blob: d24d93776e3195f1c075a5d5d431b88250625c8b [file] [log] [blame]
//===--- SILGenProfiling.cpp - Instrumentation based profiling ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGenProfiling.h"
#include "SILGen.h"
#include "SILGenFunction.h"
#include "swift/AST/ASTNode.h"
#include "swift/AST/ASTWalker.h"
#include "swift/Parse/Lexer.h"
#include "swift/SIL/FormalLinkage.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
#include "llvm/ProfileData/Coverage/CoverageMappingWriter.h"
#include "llvm/ProfileData/InstrProf.h"
#include <forward_list>
using namespace swift;
using namespace Lowering;
static bool isUnmappedDecl(Decl *D) {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(D))
if (!AFD->getBody())
return true;
if (isa<ConstructorDecl>(D) || isa<DestructorDecl>(D))
return false;
return D->isImplicit() || isa<EnumCaseDecl>(D);
}
/// Walk the non-static initializers in \p PBD.
static void walkPatternForProfiling(PatternBindingDecl *PBD,
ASTWalker &Walker) {
if (PBD && !PBD->isStatic())
for (auto E : PBD->getPatternList())
if (E.getInit())
E.getInit()->walk(Walker);
}
/// Walk the AST of \c Root and related nodes that are relevant for profiling.
static void walkFunctionForProfiling(AbstractFunctionDecl *Root,
ASTWalker &Walker) {
Root->walk(Walker);
// We treat class initializers as part of the constructor for profiling.
if (auto *CD = dyn_cast<ConstructorDecl>(Root)) {
auto *NominalType = CD->getDeclContext()
->getAsNominalTypeOrNominalTypeExtensionContext();
for (auto *Member : NominalType->getMembers()) {
// Find pattern binding declarations that have initializers.
if (auto *PBD = dyn_cast<PatternBindingDecl>(Member))
walkPatternForProfiling(PBD, Walker);
}
}
}
/// Walk \p D for profiling.
static void walkForProfiling(Decl *D, ASTWalker &Walker) {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(D))
walkFunctionForProfiling(AFD, Walker);
else if (auto *PBD = dyn_cast<PatternBindingDecl>(D))
walkPatternForProfiling(PBD, Walker);
else if (auto *TLCD = dyn_cast<TopLevelCodeDecl>(D))
TLCD->walk(Walker);
else
llvm_unreachable("Don't know how to walk decl for profiling");
}
ProfilerRAII::ProfilerRAII(SILGenModule &SGM, Decl *D)
: SGM(SGM), PreviousProfiler(std::move(SGM.Profiler)) {
assert(isa<AbstractFunctionDecl>(D) ||
isa<TopLevelCodeDecl>(D) && "Cannot create profiler for this decl");
const auto &Opts = SGM.M.getOptions();
if (!Opts.GenerateProfile || isUnmappedDecl(D))
return;
SGM.Profiler =
llvm::make_unique<SILGenProfiling>(SGM, Opts.EmitProfileCoverageMapping);
SGM.Profiler->assignRegionCounters(D);
}
ProfilerRAII::~ProfilerRAII() { SGM.Profiler = std::move(PreviousProfiler); }
namespace {
/// An ASTWalker that maps ASTNodes to profiling counters.
struct MapRegionCounters : public ASTWalker {
/// The next counter value to assign.
unsigned NextCounter;
/// The map of statements to counters.
llvm::DenseMap<ASTNode, unsigned> &CounterMap;
MapRegionCounters(llvm::DenseMap<ASTNode, unsigned> &CounterMap)
: NextCounter(0), CounterMap(CounterMap) {}
bool walkToDeclPre(Decl *D) override {
if (isUnmappedDecl(D))
return false;
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(D))
CounterMap[AFD->getBody()] = NextCounter++;
if (auto *TLCD = dyn_cast<TopLevelCodeDecl>(D))
CounterMap[TLCD->getBody()] = NextCounter++;
return true;
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
if (auto *IS = dyn_cast<IfStmt>(S)) {
CounterMap[IS->getThenStmt()] = NextCounter++;
} else if (auto *US = dyn_cast<GuardStmt>(S)) {
CounterMap[US->getBody()] = NextCounter++;
} else if (auto *WS = dyn_cast<WhileStmt>(S)) {
CounterMap[WS->getBody()] = NextCounter++;
} else if (auto *RWS = dyn_cast<RepeatWhileStmt>(S)) {
CounterMap[RWS->getBody()] = NextCounter++;
} else if (auto *FES = dyn_cast<ForEachStmt>(S)) {
CounterMap[FES->getBody()] = NextCounter++;
walkPatternForProfiling(FES->getIterator(), *this);
} else if (auto *SS = dyn_cast<SwitchStmt>(S)) {
CounterMap[SS] = NextCounter++;
} else if (auto *CS = dyn_cast<CaseStmt>(S)) {
CounterMap[CS] = NextCounter++;
} else if (auto *DCS = dyn_cast<DoCatchStmt>(S)) {
CounterMap[DCS] = NextCounter++;
} else if (auto *CS = dyn_cast<CatchStmt>(S)) {
CounterMap[CS->getBody()] = NextCounter++;
}
return {true, S};
}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (auto *IE = dyn_cast<IfExpr>(E))
CounterMap[IE->getThenExpr()] = NextCounter++;
else if (isa<AutoClosureExpr>(E) || isa<ClosureExpr>(E))
CounterMap[E] = NextCounter++;
return {true, E};
}
};
/// A node in an expression tree of counters.
class CounterExpr {
enum class Kind { Node, Add, Sub, Zero, Ref };
Kind K;
ASTNode Node;
const CounterExpr *LHS;
const CounterExpr *RHS;
CounterExpr(Kind K) : K(K) {
assert((K == Kind::Zero) && "only valid for Zero");
}
CounterExpr(Kind K, ASTNode Node) : K(K), Node(Node) {
assert(K == Kind::Node && "only valid for Node");
}
CounterExpr(Kind K, const CounterExpr &LHS)
: K(K), LHS(&LHS) {
assert((K == Kind::Ref) && "only valid for Ref");
}
CounterExpr(Kind K, const CounterExpr &LHS, const CounterExpr &RHS)
: K(K), LHS(&LHS), RHS(&RHS) {
assert((K == Kind::Add || K == Kind::Sub) && "only valid for operators");
}
public:
// Move only.
CounterExpr(const CounterExpr &) = delete;
void operator=(const CounterExpr &) = delete;
CounterExpr(CounterExpr &&Other) = default;
CounterExpr &operator=(CounterExpr &&RHS) = default;
static CounterExpr Leaf(ASTNode Node) {
return CounterExpr(Kind::Node, Node);
}
static CounterExpr Add(const CounterExpr &LHS, const CounterExpr &RHS) {
return CounterExpr(Kind::Add, LHS, RHS);
}
static CounterExpr Sub(const CounterExpr &LHS, const CounterExpr &RHS) {
return CounterExpr(Kind::Sub, LHS, RHS);
}
static CounterExpr Zero() { return CounterExpr(Kind::Zero); }
static CounterExpr Ref(const CounterExpr &LHS) {
return CounterExpr(Kind::Ref, LHS);
}
/// Return the referenced node, or null if this is not a Ref type.
const CounterExpr *getReferencedNode() const {
return K == Kind::Ref ? LHS : nullptr;
}
/// Returns true if this is a Zero node.
bool isZero() const { return K == Kind::Zero; }
/// Expand this node into an llvm::coverage::Counter.
///
/// Updates \c Builder with any expressions that are needed to represent this
/// counter.
llvm::coverage::Counter
expand(llvm::coverage::CounterExpressionBuilder &Builder,
llvm::DenseMap<ASTNode, unsigned> &Counters) const {
switch (K) {
case Kind::Zero:
return llvm::coverage::Counter::getZero();
case Kind::Node:
return llvm::coverage::Counter::getCounter(Counters[Node]);
case Kind::Add:
return Builder.add(LHS->expand(Builder, Counters),
RHS->expand(Builder, Counters));
case Kind::Sub:
return Builder.subtract(LHS->expand(Builder, Counters),
RHS->expand(Builder, Counters));
case Kind::Ref:
return LHS->expand(Builder, Counters);
}
llvm_unreachable("Unhandled Kind in switch.");
}
};
/// \brief A region of source code that can be mapped to a counter.
class SourceMappingRegion {
ASTNode Node;
CounterExpr *Count;
/// \brief The region's starting location.
Optional<SourceLoc> StartLoc;
/// \brief The region's ending location.
Optional<SourceLoc> EndLoc;
public:
SourceMappingRegion(ASTNode Node, CounterExpr &Count,
Optional<SourceLoc> StartLoc, Optional<SourceLoc> EndLoc)
: Node(Node), Count(&Count), StartLoc(StartLoc), EndLoc(EndLoc) {}
SourceMappingRegion(SourceMappingRegion &&Region) = default;
SourceMappingRegion &operator=(SourceMappingRegion &&RHS) = default;
ASTNode getNode() const { return Node; }
CounterExpr &getCounter() const { return *Count; }
bool hasStartLoc() const { return StartLoc.hasValue(); }
void setStartLoc(SourceLoc Loc) { StartLoc = Loc; }
const SourceLoc &getStartLoc() const {
assert(StartLoc && "Region has no start location");
return *StartLoc;
}
bool hasEndLoc() const { return EndLoc.hasValue(); }
void setEndLoc(SourceLoc Loc) { EndLoc = Loc; }
const SourceLoc &getEndLoc() const {
assert(EndLoc && "Region has no end location");
return *EndLoc;
}
};
struct CoverageMapping : public ASTWalker {
private:
const SourceManager &SM;
/// \brief Storage for counter expressions.
std::forward_list<CounterExpr> Exprs;
/// \brief The map of statements to counter expressions.
llvm::DenseMap<ASTNode, CounterExpr *> CounterMap;
/// \brief The source mapping regions for this function.
std::vector<SourceMappingRegion> SourceRegions;
/// \brief A stack of currently live regions.
std::vector<SourceMappingRegion> RegionStack;
/// \brief A stack of active repeat-while loops.
std::vector<RepeatWhileStmt *> RepeatWhileStack;
CounterExpr *ExitCounter;
/// \brief Return true if \c Node has an associated counter.
bool hasCounter(ASTNode Node) { return CounterMap.count(Node); }
/// \brief Return the region counter for \c Node.
///
/// This should only be called on statements that have a dedicated counter.
CounterExpr &getCounter(ASTNode Node) {
assert(CounterMap.count(Node) && "No counter found");
return *CounterMap[Node];
}
/// \brief Create a counter expression.
CounterExpr &createCounter(CounterExpr &&Expr) {
Exprs.push_front(std::move(Expr));
return Exprs.front();
}
/// \brief Create a counter expression for \c Node and add it to the map.
CounterExpr &assignCounter(ASTNode Node, CounterExpr &&Expr) {
assert(Node && "Assigning counter expression to non-existent AST node");
CounterExpr &Result = createCounter(std::move(Expr));
CounterMap[Node] = &Result;
return Result;
}
/// \brief Create a counter expression referencing \c Node's own counter.
CounterExpr &assignCounter(ASTNode Node) {
return assignCounter(Node, CounterExpr::Leaf(Node));
}
/// \brief Add \c Expr to \c Node's counter.
void addToCounter(ASTNode Node, CounterExpr &Expr) {
CounterExpr &Counter = getCounter(Node);
if (const CounterExpr *ReferencedCounter = Counter.getReferencedNode())
Counter = CounterExpr::Add(*ReferencedCounter, Expr);
else if (Counter.isZero())
Counter = CounterExpr::Ref(Expr);
else
Counter = CounterExpr::Add(createCounter(std::move(Counter)), Expr);
}
/// \brief Subtract \c Expr from \c Node's counter.
void subtractFromCounter(ASTNode Node, CounterExpr &Expr) {
CounterExpr &Counter = getCounter(Node);
assert(!Counter.isZero() && "Cannot create a negative counter");
if (const CounterExpr *ReferencedCounter = Counter.getReferencedNode())
Counter = CounterExpr::Sub(*ReferencedCounter, Expr);
else
Counter = CounterExpr::Sub(createCounter(std::move(Counter)), Expr);
}
/// \brief Return the current region's counter.
CounterExpr &getCurrentCounter() { return getRegion().getCounter(); }
/// \brief Get the counter from the end of the most recent scope.
CounterExpr &getExitCounter() {
assert(ExitCounter && "no exit counter available");
return *ExitCounter;
}
/// \brief Set the exit count so we can leave the scope related to \c Node
///
/// Returns the delta of the count on entering \c Node and exiting, or null if
/// there was no change.
CounterExpr *setExitCount(ASTNode Node) {
ExitCounter = &getCurrentCounter();
if (hasCounter(Node) && ExitCounter != &getCounter(Node))
return &createCounter(CounterExpr::Sub(getCounter(Node), *ExitCounter));
return nullptr;
}
/// \brief Adjust the count for control flow when exiting a scope.
void adjustForNonLocalExits(ASTNode Scope, CounterExpr *ControlFlowAdjust) {
if (Parent.getAsDecl())
return;
CounterExpr *JumpsToLabel = nullptr;
Stmt *ParentStmt = Parent.getAsStmt();
if (ParentStmt) {
if (isa<DoStmt>(ParentStmt) || isa<DoCatchStmt>(ParentStmt) ||
isa<CatchStmt>(ParentStmt))
return;
if (auto *LS = dyn_cast<LabeledStmt>(ParentStmt))
JumpsToLabel = &getCounter(LS);
}
if (!ControlFlowAdjust && !JumpsToLabel)
return;
CounterExpr *Count = &getCurrentCounter();
// Add the counts from jumps directly to the label (such as breaks)
if (JumpsToLabel)
Count = &createCounter(CounterExpr::Add(*Count, *JumpsToLabel));
// Now apply any adjustments for control flow.
if (ControlFlowAdjust)
Count = &createCounter(CounterExpr::Sub(*Count, *ControlFlowAdjust));
//RegionStack.emplace_back(ASTNode(), *Count, getEndLoc(Scope), None);
RegionStack.emplace_back(ASTNode(), *Count, getEndLoc(Scope), None);
}
/// \brief Push a region covering \c Node onto the stack.
void pushRegion(ASTNode Node) {
RegionStack.emplace_back(Node, getCounter(Node), Node.getStartLoc(),
getEndLoc(Node));
}
/// \brief Replace the current region's count by pushing an incomplete region.
void replaceCount(CounterExpr &&Expr, Optional<SourceLoc> Start = None) {
CounterExpr &Counter = createCounter(std::move(Expr));
RegionStack.emplace_back(ASTNode(), Counter, Start, None);
}
/// \brief Get the location for the end of the last token in \c Node.
SourceLoc getEndLoc(ASTNode Node) {
return Lexer::getLocForEndOfToken(SM, Node.getEndLoc());
}
/// \brief Pop regions from the stack into the function's list of regions.
///
/// Adds all regions from \c ParentNode to the top of the stack to the
/// function's \c SourceRegions.
void popRegions(ASTNode ParentNode) {
auto I = RegionStack.begin(), E = RegionStack.end();
while (I != E &&
I->getNode().getOpaqueValue() != ParentNode.getOpaqueValue())
++I;
assert(I != E && "parent not in stack");
auto ParentIt = I;
SourceLoc EndLoc = ParentIt->getEndLoc();
SourceRegions.push_back(std::move(*I++));
for (; I != E; ++I) {
if (!I->hasStartLoc())
continue;
if (!I->hasEndLoc())
I->setEndLoc(EndLoc);
SourceRegions.push_back(std::move(*I));
}
RegionStack.erase(ParentIt, E);
}
/// \brief Return the currently active region.
SourceMappingRegion &getRegion() {
assert(!RegionStack.empty() && "statement has no region");
return RegionStack.back();
}
/// \brief Ensure that \c S is included in the current region.
void extendRegion(ASTNode S) {
SourceMappingRegion &Region = getRegion();
SourceLoc StartLoc = S.getStartLoc();
if (!Region.hasStartLoc())
Region.setStartLoc(StartLoc);
}
/// \brief Mark \c S as a terminator, starting a zero region.
void terminateRegion(ASTNode S) {
SourceMappingRegion &Region = getRegion();
if (!Region.hasEndLoc())
Region.setEndLoc(getEndLoc(S));
replaceCount(CounterExpr::Zero());
}
Expr *getConditionNode(StmtCondition SC) {
assert(!SC.empty() && "Empty condition");
return SC.front().getBooleanOrNull();
}
public:
CoverageMapping(const SourceManager &SM) : SM(SM) {}
/// \brief Generate the coverage counter mapping regions from collected
/// source regions.
SILCoverageMap *
emitSourceRegions(SILModule &M, StringRef Name, bool External, uint64_t Hash,
llvm::DenseMap<ASTNode, unsigned> &CounterIndices,
StringRef Filename) {
if (SourceRegions.empty())
return nullptr;
llvm::coverage::CounterExpressionBuilder Builder;
std::vector<SILCoverageMap::MappedRegion> Regions;
for (const auto &Region : SourceRegions) {
assert(Region.hasStartLoc() && "invalid region");
assert(Region.hasEndLoc() && "incomplete region");
auto Start = SM.getLineAndColumn(Region.getStartLoc());
auto End = SM.getLineAndColumn(Region.getEndLoc());
assert(Start.first <= End.first && "region start and end out of order");
Regions.emplace_back(Start.first, Start.second, End.first, End.second,
Region.getCounter().expand(Builder, CounterIndices));
}
return SILCoverageMap::create(M, Filename, Name, External, Hash, Regions,
Builder.getExpressions());
}
bool walkToDeclPre(Decl *D) override {
if (isUnmappedDecl(D))
return false;
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(D))
assignCounter(AFD->getBody());
else if (auto *TLCD = dyn_cast<TopLevelCodeDecl>(D))
assignCounter(TLCD->getBody());
return true;
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
if (S->isImplicit())
return {true, S};
if (!RegionStack.empty())
extendRegion(S);
if (auto *BS = dyn_cast<BraceStmt>(S)) {
if (hasCounter(BS))
pushRegion(BS);
} else if (auto *IS = dyn_cast<IfStmt>(S)) {
assignCounter(IS, CounterExpr::Zero());
CounterExpr &ThenCounter = assignCounter(IS->getThenStmt());
if (IS->getElseStmt())
assignCounter(IS->getElseStmt(),
CounterExpr::Sub(getCurrentCounter(), ThenCounter));
} else if (auto *GS = dyn_cast<GuardStmt>(S)) {
assignCounter(GS, CounterExpr::Zero());
assignCounter(GS->getBody());
} else if (auto *WS = dyn_cast<WhileStmt>(S)) {
assignCounter(WS, CounterExpr::Zero());
if (auto *E = getConditionNode(WS->getCond()))
assignCounter(E, CounterExpr::Ref(getCurrentCounter()));
assignCounter(WS->getBody());
} else if (auto *RWS = dyn_cast<RepeatWhileStmt>(S)) {
assignCounter(RWS, CounterExpr::Zero());
CounterExpr &BodyCounter = assignCounter(RWS->getBody());
assignCounter(RWS->getCond(), CounterExpr::Ref(BodyCounter));
RepeatWhileStack.push_back(RWS);
} else if (auto *FES = dyn_cast<ForEachStmt>(S)) {
assignCounter(FES, CounterExpr::Zero());
assignCounter(FES->getBody());
walkPatternForProfiling(FES->getIterator(), *this);
} else if (auto *SS = dyn_cast<SwitchStmt>(S)) {
assignCounter(SS);
// Assign counters for cases so they're available for fallthrough.
for (CaseStmt *Case : SS->getCases())
assignCounter(Case);
} else if (isa<CaseStmt>(S)) {
pushRegion(S);
} else if (auto *DS = dyn_cast<DoStmt>(S)) {
assignCounter(DS->getBody(), CounterExpr::Ref(getCurrentCounter()));
assignCounter(DS);
} else if (auto *DCS = dyn_cast<DoCatchStmt>(S)) {
assignCounter(DCS->getBody(), CounterExpr::Ref(getCurrentCounter()));
assignCounter(DCS);
} else if (auto *CS = dyn_cast<CatchStmt>(S)) {
assignCounter(CS->getBody());
}
return {true, S};
}
Stmt *walkToStmtPost(Stmt *S) override {
if (S->isImplicit())
return S;
if (isa<BraceStmt>(S)) {
if (hasCounter(S)) {
CounterExpr *Adjust = setExitCount(S);
popRegions(S);
adjustForNonLocalExits(S, Adjust);
}
} else if (auto *WS = dyn_cast<WhileStmt>(S)) {
// Update the condition with the backedge count.
if (auto *E = getConditionNode(WS->getCond()))
addToCounter(E, getExitCounter());
} else if (auto *RWS = dyn_cast<RepeatWhileStmt>(S)) {
assert(RepeatWhileStack.back() == RWS && "Malformed repeat-while stack");
(void) RWS;
RepeatWhileStack.pop_back();
} else if (auto *CS = dyn_cast<ContinueStmt>(S)) {
// Continues create extra backedges, add them to the appropriate counters.
if (!isa<RepeatWhileStmt>(CS->getTarget()))
addToCounter(CS->getTarget(), getCurrentCounter());
if (auto *WS = dyn_cast<WhileStmt>(CS->getTarget())) {
if (auto *E = getConditionNode(WS->getCond()))
addToCounter(E, getCurrentCounter());
}
terminateRegion(S);
} else if (auto *BS = dyn_cast<BreakStmt>(S)) {
// When we break from a loop, we need to adjust the exit count.
if (auto *RWS = dyn_cast<RepeatWhileStmt>(BS->getTarget())) {
subtractFromCounter(RWS->getCond(), getCurrentCounter());
} else if (!isa<SwitchStmt>(BS->getTarget())) {
addToCounter(BS->getTarget(), getCurrentCounter());
}
terminateRegion(S);
} else if (auto *FS = dyn_cast<FallthroughStmt>(S)) {
addToCounter(FS->getFallthroughDest(), getCurrentCounter());
terminateRegion(S);
} else if (isa<SwitchStmt>(S)) {
replaceCount(CounterExpr::Ref(getCounter(S)), getEndLoc(S));
} else if (isa<CaseStmt>(S)) {
popRegions(S);
} else if (isa<DoCatchStmt>(S)) {
replaceCount(CounterExpr::Ref(getCounter(S)), getEndLoc(S));
} else if (isa<ReturnStmt>(S) || isa<FailStmt>(S) || isa<ThrowStmt>(S)) {
// When we return, we may need to adjust some loop condition counts.
for (auto *RWS : RepeatWhileStack)
subtractFromCounter(RWS->getCond(), getCurrentCounter());
terminateRegion(S);
}
return S;
}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (!RegionStack.empty())
extendRegion(E);
if (isa<AutoClosureExpr>(E)) {
// Autoclosures look strange if there isn't a region, since it looks like
// control flow starts partway through an expression. For now we skip
// these so we don't get odd behavior in default arguments and the like,
// but in the future we should consider creating appropriate regions for
// those expressions.
if (!RegionStack.empty())
assignCounter(E);
} else if (isa<ClosureExpr>(E)) {
assignCounter(E);
} else if (auto *IE = dyn_cast<IfExpr>(E)) {
CounterExpr &ThenCounter = assignCounter(IE->getThenExpr());
if (RegionStack.empty())
assignCounter(IE->getElseExpr());
else
assignCounter(IE->getElseExpr(),
CounterExpr::Sub(getCurrentCounter(), ThenCounter));
}
if (hasCounter(E))
pushRegion(E);
return {true, E};
}
Expr *walkToExprPost(Expr *E) override {
if (hasCounter(E))
popRegions(E);
return E;
}
};
} // end anonymous namespace
static llvm::GlobalValue::LinkageTypes
getEquivalentPGOLinkage(FormalLinkage Linkage) {
switch (Linkage) {
case FormalLinkage::PublicUnique:
case FormalLinkage::PublicNonUnique:
return llvm::GlobalValue::ExternalLinkage;
case FormalLinkage::HiddenUnique:
case FormalLinkage::HiddenNonUnique:
case FormalLinkage::Private:
return llvm::GlobalValue::PrivateLinkage;
}
llvm_unreachable("Unhandled FormalLinkage in switch.");
}
void SILGenProfiling::assignRegionCounters(Decl *Root) {
const auto &SM = SGM.M.getASTContext().SourceMgr;
if (auto *ParentFile = cast<DeclContext>(Root)->getParentSourceFile())
CurrentFileName = ParentFile->getFilename();
MapRegionCounters Mapper(RegionCounterMap);
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(Root)) {
CurrentFuncName = SILDeclRef(AFD).mangle();
CurrentFuncLinkage = getDeclLinkage(AFD);
} else if (auto *TLCD = dyn_cast<TopLevelCodeDecl>(Root)) {
llvm::raw_string_ostream OS{CurrentFuncName};
OS << "__tlcd_";
TLCD->getStartLoc().printLineAndColumn(OS, SM);
CurrentFuncLinkage = FormalLinkage::HiddenUnique;
}
walkForProfiling(Root, Mapper);
NumRegionCounters = Mapper.NextCounter;
// TODO: Mapper needs to calculate a function hash as it goes.
FunctionHash = 0x0;
if (EmitCoverageMapping) {
CoverageMapping Coverage(SM);
walkForProfiling(Root, Coverage);
Coverage.emitSourceRegions(SGM.M, CurrentFuncName,
!llvm::GlobalValue::isLocalLinkage(
getEquivalentPGOLinkage(CurrentFuncLinkage)),
FunctionHash, RegionCounterMap, CurrentFileName);
}
}
static SILLocation getLocation(ASTNode Node) {
if (Expr *E = Node.dyn_cast<Expr *>())
return E;
else if (Stmt *S = Node.dyn_cast<Stmt *>())
return S;
else if (Decl *D = Node.dyn_cast<Decl *>())
return D;
else
llvm_unreachable("unsupported ASTNode");
}
void SILGenProfiling::emitCounterIncrement(SILGenBuilder &Builder,ASTNode Node){
auto &C = Builder.getASTContext();
auto CounterIt = RegionCounterMap.find(Node);
assert(CounterIt != RegionCounterMap.end() &&
"cannot increment non-existent counter");
auto Int32Ty = SGM.Types.getLoweredType(BuiltinIntegerType::get(32, C));
auto Int64Ty = SGM.Types.getLoweredType(BuiltinIntegerType::get(64, C));
std::string PGOFuncName = llvm::getPGOFuncName(
CurrentFuncName, getEquivalentPGOLinkage(CurrentFuncLinkage),
CurrentFileName);
SILLocation Loc = getLocation(Node);
SILValue Args[] = {
// The intrinsic must refer to the function profiling name var, which is
// inaccessible during SILGen. Rely on irgen to rewrite the function name.
Builder.createStringLiteral(Loc, StringRef(PGOFuncName),
StringLiteralInst::Encoding::UTF8),
Builder.createIntegerLiteral(Loc, Int64Ty, FunctionHash),
Builder.createIntegerLiteral(Loc, Int32Ty, NumRegionCounters),
Builder.createIntegerLiteral(Loc, Int32Ty, CounterIt->second)};
Builder.createBuiltin(Loc, C.getIdentifier("int_instrprof_increment"),
SGM.Types.getEmptyTupleType(), {}, Args);
}