blob: b7056d4c152b46eb157b7a7de6089f3020b0c510 [file] [log] [blame]
//===--- OwnershipModelEliminator.cpp - Eliminate SILOwnership Instr. -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This file contains a small pass that lowers SIL ownership instructions to
/// their constituent operations. This will enable us to separate
/// implementation
/// of Semantic ARC in SIL and SILGen from ensuring that all of the optimizer
/// passes respect Semantic ARC. This is done by running this pass right after
/// SILGen and as the pass pipeline is updated, moving this pass further and
/// further back in the pipeline.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-ownership-model-eliminator"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILVisitor.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
namespace {
struct OwnershipModelEliminatorVisitor
: SILInstructionVisitor<OwnershipModelEliminatorVisitor, bool> {
SILBuilder &B;
OwnershipModelEliminatorVisitor(SILBuilder &B) : B(B) {}
void beforeVisit(ValueBase *V) {
auto *I = cast<SILInstruction>(V);
B.setInsertionPoint(I);
B.setCurrentDebugScope(I->getDebugScope());
}
bool visitValueBase(ValueBase *V) { return false; }
bool visitLoadInst(LoadInst *LI);
bool visitStoreInst(StoreInst *SI);
bool visitStoreBorrowInst(StoreBorrowInst *SI);
bool visitCopyValueInst(CopyValueInst *CVI);
bool visitCopyUnownedValueInst(CopyUnownedValueInst *CVI);
bool visitDestroyValueInst(DestroyValueInst *DVI);
bool visitLoadBorrowInst(LoadBorrowInst *LBI);
bool visitBeginBorrowInst(BeginBorrowInst *BBI) {
BBI->replaceAllUsesWith(BBI->getOperand());
BBI->eraseFromParent();
return true;
}
bool visitEndBorrowInst(EndBorrowInst *EBI) {
EBI->eraseFromParent();
return true;
}
bool visitEndLifetimeInst(EndLifetimeInst *ELI) {
ELI->eraseFromParent();
return true;
}
bool visitUncheckedOwnershipConversionInst(
UncheckedOwnershipConversionInst *UOCI) {
UOCI->replaceAllUsesWith(UOCI->getOperand());
UOCI->eraseFromParent();
return true;
}
bool visitUnmanagedRetainValueInst(UnmanagedRetainValueInst *URVI);
bool visitUnmanagedReleaseValueInst(UnmanagedReleaseValueInst *URVI);
bool visitUnmanagedAutoreleaseValueInst(UnmanagedAutoreleaseValueInst *UAVI);
bool visitCheckedCastBranchInst(CheckedCastBranchInst *CBI);
bool visitSwitchEnumInst(SwitchEnumInst *SWI);
bool visitProjectBoxInst(ProjectBoxInst *PBI);
};
} // end anonymous namespace
bool OwnershipModelEliminatorVisitor::visitLoadInst(LoadInst *LI) {
auto Qualifier = LI->getOwnershipQualifier();
// If the qualifier is unqualified, there is nothing further to do
// here. Just return.
if (Qualifier == LoadOwnershipQualifier::Unqualified)
return false;
SILValue Result = B.emitLoadValueOperation(LI->getLoc(), LI->getOperand(),
LI->getOwnershipQualifier());
// Then remove the qualified load and use the unqualified load as the def of
// all of LI's uses.
LI->replaceAllUsesWith(Result);
LI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitStoreInst(StoreInst *SI) {
auto Qualifier = SI->getOwnershipQualifier();
// If the qualifier is unqualified, there is nothing further to do
// here. Just return.
if (Qualifier == StoreOwnershipQualifier::Unqualified)
return false;
B.emitStoreValueOperation(SI->getLoc(), SI->getSrc(), SI->getDest(),
SI->getOwnershipQualifier());
// Then remove the qualified store.
SI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitStoreBorrowInst(
StoreBorrowInst *SI) {
B.emitStoreValueOperation(SI->getLoc(), SI->getSrc(), SI->getDest(),
StoreOwnershipQualifier::Init);
// Then remove the qualified store.
SI->eraseFromParent();
return true;
}
bool
OwnershipModelEliminatorVisitor::visitLoadBorrowInst(LoadBorrowInst *LBI) {
// Break down the load borrow into an unqualified load.
auto *UnqualifiedLoad = B.createLoad(LBI->getLoc(), LBI->getOperand(),
LoadOwnershipQualifier::Unqualified);
// Then remove the qualified load and use the unqualified load as the def of
// all of LI's uses.
LBI->replaceAllUsesWith(UnqualifiedLoad);
LBI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitCopyValueInst(CopyValueInst *CVI) {
// A copy_value of an address-only type cannot be replaced.
if (CVI->getType().isAddressOnly(B.getModule()))
return false;
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
B.emitCopyValueOperation(CVI->getLoc(), CVI->getOperand());
CVI->replaceAllUsesWith(CVI->getOperand());
CVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitCopyUnownedValueInst(
CopyUnownedValueInst *CVI) {
B.createStrongRetainUnowned(CVI->getLoc(), CVI->getOperand(),
B.getDefaultAtomicity());
// Users of copy_value_unowned expect an owned value. So we need to convert
// our unowned value to a ref.
auto *UTRI =
B.createUnownedToRef(CVI->getLoc(), CVI->getOperand(), CVI->getType());
CVI->replaceAllUsesWith(UTRI);
CVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitUnmanagedRetainValueInst(
UnmanagedRetainValueInst *URVI) {
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
B.emitCopyValueOperation(URVI->getLoc(), URVI->getOperand());
URVI->replaceAllUsesWith(URVI->getOperand());
URVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitUnmanagedReleaseValueInst(
UnmanagedReleaseValueInst *URVI) {
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
B.emitDestroyValueOperation(URVI->getLoc(), URVI->getOperand());
URVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitUnmanagedAutoreleaseValueInst(
UnmanagedAutoreleaseValueInst *UAVI) {
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
B.createAutoreleaseValue(UAVI->getLoc(), UAVI->getOperand(),
UAVI->getAtomicity());
UAVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitDestroyValueInst(DestroyValueInst *DVI) {
// A destroy_value of an address-only type cannot be replaced.
if (DVI->getOperand()->getType().isAddressOnly(B.getModule()))
return false;
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
B.emitDestroyValueOperation(DVI->getLoc(), DVI->getOperand());
DVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitCheckedCastBranchInst(
CheckedCastBranchInst *CBI) {
// In ownership qualified SIL, checked_cast_br must pass its argument to the
// fail case so we can clean it up. In non-ownership qualified SIL, we expect
// no argument from the checked_cast_br in the default case. The way that we
// handle this transformation is that:
//
// 1. We replace all uses of the argument to the false block with a use of the
// checked cast branch's operand.
// 2. We delete the argument from the false block.
SILBasicBlock *FailureBlock = CBI->getFailureBB();
if (FailureBlock->getNumArguments() == 0)
return false;
FailureBlock->getArgument(0)->replaceAllUsesWith(CBI->getOperand());
FailureBlock->eraseArgument(0);
return true;
}
bool OwnershipModelEliminatorVisitor::visitSwitchEnumInst(
SwitchEnumInst *SWEI) {
// In ownership qualified SIL, switch_enum must pass its argument to the fail
// case so we can clean it up. In non-ownership qualified SIL, we expect no
// argument from the switch_enum in the default case. The way that we handle
// this transformation is that:
//
// 1. We replace all uses of the argument to the false block with a use of the
// checked cast branch's operand.
// 2. We delete the argument from the false block.
if (!SWEI->hasDefault())
return false;
SILBasicBlock *DefaultBlock = SWEI->getDefaultBB();
if (DefaultBlock->getNumArguments() == 0)
return false;
DefaultBlock->getArgument(0)->replaceAllUsesWith(SWEI->getOperand());
DefaultBlock->eraseArgument(0);
return true;
}
// Since we are threading through copies, we may have situations like:
//
// let x = alloc_box $Foo
// let y = project_box x
// let z = mark_uninitialized y
// ... use z ...
//
// let y2 = project_box x
//
// let x2 = copy_value x
// let y3 = project_box y
//
// We need to move project_box like y2 and y3 to go through z so that DI can
// reason about them.
//
// Once DI is updated for ownership, this can go away.
bool OwnershipModelEliminatorVisitor::visitProjectBoxInst(ProjectBoxInst *PBI) {
// First if our operand is already a mark_uninitialized, then we do not need
// to do anything.
auto *Use = PBI->getSingleUse();
if (Use && isa<MarkUninitializedInst>(Use->getUser())) {
return false;
}
// Otherwise, lets try to find the alloc_box.
SILValue BoxValue = PBI->getOperand();
while (auto *CVI = dyn_cast<CopyValueInst>(BoxValue)) {
BoxValue = CVI->getOperand();
}
// We were unable to find the alloc_box. This must be an indirect enum box
// pattern.
auto *ABI = dyn_cast<AllocBoxInst>(BoxValue);
if (!ABI)
return false;
// See if we can find (mark_uninitialized (project_box))
SILValue MUI;
for (auto *Use : ABI->getUses()) {
auto *BoxProjection = dyn_cast<ProjectBoxInst>(Use->getUser());
if (!BoxProjection)
continue;
auto *Op = BoxProjection->getSingleUse();
if (!Op || !isa<MarkUninitializedInst>(Op->getUser()))
continue;
MUI = SILValue(Op->getUser());
break;
}
// If we did not find a mark uninitialized inst, then this is not the pattern
// that we are looking for.
if (!MUI)
return false;
// Ok, we found it. Replace all uses of this project box with the
// mark_uninitialized and then erase it.
PBI->replaceAllUsesWith(MUI);
PBI->eraseFromParent();
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Entry Point
//===----------------------------------------------------------------------===//
namespace {
struct OwnershipModelEliminator : SILModuleTransform {
void run() override {
for (auto &F : *getModule()) {
// Set F to have unqualified ownership.
F.setUnqualifiedOwnership();
bool MadeChange = false;
SILBuilder B(F);
OwnershipModelEliminatorVisitor Visitor(B);
for (auto &BB : F) {
for (auto II = BB.begin(), IE = BB.end(); II != IE;) {
// Since we are going to be potentially removing instructions, we need
// to make sure to increment our iterator before we perform any
// visits.
SILInstruction *I = &*II;
++II;
MadeChange |= Visitor.visit(I);
}
}
if (MadeChange) {
auto InvalidKind =
SILAnalysis::InvalidationKind::BranchesAndInstructions;
invalidateAnalysis(&F, InvalidKind);
}
}
}
StringRef getName() override { return "Ownership Model Eliminator"; }
};
} // end anonymous namespace
SILTransform *swift::createOwnershipModelEliminator() {
return new OwnershipModelEliminator();
}