blob: cb41c06954a6e95ef5c54552380544efb407edc0 [file] [log] [blame]
//===--- LLVMMergeFunctions.cpp - Merge similar functions for swift -------===//
//
// This source file is part of the Swift.org open source project
// Licensed under Apache License v2.0 with Runtime Library Exception
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
//
// This pass looks for similar functions that are mergeable and folds them.
// The implementation is similar to LLVM's MergeFunctions pass. Instead of
// merging identical functions, it merges functions which only differ by a few
// constants in certain instructions.
// Currently this is very Swift specific in the sense that it's intended to
// merge specialized functions which only differ by loading different metadata
// pointers.
// TODO: It could make sense to generalize this pass and move it to LLVM.
//
// This pass should run after LLVM's MergeFunctions pass, because it works best
// if there are no _identical_ functions in the module.
// Note: it would also work for identical functions but could produce more
// code overhead than the LLVM pass.
//
// There is a big TODO: currently there is a large code overlap in this file
// and the LLVM pass, mainly the IR comparison functions. This should be
// factored out into a separate utility and used by both passes.
//
//===----------------------------------------------------------------------===//
#include "swift/LLVMPasses/Passes.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/FunctionComparator.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
using namespace swift;
#define DEBUG_TYPE "swift-mergefunc"
STATISTIC(NumSwiftFunctionsMerged, "Number of functions merged");
STATISTIC(NumSwiftThunksWritten, "Number of thunks generated");
static cl::opt<unsigned> NumFunctionsForSanityCheck(
"swiftmergefunc-sanity",
cl::desc("How many functions in module could be used for "
"SwiftMergeFunctions pass sanity check. "
"'0' disables this check. Works only with '-debug' key."),
cl::init(0), cl::Hidden);
static cl::opt<unsigned> FunctionMergeThreshold(
"swiftmergefunc-threshold",
cl::desc("Functions larger than the threshold are considered for merging."
"'0' disables function merging at all."),
cl::init(30), cl::Hidden);
namespace {
/// FunctionComparator - Compares two functions to determine whether or not
/// they will generate machine code with the same behavior. DataLayout is
/// used if available. The comparator always fails conservatively (erring on the
/// side of claiming that two functions are different).
class SwiftFunctionComparator : FunctionComparator {
public:
SwiftFunctionComparator(const Function *F1, const Function *F2,
GlobalNumberState* GN) :
FunctionComparator(F1, F2, GN) {}
int cmpOperandsIgnoringConsts(const Instruction *L, const Instruction *R,
unsigned opIdx);
int cmpBasicBlocksIgnoringConsts(const BasicBlock *BBL, const BasicBlock *BBR);
int compareIgnoringConsts();
};
} // end anonymous namespace
static bool isEligibleForConstantSharing(const Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Load:
case Instruction::Store:
case Instruction::Call:
return true;
default:
return false;
}
}
int SwiftFunctionComparator::
cmpOperandsIgnoringConsts(const Instruction *L, const Instruction *R,
unsigned opIdx) {
Value *OpL = L->getOperand(opIdx);
Value *OpR = R->getOperand(opIdx);
int Res = cmpValues(OpL, OpR);
if (Res == 0)
return Res;
if (!isa<Constant>(OpL) || !isa<Constant>(OpR))
return Res;
if (!isEligibleForConstantSharing(L))
return Res;
if (const CallInst *CL = dyn_cast<CallInst>(L)) {
if (CL->isInlineAsm())
return Res;
if (Function *CalleeL = CL->getCalledFunction()) {
if (CalleeL->isIntrinsic())
return Res;
}
const CallInst *CR = cast<CallInst>(R);
if (CR->isInlineAsm())
return Res;
if (Function *CalleeR = CR->getCalledFunction()) {
if (CalleeR->isIntrinsic())
return Res;
}
}
if (cmpTypes(OpL->getType(), OpR->getType()))
return Res;
return 0;
}
// Test whether two basic blocks have equivalent behavior.
int SwiftFunctionComparator::
cmpBasicBlocksIgnoringConsts(const BasicBlock *BBL, const BasicBlock *BBR) {
BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
do {
bool needToCmpOperands = true;
if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
return Res;
if (needToCmpOperands) {
assert(InstL->getNumOperands() == InstR->getNumOperands());
for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
if (int Res = cmpOperandsIgnoringConsts(&*InstL, &*InstR, i))
return Res;
// cmpValues should ensure this is true.
assert(cmpTypes(InstL->getOperand(i)->getType(),
InstR->getOperand(i)->getType()) == 0);
}
}
++InstL, ++InstR;
} while (InstL != InstLE && InstR != InstRE);
if (InstL != InstLE && InstR == InstRE)
return 1;
if (InstL == InstLE && InstR != InstRE)
return -1;
return 0;
}
// Test whether the two functions have equivalent behavior.
int SwiftFunctionComparator::compareIgnoringConsts() {
beginCompare();
if (int Res = compareSignature())
return Res;
Function::const_iterator LIter = FnL->begin(), LEnd = FnL->end();
Function::const_iterator RIter = FnR->begin(), REnd = FnR->end();
do {
const BasicBlock *BBL = &*LIter;
const BasicBlock *BBR = &*RIter;
if (int Res = cmpValues(BBL, BBR))
return Res;
if (int Res = cmpBasicBlocksIgnoringConsts(BBL, BBR))
return Res;
++LIter, ++RIter;
} while (LIter != LEnd && RIter != REnd);
return 0;
}
namespace {
/// SwiftMergeFunctions finds functions which only differ by constants in
/// certain instructions, e.g. resulting from specialized functions of layout
/// compatible types.
/// Such functions are merged by replacing the differing constants by a
/// parameter. The original functions are replaced by thunks which call the
/// merged function with the specific argument constants.
///
class SwiftMergeFunctions : public ModulePass {
public:
static char ID;
SwiftMergeFunctions()
: ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)) {
}
bool runOnModule(Module &M) override;
private:
enum {
/// The maximum number of parameters added to a merged functions. This
/// roughly corresponds to the number of differing constants.
maxAddedParams = 4
};
struct FunctionEntry;
/// Describes the set of functions which are considered as "equivalent" (i.e.
/// only differing by some constants).
struct EquivalenceClass {
/// The single-linked list of all functions which are a member of this
/// equivalence class.
FunctionEntry *First;
/// A very cheap hash, used to early exit if functions do not match.
FunctionComparator::FunctionHash Hash;
public:
// Note the hash is recalculated potentially multiple times, but it is cheap.
EquivalenceClass(FunctionEntry *First)
: First(First), Hash(FunctionComparator::functionHash(*First->F)) {
assert(!First->Next);
}
};
/// The function comparison operator is provided here so that FunctionNodes do
/// not need to become larger with another pointer.
class FunctionNodeCmp {
GlobalNumberState* GlobalNumbers;
public:
FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}
bool operator()(const EquivalenceClass &LHS, const EquivalenceClass &RHS) const {
// Order first by hashes, then full function comparison.
if (LHS.Hash != RHS.Hash)
return LHS.Hash < RHS.Hash;
SwiftFunctionComparator FCmp(LHS.First->F, RHS.First->F, GlobalNumbers);
return FCmp.compareIgnoringConsts() == -1;
}
};
typedef std::set<EquivalenceClass, FunctionNodeCmp> FnTreeType;
///
struct FunctionEntry {
FunctionEntry(Function *F, FnTreeType::iterator I) :
F(F), Next(nullptr), numUnhandledCallees(0), TreeIter(I),
isMerged(false) { }
/// Back-link to the function.
AssertingVH<Function> F;
/// The next function in its equivalence class.
FunctionEntry *Next;
/// The number of not-yet merged callees. Used to process the merging in
/// bottom-up call order.
/// This is only valid in the first entry of an equivalence class. The
/// counts of all functions in an equivalence class are accumulated in the
/// first entry.
int numUnhandledCallees;
/// The iterator of the function's equivalence class in the FnTree.
/// It's FnTree.end() if the function is not in an equivalence class.
FnTreeType::iterator TreeIter;
/// True if this function is already a thunk, calling the merged function.
bool isMerged;
};
/// Describes an operator of a specific instruction.
struct OpLocation {
Instruction *I;
unsigned OpIndex;
};
/// Information for a function. Used during merging.
struct FunctionInfo {
FunctionInfo(Function *F) : F(F), CurrentInst(nullptr), NumParamsNeeded(0) {
}
void init() {
CurrentInst = &*F->begin()->begin();
NumParamsNeeded = 0;
}
/// Advances the current instruction to the next instruction.
void nextInst() {
assert(CurrentInst);
if (isa<TerminatorInst>(CurrentInst)) {
auto BlockIter = std::next(CurrentInst->getParent()->getIterator());
if (BlockIter == F->end()) {
CurrentInst = nullptr;
return;
}
CurrentInst = &*BlockIter->begin();
return;
}
CurrentInst = &*std::next(CurrentInst->getIterator());
}
Function *F;
/// The current instruction while iterating over all instructions.
Instruction *CurrentInst;
/// Roughly the number of parameters needed if this function would be
/// merged with the first function of the equivalence class.
int NumParamsNeeded;
};
typedef SmallVector<FunctionInfo, 8> FunctionInfos;
/// Describes a parameter which we create to parameterize the merged function.
struct ParamInfo {
/// The value of the parameter for all the functions in the equivalence
/// class.
SmallVector<Constant *, 8> Values;
/// All uses of the parameter in the merged function.
SmallVector<OpLocation, 16> Uses;
/// Checks if this parameter can be used to describe an operand in all
/// functions of the equivalence class. Returns true if all values match
/// the specific instruction operands in all functions.
bool matches(const FunctionInfos &FInfos, unsigned OpIdx) const {
unsigned NumFuncs = FInfos.size();
assert(Values.size() == NumFuncs);
for (unsigned Idx = 0; Idx < NumFuncs; ++Idx) {
const FunctionInfo &FI = FInfos[Idx];
Constant *C = cast<Constant>(FI.CurrentInst->getOperand(OpIdx));
if (Values[Idx] != C)
return false;
}
return true;
}
};
typedef SmallVector<ParamInfo, maxAddedParams> ParamInfos;
GlobalNumberState GlobalNumbers;
/// A work queue of functions that may have been modified and should be
/// analyzed again.
std::vector<WeakVH> Deferred;
/// The set of all distinct functions. Use the insert() and remove() methods
/// to modify it. The map allows efficient lookup and deferring of Functions.
FnTreeType FnTree;
ValueMap<Function*, FunctionEntry *> FuncEntries;
FunctionEntry *getEntry(Function *F) const {
return FuncEntries.lookup(F);
}
bool isInEquivalenceClass(FunctionEntry *FE) const {
if (FE->TreeIter != FnTree.end()) {
return true;
}
assert(!FE->Next);
assert(FE->numUnhandledCallees == 0);
return false;
}
/// Checks the rules of order relation introduced among functions set.
/// Returns true, if sanity check has been passed, and false if failed.
bool doSanityCheck(std::vector<WeakVH> &Worklist);
/// Updates the numUnhandledCallees of all user functions of the equivalence
/// class containing \p FE by \p Delta.
void updateUnhandledCalleeCount(FunctionEntry *FE, int Delta);
bool tryMergeEquivalenceClass(FunctionEntry *FirstInClass);
FunctionInfo removeFuncWithMostParams(FunctionInfos &FInfos);
bool deriveParams(ParamInfos &Params, FunctionInfos &FInfos);
bool constsDiffer(const FunctionInfos &FInfos, unsigned OpIdx);
bool tryMapToParameter(FunctionInfos &FInfos, unsigned OpIdx,
ParamInfos &Params);
void mergeWithParams(const FunctionInfos &FInfos, ParamInfos &Params);
void removeEquivalenceClassFromTree(FunctionEntry *FE);
void writeThunk(Function *ToFunc, Function *Thunk,
const ParamInfos &Params, unsigned FuncIdx);
/// Replace all direct calls of Old with calls of New. Will bitcast New if
/// necessary to make types match.
bool replaceDirectCallers(Function *Old, Function *New,
const ParamInfos &Params, unsigned FuncIdx);
};
} // end anonymous namespace
char SwiftMergeFunctions::ID = 0;
INITIALIZE_PASS_BEGIN(SwiftMergeFunctions,
"swift-merge-functions", "Swift merge function pass",
false, false)
INITIALIZE_PASS_END(SwiftMergeFunctions,
"swift-merge-functions", "Swift merge function pass",
false, false)
llvm::ModulePass *swift::createSwiftMergeFunctionsPass() {
initializeSwiftMergeFunctionsPass(*llvm::PassRegistry::getPassRegistry());
return new SwiftMergeFunctions();
}
bool SwiftMergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
if (const unsigned Max = NumFunctionsForSanityCheck) {
unsigned TripleNumber = 0;
bool Valid = true;
dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
unsigned i = 0;
for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
I != E && i < Max; ++I, ++i) {
unsigned j = i;
for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
Function *F1 = cast<Function>(*I);
Function *F2 = cast<Function>(*J);
int Res1 = SwiftFunctionComparator(F1, F2, &GlobalNumbers).
compareIgnoringConsts();
int Res2 = SwiftFunctionComparator(F2, F1, &GlobalNumbers).
compareIgnoringConsts();
// If F1 <= F2, then F2 >= F1, otherwise report failure.
if (Res1 != -Res2) {
dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
<< "\n";
F1->dump();
F2->dump();
Valid = false;
}
if (Res1 == 0)
continue;
unsigned k = j;
for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
++k, ++K, ++TripleNumber) {
if (K == J)
continue;
Function *F3 = cast<Function>(*K);
int Res3 = SwiftFunctionComparator(F1, F3, &GlobalNumbers).
compareIgnoringConsts();
int Res4 = SwiftFunctionComparator(F2, F3, &GlobalNumbers).
compareIgnoringConsts();
bool Transitive = true;
if (Res1 != 0 && Res1 == Res4) {
// F1 > F2, F2 > F3 => F1 > F3
Transitive = Res3 == Res1;
} else if (Res3 != 0 && Res3 == -Res4) {
// F1 > F3, F3 > F2 => F1 > F2
Transitive = Res3 == Res1;
} else if (Res4 != 0 && -Res3 == Res4) {
// F2 > F3, F3 > F1 => F2 > F1
Transitive = Res4 == -Res1;
}
if (!Transitive) {
dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
<< TripleNumber << "\n";
dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
<< Res4 << "\n";
F1->dump();
F2->dump();
F3->dump();
Valid = false;
}
}
}
}
dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
return Valid;
}
return true;
}
/// Returns true if function \p F is eligible for merging.
static bool isEligibleFunction(Function *F) {
if (F->isDeclaration())
return false;
if (F->hasAvailableExternallyLinkage())
return false;
if (F->getFunctionType()->isVarArg())
return false;
unsigned Benefit = 0;
// We don't want to merge very small functions, because the overhead of
// adding creating thunks and/or adding parameters to the call sites
// outweighs the benefit.
for (BasicBlock &BB : *F) {
for (Instruction &I : BB) {
if (CallSite CS = CallSite(&I)) {
Function *Callee = CS.getCalledFunction();
if (!Callee || !Callee->isIntrinsic()) {
Benefit += 5;
continue;
}
}
Benefit += 1;
}
}
if (Benefit < FunctionMergeThreshold)
return false;
return true;
}
bool SwiftMergeFunctions::runOnModule(Module &M) {
if (FunctionMergeThreshold == 0)
return false;
bool Changed = false;
// All functions in the module, ordered by hash. Functions with a unique
// hash value are easily eliminated.
std::vector<std::pair<FunctionComparator::FunctionHash, Function *>>
HashedFuncs;
for (Function &Func : M) {
if (isEligibleFunction(&Func)) {
HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func});
}
}
std::stable_sort(
HashedFuncs.begin(), HashedFuncs.end(),
[](const std::pair<FunctionComparator::FunctionHash, Function *> &a,
const std::pair<FunctionComparator::FunctionHash, Function *> &b) {
return a.first < b.first;
});
std::vector<FunctionEntry> FuncEntryStorage;
FuncEntryStorage.reserve(HashedFuncs.size());
auto S = HashedFuncs.begin();
for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
Function *F = I->second;
FuncEntryStorage.push_back(FunctionEntry(F, FnTree.end()));
FunctionEntry &FE = FuncEntryStorage.back();
FuncEntries[F] = &FE;
// If the hash value matches the previous value or the next one, we must
// consider merging it. Otherwise it is dropped and never considered again.
if ((I != S && std::prev(I)->first == I->first) ||
(std::next(I) != IE && std::next(I)->first == I->first) ) {
Deferred.push_back(WeakVH(F));
}
}
do {
std::vector<WeakVH> Worklist;
Deferred.swap(Worklist);
DEBUG(dbgs() << "======\nbuild tree: worklist-size=" << Worklist.size() <<
'\n');
DEBUG(doSanityCheck(Worklist));
SmallVector<FunctionEntry *, 8> FuncsToMerge;
// Insert all candidates into the Worklist.
for (std::vector<WeakVH>::iterator I = Worklist.begin(),
E = Worklist.end(); I != E; ++I) {
if (!*I) continue;
Function *F = cast<Function>(*I);
FunctionEntry *FE = getEntry(F);
assert(!isInEquivalenceClass(FE));
std::pair<FnTreeType::iterator, bool> Result = FnTree.insert(FE);
FE->TreeIter = Result.first;
const EquivalenceClass &Eq = *Result.first;
if (Result.second) {
assert(Eq.First == FE);
DEBUG(dbgs() << " new in tree: " << F->getName() << '\n');
} else {
assert(Eq.First != FE);
DEBUG(dbgs() << " add to existing: " << F->getName() << '\n');
// Add the function to the existing equivalence class.
FE->Next = Eq.First->Next;
Eq.First->Next = FE;
// Schedule for merging if the function's equivalence class reaches the
// size of 2.
if (!FE->Next)
FuncsToMerge.push_back(Eq.First);
}
}
DEBUG(dbgs() << "merge functions: tree-size=" << FnTree.size() << '\n');
// Figure out the leaf functions. We want to do the merging in bottom-up
// call order. This ensures that we don't parameterize on callee function
// names if we don't have to (because the callee may be merged).
// Note that "leaf functions" refer to the sub-call-graph of functions which
// are in the FnTree.
for (FunctionEntry *ToMerge : FuncsToMerge) {
assert(isInEquivalenceClass(ToMerge));
updateUnhandledCalleeCount(ToMerge, 1);
}
// Check if there are any leaf functions at all.
bool LeafFound = false;
for (FunctionEntry *ToMerge : FuncsToMerge) {
if (ToMerge->numUnhandledCallees == 0)
LeafFound = true;
}
for (FunctionEntry *ToMerge : FuncsToMerge) {
if (isInEquivalenceClass(ToMerge)) {
// Only merge leaf functions (or all functions if all functions are in
// a call cycle).
if (ToMerge->numUnhandledCallees == 0 || !LeafFound) {
updateUnhandledCalleeCount(ToMerge, -1);
Changed |= tryMergeEquivalenceClass(ToMerge);
} else {
// Non-leaf functions (i.e. functions in a call cycle) may become
// leaf functions in the next iteration.
removeEquivalenceClassFromTree(ToMerge);
}
}
}
} while (!Deferred.empty());
FnTree.clear();
GlobalNumbers.clear();
FuncEntries.clear();
return Changed;
}
void SwiftMergeFunctions::updateUnhandledCalleeCount(FunctionEntry *FE,
int Delta) {
// Iterate over all functions of FE's equivalence class.
do {
for (Use &U : FE->F->uses()) {
if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
FunctionEntry *CallerFE = getEntry(I->getFunction());
if (CallerFE && CallerFE->TreeIter != FnTree.end()) {
// Accumulate the count in the first entry of the equivalence class.
FunctionEntry *Head = CallerFE->TreeIter->First;
Head->numUnhandledCallees += Delta;
}
}
}
FE = FE->Next;
} while (FE);
}
bool SwiftMergeFunctions::tryMergeEquivalenceClass(FunctionEntry *FirstInClass) {
// Build the FInfos vector from all functions in the equivalence class.
FunctionInfos FInfos;
FunctionEntry *FE = FirstInClass;
do {
FInfos.push_back(FunctionInfo(FE->F));
FE->isMerged = true;
FE = FE->Next;
} while (FE);
assert(FInfos.size() >= 2);
// Merged or not: in any case we remove the equivalence class from the FnTree.
removeEquivalenceClassFromTree(FirstInClass);
// Contains functions which differ too much from the first function (i.e.
// would need too many parameters).
FunctionInfos Removed;
bool Changed = false;
int Try = 0;
// We need multiple tries if there are some functions in FInfos which differ
// too much from the first function in FInfos. But we limit the number of
// tries to a small number, because this is quadratic.
while (FInfos.size() >= 2 && Try++ < 4) {
ParamInfos Params;
bool Merged = deriveParams(Params, FInfos);
if (Merged) {
mergeWithParams(FInfos, Params);
Changed = true;
} else {
// We ran out of parameters. Remove the function from the set which
// differs most from the first function.
Removed.push_back(removeFuncWithMostParams(FInfos));
}
if (Merged || FInfos.size() < 2) {
// Try again with the functions which were removed from the original set.
FInfos.swap(Removed);
Removed.clear();
}
}
return Changed;
}
/// Remove the function from \p FInfos which needs the most parameters. Add the
/// removed function to
SwiftMergeFunctions::FunctionInfo SwiftMergeFunctions::
removeFuncWithMostParams(FunctionInfos &FInfos) {
FunctionInfos::iterator MaxIter = FInfos.end();
for (auto Iter = FInfos.begin(), End = FInfos.end(); Iter != End; ++Iter) {
if (MaxIter == FInfos.end() ||
Iter->NumParamsNeeded > MaxIter->NumParamsNeeded) {
MaxIter = Iter;
}
}
FunctionInfo Removed = *MaxIter;
FInfos.erase(MaxIter);
return Removed;
}
/// Finds the set of parameters which are required to merge the functions in
/// \p FInfos.
/// Returns true on success, i.e. the functions in \p FInfos can be merged with
/// the parameters returned in \p Params.
bool SwiftMergeFunctions::deriveParams(ParamInfos &Params,
FunctionInfos &FInfos) {
for (FunctionInfo &FI : FInfos)
FI.init();
FunctionInfo &FirstFI = FInfos.front();
// Iterate over all instructions synchronously in all functions.
do {
if (isEligibleForConstantSharing(FirstFI.CurrentInst)) {
for (unsigned OpIdx = 0, NumOps = FirstFI.CurrentInst->getNumOperands();
OpIdx != NumOps; ++OpIdx) {
if (constsDiffer(FInfos, OpIdx)) {
// This instruction has operands which differ in at least some
// functions. So we need to parameterize it.
if (!tryMapToParameter(FInfos, OpIdx, Params)) {
// We ran out of parameters.
return false;
}
}
}
}
// Go to the next instruction in all functions.
for (FunctionInfo &FI : FInfos)
FI.nextInst();
} while (FirstFI.CurrentInst);
return true;
}
/// Returns true if the \p OpIdx's constant operand in the current instruction
/// does differ in any of the functions in \p FInfos.
///
/// But it accepts the case where all operands refer to their containing
/// functions (in case of self recursive functions).
bool SwiftMergeFunctions::constsDiffer(const FunctionInfos &FInfos,
unsigned OpIdx) {
Constant *CommonConst = nullptr;
bool matching = true;
bool selfReferencing = true;
for (const FunctionInfo &FI : FInfos) {
Value *Op = FI.CurrentInst->getOperand(OpIdx);
if (Constant *C = dyn_cast<Constant>(Op)) {
if (C != FI.F)
selfReferencing = false;
if (!CommonConst) {
CommonConst = C;
} else if (C != CommonConst) {
matching = false;
}
if (!selfReferencing && !matching)
return true;
}
}
assert(selfReferencing || matching);
return false;
}
/// Create a new parameter for differing operands or try to reuse an existing
/// parameter.
/// Returns true if a parameter could be created or found without exceeding the
/// maximum number of parameters.
bool SwiftMergeFunctions::tryMapToParameter(FunctionInfos &FInfos,
unsigned OpIdx, ParamInfos &Params) {
ParamInfo *Matching = nullptr;
// Try to find an existing parameter which exactly matches the differing
// operands of the current instruction.
for (ParamInfo &PI : Params) {
if (PI.matches(FInfos, OpIdx)) {
Matching = &PI;
break;
}
}
if (!Matching) {
// We need a new parameter.
// Check if we are within the limit.
if (Params.size() >= maxAddedParams)
return false;
Params.resize(Params.size() + 1);
Matching = &Params.back();
// Store the constant values into the new parameter.
Constant *FirstC = cast<Constant>(FInfos[0].CurrentInst->getOperand(OpIdx));
for (FunctionInfo &FI : FInfos) {
Constant *C = cast<Constant>(FI.CurrentInst->getOperand(OpIdx));
Matching->Values.push_back(C);
if (C != FirstC)
FI.NumParamsNeeded += 1;
}
}
/// Remember where the parameter is needed when we build our merged function.
Matching->Uses.push_back({FInfos[0].CurrentInst, OpIdx});
return true;
}
/// Merge all functions in \p FInfos by creating thunks which call the single
/// merged function with additional parameters.
void SwiftMergeFunctions::mergeWithParams(const FunctionInfos &FInfos,
ParamInfos &Params) {
// We reuse the body of the first function for the new merged function.
Function *FirstF = FInfos.front().F;
// Build the type for the merged function. This will be the type of the
// original function (FirstF) but with the additional parameter which are
// needed to parameterize the merged function.
FunctionType *OrigTy = FirstF->getFunctionType();
SmallVector<Type *, 8> ParamTypes(OrigTy->param_begin(), OrigTy->param_end());
for (const ParamInfo &PI : Params) {
ParamTypes.push_back(PI.Values[0]->getType());
}
FunctionType *funcType =
FunctionType::get(OrigTy->getReturnType(), ParamTypes, false);
// Create the new function.
// TODO: Use a better name than just adding a suffix. Ideally it would be
// a name which can be demangled in a meaningful way.
Function *NewFunction = Function::Create(funcType,
FirstF->getLinkage(),
FirstF->getName() + "_merged");
NewFunction->copyAttributesFrom(FirstF);
// NOTE: this function is not externally available, do ensure that we reset
// the DLL storage
NewFunction->setDLLStorageClass(GlobalValue::DefaultStorageClass);
NewFunction->setLinkage(GlobalValue::InternalLinkage);
// Insert the new function after the last function in the equivalence class.
FirstF->getParent()->getFunctionList().insert(
std::next(FInfos[1].F->getIterator()), NewFunction);
DEBUG(dbgs() << " Merge into " << NewFunction->getName() << '\n');
// Move the body of FirstF into the NewFunction.
NewFunction->getBasicBlockList().splice(NewFunction->begin(),
FirstF->getBasicBlockList());
auto NewArgIter = NewFunction->arg_begin();
for (Argument &OrigArg : FirstF->args()) {
Argument &NewArg = *NewArgIter++;
OrigArg.replaceAllUsesWith(&NewArg);
}
// Replace all differing operands with a parameter.
for (const ParamInfo &PI : Params) {
Argument *NewArg = &*NewArgIter++;
for (const OpLocation &OL : PI.Uses) {
OL.I->setOperand(OL.OpIndex, NewArg);
}
ParamTypes.push_back(PI.Values[0]->getType());
}
for (unsigned FIdx = 0, NumFuncs = FInfos.size(); FIdx < NumFuncs; ++FIdx) {
Function *OrigFunc = FInfos[FIdx].F;
if (replaceDirectCallers(OrigFunc, NewFunction, Params, FIdx)) {
// We could replace all uses (and the function is not externally visible),
// so we can delete the original function.
auto Iter = FuncEntries.find(OrigFunc);
assert(Iter != FuncEntries.end());
assert(!isInEquivalenceClass(&*Iter->second));
Iter->second->F = nullptr;
FuncEntries.erase(Iter);
DEBUG(dbgs() << " Erase " << OrigFunc->getName() << '\n');
OrigFunc->eraseFromParent();
} else {
// Otherwise we need a thunk which calls the merged function.
writeThunk(NewFunction, OrigFunc, Params, FIdx);
}
++NumSwiftFunctionsMerged;
}
}
/// Remove all functions of \p FE's equivalence class from FnTree. Add them to
/// Deferred so that we'll look at them in the next round.
void SwiftMergeFunctions::removeEquivalenceClassFromTree(FunctionEntry *FE) {
if (!isInEquivalenceClass(FE))
return;
FnTreeType::iterator Iter = FE->TreeIter;
FunctionEntry *Unlink = Iter->First;
Unlink->numUnhandledCallees = 0;
while (Unlink) {
DEBUG(dbgs() << " remove from tree: " << Unlink->F->getName() << '\n');
if (!Unlink->isMerged)
Deferred.emplace_back(Unlink->F);
Unlink->TreeIter = FnTree.end();
assert(Unlink->numUnhandledCallees == 0);
FunctionEntry *NextEntry = Unlink->Next;
Unlink->Next = nullptr;
Unlink = NextEntry;
}
FnTree.erase(Iter);
}
// Helper for writeThunk,
// Selects proper bitcast operation,
// but a bit simpler then CastInst::getCastOpcode.
static Value *createCast(IRBuilder<> &Builder, Value *V, Type *DestTy) {
Type *SrcTy = V->getType();
if (SrcTy->isStructTy()) {
assert(DestTy->isStructTy());
assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
Value *Result = UndefValue::get(DestTy);
for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
Value *Element = createCast(
Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
DestTy->getStructElementType(I));
Result =
Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
}
return Result;
}
assert(!DestTy->isStructTy());
if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
return Builder.CreateIntToPtr(V, DestTy);
else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
return Builder.CreatePtrToInt(V, DestTy);
else
return Builder.CreateBitCast(V, DestTy);
}
/// Replace \p Thunk with a simple tail call to \p ToFunc. Also add parameters
/// to the call to \p ToFunc, which are defined by the FuncIdx's value in
/// \p Params.
void SwiftMergeFunctions::writeThunk(Function *ToFunc, Function *Thunk,
const ParamInfos &Params,
unsigned FuncIdx) {
// Delete the existing content of Thunk.
Thunk->dropAllReferences();
BasicBlock *BB = BasicBlock::Create(Thunk->getContext(), "", Thunk);
IRBuilder<> Builder(BB);
SmallVector<Value *, 16> Args;
unsigned ParamIdx = 0;
FunctionType *ToFuncTy = ToFunc->getFunctionType();
// Add arguments which are passed through Thunk.
for (Argument & AI : Thunk->args()) {
Args.push_back(createCast(Builder, &AI, ToFuncTy->getParamType(ParamIdx)));
++ParamIdx;
}
// Add new arguments defined by Params.
for (const ParamInfo &PI : Params) {
assert(ParamIdx < ToFuncTy->getNumParams());
Args.push_back(createCast(Builder, PI.Values[FuncIdx],
ToFuncTy->getParamType(ParamIdx)));
++ParamIdx;
}
CallInst *CI = Builder.CreateCall(ToFunc, Args);
CI->setTailCall();
CI->setCallingConv(ToFunc->getCallingConv());
CI->setAttributes(ToFunc->getAttributes());
if (Thunk->getReturnType()->isVoidTy()) {
Builder.CreateRetVoid();
} else {
Builder.CreateRet(createCast(Builder, CI, Thunk->getReturnType()));
}
DEBUG(dbgs() << " writeThunk: " << Thunk->getName() << '\n');
++NumSwiftThunksWritten;
}
/// Replace direct callers of Old with New. Also add parameters to the call to
/// \p New, which are defined by the FuncIdx's value in \p Params.
bool SwiftMergeFunctions::replaceDirectCallers(Function *Old, Function *New,
const ParamInfos &Params, unsigned FuncIdx) {
bool AllReplaced = true;
SmallVector<CallInst *, 8> Callers;
for (Use &U : Old->uses()) {
Instruction *I = dyn_cast<Instruction>(U.getUser());
if (!I) {
AllReplaced = false;
continue;
}
FunctionEntry *FE = getEntry(I->getFunction());
if (FE)
removeEquivalenceClassFromTree(FE);
CallInst *CI = dyn_cast<CallInst>(I);
if (!CI || CI->getCalledValue() != Old) {
AllReplaced = false;
continue;
}
Callers.push_back(CI);
}
if (!AllReplaced)
return false;
for (CallInst *CI : Callers) {
auto &Context = New->getContext();
auto NewFuncAttrs = New->getAttributes();
auto CallSiteAttrs = CI->getAttributes();
CallSiteAttrs = CallSiteAttrs.addAttributes(
Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes());
SmallVector<Type *, 8> OldParamTypes;
SmallVector<Value *, 16> NewArgs;
IRBuilder<> Builder(CI);
FunctionType *NewFuncTy = New->getFunctionType();
(void) NewFuncTy;
unsigned ParamIdx = 0;
// Add the existing parameters.
for (Value *OldArg : CI->arg_operands()) {
AttributeSet Attrs = NewFuncAttrs.getParamAttributes(ParamIdx);
if (Attrs.getNumSlots())
CallSiteAttrs = CallSiteAttrs.addAttributes(Context, ParamIdx, Attrs);
NewArgs.push_back(OldArg);
OldParamTypes.push_back(OldArg->getType());
++ParamIdx;
}
// Add the new parameters.
for (const ParamInfo &PI : Params) {
assert(ParamIdx < NewFuncTy->getNumParams());
Constant *ArgValue = PI.Values[FuncIdx];
// Check if it's a self referencing function. We must not use the old
// function pointer as argument.
if (ArgValue == Old)
ArgValue = New;
NewArgs.push_back(ArgValue);
OldParamTypes.push_back(ArgValue->getType());
++ParamIdx;
}
auto *FType = FunctionType::get(Old->getFunctionType()->getReturnType(),
OldParamTypes, false);
auto *FPtrType = PointerType::get(FType,
cast<PointerType>(New->getType())->getAddressSpace());
Value *Callee = ConstantExpr::getBitCast(New, FPtrType);
CallInst *NewCI = Builder.CreateCall(Callee, NewArgs);
NewCI->setCallingConv(CI->getCallingConv());
NewCI->setAttributes(CallSiteAttrs);
CI->replaceAllUsesWith(NewCI);
CI->eraseFromParent();
}
assert(Old->use_empty() && "should have replaced all uses of old function");
return Old->hasLocalLinkage();
}