-endian platform, for any
/// integer `x`, `x == x.bigEndian`.
var bigEndian: Self { get }
/// The little-endian representation of this integer.
///
/// If necessary, the byte order of this value is reversed from the typical
/// byte order of this integer type. On a little-endian platform, for any
/// integer `x`, `x == x.littleEndian`.
var littleEndian: Self { get }
/// A representation of this integer with the byte order swapped.
var byteSwapped: Self { get }
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width.
///
/// Use the masking right shift operator (`&>>`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking right shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &>> 2
/// // y == 7 // 0b00000111
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &>> 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
static func &>>(lhs: Self, rhs: Self) -> Self
/// Calculates the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width, and stores the result in the left-hand-side variable.
///
/// The `&>>=` operator performs a *masking shift*, where the value passed as
/// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
/// shift is performed using this masked value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// var x: UInt8 = 30 // 0b00011110
/// x &>>= 2
/// // x == 7 // 0b00000111
///
/// However, if you use `19` as `rhs`, the operation first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `lhs`.
///
/// var y: UInt8 = 30 // 0b00011110
/// y &>>= 19
/// // y == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
static func &>>=(lhs: inout Self, rhs: Self)
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width.
///
/// Use the masking left shift operator (`&<<`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking left shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &<< 2
/// // y == 120 // 0b01111000
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &<< 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
static func &<<(lhs: Self, rhs: Self) -> Self
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width, and stores the result in the left-hand-side variable.
///
/// The `&<<=` operator performs a *masking shift*, where the value used as
/// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
/// shift is performed using this masked value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// var x: UInt8 = 30 // 0b00011110
/// x &<<= 2
/// // x == 120 // 0b01111000
///
/// However, if you pass `19` as `rhs`, the method first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `lhs`.
///
/// var y: UInt8 = 30 // 0b00011110
/// y &<<= 19
/// // y == 240 // 0b11110000
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
static func &<<=(lhs: inout Self, rhs: Self)
}
extension FixedWidthInteger {
/// The number of bits in the binary representation of this value.
@inlinable
public var bitWidth: Int { return Self.bitWidth }
@inlinable
public func _binaryLogarithm() -> Int {
_precondition(self > (0 as Self))
return Self.bitWidth &- (leadingZeroBitCount &+ 1)
}
/// Creates an integer from its little-endian representation, changing the
/// byte order if necessary.
///
/// - Parameter value: A value to use as the little-endian representation of
/// the new integer.
@inlinable
public init(littleEndian value: Self) {
#if _endian(little)
self = value
#else
self = value.byteSwapped
#endif
}
/// Creates an integer from its big-endian representation, changing the byte
/// order if necessary.
///
/// - Parameter value: A value to use as the big-endian representation of the
/// new integer.
@inlinable
public init(bigEndian value: Self) {
#if _endian(big)
self = value
#else
self = value.byteSwapped
#endif
}
/// The little-endian representation of this integer.
///
/// If necessary, the byte order of this value is reversed from the typical
/// byte order of this integer type. On a little-endian platform, for any
/// integer `x`, `x == x.littleEndian`.
@inlinable
public var littleEndian: Self {
#if _endian(little)
return self
#else
return byteSwapped
#endif
}
/// The big-endian representation of this integer.
///
/// If necessary, the byte order of this value is reversed from the typical
/// byte order of this integer type. On a big-endian platform, for any
/// integer `x`, `x == x.bigEndian`.
@inlinable
public var bigEndian: Self {
#if _endian(big)
return self
#else
return byteSwapped
#endif
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width.
///
/// Use the masking right shift operator (`&>>`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking right shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &>> 2
/// // y == 7 // 0b00000111
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &>> 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &>> (lhs: Self, rhs: Self) -> Self {
var lhs = lhs
lhs &>>= rhs
return lhs
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width.
///
/// Use the masking right shift operator (`&>>`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking right shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &>> 2
/// // y == 7 // 0b00000111
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &>> 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &>> <
Other : BinaryInteger
>(lhs: Self, rhs: Other) -> Self {
return lhs &>> Self(truncatingIfNeeded: rhs)
}
/// Calculates the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width, and stores the result in the left-hand-side variable.
///
/// The `&>>=` operator performs a *masking shift*, where the value passed as
/// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
/// shift is performed using this masked value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// var x: UInt8 = 30 // 0b00011110
/// x &>>= 2
/// // x == 7 // 0b00000111
///
/// However, if you use `19` as `rhs`, the operation first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `lhs`.
///
/// var y: UInt8 = 30 // 0b00011110
/// y &>>= 19
/// // y == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &>>= <
Other : BinaryInteger
>(lhs: inout Self, rhs: Other) {
lhs = lhs &>> rhs
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width.
///
/// Use the masking left shift operator (`&<<`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking left shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &<< 2
/// // y == 120 // 0b01111000
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &<< 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &<< (lhs: Self, rhs: Self) -> Self {
var lhs = lhs
lhs &<<= rhs
return lhs
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width.
///
/// Use the masking left shift operator (`&<<`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking left shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &<< 2
/// // y == 120 // 0b01111000
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &<< 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &<< <
Other : BinaryInteger
>(lhs: Self, rhs: Other) -> Self {
return lhs &<< Self(truncatingIfNeeded: rhs)
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width, and stores the result in the left-hand-side variable.
///
/// The `&<<=` operator performs a *masking shift*, where the value used as
/// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
/// shift is performed using this masked value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// var x: UInt8 = 30 // 0b00011110
/// x &<<= 2
/// // x == 120 // 0b01111000
///
/// However, if you pass `19` as `rhs`, the method first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `lhs`.
///
/// var y: UInt8 = 30 // 0b00011110
/// y &<<= 19
/// // y == 240 // 0b11110000
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &<<= <
Other : BinaryInteger
>(lhs: inout Self, rhs: Other) {
lhs = lhs &<< rhs
}
}
extension FixedWidthInteger {
/// Returns a random value within the specified range, using the given
/// generator as a source for randomness.
///
/// Use this method to generate an integer within a specific range when you
/// are using a custom random number generator. This example creates three
/// new values in the range `1..<100`.
///
/// for _ in 1...3 {
/// print(Int.random(in: 1..<100, using: &myGenerator))
/// }
/// // Prints "7"
/// // Prints "44"
/// // Prints "21"
///
/// - Note: The algorithm used to create random values may change in a future
/// version of Swift. If you're passing a generator that results in the
/// same sequence of integer values each time you run your program, that
/// sequence may change when your program is compiled using a different
/// version of Swift.
///
/// - Parameters:
/// - range: The range in which to create a random value.
/// `range` must not be empty.
/// - generator: The random number generator to use when creating the
/// new random value.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random<T: RandomNumberGenerator>(
in range: Range<Self>,
using generator: inout T
) -> Self {
_precondition(
!range.isEmpty,
"Can't get random value with an empty range"
)
// Compute delta, the distance between the lower and upper bounds. This
// value may not representable by the type Bound if Bound is signed, but
// is always representable as Bound.Magnitude.
let delta = Magnitude(truncatingIfNeeded: range.upperBound &- range.lowerBound)
// The mathematical result we want is lowerBound plus a random value in
// 0 ..< delta. We need to be slightly careful about how we do this
// arithmetic; the Bound type cannot generally represent the random value,
// so we use a wrapping addition on Bound.Magnitude. This will often
// overflow, but produces the correct bit pattern for the result when
// converted back to Bound.
return Self(truncatingIfNeeded:
Magnitude(truncatingIfNeeded: range.lowerBound) &+
generator.next(upperBound: delta)
)
}
/// Returns a random value within the specified range.
///
/// Use this method to generate an integer within a specific range. This
/// example creates three new values in the range `1..<100`.
///
/// for _ in 1...3 {
/// print(Int.random(in: 1..<100))
/// }
/// // Prints "53"
/// // Prints "64"
/// // Prints "5"
///
/// This method is equivalent to calling the version that takes a generator,
/// passing in the system's default random generator.
///
/// - Parameter range: The range in which to create a random value.
/// `range` must not be empty.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random(in range: Range<Self>) -> Self {
var g = SystemRandomNumberGenerator()
return Self.random(in: range, using: &g)
}
/// Returns a random value within the specified range, using the given
/// generator as a source for randomness.
///
/// Use this method to generate an integer within a specific range when you
/// are using a custom random number generator. This example creates three
/// new values in the range `1...100`.
///
/// for _ in 1...3 {
/// print(Int.random(in: 1...100, using: &myGenerator))
/// }
/// // Prints "7"
/// // Prints "44"
/// // Prints "21"
///
/// - Parameters:
/// - range: The range in which to create a random value.
/// - generator: The random number generator to use when creating the
/// new random value.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random<T: RandomNumberGenerator>(
in range: ClosedRange<Self>,
using generator: inout T
) -> Self {
_precondition(
!range.isEmpty,
"Can't get random value with an empty range"
)
// Compute delta, the distance between the lower and upper bounds. This
// value may not representable by the type Bound if Bound is signed, but
// is always representable as Bound.Magnitude.
var delta = Magnitude(truncatingIfNeeded: range.upperBound &- range.lowerBound)
// Subtle edge case: if the range is the whole set of representable values,
// then adding one to delta to account for a closed range will overflow.
// If we used &+ instead, the result would be zero, which isn't helpful,
// so we actually need to handle this case separately.
if delta == Magnitude.max {
return Self(truncatingIfNeeded: generator.next() as Magnitude)
}
// Need to widen delta to account for the right-endpoint of a closed range.
delta += 1
// The mathematical result we want is lowerBound plus a random value in
// 0 ..< delta. We need to be slightly careful about how we do this
// arithmetic; the Bound type cannot generally represent the random value,
// so we use a wrapping addition on Bound.Magnitude. This will often
// overflow, but produces the correct bit pattern for the result when
// converted back to Bound.
return Self(truncatingIfNeeded:
Magnitude(truncatingIfNeeded: range.lowerBound) &+
generator.next(upperBound: delta)
)
}
/// Returns a random value within the specified range.
///
/// Use this method to generate an integer within a specific range. This
/// example creates three new values in the range `1...100`.
///
/// for _ in 1...3 {
/// print(Int.random(in: 1...100))
/// }
/// // Prints "53"
/// // Prints "64"
/// // Prints "5"
///
/// This method is equivalent to calling `random(in:using:)`, passing in the
/// system's default random generator.
///
/// - Parameter range: The range in which to create a random value.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random(in range: ClosedRange<Self>) -> Self {
var g = SystemRandomNumberGenerator()
return Self.random(in: range, using: &g)
}
}
//===----------------------------------------------------------------------===//
//===--- Operators on FixedWidthInteger -----------------------------------===//
//===----------------------------------------------------------------------===//
extension FixedWidthInteger {
/// Returns the inverse of the bits set in the argument.
///
/// The bitwise NOT operator (`~`) is a prefix operator that returns a value
/// in which all the bits of its argument are flipped: Bits that are `1` in
/// the argument are `0` in the result, and bits that are `0` in the argument
/// are `1` in the result. This is equivalent to the inverse of a set. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let notX = ~x // 0b11111010
///
/// Performing a bitwise NOT operation on 0 returns a value with every bit
/// set to `1`.
///
/// let allOnes = ~UInt8.min // 0b11111111
///
/// - Complexity: O(1).
@_transparent
public static prefix func ~ (x: Self) -> Self {
return 0 &- x &- 1
}
//===----------------------------------------------------------------------===//
//=== "Smart right shift", supporting overshifts and negative shifts ------===//
//===----------------------------------------------------------------------===//
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right.
///
/// The `>>` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a left shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*. An overshift results in `-1` for a
/// negative value of `lhs` or `0` for a nonnegative value.
/// - Using any other value for `rhs` performs a right shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted right by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x >> 2
/// // y == 7 // 0b00000111
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x >> 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a left shift
/// using `abs(rhs)`.
///
/// let a = x >> -3
/// // a == 240 // 0b11110000
/// let b = x << 3
/// // b == 240 // 0b11110000
///
/// Right shift operations on negative values "fill in" the high bits with
/// ones instead of zeros.
///
/// let q: Int8 = -30 // 0b11100010
/// let r = q >> 2
/// // r == -8 // 0b11111000
///
/// let s = q >> 11
/// // s == -1 // 0b11111111
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func >> <
Other : BinaryInteger
>(lhs: Self, rhs: Other) -> Self {
var lhs = lhs
_nonMaskingRightShiftGeneric(&lhs, rhs)
return lhs
}
@_transparent
@_semantics("optimize.sil.specialize.generic.partial.never")
public static func >>= <
Other : BinaryInteger
>(lhs: inout Self, rhs: Other) {
_nonMaskingRightShiftGeneric(&lhs, rhs)
}
@_transparent
public static func _nonMaskingRightShiftGeneric <
Other : BinaryInteger
>(_ lhs: inout Self, _ rhs: Other) {
let shift = rhs < -Self.bitWidth ? -Self.bitWidth
: rhs > Self.bitWidth ? Self.bitWidth
: Int(rhs)
lhs = _nonMaskingRightShift(lhs, shift)
}
@_transparent
public static func _nonMaskingRightShift(_ lhs: Self, _ rhs: Int) -> Self {
let overshiftR = Self.isSigned ? lhs &>> (Self.bitWidth - 1) : 0
let overshiftL: Self = 0
if _fastPath(rhs >= 0) {
if _fastPath(rhs < Self.bitWidth) {
return lhs &>> Self(truncatingIfNeeded: rhs)
}
return overshiftR
}
if _slowPath(rhs <= -Self.bitWidth) {
return overshiftL
}
return lhs &<< -rhs
}
//===----------------------------------------------------------------------===//
//=== "Smart left shift", supporting overshifts and negative shifts -------===//
//===----------------------------------------------------------------------===//
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left.
///
/// The `<<` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a right shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*, resulting in zero.
/// - Using any other value for `rhs` performs a left shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted left by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x << 2
/// // y == 120 // 0b01111000
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x << 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a right shift
/// with `abs(rhs)`.
///
/// let a = x << -3
/// // a == 3 // 0b00000011
/// let b = x >> 3
/// // b == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func << <
Other : BinaryInteger
>(lhs: Self, rhs: Other) -> Self {
var lhs = lhs
_nonMaskingLeftShiftGeneric(&lhs, rhs)
return lhs
}
@_transparent
@_semantics("optimize.sil.specialize.generic.partial.never")
public static func <<= <
Other : BinaryInteger
>(lhs: inout Self, rhs: Other) {
_nonMaskingLeftShiftGeneric(&lhs, rhs)
}
@_transparent
public static func _nonMaskingLeftShiftGeneric <
Other : BinaryInteger
>(_ lhs: inout Self, _ rhs: Other) {
let shift = rhs < -Self.bitWidth ? -Self.bitWidth
: rhs > Self.bitWidth ? Self.bitWidth
: Int(rhs)
lhs = _nonMaskingLeftShift(lhs, shift)
}
@_transparent
public static func _nonMaskingLeftShift(_ lhs: Self, _ rhs: Int) -> Self {
let overshiftR = Self.isSigned ? lhs &>> (Self.bitWidth - 1) : 0
let overshiftL: Self = 0
if _fastPath(rhs >= 0) {
if _fastPath(rhs < Self.bitWidth) {
return lhs &<< Self(truncatingIfNeeded: rhs)
}
return overshiftL
}
if _slowPath(rhs <= -Self.bitWidth) {
return overshiftR
}
return lhs &>> -rhs
}
}
extension FixedWidthInteger {
@inlinable
@_semantics("optimize.sil.specialize.generic.partial.never")
public // @testable
static func _convert<Source : BinaryFloatingPoint>(
from source: Source
) -> (value: Self?, exact: Bool) {
guard _fastPath(!source.isZero) else { return (0, true) }
guard _fastPath(source.isFinite) else { return (nil, false) }
guard Self.isSigned || source > -1 else { return (nil, false) }
let exponent = source.exponent
if _slowPath(Self.bitWidth <= exponent) { return (nil, false) }
let minBitWidth = source.significandWidth
let isExact = (minBitWidth <= exponent)
let bitPattern = source.significandBitPattern
// `RawSignificand.bitWidth` is not available if `RawSignificand` does not
// conform to `FixedWidthInteger`; we can compute this value as follows if
// `source` is finite:
let bitWidth = minBitWidth &+ bitPattern.trailingZeroBitCount
let shift = exponent - Source.Exponent(bitWidth)
// Use `Self.Magnitude` to prevent sign extension if `shift < 0`.
let shiftedBitPattern = Self.Magnitude.bitWidth > bitWidth
? Self.Magnitude(truncatingIfNeeded: bitPattern) << shift
: Self.Magnitude(truncatingIfNeeded: bitPattern << shift)
if _slowPath(Self.isSigned && Self.bitWidth &- 1 == exponent) {
return source < 0 && shiftedBitPattern == 0
? (Self.min, isExact)
: (nil, false)
}
let magnitude = ((1 as Self.Magnitude) << exponent) | shiftedBitPattern
return (
Self.isSigned && source < 0 ? 0 &- Self(magnitude) : Self(magnitude),
isExact)
}
/// Creates an integer from the given floating-point value, rounding toward
/// zero. Any fractional part of the value passed as `source` is removed.
///
/// let x = Int(21.5)
/// // x == 21
/// let y = Int(-21.5)
/// // y == -21
///
/// If `source` is outside the bounds of this type after rounding toward
/// zero, a runtime error may occur.
///
/// let z = UInt(-21.5)
/// // Error: ...outside the representable range
///
/// - Parameter source: A floating-point value to convert to an integer.
/// `source` must be representable in this type after rounding toward
/// zero.
@inlinable
@_semantics("optimize.sil.specialize.generic.partial.never")
@inline(__always)
public init<T : BinaryFloatingPoint>(_ source: T) {
guard let value = Self._convert(from: source).value else {
fatalError("""
\(T.self) value cannot be converted to \(Self.self) because it is \
outside the representable range
""")
}
self = value
}
/// Creates an integer from the given floating-point value, if it can be
/// represented exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `21.0`, while the attempt to initialize the
/// constant `y` from `21.5` fails:
///
/// let x = Int(exactly: 21.0)
/// // x == Optional(21)
/// let y = Int(exactly: 21.5)
/// // y == nil
///
/// - Parameter source: A floating-point value to convert to an integer.
@_semantics("optimize.sil.specialize.generic.partial.never")
@inlinable
public init?<T : BinaryFloatingPoint>(exactly source: T) {
let (temporary, exact) = Self._convert(from: source)
guard exact, let value = temporary else {
return nil
}
self = value
}
/// Creates a new instance with the representable value that's closest to the
/// given integer.
///
/// If the value passed as `source` is greater than the maximum representable
/// value in this type, the result is the type's `max` value. If `source` is
/// less than the smallest representable value in this type, the result is
/// the type's `min` value.
///
/// In this example, `x` is initialized as an `Int8` instance by clamping
/// `500` to the range `-128...127`, and `y` is initialized as a `UInt`
/// instance by clamping `-500` to the range `0...UInt.max`.
///
/// let x = Int8(clamping: 500)
/// // x == 127
/// // x == Int8.max
///
/// let y = UInt(clamping: -500)
/// // y == 0
///
/// - Parameter source: An integer to convert to this type.
@inlinable
@_semantics("optimize.sil.specialize.generic.partial.never")
public init<Other : BinaryInteger>(clamping source: Other) {
if _slowPath(source < Self.min) {
self = Self.min
}
else if _slowPath(source > Self.max) {
self = Self.max
}
else { self = Self(truncatingIfNeeded: source) }
}
/// Creates a new instance from the bit pattern of the given instance by
/// truncating or sign-extending if needed to fit this type.
///
/// When the bit width of `T` (the type of `source`) is equal to or greater
/// than this type's bit width, the result is the truncated
/// least-significant bits of `source`. For example, when converting a
/// 16-bit value to an 8-bit type, only the lower 8 bits of `source` are
/// used.
///
/// let p: Int16 = -500
/// // 'p' has a binary representation of 11111110_00001100
/// let q = Int8(truncatingIfNeeded: p)
/// // q == 12
/// // 'q' has a binary representation of 00001100
///
/// When the bit width of `T` is less than this type's bit width, the result
/// is *sign-extended* to fill the remaining bits. That is, if `source` is
/// negative, the result is padded with ones; otherwise, the result is
/// padded with zeros.
///
/// let u: Int8 = 21
/// // 'u' has a binary representation of 00010101
/// let v = Int16(truncatingIfNeeded: u)
/// // v == 21
/// // 'v' has a binary representation of 00000000_00010101
///
/// let w: Int8 = -21
/// // 'w' has a binary representation of 11101011
/// let x = Int16(truncatingIfNeeded: w)
/// // x == -21
/// // 'x' has a binary representation of 11111111_11101011
/// let y = UInt16(truncatingIfNeeded: w)
/// // y == 65515
/// // 'y' has a binary representation of 11111111_11101011
///
/// - Parameter source: An integer to convert to this type.
@inlinable // FIXME(inline-always)
@inline(__always)
public init<T : BinaryInteger>(truncatingIfNeeded source: T) {
if Self.bitWidth <= Int.bitWidth {
self = Self(_truncatingBits: source._lowWord)
}
else {
let neg = source < (0 as T)
var result: Self = neg ? ~0 : 0
var shift: Self = 0
let width = Self(_truncatingBits: Self.bitWidth._lowWord)
for word in source.words {
guard shift < width else { break }
// Masking shift is OK here because we have already ensured
// that shift < Self.bitWidth. Not masking results in
// infinite recursion.
result ^= Self(_truncatingBits: neg ? ~word : word) &<< shift
shift += Self(_truncatingBits: Int.bitWidth._lowWord)
}
self = result
}
}
@_transparent
public // transparent
static var _highBitIndex: Self {
return Self.init(_truncatingBits: UInt(Self.bitWidth._value) &- 1)
}
/// Returns the sum of the two given values, wrapping the result in case of
/// any overflow.
///
/// The overflow addition operator (`&+`) discards any bits that overflow the
/// fixed width of the integer type. In the following example, the sum of
/// `100` and `121` is greater than the maximum representable `Int8` value,
/// so the result is the partial value after discarding the overflowing
/// bits.
///
/// let x: Int8 = 10 &+ 21
/// // x == 31
/// let y: Int8 = 100 &+ 121
/// // y == -35 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
@_transparent
public static func &+ (lhs: Self, rhs: Self) -> Self {
return lhs.addingReportingOverflow(rhs).partialValue
}
/// Adds two values and stores the result in the left-hand-side variable,
/// wrapping any overflow.
///
/// The masking addition assignment operator (`&+=`) silently wraps any
/// overflow that occurs during the operation. In the following example, the
/// sum of `100` and `121` is greater than the maximum representable `Int8`
/// value, so the result is the partial value after discarding the
/// overflowing bits.
///
/// var x: Int8 = 10
/// x &+= 21
/// // x == 31
/// var y: Int8 = 100
/// y &+= 121
/// // y == -35 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
@_transparent
public static func &+= (lhs: inout Self, rhs: Self) {
lhs = lhs &+ rhs
}
/// Returns the difference of the two given values, wrapping the result in
/// case of any overflow.
///
/// The overflow subtraction operator (`&-`) discards any bits that overflow
/// the fixed width of the integer type. In the following example, the
/// difference of `10` and `21` is less than zero, the minimum representable
/// `UInt` value, so the result is the partial value after discarding the
/// overflowing bits.
///
/// let x: UInt8 = 21 &- 10
/// // x == 11
/// let y: UInt8 = 10 &- 21
/// // y == 245 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
@_transparent
public static func &- (lhs: Self, rhs: Self) -> Self {
return lhs.subtractingReportingOverflow(rhs).partialValue
}
/// Subtracts the second value from the first and stores the difference in the
/// left-hand-side variable, wrapping any overflow.
///
/// The masking subtraction assignment operator (`&-=`) silently wraps any
/// overflow that occurs during the operation. In the following example, the
/// difference of `10` and `21` is less than zero, the minimum representable
/// `UInt` value, so the result is the result is the partial value after
/// discarding the overflowing bits.
///
/// var x: Int8 = 21
/// x &-= 10
/// // x == 11
/// var y: UInt8 = 10
/// y &-= 21
/// // y == 245 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
@_transparent
public static func &-= (lhs: inout Self, rhs: Self) {
lhs = lhs &- rhs
}
/// Returns the product of the two given values, wrapping the result in case
/// of any overflow.
///
/// The overflow multiplication operator (`&*`) discards any bits that
/// overflow the fixed width of the integer type. In the following example,
/// the product of `10` and `50` is greater than the maximum representable
/// `Int8` value, so the result is the partial value after discarding the
/// overflowing bits.
///
/// let x: Int8 = 10 &* 5
/// // x == 50
/// let y: Int8 = 10 &* 50
/// // y == -12 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
@_transparent
public static func &* (lhs: Self, rhs: Self) -> Self {
return lhs.multipliedReportingOverflow(by: rhs).partialValue
}
/// Multiplies two values and stores the result in the left-hand-side
/// variable, wrapping any overflow.
///
/// The masking multiplication assignment operator (`&*=`) silently wraps
/// any overflow that occurs during the operation. In the following example,
/// the product of `10` and `50` is greater than the maximum representable
/// `Int8` value, so the result is the partial value after discarding the
/// overflowing bits.
///
/// var x: Int8 = 10
/// x &*= 5
/// // x == 50
/// var y: Int8 = 10
/// y &*= 50
/// // y == -12 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
@_transparent
public static func &*= (lhs: inout Self, rhs: Self) {
lhs = lhs &* rhs
}
}
extension FixedWidthInteger {
@inlinable
public static func _random<R: RandomNumberGenerator>(
using generator: inout R
) -> Self {
if bitWidth <= UInt64.bitWidth {
return Self(truncatingIfNeeded: generator.next() as UInt64)
}
let (quotient, remainder) = bitWidth.quotientAndRemainder(
dividingBy: UInt64.bitWidth
)
var tmp: Self = 0
for i in 0 ..< quotient + remainder.signum() {
let next: UInt64 = generator.next()
tmp += Self(truncatingIfNeeded: next) &<< (UInt64.bitWidth * i)
}
return tmp
}
}
//===----------------------------------------------------------------------===//
//===--- UnsignedInteger --------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An integer type that can represent only nonnegative values.
public protocol UnsignedInteger : BinaryInteger { }
extension UnsignedInteger {
/// The magnitude of this value.
///
/// Every unsigned integer is its own magnitude, so for any value `x`,
/// `x == x.magnitude`.
///
/// The global `abs(_:)` function provides more familiar syntax when you need
/// to find an absolute value. In addition, because `abs(_:)` always returns
/// a value of the same type, even in a generic context, using the function
/// instead of the `magnitude` property is encouraged.
@inlinable // FIXME(inline-always)
public var magnitude: Self {
@inline(__always)
get { return self }
}
/// A Boolean value indicating whether this type is a signed integer type.
///
/// This property is always `false` for unsigned integer types.
@inlinable // FIXME(inline-always)
public static var isSigned: Bool {
@inline(__always)
get { return false }
}
}
extension UnsignedInteger where Self : FixedWidthInteger {
/// Creates a new instance from the given integer.
///
/// Use this initializer to convert from another integer type when you know
/// the value is within the bounds of this type. Passing a value that can't
/// be represented in this type results in a runtime error.
///
/// In the following example, the constant `y` is successfully created from
/// `x`, an `Int` instance with a value of `100`. Because the `Int8` type
/// can represent `127` at maximum, the attempt to create `z` with a value
/// of `1000` results in a runtime error.
///
/// let x = 100
/// let y = Int8(x)
/// // y == 100
/// let z = Int8(x * 10)
/// // Error: Not enough bits to represent the given value
///
/// - Parameter source: A value to convert to this type of integer. The value
/// passed as `source` must be representable in this type.
@_semantics("optimize.sil.specialize.generic.partial.never")
@inlinable // FIXME(inline-always)
@inline(__always)
public init<T : BinaryInteger>(_ source: T) {
// This check is potentially removable by the optimizer
if T.isSigned {
_precondition(source >= (0 as T), "Negative value is not representable")
}
// This check is potentially removable by the optimizer
if source.bitWidth >= Self.bitWidth {
_precondition(source <= Self.max,
"Not enough bits to represent the passed value")
}
self.init(truncatingIfNeeded: source)
}
/// Creates a new instance from the given integer, if it can be represented
/// exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `100`, while the attempt to initialize the
/// constant `y` from `1_000` fails because the `Int8` type can represent
/// `127` at maximum:
///
/// let x = Int8(exactly: 100)
/// // x == Optional(100)
/// let y = Int8(exactly: 1_000)
/// // y == nil
///
/// - Parameter source: A value to convert to this type of integer.
@_semantics("optimize.sil.specialize.generic.partial.never")
@inlinable // FIXME(inline-always)
@inline(__always)
public init?<T : BinaryInteger>(exactly source: T) {
// This check is potentially removable by the optimizer
if T.isSigned && source < (0 as T) {
return nil
}
// The width check can be eliminated by the optimizer
if source.bitWidth >= Self.bitWidth &&
source > Self.max {
return nil
}
self.init(truncatingIfNeeded: source)
}
/// The maximum representable integer in this type.
///
/// For unsigned integer types, this value is `(2 ** bitWidth) - 1`, where
/// `**` is exponentiation.
@_transparent
public static var max: Self { return ~0 }
/// The minimum representable integer in this type.
///
/// For unsigned integer types, this value is always `0`.
@_transparent
public static var min: Self { return 0 }
}
//===----------------------------------------------------------------------===//
//===--- SignedInteger ----------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An integer type that can represent both positive and negative values.
public protocol SignedInteger : BinaryInteger, SignedNumeric {
// These requirements are for the source code compatibility with Swift 3
static func _maskingAdd(_ lhs: Self, _ rhs: Self) -> Self
static func _maskingSubtract(_ lhs: Self, _ rhs: Self) -> Self
}
extension SignedInteger {
/// A Boolean value indicating whether this type is a signed integer type.
///
/// This property is always `true` for signed integer types.
@inlinable // FIXME(inline-always)
public static var isSigned: Bool {
@inline(__always)
get { return true }
}
}
extension SignedInteger where Self : FixedWidthInteger {
/// Creates a new instance from the given integer.
///
/// Use this initializer to convert from another integer type when you know
/// the value is within the bounds of this type. Passing a value that can't
/// be represented in this type results in a runtime error.
///
/// In the following example, the constant `y` is successfully created from
/// `x`, an `Int` instance with a value of `100`. Because the `Int8` type
/// can represent `127` at maximum, the attempt to create `z` with a value
/// of `1000` results in a runtime error.
///
/// let x = 100
/// let y = Int8(x)
/// // y == 100
/// let z = Int8(x * 10)
/// // Error: Not enough bits to represent the given value
///
/// - Parameter source: A value to convert to this type of integer. The value
/// passed as `source` must be representable in this type.
@_semantics("optimize.sil.specialize.generic.partial.never")
@inlinable // FIXME(inline-always)
@inline(__always)
public init<T : BinaryInteger>(_ source: T) {
// This check is potentially removable by the optimizer
if T.isSigned && source.bitWidth > Self.bitWidth {
_precondition(source >= Self.min,
"Not enough bits to represent a signed value")
}
// This check is potentially removable by the optimizer
if (source.bitWidth > Self.bitWidth) ||
(source.bitWidth == Self.bitWidth && !T.isSigned) {
_precondition(source <= Self.max,
"Not enough bits to represent the passed value")
}
self.init(truncatingIfNeeded: source)
}
/// Creates a new instance from the given integer, if it can be represented
/// exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `100`, while the attempt to initialize the
/// constant `y` from `1_000` fails because the `Int8` type can represent
/// `127` at maximum:
///
/// let x = Int8(exactly: 100)
/// // x == Optional(100)
/// let y = Int8(exactly: 1_000)
/// // y == nil
///
/// - Parameter source: A value to convert to this type of integer.
@_semantics("optimize.sil.specialize.generic.partial.never")
@inlinable // FIXME(inline-always)
@inline(__always)
public init?<T : BinaryInteger>(exactly source: T) {
// This check is potentially removable by the optimizer
if T.isSigned && source.bitWidth > Self.bitWidth && source < Self.min {
return nil
}
// The width check can be eliminated by the optimizer
if (source.bitWidth > Self.bitWidth ||
(source.bitWidth == Self.bitWidth && !T.isSigned)) &&
source > Self.max {
return nil
}
self.init(truncatingIfNeeded: source)
}
/// The maximum representable integer in this type.
///
/// For signed integer types, this value is `(2 ** (bitWidth - 1)) - 1`,
/// where `**` is exponentiation.
@_transparent
public static var max: Self { return ~min }
/// The minimum representable integer in this type.
///
/// For signed integer types, this value is `-(2 ** (bitWidth - 1))`, where
/// `**` is exponentiation.
@_transparent
public static var min: Self {
return (-1 as Self) &<< Self._highBitIndex
}
@inlinable
public func isMultiple(of other: Self) -> Bool {
// Nothing but zero is a multiple of zero.
if other == 0 { return self == 0 }
// Special case to avoid overflow on .min / -1 for signed types.
if other == -1 { return true }
// Having handled those special cases, this is safe.
return self % other == 0
}
}
/// Returns the given integer as the equivalent value in a different integer
/// type.
///
/// The `numericCast(_:)` function traps on overflow in `-O` and `-Onone`
/// builds.
///
/// You can use `numericCast(_:)` to convert a value when the destination type
/// can be inferred from the context. In the following example, the
/// `random(in:)` function uses `numericCast(_:)` twice to convert the
/// argument and return value of the `arc4random_uniform(_:)` function to the
/// appropriate type.
///
/// func random(in range: Range<Int>) -> Int {
/// return numericCast(arc4random_uniform(numericCast(range.count)))
/// + range.lowerBound
/// }
///
/// let number = random(in: -10...<10)
/// // number == -3, perhaps
///
/// - Parameter x: The integer to convert, and instance of type `T`.
/// - Returns: The value of `x` converted to type `U`.
@inlinable
public func numericCast<T : BinaryInteger, U : BinaryInteger>(_ x: T) -> U {
return U(x)
}
// FIXME(integers): Absence of &+ causes ambiguity in the code like the
// following:
// func f<T : SignedInteger>(_ x: T, _ y: T) {
// var _ = (x &+ (y - 1)) < x
// }
// Compiler output:
// error: ambiguous reference to member '-'
// var _ = (x &+ (y - 1)) < x
// ^
extension SignedInteger {
@_transparent
public static func _maskingAdd(_ lhs: Self, _ rhs: Self) -> Self {
fatalError("Should be overridden in a more specific type")
}
@_transparent
public static func _maskingSubtract(_ lhs: Self, _ rhs: Self) -> Self {
fatalError("Should be overridden in a more specific type")
}
}
extension SignedInteger where Self : FixedWidthInteger {
// This overload is supposed to break the ambiguity between the
// implementations on SignedInteger and FixedWidthInteger
@_transparent
public static func &+ (lhs: Self, rhs: Self) -> Self {
return _maskingAdd(lhs, rhs)
}
@_transparent
public static func _maskingAdd(_ lhs: Self, _ rhs: Self) -> Self {
return lhs.addingReportingOverflow(rhs).partialValue
}
// This overload is supposed to break the ambiguity between the
// implementations on SignedInteger and FixedWidthInteger
@_transparent
public static func &- (lhs: Self, rhs: Self) -> Self {
return _maskingSubtract(lhs, rhs)
}
@_transparent
public static func _maskingSubtract(_ lhs: Self, _ rhs: Self) -> Self {
return lhs.subtractingReportingOverflow(rhs).partialValue
}
}