blob: 6933ca3ce82f46f611abd8e32b51c62cf4765e9e [file] [log] [blame]
//===--- FloatingPoint.swift ----------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A floating-point numeric type.
///
/// Floating-point types are used to represent fractional numbers, like 5.5,
/// 100.0, or 3.14159274. Each floating-point type has its own possible range
/// and precision. The floating-point types in the standard library are
/// `Float`, `Double`, and `Float80` where available.
///
/// Create new instances of floating-point types using integer or
/// floating-point literals. For example:
///
/// let temperature = 33.2
/// let recordHigh = 37.5
///
/// The `FloatingPoint` protocol declares common arithmetic operations, so you
/// can write functions and algorithms that work on any floating-point type.
/// The following example declares a function that calculates the length of
/// the hypotenuse of a right triangle given its two perpendicular sides.
/// Because the `hypotenuse(_:_:)` function uses a generic parameter
/// constrained to the `FloatingPoint` protocol, you can call it using any
/// floating-point type.
///
/// func hypotenuse<T: FloatingPoint>(_ a: T, _ b: T) -> T {
/// return (a * a + b * b).squareRoot()
/// }
///
/// let (dx, dy) = (3.0, 4.0)
/// let distance = hypotenuse(dx, dy)
/// // distance == 5.0
///
/// Floating-point values are represented as a *sign* and a *magnitude*, where
/// the magnitude is calculated using the type's *radix* and the instance's
/// *significand* and *exponent*. This magnitude calculation takes the
/// following form for a floating-point value `x` of type `F`, where `**` is
/// exponentiation:
///
/// x.significand * F.radix ** x.exponent
///
/// Here's an example of the number -8.5 represented as an instance of the
/// `Double` type, which defines a radix of 2.
///
/// let y = -8.5
/// // y.sign == .minus
/// // y.significand == 1.0625
/// // y.exponent == 3
///
/// let magnitude = 1.0625 * Double(2 ** 3)
/// // magnitude == 8.5
///
/// Types that conform to the `FloatingPoint` protocol provide most basic
/// (clause 5) operations of the [IEEE 754 specification][spec]. The base,
/// precision, and exponent range are not fixed in any way by this protocol,
/// but it enforces the basic requirements of any IEEE 754 floating-point
/// type.
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// Additional Considerations
/// =========================
///
/// In addition to representing specific numbers, floating-point types also
/// have special values for working with overflow and nonnumeric results of
/// calculation.
///
/// Infinity
/// --------
///
/// Any value whose magnitude is so great that it would round to a value
/// outside the range of representable numbers is rounded to *infinity*. For a
/// type `F`, positive and negative infinity are represented as `F.infinity`
/// and `-F.infinity`, respectively. Positive infinity compares greater than
/// every finite value and negative infinity, while negative infinity compares
/// less than every finite value and positive infinity. Infinite values with
/// the same sign are equal to each other.
///
/// let values: [Double] = [10.0, 25.0, -10.0, .infinity, -.infinity]
/// print(values.sorted())
/// // Prints "[-inf, -10.0, 10.0, 25.0, inf]"
///
/// Operations with infinite values follow real arithmetic as much as possible:
/// Adding or subtracting a finite value, or multiplying or dividing infinity
/// by a nonzero finite value, results in infinity.
///
/// NaN ("not a number")
/// --------------------
///
/// Floating-point types represent values that are neither finite numbers nor
/// infinity as NaN, an abbreviation for "not a number." Comparing a NaN with
/// any value, including another NaN, results in `false`.
///
/// let myNaN = Double.nan
/// print(myNaN > 0)
/// // Prints "false"
/// print(myNaN < 0)
/// // Prints "false"
/// print(myNaN == .nan)
/// // Prints "false"
///
/// Because testing whether one NaN is equal to another NaN results in `false`,
/// use the `isNaN` property to test whether a value is NaN.
///
/// print(myNaN.isNaN)
/// // Prints "true"
///
/// NaN propagates through many arithmetic operations. When you are operating
/// on many values, this behavior is valuable because operations on NaN simply
/// forward the value and don't cause runtime errors. The following example
/// shows how NaN values operate in different contexts.
///
/// Imagine you have a set of temperature data for which you need to report
/// some general statistics: the total number of observations, the number of
/// valid observations, and the average temperature. First, a set of
/// observations in Celsius is parsed from strings to `Double` values:
///
/// let temperatureData = ["21.5", "19.25", "27", "no data", "28.25", "no data", "23"]
/// let tempsCelsius = temperatureData.map { Double($0) ?? .nan }
/// // tempsCelsius == [21.5, 19.25, 27, nan, 28.25, nan, 23.0]
///
/// Note that some elements in the `temperatureData ` array are not valid
/// numbers. When these invalid strings are parsed by the `Double` failable
/// initializer, the example uses the nil-coalescing operator (`??`) to
/// provide NaN as a fallback value.
///
/// Next, the observations in Celsius are converted to Fahrenheit:
///
/// let tempsFahrenheit = tempsCelsius.map { $0 * 1.8 + 32 }
/// // tempsFahrenheit == [70.7, 66.65, 80.6, nan, 82.85, nan, 73.4]
///
/// The NaN values in the `tempsCelsius` array are propagated through the
/// conversion and remain NaN in `tempsFahrenheit`.
///
/// Because calculating the average of the observations involves combining
/// every value of the `tempsFahrenheit` array, any NaN values cause the
/// result to also be NaN, as seen in this example:
///
/// let badAverage = tempsFahrenheit.reduce(0.0, combine: +) / Double(tempsFahrenheit.count)
/// // badAverage.isNaN == true
///
/// Instead, when you need an operation to have a specific numeric result,
/// filter out any NaN values using the `isNaN` property.
///
/// let validTemps = tempsFahrenheit.filter { !$0.isNaN }
/// let average = validTemps.reduce(0.0, combine: +) / Double(validTemps.count)
///
/// Finally, report the average temperature and observation counts:
///
/// print("Average: \(average)°F in \(validTemps.count) " +
/// "out of \(tempsFahrenheit.count) observations.")
/// // Prints "Average: 74.84°F in 5 out of 7 observations."
public protocol FloatingPoint : SignedNumeric, Strideable, Hashable
where Magnitude == Self {
/// A type that can represent any written exponent.
associatedtype Exponent: SignedInteger
/// Creates a new value from the given sign, exponent, and significand.
///
/// The following example uses this initializer to create a new `Double`
/// instance. `Double` is a binary floating-point type that has a radix of
/// `2`.
///
/// let x = Double(sign: .plus, exponent: -2, significand: 1.5)
/// // x == 0.375
///
/// This initializer is equivalent to the following calculation, where `**`
/// is exponentiation, computed as if by a single, correctly rounded,
/// floating-point operation:
///
/// let sign: FloatingPointSign = .plus
/// let exponent = -2
/// let significand = 1.5
/// let y = (sign == .minus ? -1 : 1) * significand * Double.radix ** exponent
/// // y == 0.375
///
/// As with any basic operation, if this value is outside the representable
/// range of the type, overflow or underflow occurs, and zero, a subnormal
/// value, or infinity may result. In addition, there are two other edge
/// cases:
///
/// - If the value you pass to `significand` is zero or infinite, the result
/// is zero or infinite, regardless of the value of `exponent`.
/// - If the value you pass to `significand` is NaN, the result is NaN.
///
/// For any floating-point value `x` of type `F`, the result of the following
/// is equal to `x`, with the distinction that the result is canonicalized
/// if `x` is in a noncanonical encoding:
///
/// let x0 = F(sign: x.sign, exponent: x.exponent, significand: x.significand)
///
/// This initializer implements the `scaleB` operation defined by the [IEEE
/// 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - sign: The sign to use for the new value.
/// - exponent: The new value's exponent.
/// - significand: The new value's significand.
init(sign: FloatingPointSign, exponent: Exponent, significand: Self)
/// Creates a new floating-point value using the sign of one value and the
/// magnitude of another.
///
/// The following example uses this initializer to create a new `Double`
/// instance with the sign of `a` and the magnitude of `b`:
///
/// let a = -21.5
/// let b = 305.15
/// let c = Double(signOf: a, magnitudeOf: b)
/// print(c)
/// // Prints "-305.15"
///
/// This initializer implements the IEEE 754 `copysign` operation.
///
/// - Parameters:
/// - signOf: A value from which to use the sign. The result of the
/// initializer has the same sign as `signOf`.
/// - magnitudeOf: A value from which to use the magnitude. The result of
/// the initializer has the same magnitude as `magnitudeOf`.
init(signOf: Self, magnitudeOf: Self)
/// Creates a new value, rounded to the closest possible representation.
///
/// If two representable values are equally close, the result is the value
/// with more trailing zeros in its significand bit pattern.
///
/// - Parameter value: The integer to convert to a floating-point value.
init(_ value: Int)
/// Creates a new value, rounded to the closest possible representation.
///
/// If two representable values are equally close, the result is the value
/// with more trailing zeros in its significand bit pattern.
///
/// - Parameter value: The integer to convert to a floating-point value.
init<Source : BinaryInteger>(_ value: Source)
/// Creates a new value, if the given integer can be represented exactly.
///
/// If the given integer cannot be represented exactly, the result is `nil`.
///
/// - Parameter value: The integer to convert to a floating-point value.
init?<Source : BinaryInteger>(exactly value: Source)
/// The radix, or base of exponentiation, for a floating-point type.
///
/// The magnitude of a floating-point value `x` of type `F` can be calculated
/// by using the following formula, where `**` is exponentiation:
///
/// let magnitude = x.significand * F.radix ** x.exponent
///
/// A conforming type may use any integer radix, but values other than 2 (for
/// binary floating-point types) or 10 (for decimal floating-point types)
/// are extraordinarily rare in practice.
static var radix: Int { get }
/// A quiet NaN ("not a number").
///
/// A NaN compares not equal, not greater than, and not less than every
/// value, including itself. Passing a NaN to an operation generally results
/// in NaN.
///
/// let x = 1.21
/// // x > Double.nan == false
/// // x < Double.nan == false
/// // x == Double.nan == false
///
/// Because a NaN always compares not equal to itself, to test whether a
/// floating-point value is NaN, use its `isNaN` property instead of the
/// equal-to operator (`==`). In the following example, `y` is NaN.
///
/// let y = x + Double.nan
/// print(y == Double.nan)
/// // Prints "false"
/// print(y.isNaN)
/// // Prints "true"
static var nan: Self { get }
/// A signaling NaN ("not a number").
///
/// The default IEEE 754 behavior of operations involving a signaling NaN is
/// to raise the Invalid flag in the floating-point environment and return a
/// quiet NaN.
///
/// Operations on types conforming to the `FloatingPoint` protocol should
/// support this behavior, but they might also support other options. For
/// example, it would be reasonable to implement alternative operations in
/// which operating on a signaling NaN triggers a runtime error or results
/// in a diagnostic for debugging purposes. Types that implement alternative
/// behaviors for a signaling NaN must document the departure.
///
/// Other than these signaling operations, a signaling NaN behaves in the
/// same manner as a quiet NaN.
static var signalingNaN: Self { get }
/// Positive infinity.
///
/// Infinity compares greater than all finite numbers and equal to other
/// infinite values.
///
/// let x = Double.greatestFiniteMagnitude
/// let y = x * 2
/// // y == Double.infinity
/// // y > x
static var infinity: Self { get }
/// The greatest finite number representable by this type.
///
/// This value compares greater than or equal to all finite numbers, but less
/// than `infinity`.
///
/// This value corresponds to type-specific C macros such as `FLT_MAX` and
/// `DBL_MAX`. The naming of those macros is slightly misleading, because
/// `infinity` is greater than this value.
static var greatestFiniteMagnitude: Self { get }
/// The mathematical constant pi.
///
/// This value should be rounded toward zero to keep user computations with
/// angles from inadvertently ending up in the wrong quadrant. A type that
/// conforms to the `FloatingPoint` protocol provides the value for `pi` at
/// its best possible precision.
///
/// print(Double.pi)
/// // Prints "3.14159265358979"
static var pi: Self { get }
// NOTE: Rationale for "ulp" instead of "epsilon":
// We do not use that name because it is ambiguous at best and misleading
// at worst:
//
// - Historically several definitions of "machine epsilon" have commonly
// been used, which differ by up to a factor of two or so. By contrast
// "ulp" is a term with a specific unambiguous definition.
//
// - Some languages have used "epsilon" to refer to wildly different values,
// such as `leastNonzeroMagnitude`.
//
// - Inexperienced users often believe that "epsilon" should be used as a
// tolerance for floating-point comparisons, because of the name. It is
// nearly always the wrong value to use for this purpose.
/// The unit in the last place of this value.
///
/// This is the unit of the least significant digit in this value's
/// significand. For most numbers `x`, this is the difference between `x`
/// and the next greater (in magnitude) representable number. There are some
/// edge cases to be aware of:
///
/// - If `x` is not a finite number, then `x.ulp` is NaN.
/// - If `x` is very small in magnitude, then `x.ulp` may be a subnormal
/// number. If a type does not support subnormals, `x.ulp` may be rounded
/// to zero.
/// - `greatestFiniteMagnitude.ulp` is a finite number, even though the next
/// greater representable value is `infinity`.
///
/// See also the `ulpOfOne` static property.
var ulp: Self { get }
/// The unit in the last place of 1.0.
///
/// The positive difference between 1.0 and the next greater representable
/// number. `ulpOfOne` corresponds to the value represented by the C macros
/// `FLT_EPSILON`, `DBL_EPSILON`, etc, and is sometimes called *epsilon* or
/// *machine epsilon*. Swift deliberately avoids using the term "epsilon"
/// because:
///
/// - Historically "epsilon" has been used to refer to several different
/// concepts in different languages, leading to confusion and bugs.
///
/// - The name "epsilon" suggests that this quantity is a good tolerance to
/// choose for approximate comparisons, but it is almost always unsuitable
/// for that purpose.
///
/// See also the `ulp` member property.
static var ulpOfOne: Self { get }
/// The least positive normal number.
///
/// This value compares less than or equal to all positive normal numbers.
/// There may be smaller positive numbers, but they are *subnormal*, meaning
/// that they are represented with less precision than normal numbers.
///
/// This value corresponds to type-specific C macros such as `FLT_MIN` and
/// `DBL_MIN`. The naming of those macros is slightly misleading, because
/// subnormals, zeros, and negative numbers are smaller than this value.
static var leastNormalMagnitude: Self { get }
/// The least positive number.
///
/// This value compares less than or equal to all positive numbers, but
/// greater than zero. If the type supports subnormal values,
/// `leastNonzeroMagnitude` is smaller than `leastNormalMagnitude`;
/// otherwise they are equal.
static var leastNonzeroMagnitude: Self { get }
/// The sign of the floating-point value.
///
/// The `sign` property is `.minus` if the value's signbit is set, and
/// `.plus` otherwise. For example:
///
/// let x = -33.375
/// // x.sign == .minus
///
/// Do not use this property to check whether a floating point value is
/// negative. For a value `x`, the comparison `x.sign == .minus` is not
/// necessarily the same as `x < 0`. In particular, `x.sign == .minus` if
/// `x` is -0, and while `x < 0` is always `false` if `x` is NaN, `x.sign`
/// could be either `.plus` or `.minus`.
var sign: FloatingPointSign { get }
/// The exponent of the floating-point value.
///
/// The *exponent* of a floating-point value is the integer part of the
/// logarithm of the value's magnitude. For a value `x` of a floating-point
/// type `F`, the magnitude can be calculated as the following, where `**`
/// is exponentiation:
///
/// let magnitude = x.significand * F.radix ** x.exponent
///
/// In the next example, `y` has a value of `21.5`, which is encoded as
/// `1.34375 * 2 ** 4`. The significand of `y` is therefore 1.34375.
///
/// let y: Double = 21.5
/// // y.significand == 1.34375
/// // y.exponent == 4
/// // Double.radix == 2
///
/// The `exponent` property has the following edge cases:
///
/// - If `x` is zero, then `x.exponent` is `Int.min`.
/// - If `x` is +/-infinity or NaN, then `x.exponent` is `Int.max`
///
/// This property implements the `logB` operation defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
var exponent: Exponent { get }
/// The significand of the floating-point value.
///
/// The magnitude of a floating-point value `x` of type `F` can be calculated
/// by using the following formula, where `**` is exponentiation:
///
/// let magnitude = x.significand * F.radix ** x.exponent
///
/// In the next example, `y` has a value of `21.5`, which is encoded as
/// `1.34375 * 2 ** 4`. The significand of `y` is therefore 1.34375.
///
/// let y: Double = 21.5
/// // y.significand == 1.34375
/// // y.exponent == 4
/// // Double.radix == 2
///
/// If a type's radix is 2, then for finite nonzero numbers, the significand
/// is in the range `1.0 ..< 2.0`. For other values of `x`, `x.significand`
/// is defined as follows:
///
/// - If `x` is zero, then `x.significand` is 0.0.
/// - If `x` is infinity, then `x.significand` is 1.0.
/// - If `x` is NaN, then `x.significand` is NaN.
/// - Note: The significand is frequently also called the *mantissa*, but
/// significand is the preferred terminology in the [IEEE 754
/// specification][spec], to allay confusion with the use of mantissa for
/// the fractional part of a logarithm.
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
var significand: Self { get }
/// Adds two values and produces their sum, rounded to a
/// representable value.
///
/// The addition operator (`+`) calculates the sum of its two arguments. For
/// example:
///
/// let x = 1.5
/// let y = x + 2.25
/// // y == 3.75
///
/// The `+` operator implements the addition operation defined by the
/// [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
override static func +(lhs: Self, rhs: Self) -> Self
/// Adds two values and stores the result in the left-hand-side variable,
/// rounded to a representable value.
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
override static func +=(lhs: inout Self, rhs: Self)
/// Calculates the additive inverse of a value.
///
/// The unary minus operator (prefix `-`) calculates the negation of its
/// operand. The result is always exact.
///
/// let x = 21.5
/// let y = -x
/// // y == -21.5
///
/// - Parameter operand: The value to negate.
override static prefix func - (_ operand: Self) -> Self
/// Replaces this value with its additive inverse.
///
/// The result is always exact. This example uses the `negate()` method to
/// negate the value of the variable `x`:
///
/// var x = 21.5
/// x.negate()
/// // x == -21.5
override mutating func negate()
/// Subtracts one value from another and produces their difference, rounded
/// to a representable value.
///
/// The subtraction operator (`-`) calculates the difference of its two
/// arguments. For example:
///
/// let x = 7.5
/// let y = x - 2.25
/// // y == 5.25
///
/// The `-` operator implements the subtraction operation defined by the
/// [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
override static func -(lhs: Self, rhs: Self) -> Self
/// Subtracts the second value from the first and stores the difference in
/// the left-hand-side variable, rounding to a representable value.
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
override static func -=(lhs: inout Self, rhs: Self)
/// Multiplies two values and produces their product, rounding to a
/// representable value.
///
/// The multiplication operator (`*`) calculates the product of its two
/// arguments. For example:
///
/// let x = 7.5
/// let y = x * 2.25
/// // y == 16.875
///
/// The `*` operator implements the multiplication operation defined by the
/// [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
override static func *(lhs: Self, rhs: Self) -> Self
/// Multiplies two values and stores the result in the left-hand-side
/// variable, rounding to a representable value.
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
override static func *=(lhs: inout Self, rhs: Self)
/// Returns the quotient of dividing the first value by the second, rounded
/// to a representable value.
///
/// The division operator (`/`) calculates the quotient of the division if
/// `rhs` is nonzero. If `rhs` is zero, the result of the division is
/// infinity, with the sign of the result matching the sign of `lhs`.
///
/// let x = 16.875
/// let y = x / 2.25
/// // y == 7.5
///
/// let z = x / 0
/// // z.isInfinite == true
///
/// The `/` operator implements the division operation defined by the [IEEE
/// 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by.
static func /(lhs: Self, rhs: Self) -> Self
/// Divides the first value by the second and stores the quotient in the
/// left-hand-side variable, rounding to a representable value.
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by.
static func /=(lhs: inout Self, rhs: Self)
/// Returns the remainder of this value divided by the given value.
///
/// For two finite values `x` and `y`, the remainder `r` of dividing `x` by
/// `y` satisfies `x == y * q + r`, where `q` is the integer nearest to
/// `x / y`. If `x / y` is exactly halfway between two integers, `q` is
/// chosen to be even. Note that `q` is *not* `x / y` computed in
/// floating-point arithmetic, and that `q` may not be representable in any
/// available integer type.
///
/// The following example calculates the remainder of dividing 8.625 by 0.75:
///
/// let x = 8.625
/// print(x / 0.75)
/// // Prints "11.5"
///
/// let q = (x / 0.75).rounded(.toNearestOrEven)
/// // q == 12.0
/// let r = x.remainder(dividingBy: 0.75)
/// // r == -0.375
///
/// let x1 = 0.75 * q + r
/// // x1 == 8.625
///
/// If this value and `other` are finite numbers, the remainder is in the
/// closed range `-abs(other / 2)...abs(other / 2)`. The
/// `remainder(dividingBy:)` method is always exact. This method implements
/// the remainder operation defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: The value to use when dividing this value.
/// - Returns: The remainder of this value divided by `other`.
func remainder(dividingBy other: Self) -> Self
/// Replaces this value with the remainder of itself divided by the given
/// value.
///
/// For two finite values `x` and `y`, the remainder `r` of dividing `x` by
/// `y` satisfies `x == y * q + r`, where `q` is the integer nearest to
/// `x / y`. If `x / y` is exactly halfway between two integers, `q` is
/// chosen to be even. Note that `q` is *not* `x / y` computed in
/// floating-point arithmetic, and that `q` may not be representable in any
/// available integer type.
///
/// The following example calculates the remainder of dividing 8.625 by 0.75:
///
/// var x = 8.625
/// print(x / 0.75)
/// // Prints "11.5"
///
/// let q = (x / 0.75).rounded(.toNearestOrEven)
/// // q == 12.0
/// x.formRemainder(dividingBy: 0.75)
/// // x == -0.375
///
/// let x1 = 0.75 * q + x
/// // x1 == 8.625
///
/// If this value and `other` are finite numbers, the remainder is in the
/// closed range `-abs(other / 2)...abs(other / 2)`. The
/// `formRemainder(dividingBy:)` method is always exact.
///
/// - Parameter other: The value to use when dividing this value.
mutating func formRemainder(dividingBy other: Self)
/// Returns the remainder of this value divided by the given value using
/// truncating division.
///
/// Performing truncating division with floating-point values results in a
/// truncated integer quotient and a remainder. For values `x` and `y` and
/// their truncated integer quotient `q`, the remainder `r` satisfies
/// `x == y * q + r`.
///
/// The following example calculates the truncating remainder of dividing
/// 8.625 by 0.75:
///
/// let x = 8.625
/// print(x / 0.75)
/// // Prints "11.5"
///
/// let q = (x / 0.75).rounded(.towardZero)
/// // q == 11.0
/// let r = x.truncatingRemainder(dividingBy: 0.75)
/// // r == 0.375
///
/// let x1 = 0.75 * q + r
/// // x1 == 8.625
///
/// If this value and `other` are both finite numbers, the truncating
/// remainder has the same sign as this value and is strictly smaller in
/// magnitude than `other`. The `truncatingRemainder(dividingBy:)` method
/// is always exact.
///
/// - Parameter other: The value to use when dividing this value.
/// - Returns: The remainder of this value divided by `other` using
/// truncating division.
func truncatingRemainder(dividingBy other: Self) -> Self
/// Replaces this value with the remainder of itself divided by the given
/// value using truncating division.
///
/// Performing truncating division with floating-point values results in a
/// truncated integer quotient and a remainder. For values `x` and `y` and
/// their truncated integer quotient `q`, the remainder `r` satisfies
/// `x == y * q + r`.
///
/// The following example calculates the truncating remainder of dividing
/// 8.625 by 0.75:
///
/// var x = 8.625
/// print(x / 0.75)
/// // Prints "11.5"
///
/// let q = (x / 0.75).rounded(.towardZero)
/// // q == 11.0
/// x.formTruncatingRemainder(dividingBy: 0.75)
/// // x == 0.375
///
/// let x1 = 0.75 * q + x
/// // x1 == 8.625
///
/// If this value and `other` are both finite numbers, the truncating
/// remainder has the same sign as this value and is strictly smaller in
/// magnitude than `other`. The `formTruncatingRemainder(dividingBy:)`
/// method is always exact.
///
/// - Parameter other: The value to use when dividing this value.
mutating func formTruncatingRemainder(dividingBy other: Self)
/// Returns the square root of the value, rounded to a representable value.
///
/// The following example declares a function that calculates the length of
/// the hypotenuse of a right triangle given its two perpendicular sides.
///
/// func hypotenuse(_ a: Double, _ b: Double) -> Double {
/// return (a * a + b * b).squareRoot()
/// }
///
/// let (dx, dy) = (3.0, 4.0)
/// let distance = hypotenuse(dx, dy)
/// // distance == 5.0
///
/// - Returns: The square root of the value.
func squareRoot() -> Self
/// Replaces this value with its square root, rounded to a representable
/// value.
mutating func formSquareRoot()
/// Returns the result of adding the product of the two given values to this
/// value, computed without intermediate rounding.
///
/// This method is equivalent to the C `fma` function and implements the
/// `fusedMultiplyAdd` operation defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - lhs: One of the values to multiply before adding to this value.
/// - rhs: The other value to multiply.
/// - Returns: The product of `lhs` and `rhs`, added to this value.
func addingProduct(_ lhs: Self, _ rhs: Self) -> Self
/// Adds the product of the two given values to this value in place, computed
/// without intermediate rounding.
///
/// - Parameters:
/// - lhs: One of the values to multiply before adding to this value.
/// - rhs: The other value to multiply.
mutating func addProduct(_ lhs: Self, _ rhs: Self)
/// Returns the lesser of the two given values.
///
/// This method returns the minimum of two values, preserving order and
/// eliminating NaN when possible. For two values `x` and `y`, the result of
/// `minimum(x, y)` is `x` if `x <= y`, `y` if `y < x`, or whichever of `x`
/// or `y` is a number if the other is a quiet NaN. If both `x` and `y` are
/// NaN, or either `x` or `y` is a signaling NaN, the result is NaN.
///
/// Double.minimum(10.0, -25.0)
/// // -25.0
/// Double.minimum(10.0, .nan)
/// // 10.0
/// Double.minimum(.nan, -25.0)
/// // -25.0
/// Double.minimum(.nan, .nan)
/// // nan
///
/// The `minimum` method implements the `minNum` operation defined by the
/// [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: The minimum of `x` and `y`, or whichever is a number if the
/// other is NaN.
static func minimum(_ x: Self, _ y: Self) -> Self
/// Returns the greater of the two given values.
///
/// This method returns the maximum of two values, preserving order and
/// eliminating NaN when possible. For two values `x` and `y`, the result of
/// `maximum(x, y)` is `x` if `x > y`, `y` if `x <= y`, or whichever of `x`
/// or `y` is a number if the other is a quiet NaN. If both `x` and `y` are
/// NaN, or either `x` or `y` is a signaling NaN, the result is NaN.
///
/// Double.maximum(10.0, -25.0)
/// // 10.0
/// Double.maximum(10.0, .nan)
/// // 10.0
/// Double.maximum(.nan, -25.0)
/// // -25.0
/// Double.maximum(.nan, .nan)
/// // nan
///
/// The `maximum` method implements the `maxNum` operation defined by the
/// [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: The greater of `x` and `y`, or whichever is a number if the
/// other is NaN.
static func maximum(_ x: Self, _ y: Self) -> Self
/// Returns the value with lesser magnitude.
///
/// This method returns the value with lesser magnitude of the two given
/// values, preserving order and eliminating NaN when possible. For two
/// values `x` and `y`, the result of `minimumMagnitude(x, y)` is `x` if
/// `x.magnitude <= y.magnitude`, `y` if `y.magnitude < x.magnitude`, or
/// whichever of `x` or `y` is a number if the other is a quiet NaN. If both
/// `x` and `y` are NaN, or either `x` or `y` is a signaling NaN, the result
/// is NaN.
///
/// Double.minimumMagnitude(10.0, -25.0)
/// // 10.0
/// Double.minimumMagnitude(10.0, .nan)
/// // 10.0
/// Double.minimumMagnitude(.nan, -25.0)
/// // -25.0
/// Double.minimumMagnitude(.nan, .nan)
/// // nan
///
/// The `minimumMagnitude` method implements the `minNumMag` operation
/// defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: Whichever of `x` or `y` has lesser magnitude, or whichever is
/// a number if the other is NaN.
static func minimumMagnitude(_ x: Self, _ y: Self) -> Self
/// Returns the value with greater magnitude.
///
/// This method returns the value with greater magnitude of the two given
/// values, preserving order and eliminating NaN when possible. For two
/// values `x` and `y`, the result of `maximumMagnitude(x, y)` is `x` if
/// `x.magnitude > y.magnitude`, `y` if `x.magnitude <= y.magnitude`, or
/// whichever of `x` or `y` is a number if the other is a quiet NaN. If both
/// `x` and `y` are NaN, or either `x` or `y` is a signaling NaN, the result
/// is NaN.
///
/// Double.maximumMagnitude(10.0, -25.0)
/// // -25.0
/// Double.maximumMagnitude(10.0, .nan)
/// // 10.0
/// Double.maximumMagnitude(.nan, -25.0)
/// // -25.0
/// Double.maximumMagnitude(.nan, .nan)
/// // nan
///
/// The `maximumMagnitude` method implements the `maxNumMag` operation
/// defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: Whichever of `x` or `y` has greater magnitude, or whichever is
/// a number if the other is NaN.
static func maximumMagnitude(_ x: Self, _ y: Self) -> Self
/// Returns this value rounded to an integral value using the specified
/// rounding rule.
///
/// The following example rounds a value using four different rounding rules:
///
/// let x = 6.5
///
/// // Equivalent to the C 'round' function:
/// print(x.rounded(.toNearestOrAwayFromZero))
/// // Prints "7.0"
///
/// // Equivalent to the C 'trunc' function:
/// print(x.rounded(.towardZero))
/// // Prints "6.0"
///
/// // Equivalent to the C 'ceil' function:
/// print(x.rounded(.up))
/// // Prints "7.0"
///
/// // Equivalent to the C 'floor' function:
/// print(x.rounded(.down))
/// // Prints "6.0"
///
/// For more information about the available rounding rules, see the
/// `FloatingPointRoundingRule` enumeration. To round a value using the
/// default "schoolbook rounding", you can use the shorter `rounded()`
/// method instead.
///
/// print(x.rounded())
/// // Prints "7.0"
///
/// - Parameter rule: The rounding rule to use.
/// - Returns: The integral value found by rounding using `rule`.
func rounded(_ rule: FloatingPointRoundingRule) -> Self
/// Rounds the value to an integral value using the specified rounding rule.
///
/// The following example rounds a value using four different rounding rules:
///
/// // Equivalent to the C 'round' function:
/// var w = 6.5
/// w.round(.toNearestOrAwayFromZero)
/// // w == 7.0
///
/// // Equivalent to the C 'trunc' function:
/// var x = 6.5
/// x.round(.towardZero)
/// // x == 6.0
///
/// // Equivalent to the C 'ceil' function:
/// var y = 6.5
/// y.round(.up)
/// // y == 7.0
///
/// // Equivalent to the C 'floor' function:
/// var z = 6.5
/// z.round(.down)
/// // z == 6.0
///
/// For more information about the available rounding rules, see the
/// `FloatingPointRoundingRule` enumeration. To round a value using the
/// default "schoolbook rounding", you can use the shorter `round()` method
/// instead.
///
/// var w1 = 6.5
/// w1.round()
/// // w1 == 7.0
///
/// - Parameter rule: The rounding rule to use.
mutating func round(_ rule: FloatingPointRoundingRule)
/// The least representable value that compares greater than this value.
///
/// For any finite value `x`, `x.nextUp` is greater than `x`. For `nan` or
/// `infinity`, `x.nextUp` is `x` itself. The following special cases also
/// apply:
///
/// - If `x` is `-infinity`, then `x.nextUp` is `-greatestFiniteMagnitude`.
/// - If `x` is `-leastNonzeroMagnitude`, then `x.nextUp` is `-0.0`.
/// - If `x` is zero, then `x.nextUp` is `leastNonzeroMagnitude`.
/// - If `x` is `greatestFiniteMagnitude`, then `x.nextUp` is `infinity`.
var nextUp: Self { get }
/// The greatest representable value that compares less than this value.
///
/// For any finite value `x`, `x.nextDown` is less than `x`. For `nan` or
/// `-infinity`, `x.nextDown` is `x` itself. The following special cases
/// also apply:
///
/// - If `x` is `infinity`, then `x.nextDown` is `greatestFiniteMagnitude`.
/// - If `x` is `leastNonzeroMagnitude`, then `x.nextDown` is `0.0`.
/// - If `x` is zero, then `x.nextDown` is `-leastNonzeroMagnitude`.
/// - If `x` is `-greatestFiniteMagnitude`, then `x.nextDown` is `-infinity`.
var nextDown: Self { get }
/// Returns a Boolean value indicating whether this instance is equal to the
/// given value.
///
/// This method serves as the basis for the equal-to operator (`==`) for
/// floating-point values. When comparing two values with this method, `-0`
/// is equal to `+0`. NaN is not equal to any value, including itself. For
/// example:
///
/// let x = 15.0
/// x.isEqual(to: 15.0)
/// // true
/// x.isEqual(to: .nan)
/// // false
/// Double.nan.isEqual(to: .nan)
/// // false
///
/// The `isEqual(to:)` method implements the equality predicate defined by
/// the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: The value to compare with this value.
/// - Returns: `true` if `other` has the same value as this instance;
/// otherwise, `false`. If either this value or `other` is NaN, the result
/// of this method is `false`.
func isEqual(to other: Self) -> Bool
/// Returns a Boolean value indicating whether this instance is less than the
/// given value.
///
/// This method serves as the basis for the less-than operator (`<`) for
/// floating-point values. Some special cases apply:
///
/// - Because NaN compares not less than nor greater than any value, this
/// method returns `false` when called on NaN or when NaN is passed as
/// `other`.
/// - `-infinity` compares less than all values except for itself and NaN.
/// - Every value except for NaN and `+infinity` compares less than
/// `+infinity`.
///
/// let x = 15.0
/// x.isLess(than: 20.0)
/// // true
/// x.isLess(than: .nan)
/// // false
/// Double.nan.isLess(than: x)
/// // false
///
/// The `isLess(than:)` method implements the less-than predicate defined by
/// the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: The value to compare with this value.
/// - Returns: `true` if this value is less than `other`; otherwise, `false`.
/// If either this value or `other` is NaN, the result of this method is
/// `false`.
func isLess(than other: Self) -> Bool
/// Returns a Boolean value indicating whether this instance is less than or
/// equal to the given value.
///
/// This method serves as the basis for the less-than-or-equal-to operator
/// (`<=`) for floating-point values. Some special cases apply:
///
/// - Because NaN is incomparable with any value, this method returns `false`
/// when called on NaN or when NaN is passed as `other`.
/// - `-infinity` compares less than or equal to all values except NaN.
/// - Every value except NaN compares less than or equal to `+infinity`.
///
/// let x = 15.0
/// x.isLessThanOrEqualTo(20.0)
/// // true
/// x.isLessThanOrEqualTo(.nan)
/// // false
/// Double.nan.isLessThanOrEqualTo(x)
/// // false
///
/// The `isLessThanOrEqualTo(_:)` method implements the less-than-or-equal
/// predicate defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: The value to compare with this value.
/// - Returns: `true` if `other` is greater than this value; otherwise,
/// `false`. If either this value or `other` is NaN, the result of this
/// method is `false`.
func isLessThanOrEqualTo(_ other: Self) -> Bool
/// Returns a Boolean value indicating whether this instance should precede
/// or tie positions with the given value in an ascending sort.
///
/// This relation is a refinement of the less-than-or-equal-to operator
/// (`<=`) that provides a total order on all values of the type, including
/// signed zeros and NaNs.
///
/// The following example uses `isTotallyOrdered(belowOrEqualTo:)` to sort an
/// array of floating-point values, including some that are NaN:
///
/// var numbers = [2.5, 21.25, 3.0, .nan, -9.5]
/// numbers.sort { !$1.isTotallyOrdered(belowOrEqualTo: $0) }
/// // numbers == [-9.5, 2.5, 3.0, 21.25, NaN]
///
/// The `isTotallyOrdered(belowOrEqualTo:)` method implements the total order
/// relation as defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: A floating-point value to compare to this value.
/// - Returns: `true` if this value is ordered below or the same as `other`
/// in a total ordering of the floating-point type; otherwise, `false`.
func isTotallyOrdered(belowOrEqualTo other: Self) -> Bool
/// A Boolean value indicating whether this instance is normal.
///
/// A *normal* value is a finite number that uses the full precision
/// available to values of a type. Zero is neither a normal nor a subnormal
/// number.
var isNormal: Bool { get }
/// A Boolean value indicating whether this instance is finite.
///
/// All values other than NaN and infinity are considered finite, whether
/// normal or subnormal.
var isFinite: Bool { get }
/// A Boolean value indicating whether the instance is equal to zero.
///
/// The `isZero` property of a value `x` is `true` when `x` represents either
/// `-0.0` or `+0.0`. `x.isZero` is equivalent to the following comparison:
/// `x == 0.0`.
///
/// let x = -0.0
/// x.isZero // true
/// x == 0.0 // true
var isZero: Bool { get }
/// A Boolean value indicating whether the instance is subnormal.
///
/// A *subnormal* value is a nonzero number that has a lesser magnitude than
/// the smallest normal number. Subnormal values do not use the full
/// precision available to values of a type.
///
/// Zero is neither a normal nor a subnormal number. Subnormal numbers are
/// often called *denormal* or *denormalized*---these are different names
/// for the same concept.
var isSubnormal: Bool { get }
/// A Boolean value indicating whether the instance is infinite.
///
/// Note that `isFinite` and `isInfinite` do not form a dichotomy, because
/// they are not total: If `x` is `NaN`, then both properties are `false`.
var isInfinite: Bool { get }
/// A Boolean value indicating whether the instance is NaN ("not a number").
///
/// Because NaN is not equal to any value, including NaN, use this property
/// instead of the equal-to operator (`==`) or not-equal-to operator (`!=`)
/// to test whether a value is or is not NaN. For example:
///
/// let x = 0.0
/// let y = x * .infinity
/// // y is a NaN
///
/// // Comparing with the equal-to operator never returns 'true'
/// print(x == Double.nan)
/// // Prints "false"
/// print(y == Double.nan)
/// // Prints "false"
///
/// // Test with the 'isNaN' property instead
/// print(x.isNaN)
/// // Prints "false"
/// print(y.isNaN)
/// // Prints "true"
///
/// This property is `true` for both quiet and signaling NaNs.
var isNaN: Bool { get }
/// A Boolean value indicating whether the instance is a signaling NaN.
///
/// Signaling NaNs typically raise the Invalid flag when used in general
/// computing operations.
var isSignalingNaN: Bool { get }
/// The classification of this value.
///
/// A value's `floatingPointClass` property describes its "class" as
/// described by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
var floatingPointClass: FloatingPointClassification { get }
/// A Boolean value indicating whether the instance's representation is in
/// the canonical form.
///
/// The [IEEE 754 specification][spec] defines a *canonical*, or preferred,
/// encoding of a floating-point value's representation. Every `Float` or
/// `Double` value is canonical, but noncanonical values of the `Float80`
/// type exist, and noncanonical values may exist for other types that
/// conform to the `FloatingPoint` protocol.
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
var isCanonical: Bool { get }
}
/// The sign of a floating-point value.
@_frozen // FIXME(sil-serialize-all)
public enum FloatingPointSign: Int {
/// The sign for a positive value.
case plus
/// The sign for a negative value.
case minus
// Explicit declarations of otherwise-synthesized members to make them
// @inlinable, promising that we will never change the implementation.
@inlinable
public init?(rawValue: Int) {
switch rawValue {
case 0: self = .plus
case 1: self = .minus
default: return nil
}
}
@inlinable
public var rawValue: Int {
switch self {
case .plus: return 0
case .minus: return 1
}
}
@_transparent
@inlinable
public static func ==(a: FloatingPointSign, b: FloatingPointSign) -> Bool {
return a.rawValue == b.rawValue
}
@inlinable
public var hashValue: Int { return rawValue.hashValue }
@inlinable
public func hash(into hasher: inout Hasher) {
hasher.combine(rawValue)
}
@inlinable
public func _rawHashValue(seed: Int) -> Int {
return rawValue._rawHashValue(seed: seed)
}
}
/// The IEEE 754 floating-point classes.
@_frozen // FIXME(sil-serialize-all)
public enum FloatingPointClassification {
/// A signaling NaN ("not a number").
///
/// A signaling NaN sets the floating-point exception status when used in
/// many floating-point operations.
case signalingNaN
/// A silent NaN ("not a number") value.
case quietNaN
/// A value equal to `-infinity`.
case negativeInfinity
/// A negative value that uses the full precision of the floating-point type.
case negativeNormal
/// A negative, nonzero number that does not use the full precision of the
/// floating-point type.
case negativeSubnormal
/// A value equal to zero with a negative sign.
case negativeZero
/// A value equal to zero with a positive sign.
case positiveZero
/// A positive, nonzero number that does not use the full precision of the
/// floating-point type.
case positiveSubnormal
/// A positive value that uses the full precision of the floating-point type.
case positiveNormal
/// A value equal to `+infinity`.
case positiveInfinity
}
/// A rule for rounding a floating-point number.
public enum FloatingPointRoundingRule {
/// Round to the closest allowed value; if two values are equally close, the
/// one with greater magnitude is chosen.
///
/// This rounding rule is also known as "schoolbook rounding." The following
/// example shows the results of rounding numbers using this rule:
///
/// (5.2).rounded(.toNearestOrAwayFromZero)
/// // 5.0
/// (5.5).rounded(.toNearestOrAwayFromZero)
/// // 6.0
/// (-5.2).rounded(.toNearestOrAwayFromZero)
/// // -5.0
/// (-5.5).rounded(.toNearestOrAwayFromZero)
/// // -6.0
///
/// This rule is equivalent to the C `round` function and implements the
/// `roundToIntegralTiesToAway` operation defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
case toNearestOrAwayFromZero
/// Round to the closest allowed value; if two values are equally close, the
/// even one is chosen.
///
/// This rounding rule is also known as "bankers rounding," and is the
/// default IEEE 754 rounding mode for arithmetic. The following example
/// shows the results of rounding numbers using this rule:
///
/// (5.2).rounded(.toNearestOrEven)
/// // 5.0
/// (5.5).rounded(.toNearestOrEven)
/// // 6.0
/// (4.5).rounded(.toNearestOrEven)
/// // 4.0
///
/// This rule implements the `roundToIntegralTiesToEven` operation defined by
/// the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
case toNearestOrEven
/// Round to the closest allowed value that is greater than or equal to the
/// source.
///
/// The following example shows the results of rounding numbers using this
/// rule:
///
/// (5.2).rounded(.up)
/// // 6.0
/// (5.5).rounded(.up)
/// // 6.0
/// (-5.2).rounded(.up)
/// // -5.0
/// (-5.5).rounded(.up)
/// // -5.0
///
/// This rule is equivalent to the C `ceil` function and implements the
/// `roundToIntegralTowardPositive` operation defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
case up
/// Round to the closest allowed value that is less than or equal to the
/// source.
///
/// The following example shows the results of rounding numbers using this
/// rule:
///
/// (5.2).rounded(.down)
/// // 5.0
/// (5.5).rounded(.down)
/// // 5.0
/// (-5.2).rounded(.down)
/// // -6.0
/// (-5.5).rounded(.down)
/// // -6.0
///
/// This rule is equivalent to the C `floor` function and implements the
/// `roundToIntegralTowardNegative` operation defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
case down
/// Round to the closest allowed value whose magnitude is less than or equal
/// to that of the source.
///
/// The following example shows the results of rounding numbers using this
/// rule:
///
/// (5.2).rounded(.towardZero)
/// // 5.0
/// (5.5).rounded(.towardZero)
/// // 5.0
/// (-5.2).rounded(.towardZero)
/// // -5.0
/// (-5.5).rounded(.towardZero)
/// // -5.0
///
/// This rule is equivalent to the C `trunc` function and implements the
/// `roundToIntegralTowardZero` operation defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
case towardZero
/// Round to the closest allowed value whose magnitude is greater than or
/// equal to that of the source.
///
/// The following example shows the results of rounding numbers using this
/// rule:
///
/// (5.2).rounded(.awayFromZero)
/// // 6.0
/// (5.5).rounded(.awayFromZero)
/// // 6.0
/// (-5.2).rounded(.awayFromZero)
/// // -6.0
/// (-5.5).rounded(.awayFromZero)
/// // -6.0
case awayFromZero
}
extension FloatingPoint {
@_transparent
public static func == (lhs: Self, rhs: Self) -> Bool {
return lhs.isEqual(to: rhs)
}
@_transparent
public static func < (lhs: Self, rhs: Self) -> Bool {
return lhs.isLess(than: rhs)
}
@_transparent
public static func <= (lhs: Self, rhs: Self) -> Bool {
return lhs.isLessThanOrEqualTo(rhs)
}
@_transparent
public static func > (lhs: Self, rhs: Self) -> Bool {
return rhs.isLess(than: lhs)
}
@_transparent
public static func >= (lhs: Self, rhs: Self) -> Bool {
return rhs.isLessThanOrEqualTo(lhs)
}
}
/// A radix-2 (binary) floating-point type.
///
/// The `BinaryFloatingPoint` protocol extends the `FloatingPoint` protocol
/// with operations specific to floating-point binary types, as defined by the
/// [IEEE 754 specification][spec]. `BinaryFloatingPoint` is implemented in
/// the standard library by `Float`, `Double`, and `Float80` where available.
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
public protocol BinaryFloatingPoint: FloatingPoint, ExpressibleByFloatLiteral {
/// A type that represents the encoded significand of a value.
associatedtype RawSignificand: UnsignedInteger
/// A type that represents the encoded exponent of a value.
associatedtype RawExponent: UnsignedInteger
/// Creates a new instance from the specified sign and bit patterns.
///
/// The values passed as `exponentBitPattern` and `significandBitPattern` are
/// interpreted in the binary interchange format defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - sign: The sign of the new value.
/// - exponentBitPattern: The bit pattern to use for the exponent field of
/// the new value.
/// - significandBitPattern: The bit pattern to use for the significand
/// field of the new value.
init(sign: FloatingPointSign,
exponentBitPattern: RawExponent,
significandBitPattern: RawSignificand)
/// Creates a new instance from the given value, rounded to the closest
/// possible representation.
///
/// - Parameter value: A floating-point value to be converted.
init(_ value: Float)
/// Creates a new instance from the given value, rounded to the closest
/// possible representation.
///
/// - Parameter value: A floating-point value to be converted.
init(_ value: Double)
#if !os(Windows) && (arch(i386) || arch(x86_64))
/// Creates a new instance from the given value, rounded to the closest
/// possible representation.
///
/// - Parameter value: A floating-point value to be converted.
init(_ value: Float80)
#endif
/// Creates a new instance from the given value, rounded to the closest
/// possible representation.
///
/// If two representable values are equally close, the result is the value
/// with more trailing zeros in its significand bit pattern.
///
/// - Parameter value: A floating-point value to be converted.
init<Source : BinaryFloatingPoint>(_ value: Source)
/// Creates a new instance from the given value, if it can be represented
/// exactly.
///
/// If the given floating-point value cannot be represented exactly, the
/// result is `nil`. A value that is NaN ("not a number") cannot be
/// represented exactly if its payload cannot be encoded exactly.
///
/// - Parameter value: A floating-point value to be converted.
init?<Source : BinaryFloatingPoint>(exactly value: Source)
/// The number of bits used to represent the type's exponent.
///
/// A binary floating-point type's `exponentBitCount` imposes a limit on the
/// range of the exponent for normal, finite values. The *exponent bias* of
/// a type `F` can be calculated as the following, where `**` is
/// exponentiation:
///
/// let bias = 2 ** (F.exponentBitCount - 1) - 1
///
/// The least normal exponent for values of the type `F` is `1 - bias`, and
/// the largest finite exponent is `bias`. An all-zeros exponent is reserved
/// for subnormals and zeros, and an all-ones exponent is reserved for
/// infinity and NaN.
///
/// For example, the `Float` type has an `exponentBitCount` of 8, which gives
/// an exponent bias of `127` by the calculation above.
///
/// let bias = 2 ** (Float.exponentBitCount - 1) - 1
/// // bias == 127
/// print(Float.greatestFiniteMagnitude.exponent)
/// // Prints "127"
/// print(Float.leastNormalMagnitude.exponent)
/// // Prints "-126"
static var exponentBitCount: Int { get }
/// The available number of fractional significand bits.
///
/// For fixed-width floating-point types, this is the actual number of
/// fractional significand bits.
///
/// For extensible floating-point types, `significandBitCount` should be the
/// maximum allowed significand width (without counting any leading integral
/// bit of the significand). If there is no upper limit, then
/// `significandBitCount` should be `Int.max`.
///
/// Note that `Float80.significandBitCount` is 63, even though 64 bits are
/// used to store the significand in the memory representation of a
/// `Float80` (unlike other floating-point types, `Float80` explicitly
/// stores the leading integral significand bit, but the
/// `BinaryFloatingPoint` APIs provide an abstraction so that users don't
/// need to be aware of this detail).
static var significandBitCount: Int { get }
/// The raw encoding of the value's exponent field.
///
/// This value is unadjusted by the type's exponent bias.
var exponentBitPattern: RawExponent { get }
/// The raw encoding of the value's significand field.
///
/// The `significandBitPattern` property does not include the leading
/// integral bit of the significand, even for types like `Float80` that
/// store it explicitly.
var significandBitPattern: RawSignificand { get }
/// The floating-point value with the same sign and exponent as this value,
/// but with a significand of 1.0.
///
/// A *binade* is a set of binary floating-point values that all have the
/// same sign and exponent. The `binade` property is a member of the same
/// binade as this value, but with a unit significand.
///
/// In this example, `x` has a value of `21.5`, which is stored as
/// `1.34375 * 2**4`, where `**` is exponentiation. Therefore, `x.binade` is
/// equal to `1.0 * 2**4`, or `16.0`.
///
/// let x = 21.5
/// // x.significand == 1.34375
/// // x.exponent == 4
///
/// let y = x.binade
/// // y == 16.0
/// // y.significand == 1.0
/// // y.exponent == 4
var binade: Self { get }
/// The number of bits required to represent the value's significand.
///
/// If this value is a finite nonzero number, `significandWidth` is the
/// number of fractional bits required to represent the value of
/// `significand`; otherwise, `significandWidth` is -1. The value of
/// `significandWidth` is always -1 or between zero and
/// `significandBitCount`. For example:
///
/// - For any representable power of two, `significandWidth` is zero, because
/// `significand` is `1.0`.
/// - If `x` is 10, `x.significand` is `1.01` in binary, so
/// `x.significandWidth` is 2.
/// - If `x` is Float.pi, `x.significand` is `1.10010010000111111011011` in
/// binary, and `x.significandWidth` is 23.
var significandWidth: Int { get }
/* TODO: Implement these once it becomes possible to do so. (Requires
* revised Integer protocol).
func isEqual<Other: BinaryFloatingPoint>(to other: Other) -> Bool
func isLess<Other: BinaryFloatingPoint>(than other: Other) -> Bool
func isLessThanOrEqualTo<Other: BinaryFloatingPoint>(other: Other) -> Bool
func isTotallyOrdered<Other: BinaryFloatingPoint>(belowOrEqualTo other: Other) -> Bool
*/
}
extension FloatingPoint {
/// The unit in the last place of 1.0.
///
/// The positive difference between 1.0 and the next greater representable
/// number. The `ulpOfOne` constant corresponds to the C macros
/// `FLT_EPSILON`, `DBL_EPSILON`, and others with a similar purpose.
@inlinable // FIXME(sil-serialize-all)
public static var ulpOfOne: Self {
return (1 as Self).ulp
}
/// Returns this value rounded to an integral value using the specified
/// rounding rule.
///
/// The following example rounds a value using four different rounding rules:
///
/// let x = 6.5
///
/// // Equivalent to the C 'round' function:
/// print(x.rounded(.toNearestOrAwayFromZero))
/// // Prints "7.0"
///
/// // Equivalent to the C 'trunc' function:
/// print(x.rounded(.towardZero))
/// // Prints "6.0"
///
/// // Equivalent to the C 'ceil' function:
/// print(x.rounded(.up))
/// // Prints "7.0"
///
/// // Equivalent to the C 'floor' function:
/// print(x.rounded(.down))
/// // Prints "6.0"
///
/// For more information about the available rounding rules, see the
/// `FloatingPointRoundingRule` enumeration. To round a value using the
/// default "schoolbook rounding", you can use the shorter `rounded()`
/// method instead.
///
/// print(x.rounded())
/// // Prints "7.0"
///
/// - Parameter rule: The rounding rule to use.
/// - Returns: The integral value found by rounding using `rule`.
@_transparent
public func rounded(_ rule: FloatingPointRoundingRule) -> Self {
var lhs = self
lhs.round(rule)
return lhs
}
/// Returns this value rounded to an integral value using "schoolbook
/// rounding."
///
/// The `rounded()` method uses the `.toNearestOrAwayFromZero` rounding rule,
/// where a value halfway between two integral values is rounded to the one
/// with greater magnitude. The following example rounds several values
/// using this default rule:
///
/// (5.2).rounded()
/// // 5.0
/// (5.5).rounded()
/// // 6.0
/// (-5.2).rounded()
/// // -5.0
/// (-5.5).rounded()
/// // -6.0
///
/// To specify an alternative rule for rounding, use the `rounded(_:)` method
/// instead.
///
/// - Returns: The nearest integral value, or, if two integral values are
/// equally close, the integral value with greater magnitude.
@_transparent
public func rounded() -> Self {
return rounded(.toNearestOrAwayFromZero)
}
/// Rounds this value to an integral value using "schoolbook rounding."
///
/// The `round()` method uses the `.toNearestOrAwayFromZero` rounding rule,
/// where a value halfway between two integral values is rounded to the one
/// with greater magnitude. The following example rounds several values
/// using this default rule:
///
/// var x = 5.2
/// x.round()
/// // x == 5.0
/// var y = 5.5
/// y.round()
/// // y == 6.0
/// var z = -5.5
/// z.round()
/// // z == -6.0
///
/// To specify an alternative rule for rounding, use the `round(_:)` method
/// instead.
@_transparent
public mutating func round() {
round(.toNearestOrAwayFromZero)
}
/// The greatest representable value that compares less than this value.
///
/// For any finite value `x`, `x.nextDown` is less than `x`. For `nan` or
/// `-infinity`, `x.nextDown` is `x` itself. The following special cases
/// also apply:
///
/// - If `x` is `infinity`, then `x.nextDown` is `greatestFiniteMagnitude`.
/// - If `x` is `leastNonzeroMagnitude`, then `x.nextDown` is `0.0`.
/// - If `x` is zero, then `x.nextDown` is `-leastNonzeroMagnitude`.
/// - If `x` is `-greatestFiniteMagnitude`, then `x.nextDown` is `-infinity`.
@inlinable // FIXME(inline-always)
public var nextDown: Self {
@inline(__always)
get {
return -(-self).nextUp
}
}
/// Returns the remainder of this value divided by the given value using
/// truncating division.
///
/// Performing truncating division with floating-point values results in a
/// truncated integer quotient and a remainder. For values `x` and `y` and
/// their truncated integer quotient `q`, the remainder `r` satisfies
/// `x == y * q + r`.
///
/// The following example calculates the truncating remainder of dividing
/// 8.625 by 0.75:
///
/// let x = 8.625
/// print(x / 0.75)
/// // Prints "11.5"
///
/// let q = (x / 0.75).rounded(.towardZero)
/// // q == 11.0
/// let r = x.truncatingRemainder(dividingBy: 0.75)
/// // r == 0.375
///
/// let x1 = 0.75 * q + r
/// // x1 == 8.625
///
/// If this value and `other` are both finite numbers, the truncating
/// remainder has the same sign as this value and is strictly smaller in
/// magnitude than `other`. The `truncatingRemainder(dividingBy:)` method
/// is always exact.
///
/// - Parameter other: The value to use when dividing this value.
/// - Returns: The remainder of this value divided by `other` using
/// truncating division.
@inlinable // FIXME(inline-always)
@inline(__always)
public func truncatingRemainder(dividingBy other: Self) -> Self {
var lhs = self
lhs.formTruncatingRemainder(dividingBy: other)
return lhs
}
/// Returns the remainder of this value divided by the given value.
///
/// For two finite values `x` and `y`, the remainder `r` of dividing `x` by
/// `y` satisfies `x == y * q + r`, where `q` is the integer nearest to
/// `x / y`. If `x / y` is exactly halfway between two integers, `q` is
/// chosen to be even. Note that `q` is *not* `x / y` computed in
/// floating-point arithmetic, and that `q` may not be representable in any
/// available integer type.
///
/// The following example calculates the remainder of dividing 8.625 by 0.75:
///
/// let x = 8.625
/// print(x / 0.75)
/// // Prints "11.5"
///
/// let q = (x / 0.75).rounded(.toNearestOrEven)
/// // q == 12.0
/// let r = x.remainder(dividingBy: 0.75)
/// // r == -0.375
///
/// let x1 = 0.75 * q + r
/// // x1 == 8.625
///
/// If this value and `other` are finite numbers, the remainder is in the
/// closed range `-abs(other / 2)...abs(other / 2)`. The
/// `remainder(dividingBy:)` method is always exact. This method implements
/// the remainder operation defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: The value to use when dividing this value.
/// - Returns: The remainder of this value divided by `other`.
@inlinable // FIXME(inline-always)
@inline(__always)
public func remainder(dividingBy other: Self) -> Self {
var lhs = self
lhs.formRemainder(dividingBy: other)
return lhs
}
/// Returns the square root of the value, rounded to a representable value.
///
/// The following example declares a function that calculates the length of
/// the hypotenuse of a right triangle given its two perpendicular sides.
///
/// func hypotenuse(_ a: Double, _ b: Double) -> Double {
/// return (a * a + b * b).squareRoot()
/// }
///
/// let (dx, dy) = (3.0, 4.0)
/// let distance = hypotenuse(dx, dy)
/// // distance == 5.0
///
/// - Returns: The square root of the value.
@_transparent
public func squareRoot( ) -> Self {
var lhs = self
lhs.formSquareRoot( )
return lhs
}
/// Returns the result of adding the product of the two given values to this
/// value, computed without intermediate rounding.
///
/// This method is equivalent to the C `fma` function and implements the
/// `fusedMultiplyAdd` operation defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - lhs: One of the values to multiply before adding to this value.
/// - rhs: The other value to multiply.
/// - Returns: The product of `lhs` and `rhs`, added to this value.
@_transparent
public func addingProduct(_ lhs: Self, _ rhs: Self) -> Self {
var addend = self
addend.addProduct(lhs, rhs)
return addend
}
/// Returns the lesser of the two given values.
///
/// This method returns the minimum of two values, preserving order and
/// eliminating NaN when possible. For two values `x` and `y`, the result of
/// `minimum(x, y)` is `x` if `x <= y`, `y` if `y < x`, or whichever of `x`
/// or `y` is a number if the other is a quiet NaN. If both `x` and `y` are
/// NaN, or either `x` or `y` is a signaling NaN, the result is NaN.
///
/// Double.minimum(10.0, -25.0)
/// // -25.0
/// Double.minimum(10.0, .nan)
/// // 10.0
/// Double.minimum(.nan, -25.0)
/// // -25.0
/// Double.minimum(.nan, .nan)
/// // nan
///
/// The `minimum` method implements the `minNum` operation defined by the
/// [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: The minimum of `x` and `y`, or whichever is a number if the
/// other is NaN.
@inlinable
public static func minimum(_ x: Self, _ y: Self) -> Self {
if x.isSignalingNaN || y.isSignalingNaN {
// Produce a quiet NaN matching platform arithmetic behavior.
return x + y
}
if x <= y || y.isNaN { return x }
return y
}
/// Returns the greater of the two given values.
///
/// This method returns the maximum of two values, preserving order and
/// eliminating NaN when possible. For two values `x` and `y`, the result of
/// `maximum(x, y)` is `x` if `x > y`, `y` if `x <= y`, or whichever of `x`
/// or `y` is a number if the other is a quiet NaN. If both `x` and `y` are
/// NaN, or either `x` or `y` is a signaling NaN, the result is NaN.
///
/// Double.maximum(10.0, -25.0)
/// // 10.0
/// Double.maximum(10.0, .nan)
/// // 10.0
/// Double.maximum(.nan, -25.0)
/// // -25.0
/// Double.maximum(.nan, .nan)
/// // nan
///
/// The `maximum` method implements the `maxNum` operation defined by the
/// [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: The greater of `x` and `y`, or whichever is a number if the
/// other is NaN.
@inlinable
public static func maximum(_ x: Self, _ y: Self) -> Self {
if x.isSignalingNaN || y.isSignalingNaN {
// Produce a quiet NaN matching platform arithmetic behavior.
return x + y
}
if x > y || y.isNaN { return x }
return y
}
/// Returns the value with lesser magnitude.
///
/// This method returns the value with lesser magnitude of the two given
/// values, preserving order and eliminating NaN when possible. For two
/// values `x` and `y`, the result of `minimumMagnitude(x, y)` is `x` if
/// `x.magnitude <= y.magnitude`, `y` if `y.magnitude < x.magnitude`, or
/// whichever of `x` or `y` is a number if the other is a quiet NaN. If both
/// `x` and `y` are NaN, or either `x` or `y` is a signaling NaN, the result
/// is NaN.
///
/// Double.minimumMagnitude(10.0, -25.0)
/// // 10.0
/// Double.minimumMagnitude(10.0, .nan)
/// // 10.0
/// Double.minimumMagnitude(.nan, -25.0)
/// // -25.0
/// Double.minimumMagnitude(.nan, .nan)
/// // nan
///
/// The `minimumMagnitude` method implements the `minNumMag` operation
/// defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: Whichever of `x` or `y` has lesser magnitude, or whichever is
/// a number if the other is NaN.
@inlinable
public static func minimumMagnitude(_ x: Self, _ y: Self) -> Self {
if x.isSignalingNaN || y.isSignalingNaN {
// Produce a quiet NaN matching platform arithmetic behavior.
return x + y
}
if x.magnitude <= y.magnitude || y.isNaN { return x }
return y
}
/// Returns the value with greater magnitude.
///
/// This method returns the value with greater magnitude of the two given
/// values, preserving order and eliminating NaN when possible. For two
/// values `x` and `y`, the result of `maximumMagnitude(x, y)` is `x` if
/// `x.magnitude > y.magnitude`, `y` if `x.magnitude <= y.magnitude`, or
/// whichever of `x` or `y` is a number if the other is a quiet NaN. If both
/// `x` and `y` are NaN, or either `x` or `y` is a signaling NaN, the result
/// is NaN.
///
/// Double.maximumMagnitude(10.0, -25.0)
/// // -25.0
/// Double.maximumMagnitude(10.0, .nan)
/// // 10.0
/// Double.maximumMagnitude(.nan, -25.0)
/// // -25.0
/// Double.maximumMagnitude(.nan, .nan)
/// // nan
///
/// The `maximumMagnitude` method implements the `maxNumMag` operation
/// defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: Whichever of `x` or `y` has greater magnitude, or whichever is
/// a number if the other is NaN.
@inlinable
public static func maximumMagnitude(_ x: Self, _ y: Self) -> Self {
if x.isSignalingNaN || y.isSignalingNaN {
// Produce a quiet NaN matching platform arithmetic behavior.
return x + y
}
if x.magnitude > y.magnitude || y.isNaN { return x }
return y
}
/// The classification of this value.
///
/// A value's `floatingPointClass` property describes its "class" as
/// described by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
@inlinable
public var floatingPointClass: FloatingPointClassification {
if isSignalingNaN { return .signalingNaN }
if isNaN { return .quietNaN }
if isInfinite { return sign == .minus ? .negativeInfinity : .positiveInfinity }
if isNormal { return sign == .minus ? .negativeNormal : .positiveNormal }
if isSubnormal { return sign == .minus ? .negativeSubnormal : .positiveSubnormal }
return sign == .minus ? .negativeZero : .positiveZero
}
}
extension BinaryFloatingPoint {
/// The radix, or base of exponentiation, for this floating-point type.
///
/// All binary floating-point types have a radix of 2. The magnitude of a
/// floating-point value `x` of type `F` can be calculated by using the
/// following formula, where `**` is exponentiation:
///
/// let magnitude = x.significand * F.radix ** x.exponent
public static var radix: Int { return 2 }
/// Creates a new floating-point value using the sign of one value and the
/// magnitude of another.
///
/// The following example uses this initializer to create a new `Double`
/// instance with the sign of `a` and the magnitude of `b`:
///
/// let a = -21.5
/// let b = 305.15
/// let c = Double(signOf: a, magnitudeOf: b)
/// print(c)
/// // Prints "-305.15"
///
/// This initializer implements the IEEE 754 `copysign` operation.
///
/// - Parameters:
/// - signOf: A value from which to use the sign. The result of the
/// initializer has the same sign as `signOf`.
/// - magnitudeOf: A value from which to use the magnitude. The result of
/// the initializer has the same magnitude as `magnitudeOf`.
@inlinable
public init(signOf: Self, magnitudeOf: Self) {
self.init(sign: signOf.sign,
exponentBitPattern: magnitudeOf.exponentBitPattern,
significandBitPattern: magnitudeOf.significandBitPattern)
}
@inlinable
public // @testable
static func _convert<Source : BinaryFloatingPoint>(
from source: Source
) -> (value: Self, exact: Bool) {
guard _fastPath(!source.isZero) else {
return (source.sign == .minus ? -0.0 : 0, true)
}
guard _fastPath(source.isFinite) else {
if source.isInfinite {
return (source.sign == .minus ? -.infinity : .infinity, true)
}
// IEEE 754 requires that any NaN payload be propagated, if possible.
let payload_ =
source.significandBitPattern &
~(Source.nan.significandBitPattern |
Source.signalingNaN.significandBitPattern)
let mask =
Self.greatestFiniteMagnitude.significandBitPattern &
~(Self.nan.significandBitPattern |
Self.signalingNaN.significandBitPattern)
let payload = Self.RawSignificand(truncatingIfNeeded: payload_) & mask
// Although .signalingNaN.exponentBitPattern == .nan.exponentBitPattern,
// we do not *need* to rely on this relation, and therefore we do not.
let value = source.isSignalingNaN
? Self(
sign: source.sign,
exponentBitPattern: Self.signalingNaN.exponentBitPattern,
significandBitPattern: payload |
Self.signalingNaN.significandBitPattern)
: Self(
sign: source.sign,
exponentBitPattern: Self.nan.exponentBitPattern,
significandBitPattern: payload | Self.nan.significandBitPattern)
// We define exactness by equality after roundtripping; since NaN is never
// equal to itself, it can never be converted exactly.
return (value, false)
}
let exponent = source.exponent
var exemplar = Self.leastNormalMagnitude
let exponentBitPattern: Self.RawExponent
let leadingBitIndex: Int
let shift: Int
let significandBitPattern: Self.RawSignificand
if exponent < exemplar.exponent {
// The floating-point result is either zero or subnormal.
exemplar = Self.leastNonzeroMagnitude
let minExponent = exemplar.exponent
if exponent + 1 < minExponent {
return (source.sign == .minus ? -0.0 : 0, false)
}
if _slowPath(exponent + 1 == minExponent) {
// Although the most significant bit (MSB) of a subnormal source
// significand is explicit, Swift BinaryFloatingPoint APIs actually
// omit any explicit MSB from the count represented in
// significandWidth. For instance:
//
// Double.leastNonzeroMagnitude.significandWidth == 0
//
// Therefore, we do not need to adjust our work here for a subnormal
// source.
return source.significandWidth == 0
? (source.sign == .minus ? -0.0 : 0, false)
: (source.sign == .minus ? -exemplar : exemplar, false)
}
exponentBitPattern = 0 as Self.RawExponent
leadingBitIndex = Int(Self.Exponent(exponent) - minExponent)
shift =
leadingBitIndex &-
(source.significandWidth &+
source.significandBitPattern.trailingZeroBitCount)
let leadingBit = source.isNormal
? (1 as Self.RawSignificand) << leadingBitIndex
: 0
significandBitPattern = leadingBit | (shift >= 0
? Self.RawSignificand(source.significandBitPattern) << shift
: Self.RawSignificand(source.significandBitPattern >> -shift))
} else {
// The floating-point result is either normal or infinite.
exemplar = Self.greatestFiniteMagnitude
if exponent > exemplar.exponent {
return (source.sign == .minus ? -.infinity : .infinity, false)
}
exponentBitPattern = exponent < 0
? (1 as Self).exponentBitPattern - Self.RawExponent(-exponent)
: (1 as Self).exponentBitPattern + Self.RawExponent(exponent)
leadingBitIndex = exemplar.significandWidth
shift =
leadingBitIndex &-
(source.significandWidth &+
source.significandBitPattern.trailingZeroBitCount)
let sourceLeadingBit = source.isSubnormal
? (1 as Source.RawSignificand) <<
(source.significandWidth &+
source.significandBitPattern.trailingZeroBitCount)
: 0
significandBitPattern = shift >= 0
? Self.RawSignificand(
sourceLeadingBit ^ source.significandBitPattern) << shift
: Self.RawSignificand(
(sourceLeadingBit ^ source.significandBitPattern) >> -shift)
}
let value = Self(
sign: source.sign,
exponentBitPattern: exponentBitPattern,
significandBitPattern: significandBitPattern)
if source.significandWidth <= leadingBitIndex {
return (value, true)
}
// We promise to round to the closest representation, and if two
// representable values are equally close, the value with more trailing
// zeros in its significand bit pattern. Therefore, we must take a look at
// the bits that we've just truncated.
let ulp = (1 as Source.RawSignificand) << -shift
let truncatedBits = source.significandBitPattern & (ulp - 1)
if truncatedBits < ulp / 2 {
return (value, false)
}
let rounded = source.sign == .minus ? value.nextDown : value.nextUp
guard _fastPath(
truncatedBits != ulp / 2 ||
exponentBitPattern.trailingZeroBitCount <
rounded.exponentBitPattern.trailingZeroBitCount) else {
return (value, false)
}
return (rounded, false)
}
/// Creates a new instance from the given value, rounded to the closest
/// possible representation.
///
/// If two representable values are equally close, the result is the value
/// with more trailing zeros in its significand bit pattern.
///
/// - Parameter value: A floating-point value to be converted.
@inlinable
public init<Source : BinaryFloatingPoint>(_ value: Source) {
self = Self._convert(from: value).value
}
/// Creates a new instance from the given value, if it can be represented
/// exactly.
///
/// If the given floating-point value cannot be represented exactly, the
/// result is `nil`.
///
/// - Parameter value: A floating-point value to be converted.
@inlinable
public init?<Source : BinaryFloatingPoint>(exactly value: Source) {
let (value_, exact) = Self._convert(from: value)
guard exact else { return nil }
self = value_
}
/// Returns a Boolean value indicating whether this instance should precede
/// or tie positions with the given value in an ascending sort.
///
/// This relation is a refinement of the less-than-or-equal-to operator
/// (`<=`) that provides a total order on all values of the type, including
/// signed zeros and NaNs.
///
/// The following example uses `isTotallyOrdered(belowOrEqualTo:)` to sort an
/// array of floating-point values, including some that are NaN:
///
/// var numbers = [2.5, 21.25, 3.0, .nan, -9.5]
/// numbers.sort { !$1.isTotallyOrdered(belowOrEqualTo: $0) }
/// // numbers == [-9.5, 2.5, 3.0, 21.25, NaN]
///
/// The `isTotallyOrdered(belowOrEqualTo:)` method implements the total order
/// relation as defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: A floating-point value to compare to this value.
/// - Returns: `true` if this value is ordered below or the same as `other`
/// in a total ordering of the floating-point type; otherwise, `false`.
@inlinable
public func isTotallyOrdered(belowOrEqualTo other: Self) -> Bool {
// Quick return when possible.
if self < other { return true }
if other > self { return false }
// Self and other are either equal or unordered.
// Every negative-signed value (even NaN) is less than every positive-
// signed value, so if the signs do not match, we simply return the
// sign bit of self.
if sign != other.sign { return sign == .minus }
// Sign bits match; look at exponents.
if exponentBitPattern > other.exponentBitPattern { return sign == .minus }
if exponentBitPattern < other.exponentBitPattern { return sign == .plus }
// Signs and exponents match, look at significands.
if significandBitPattern > other.significandBitPattern {
return sign == .minus
}
if significandBitPattern < other.significandBitPattern {
return sign == .plus
}
// Sign, exponent, and significand all match.
return true
}
}
extension BinaryFloatingPoint where Self.RawSignificand : FixedWidthInteger {
@inlinable
public // @testable
static func _convert<Source : BinaryInteger>(
from source: Source
) -> (value: Self, exact: Bool) {
// Useful constants:
let exponentBias = (1 as Self).exponentBitPattern
let significandMask = ((1 as RawSignificand) << Self.significandBitCount) &- 1
// Zero is really extra simple, and saves us from trying to normalize a
// value that cannot be normalized.
if _fastPath(source == 0) { return (0, true) }
// We now have a non-zero value; convert it to a strictly positive value
// by taking the magnitude.
let magnitude = source.magnitude
var exponent = magnitude._binaryLogarithm()
// If the exponent would be larger than the largest representable
// exponent, the result is just an infinity of the appropriate sign.
guard exponent <= Self.greatestFiniteMagnitude.exponent else {
return (Source.isSigned && source < 0 ? -.infinity : .infinity, false)
}
// If exponent <= significandBitCount, we don't need to round it to
// construct the significand; we just need to left-shift it into place;
// the result is always exact as we've accounted for exponent-too-large
// already and no rounding can occur.
if exponent <= Self.significandBitCount {
let shift = Self.significandBitCount &- exponent
let significand = RawSignificand(magnitude) &<< shift
let value = Self(
sign: Source.isSigned && source < 0 ? .minus : .plus,
exponentBitPattern: exponentBias + RawExponent(exponent),
significandBitPattern: significand
)
return (value, true)
}
// exponent > significandBitCount, so we need to do a rounding right
// shift, and adjust exponent if needed
let shift = exponent &- Self.significandBitCount
let halfway = (1 as Source.Magnitude) << (shift - 1)
let mask = 2 * halfway - 1
let fraction = magnitude & mask
var significand = RawSignificand(truncatingIfNeeded: magnitude >> shift) & significandMask
if fraction > halfway || (fraction == halfway && significand & 1 == 1) {
var carry = false
(significand, carry) = significand.addingReportingOverflow(1)
if carry || significand > significandMask {
exponent += 1
guard exponent <= Self.greatestFiniteMagnitude.exponent else {
return (Source.isSigned && source < 0 ? -.infinity : .infinity, false)
}
}
}
return (Self(
sign: Source.isSigned && source < 0 ? .minus : .plus,
exponentBitPattern: exponentBias + RawExponent(exponent),
significandBitPattern: significand
), fraction == 0)
}
/// Creates a new value, rounded to the closest possible representation.
///
/// If two representable values are equally close, the result is the value
/// with more trailing zeros in its significand bit pattern.
///
/// - Parameter value: The integer to convert to a floating-point value.
@inlinable
public init<Source : BinaryInteger>(_ value: Source) {
self = Self._convert(from: value).value
}
/// Creates a new value, if the given integer can be represented exactly.
///
/// If the given integer cannot be represented exactly, the result is `nil`.
///
/// - Parameter value: The integer to convert to a floating-point value.
@inlinable
public init?<Source : BinaryInteger>(exactly value: Source) {
let (value_, exact) = Self._convert(from: value)
guard exact else { return nil }
self = value_
}
/// Returns a random value within the specified range, using the given
/// generator as a source for randomness.
///
/// Use this method to generate a floating-point value within a specific
/// range when you are using a custom random number generator. This example
/// creates three new values in the range `10.0 ..< 20.0`.
///
/// for _ in 1...3 {
/// print(Double.random(in: 10.0 ..< 20.0, using: &myGenerator))
/// }
/// // Prints "18.1900709259179"
/// // Prints "14.2286325689993"
/// // Prints "13.1485686260762"
///
/// The `random(in:using:)` static method chooses a random value from a
/// continuous uniform distribution in `range`, and then converts that value
/// to the nearest representable value in this type. Depending on the size
/// and span of `range`, some concrete values may be represented more
/// frequently than others.
///
/// - Note: The algorithm used to create random values may change in a future
/// version of Swift. If you're passing a generator that results in the
/// same sequence of floating-point values each time you run your program,
/// that sequence may change when your program is compiled using a
/// different version of Swift.
///
/// - Parameters:
/// - range: The range in which to create a random value.
/// `range` must be finite and non-empty.
/// - generator: The random number generator to use when creating the
/// new random value.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random<T: RandomNumberGenerator>(
in range: Range<Self>,
using generator: inout T
) -> Self {
_precondition(
!range.isEmpty,
"Can't get random value with an empty range"
)
let delta = range.upperBound - range.lowerBound
// TODO: this still isn't quite right, because the computation of delta
// can overflow (e.g. if .upperBound = .maximumFiniteMagnitude and
// .lowerBound = -.upperBound); this should be re-written with an
// algorithm that handles that case correctly, but this precondition
// is an acceptable short-term fix.
_precondition(
delta.isFinite,
"There is no uniform distribution on an infinite range"
)
let rand: Self.RawSignificand
if Self.RawSignificand.bitWidth == Self.significandBitCount + 1 {
rand = generator.next()
} else {
let significandCount = Self.significandBitCount + 1
let maxSignificand: Self.RawSignificand = 1 << significandCount
// Rather than use .next(upperBound:), which has to work with arbitrary
// upper bounds, and therefore does extra work to avoid bias, we can take
// a shortcut because we know that maxSignificand is a power of two.
rand = generator.next() & (maxSignificand - 1)
}
let unitRandom = Self.init(rand) * (Self.ulpOfOne / 2)
let randFloat = delta * unitRandom + range.lowerBound
if randFloat == range.upperBound {
return Self.random(in: range, using: &generator)
}
return randFloat
}
/// Returns a random value within the specified range.
///
/// Use this method to generate a floating-point value within a specific
/// range. This example creates three new values in the range
/// `10.0 ..< 20.0`.
///
/// for _ in 1...3 {
/// print(Double.random(in: 10.0 ..< 20.0))
/// }
/// // Prints "18.1900709259179"
/// // Prints "14.2286325689993"
/// // Prints "13.1485686260762"
///
/// The `random()` static method chooses a random value from a continuous
/// uniform distribution in `range`, and then converts that value to the
/// nearest representable value in this type. Depending on the size and span
/// of `range`, some concrete values may be represented more frequently than
/// others.
///
/// This method is equivalent to calling `random(in:using:)`, passing in the
/// system's default random generator.
///
/// - Parameter range: The range in which to create a random value.
/// `range` must be finite and non-empty.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random(in range: Range<Self>) -> Self {
var g = SystemRandomNumberGenerator()
return Self.random(in: range, using: &g)
}
/// Returns a random value within the specified range, using the given
/// generator as a source for randomness.
///
/// Use this method to generate a floating-point value within a specific
/// range when you are using a custom random number generator. This example
/// creates three new values in the range `10.0 ... 20.0`.
///
/// for _ in 1...3 {
/// print(Double.random(in: 10.0 ... 20.0, using: &myGenerator))
/// }
/// // Prints "18.1900709259179"
/// // Prints "14.2286325689993"
/// // Prints "13.1485686260762"
///
/// The `random(in:using:)` static method chooses a random value from a
/// continuous uniform distribution in `range`, and then converts that value
/// to the nearest representable value in this type. Depending on the size
/// and span of `range`, some concrete values may be represented more
/// frequently than others.
///
/// - Note: The algorithm used to create random values may change in a future
/// version of Swift. If you're passing a generator that results in the
/// same sequence of floating-point values each time you run your program,
/// that sequence may change when your program is compiled using a
/// different version of Swift.
///
/// - Parameters:
/// - range: The range in which to create a random value. Must be finite.
/// - generator: The random number generator to use when creating the
/// new random value.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random<T: RandomNumberGenerator>(
in range: ClosedRange<Self>,
using generator: inout T
) -> Self {
_precondition(
!range.isEmpty,
"Can't get random value with an empty range"
)
let delta = range.upperBound - range.lowerBound
// TODO: this still isn't quite right, because the computation of delta
// can overflow (e.g. if .upperBound = .maximumFiniteMagnitude and
// .lowerBound = -.upperBound); this should be re-written with an
// algorithm that handles that case correctly, but this precondition
// is an acceptable short-term fix.
_precondition(
delta.isFinite,
"There is no uniform distribution on an infinite range"
)
let rand: Self.RawSignificand
if Self.RawSignificand.bitWidth == Self.significandBitCount + 1 {
rand = generator.next()
let tmp: UInt8 = generator.next() & 1
if rand == Self.RawSignificand.max && tmp == 1 {
return range.upperBound
}
} else {
let significandCount = Self.significandBitCount + 1
let maxSignificand: Self.RawSignificand = 1 << significandCount
rand = generator.next(upperBound: maxSignificand + 1)
if rand == maxSignificand {
return range.upperBound
}
}
let unitRandom = Self.init(rand) * (Self.ulpOfOne / 2)
let randFloat = delta * unitRandom + range.lowerBound
return randFloat
}
/// Returns a random value within the specified range.
///
/// Use this method to generate a floating-point value within a specific
/// range. This example creates three new values in the range
/// `10.0 ... 20.0`.
///
/// for _ in 1...3 {
/// print(Double.random(in: 10.0 ... 20.0))
/// }
/// // Prints "18.1900709259179"
/// // Prints "14.2286325689993"
/// // Prints "13.1485686260762"
///
/// The `random()` static method chooses a random value from a continuous
/// uniform distribution in `range`, and then converts that value to the
/// nearest representable value in this type. Depending on the size and span
/// of `range`, some concrete values may be represented more frequently than
/// others.
///
/// This method is equivalent to calling `random(in:using:)`, passing in the
/// system's default random generator.
///
/// - Parameter range: The range in which to create a random value. Must be finite.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random(in range: ClosedRange<Self>) -> Self {
var g = SystemRandomNumberGenerator()
return Self.random(in: range, using: &g)
}
}