blob: c492ab6b41f4f374b4ec4ce4f036276af719c3c4 [file] [log] [blame]
//===--- FrontendTool.cpp - Swift Compiler Frontend -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This is the entry point to the swift -frontend functionality, which
/// implements the core compiler functionality along with a number of additional
/// tools for demonstration and testing purposes.
///
/// This is separate from the rest of libFrontend to reduce the dependencies
/// required by that library.
///
//===----------------------------------------------------------------------===//
#include "swift/FrontendTool/FrontendTool.h"
#include "ImportedModules.h"
#include "ReferenceDependencies.h"
#include "TBD.h"
#include "swift/Subsystems.h"
#include "swift/AST/ASTScope.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ReferencedNameTracker.h"
#include "swift/AST/TypeRefinementContext.h"
#include "swift/Basic/Dwarf.h"
#include "swift/Basic/Edit.h"
#include "swift/Basic/FileSystem.h"
#include "swift/Basic/LLVMContext.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Statistic.h"
#include "swift/Basic/Timer.h"
#include "swift/Frontend/DiagnosticVerifier.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/Frontend/SerializedDiagnosticConsumer.h"
#include "swift/Immediate/Immediate.h"
#include "swift/Option/Options.h"
#include "swift/PrintAsObjC/PrintAsObjC.h"
#include "swift/Serialization/SerializationOptions.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
// FIXME: We're just using CompilerInstance::createOutputFile.
// This API should be sunk down to LLVM.
#include "clang/Frontend/CompilerInstance.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Option/Option.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/Timer.h"
#include "llvm/Target/TargetMachine.h"
#include <memory>
#include <unordered_set>
using namespace swift;
static std::string displayName(StringRef MainExecutablePath) {
std::string Name = llvm::sys::path::stem(MainExecutablePath);
Name += " -frontend";
return Name;
}
/// Emits a Make-style dependencies file.
static bool emitMakeDependencies(DiagnosticEngine &diags,
DependencyTracker &depTracker,
const FrontendOptions &opts) {
std::error_code EC;
llvm::raw_fd_ostream out(opts.DependenciesFilePath, EC,
llvm::sys::fs::F_None);
if (out.has_error() || EC) {
diags.diagnose(SourceLoc(), diag::error_opening_output,
opts.DependenciesFilePath, EC.message());
out.clear_error();
return true;
}
// Declare a helper for escaping file names for use in Makefiles.
llvm::SmallString<256> pathBuf;
auto escape = [&](StringRef raw) -> StringRef {
pathBuf.clear();
static const char badChars[] = " $#:\n";
size_t prev = 0;
for (auto index = raw.find_first_of(badChars); index != StringRef::npos;
index = raw.find_first_of(badChars, index+1)) {
pathBuf.append(raw.slice(prev, index));
if (raw[index] == '$')
pathBuf.push_back('$');
else
pathBuf.push_back('\\');
prev = index;
}
pathBuf.append(raw.substr(prev));
return pathBuf;
};
// FIXME: Xcode can't currently handle multiple targets in a single
// dependency line.
opts.forAllOutputPaths([&](StringRef targetName) {
out << escape(targetName) << " :";
// First include all other files in the module. Make-style dependencies
// need to be conservative!
for (auto const &path : reversePathSortedFilenames(opts.InputFilenames))
out << ' ' << escape(path);
// Then print dependencies we've picked up during compilation.
for (auto const &path :
reversePathSortedFilenames(depTracker.getDependencies()))
out << ' ' << escape(path);
out << '\n';
});
return false;
}
/// Writes SIL out to the given file.
static bool writeSIL(SILModule &SM, ModuleDecl *M, bool EmitVerboseSIL,
StringRef OutputFilename, bool SortSIL) {
std::error_code EC;
llvm::raw_fd_ostream OS(OutputFilename, EC, llvm::sys::fs::F_None);
if (EC) {
M->getASTContext().Diags.diagnose(SourceLoc(), diag::error_opening_output,
OutputFilename, EC.message());
return true;
}
SM.print(OS, EmitVerboseSIL, M, SortSIL);
return false;
}
static bool printAsObjC(const std::string &outputPath, ModuleDecl *M,
StringRef bridgingHeader, bool moduleIsPublic) {
using namespace llvm::sys;
clang::CompilerInstance Clang;
std::string tmpFilePath;
std::error_code EC;
std::unique_ptr<llvm::raw_pwrite_stream> out =
Clang.createOutputFile(outputPath, EC,
/*Binary=*/false,
/*RemoveFileOnSignal=*/true,
/*BaseInput=*/"",
path::extension(outputPath),
/*UseTemporary=*/true,
/*CreateMissingDirectories=*/false,
/*ResultPathName=*/nullptr,
&tmpFilePath);
if (!out) {
M->getASTContext().Diags.diagnose(SourceLoc(), diag::error_opening_output,
tmpFilePath, EC.message());
return true;
}
auto requiredAccess = moduleIsPublic ? Accessibility::Public
: Accessibility::Internal;
bool hadError = printAsObjC(*out, M, bridgingHeader, requiredAccess);
out->flush();
EC = swift::moveFileIfDifferent(tmpFilePath, outputPath);
if (EC) {
M->getASTContext().Diags.diagnose(SourceLoc(), diag::error_opening_output,
outputPath, EC.message());
return true;
}
return hadError;
}
/// Returns the OutputKind for the given Action.
static IRGenOutputKind getOutputKind(FrontendOptions::ActionType Action) {
switch (Action) {
case FrontendOptions::EmitIR:
return IRGenOutputKind::LLVMAssembly;
case FrontendOptions::EmitBC:
return IRGenOutputKind::LLVMBitcode;
case FrontendOptions::EmitAssembly:
return IRGenOutputKind::NativeAssembly;
case FrontendOptions::EmitObject:
return IRGenOutputKind::ObjectFile;
case FrontendOptions::Immediate:
return IRGenOutputKind::Module;
default:
llvm_unreachable("Unknown ActionType which requires IRGen");
return IRGenOutputKind::ObjectFile;
}
}
namespace {
/// If there is an error with fixits it writes the fixits as edits in json
/// format.
class JSONFixitWriter : public DiagnosticConsumer {
std::unique_ptr<llvm::raw_ostream> OSPtr;
bool FixitAll;
std::vector<SingleEdit> AllEdits;
public:
JSONFixitWriter(std::unique_ptr<llvm::raw_ostream> OS,
const DiagnosticOptions &DiagOpts)
: OSPtr(std::move(OS)),
FixitAll(DiagOpts.FixitCodeForAllDiagnostics) {}
~JSONFixitWriter() override {
swift::writeEditsInJson(llvm::makeArrayRef(AllEdits), *OSPtr);
}
private:
void handleDiagnostic(SourceManager &SM, SourceLoc Loc,
DiagnosticKind Kind, StringRef Text,
const DiagnosticInfo &Info) override {
if (!shouldFix(Kind, Info))
return;
for (const auto &Fix : Info.FixIts) {
AllEdits.push_back({SM, Fix.getRange(), Fix.getText()});
}
}
bool shouldFix(DiagnosticKind Kind, const DiagnosticInfo &Info) {
if (FixitAll)
return true;
// Do not add a semi or comma as it is wrong in most cases during migration
if (Info.ID == diag::statement_same_line_without_semi.ID ||
Info.ID == diag::declaration_same_line_without_semi.ID ||
Info.ID == diag::expected_separator.ID)
return false;
// The following interact badly with the swift migrator, they are undoing
// migration of arguments to preserve the no-label for first argument.
if (Info.ID == diag::witness_argument_name_mismatch.ID ||
Info.ID == diag::missing_argument_labels.ID ||
Info.ID == diag::override_argument_name_mismatch.ID)
return false;
// This also interacts badly with the swift migrator, it unnecessary adds
// @objc(selector) attributes triggered by the mismatched label changes.
if (Info.ID == diag::objc_witness_selector_mismatch.ID ||
Info.ID == diag::witness_non_objc.ID)
return false;
// This interacts badly with the migrator. For such code:
// func test(p: Int, _: String) {}
// test(0, "")
// the compiler bizarrely suggests to change order of arguments in the call
// site.
if (Info.ID == diag::argument_out_of_order_unnamed_unnamed.ID)
return false;
// The following interact badly with the swift migrator by removing @IB*
// attributes when there is some unrelated type issue.
if (Info.ID == diag::invalid_iboutlet.ID ||
Info.ID == diag::iboutlet_nonobjc_class.ID ||
Info.ID == diag::iboutlet_nonobjc_protocol.ID ||
Info.ID == diag::iboutlet_nonobject_type.ID ||
Info.ID == diag::iboutlet_only_mutable.ID ||
Info.ID == diag::invalid_ibdesignable_extension.ID ||
Info.ID == diag::invalid_ibinspectable.ID ||
Info.ID == diag::invalid_ibaction_decl.ID)
return false;
// Adding type(of:) interacts poorly with the swift migrator by
// invalidating some inits with type errors.
if (Info.ID == diag::init_not_instance_member.ID)
return false;
// Renaming enum cases interacts poorly with the swift migrator by
// reverting changes made by the migrator.
if (Info.ID == diag::could_not_find_enum_case.ID)
return false;
if (Kind == DiagnosticKind::Error)
return true;
// Fixits from warnings/notes that should be applied.
if (Info.ID == diag::forced_downcast_coercion.ID ||
Info.ID == diag::forced_downcast_noop.ID ||
Info.ID == diag::variable_never_mutated.ID ||
Info.ID == diag::function_type_no_parens.ID ||
Info.ID == diag::convert_let_to_var.ID ||
Info.ID == diag::parameter_extraneous_double_up.ID ||
Info.ID == diag::attr_decl_attr_now_on_type.ID ||
Info.ID == diag::noescape_parameter.ID ||
Info.ID == diag::noescape_autoclosure.ID ||
Info.ID == diag::where_inside_brackets.ID ||
Info.ID == diag::selector_construction_suggest.ID ||
Info.ID == diag::selector_literal_deprecated_suggest.ID ||
Info.ID == diag::attr_noescape_deprecated.ID ||
Info.ID == diag::attr_autoclosure_escaping_deprecated.ID ||
Info.ID == diag::attr_warn_unused_result_removed.ID ||
Info.ID == diag::any_as_anyobject_fixit.ID ||
Info.ID == diag::deprecated_protocol_composition.ID ||
Info.ID == diag::deprecated_protocol_composition_single.ID ||
Info.ID == diag::deprecated_any_composition.ID ||
Info.ID == diag::deprecated_operator_body.ID ||
Info.ID == diag::unbound_generic_parameter_explicit_fix.ID)
return true;
return false;
}
};
} // anonymous namespace
// This is a separate function so that it shows up in stack traces.
LLVM_ATTRIBUTE_NOINLINE
static void debugFailWithAssertion() {
// This assertion should always fail, per the user's request, and should
// not be converted to llvm_unreachable.
assert(0 && "This is an assertion!");
}
// This is a separate function so that it shows up in stack traces.
LLVM_ATTRIBUTE_NOINLINE
static void debugFailWithCrash() {
LLVM_BUILTIN_TRAP;
}
static void countStatsPostSILGen(UnifiedStatsReporter &Stats,
const SILModule& Module) {
auto &C = Stats.getFrontendCounters();
// FIXME: calculate these in constant time, via the dense maps.
C.NumSILGenFunctions = Module.getFunctionList().size();
C.NumSILGenVtables = Module.getVTableList().size();
C.NumSILGenWitnessTables = Module.getWitnessTableList().size();
C.NumSILGenDefaultWitnessTables = Module.getDefaultWitnessTableList().size();
C.NumSILGenGlobalVariables = Module.getSILGlobalList().size();
}
static void countStatsPostSILOpt(UnifiedStatsReporter &Stats,
const SILModule& Module) {
auto &C = Stats.getFrontendCounters();
// FIXME: calculate these in constant time, via the dense maps.
C.NumSILOptFunctions = Module.getFunctionList().size();
C.NumSILOptVtables = Module.getVTableList().size();
C.NumSILOptWitnessTables = Module.getWitnessTableList().size();
C.NumSILOptDefaultWitnessTables = Module.getDefaultWitnessTableList().size();
C.NumSILOptGlobalVariables = Module.getSILGlobalList().size();
}
/// Performs the compile requested by the user.
/// \param Instance Will be reset after performIRGeneration when the verifier
/// mode is NoVerify and there were no errors.
/// \returns true on error
static bool performCompile(std::unique_ptr<CompilerInstance> &Instance,
CompilerInvocation &Invocation,
ArrayRef<const char *> Args,
int &ReturnValue,
FrontendObserver *observer,
UnifiedStatsReporter *Stats) {
FrontendOptions opts = Invocation.getFrontendOptions();
FrontendOptions::ActionType Action = opts.RequestedAction;
// We've been asked to precompile a bridging header; we want to
// avoid touching any other inputs and just parse, emit and exit.
if (Action == FrontendOptions::EmitPCH) {
auto clangImporter = static_cast<ClangImporter *>(
Instance->getASTContext().getClangModuleLoader());
return clangImporter->emitBridgingPCH(
Invocation.getInputFilenames()[0],
opts.getSingleOutputFilename());
}
IRGenOptions &IRGenOpts = Invocation.getIRGenOptions();
bool inputIsLLVMIr = Invocation.getInputKind() == InputFileKind::IFK_LLVM_IR;
if (inputIsLLVMIr) {
auto &LLVMContext = getGlobalLLVMContext();
// Load in bitcode file.
assert(Invocation.getInputFilenames().size() == 1 &&
"We expect a single input for bitcode input!");
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileBufOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(Invocation.getInputFilenames()[0]);
if (!FileBufOrErr) {
Instance->getASTContext().Diags.diagnose(SourceLoc(),
diag::error_open_input_file,
Invocation.getInputFilenames()[0],
FileBufOrErr.getError().message());
return true;
}
llvm::MemoryBuffer *MainFile = FileBufOrErr.get().get();
llvm::SMDiagnostic Err;
std::unique_ptr<llvm::Module> Module = llvm::parseIR(
MainFile->getMemBufferRef(),
Err, LLVMContext);
if (!Module) {
// TODO: Translate from the diagnostic info to the SourceManager location
// if available.
Instance->getASTContext().Diags.diagnose(SourceLoc(),
diag::error_parse_input_file,
Invocation.getInputFilenames()[0],
Err.getMessage());
return true;
}
// TODO: remove once the frontend understands what action it should perform
IRGenOpts.OutputKind = getOutputKind(Action);
return performLLVM(IRGenOpts, Instance->getASTContext(), Module.get());
}
ReferencedNameTracker nameTracker;
bool shouldTrackReferences = !opts.ReferenceDependenciesFilePath.empty();
if (shouldTrackReferences)
Instance->setReferencedNameTracker(&nameTracker);
if (Action == FrontendOptions::Parse ||
Action == FrontendOptions::DumpParse ||
Action == FrontendOptions::DumpInterfaceHash ||
Action == FrontendOptions::EmitImportedModules)
Instance->performParseOnly();
else
Instance->performSema();
if (Action == FrontendOptions::Parse)
return Instance->getASTContext().hadError();
if (observer) {
observer->performedSemanticAnalysis(*Instance);
}
FrontendOptions::DebugCrashMode CrashMode = opts.CrashMode;
if (CrashMode == FrontendOptions::DebugCrashMode::AssertAfterParse)
debugFailWithAssertion();
else if (CrashMode == FrontendOptions::DebugCrashMode::CrashAfterParse)
debugFailWithCrash();
ASTContext &Context = Instance->getASTContext();
if (Action == FrontendOptions::REPL) {
runREPL(*Instance, ProcessCmdLine(Args.begin(), Args.end()),
Invocation.getParseStdlib());
return Context.hadError();
}
SourceFile *PrimarySourceFile = Instance->getPrimarySourceFile();
// We've been told to dump the AST (either after parsing or type-checking,
// which is already differentiated in CompilerInstance::performSema()),
// so dump or print the main source file and return.
if (Action == FrontendOptions::DumpParse ||
Action == FrontendOptions::DumpAST ||
Action == FrontendOptions::PrintAST ||
Action == FrontendOptions::DumpScopeMaps ||
Action == FrontendOptions::DumpTypeRefinementContexts ||
Action == FrontendOptions::DumpInterfaceHash) {
SourceFile *SF = PrimarySourceFile;
if (!SF) {
SourceFileKind Kind = Invocation.getSourceFileKind();
SF = &Instance->getMainModule()->getMainSourceFile(Kind);
}
if (Action == FrontendOptions::PrintAST)
SF->print(llvm::outs(), PrintOptions::printEverything());
else if (Action == FrontendOptions::DumpScopeMaps) {
ASTScope &scope = SF->getScope();
if (opts.DumpScopeMapLocations.empty()) {
scope.expandAll();
} else if (auto bufferID = SF->getBufferID()) {
SourceManager &sourceMgr = Instance->getSourceMgr();
// Probe each of the locations, and dump what we find.
for (auto lineColumn : opts.DumpScopeMapLocations) {
SourceLoc loc = sourceMgr.getLocForLineCol(*bufferID,
lineColumn.first,
lineColumn.second);
if (loc.isInvalid()) continue;
llvm::errs() << "***Scope at " << lineColumn.first << ":"
<< lineColumn.second << "***\n";
auto locScope = scope.findInnermostEnclosingScope(loc);
locScope->print(llvm::errs(), 0, false, false);
// Dump the AST context, too.
if (auto dc = locScope->getDeclContext()) {
dc->printContext(llvm::errs());
}
// Grab the local bindings introduced by this scope.
auto localBindings = locScope->getLocalBindings();
if (!localBindings.empty()) {
llvm::errs() << "Local bindings: ";
interleave(localBindings.begin(), localBindings.end(),
[&](ValueDecl *value) {
llvm::errs() << value->getFullName();
},
[&]() {
llvm::errs() << " ";
});
llvm::errs() << "\n";
}
}
llvm::errs() << "***Complete scope map***\n";
}
// Print the resulting map.
scope.print(llvm::errs());
} else if (Action == FrontendOptions::DumpTypeRefinementContexts)
SF->getTypeRefinementContext()->dump(llvm::errs(), Context.SourceMgr);
else if (Action == FrontendOptions::DumpInterfaceHash)
SF->dumpInterfaceHash(llvm::errs());
else
SF->dump();
return Context.hadError();
} else if (Action == FrontendOptions::EmitImportedModules) {
emitImportedModules(Context, Instance->getMainModule(), opts);
return Context.hadError();
}
// If we were asked to print Clang stats, do so.
if (opts.PrintClangStats && Context.getClangModuleLoader())
Context.getClangModuleLoader()->printStatistics();
if (!opts.DependenciesFilePath.empty())
(void)emitMakeDependencies(Context.Diags, *Instance->getDependencyTracker(),
opts);
if (shouldTrackReferences)
emitReferenceDependencies(Context.Diags, Instance->getPrimarySourceFile(),
*Instance->getDependencyTracker(), opts);
if (Context.hadError())
return true;
// FIXME: This is still a lousy approximation of whether the module file will
// be externally consumed.
bool moduleIsPublic =
!Instance->getMainModule()->hasEntryPoint() &&
opts.ImplicitObjCHeaderPath.empty() &&
!Context.LangOpts.EnableAppExtensionRestrictions;
// We've just been told to perform a typecheck, so we can return now.
if (Action == FrontendOptions::Typecheck) {
if (!opts.ObjCHeaderOutputPath.empty())
return printAsObjC(opts.ObjCHeaderOutputPath, Instance->getMainModule(),
opts.ImplicitObjCHeaderPath, moduleIsPublic);
return Context.hadError();
}
if (Action == FrontendOptions::EmitTBD) {
auto hasMultipleIRGenThreads = Invocation.getSILOptions().NumThreads > 1;
return writeTBD(Instance->getMainModule(), hasMultipleIRGenThreads,
opts.getSingleOutputFilename());
}
assert(Action >= FrontendOptions::EmitSILGen &&
"All actions not requiring SILGen must have been handled!");
std::unique_ptr<SILModule> SM = Instance->takeSILModule();
if (!SM) {
if (opts.PrimaryInput.hasValue() && opts.PrimaryInput.getValue().isFilename()) {
FileUnit *PrimaryFile = PrimarySourceFile;
if (!PrimaryFile) {
auto Index = opts.PrimaryInput.getValue().Index;
PrimaryFile = Instance->getMainModule()->getFiles()[Index];
}
SM = performSILGeneration(*PrimaryFile, Invocation.getSILOptions(),
None, opts.SILSerializeAll);
} else {
SM = performSILGeneration(Instance->getMainModule(), Invocation.getSILOptions(),
opts.SILSerializeAll,
true);
}
}
if (observer) {
observer->performedSILGeneration(*SM);
}
if (Stats) {
countStatsPostSILGen(*Stats, *SM);
}
// We've been told to emit SIL after SILGen, so write it now.
if (Action == FrontendOptions::EmitSILGen) {
// If we are asked to link all, link all.
if (Invocation.getSILOptions().LinkMode == SILOptions::LinkAll)
performSILLinking(SM.get(), true);
return writeSIL(*SM, Instance->getMainModule(), opts.EmitVerboseSIL,
opts.getSingleOutputFilename(), opts.EmitSortedSIL);
}
if (Action == FrontendOptions::EmitSIBGen) {
// If we are asked to link all, link all.
if (Invocation.getSILOptions().LinkMode == SILOptions::LinkAll)
performSILLinking(SM.get(), true);
auto DC = PrimarySourceFile ? ModuleOrSourceFile(PrimarySourceFile) :
Instance->getMainModule();
if (!opts.ModuleOutputPath.empty()) {
SerializationOptions serializationOpts;
serializationOpts.OutputPath = opts.ModuleOutputPath.c_str();
serializationOpts.SerializeAllSIL = true;
serializationOpts.IsSIB = true;
serialize(DC, serializationOpts, SM.get());
}
return Context.hadError();
}
// Perform "stable" optimizations that are invariant across compiler versions.
if (!Invocation.getDiagnosticOptions().SkipDiagnosticPasses) {
if (runSILDiagnosticPasses(*SM))
return true;
if (observer) {
observer->performedSILDiagnostics(*SM);
}
} else {
// Even if we are not supposed to run the diagnostic passes, we still need
// to run the ownership evaluator.
if (runSILOwnershipEliminatorPass(*SM))
return true;
}
// Now if we are asked to link all, link all.
if (Invocation.getSILOptions().LinkMode == SILOptions::LinkAll)
performSILLinking(SM.get(), true);
if (Invocation.getSILOptions().MergePartialModules)
SM->linkAllFromCurrentModule();
{
SharedTimer timer("SIL verification, pre-optimization");
SM->verify();
}
// Perform SIL optimization passes if optimizations haven't been disabled.
// These may change across compiler versions.
{
SharedTimer timer("SIL optimization");
if (Invocation.getSILOptions().Optimization >
SILOptions::SILOptMode::None) {
StringRef CustomPipelinePath =
Invocation.getSILOptions().ExternalPassPipelineFilename;
if (!CustomPipelinePath.empty()) {
runSILOptimizationPassesWithFileSpecification(*SM, CustomPipelinePath);
} else {
runSILOptimizationPasses(*SM);
}
} else {
runSILPassesForOnone(*SM);
}
}
if (observer) {
observer->performedSILOptimization(*SM);
}
if (Stats) {
countStatsPostSILOpt(*Stats, *SM);
}
{
SharedTimer timer("SIL verification, post-optimization");
SM->verify();
}
// Gather instruction counts if we are asked to do so.
if (SM->getOptions().PrintInstCounts) {
performSILInstCount(&*SM);
}
// Get the main source file's private discriminator and attach it to
// the compile unit's flags.
if (PrimarySourceFile) {
Identifier PD = PrimarySourceFile->getPrivateDiscriminator();
if (!PD.empty())
IRGenOpts.DWARFDebugFlags += (" -private-discriminator "+PD.str()).str();
}
if (!opts.ObjCHeaderOutputPath.empty()) {
(void)printAsObjC(opts.ObjCHeaderOutputPath, Instance->getMainModule(),
opts.ImplicitObjCHeaderPath, moduleIsPublic);
}
if (Action == FrontendOptions::EmitSIB) {
auto DC = PrimarySourceFile ? ModuleOrSourceFile(PrimarySourceFile) :
Instance->getMainModule();
if (!opts.ModuleOutputPath.empty()) {
SerializationOptions serializationOpts;
serializationOpts.OutputPath = opts.ModuleOutputPath.c_str();
serializationOpts.SerializeAllSIL = true;
serializationOpts.IsSIB = true;
serialize(DC, serializationOpts, SM.get());
}
return Context.hadError();
}
if (!opts.ModuleOutputPath.empty() || !opts.ModuleDocOutputPath.empty()) {
auto DC = PrimarySourceFile ? ModuleOrSourceFile(PrimarySourceFile) :
Instance->getMainModule();
if (!opts.ModuleOutputPath.empty()) {
SerializationOptions serializationOpts;
serializationOpts.OutputPath = opts.ModuleOutputPath.c_str();
serializationOpts.DocOutputPath = opts.ModuleDocOutputPath.c_str();
serializationOpts.GroupInfoPath = opts.GroupInfoPath.c_str();
serializationOpts.SerializeAllSIL = opts.SILSerializeAll;
if (opts.SerializeBridgingHeader)
serializationOpts.ImportedHeader = opts.ImplicitObjCHeaderPath;
serializationOpts.ModuleLinkName = opts.ModuleLinkName;
serializationOpts.ExtraClangOptions =
Invocation.getClangImporterOptions().ExtraArgs;
serializationOpts.EnableNestedTypeLookupTable =
opts.EnableSerializationNestedTypeLookupTable;
if (!IRGenOpts.ForceLoadSymbolName.empty())
serializationOpts.AutolinkForceLoad = true;
// Options contain information about the developer's computer,
// so only serialize them if the module isn't going to be shipped to
// the public.
serializationOpts.SerializeOptionsForDebugging =
!moduleIsPublic || opts.AlwaysSerializeDebuggingOptions;
serialize(DC, serializationOpts, SM.get());
}
if (Action == FrontendOptions::EmitModuleOnly)
return Context.hadError();
}
assert(Action >= FrontendOptions::EmitSIL &&
"All actions not requiring SILPasses must have been handled!");
// We've been told to write canonical SIL, so write it now.
if (Action == FrontendOptions::EmitSIL) {
return writeSIL(*SM, Instance->getMainModule(), opts.EmitVerboseSIL,
opts.getSingleOutputFilename(), opts.EmitSortedSIL);
}
assert(Action >= FrontendOptions::Immediate &&
"All actions not requiring IRGen must have been handled!");
assert(Action != FrontendOptions::REPL &&
"REPL mode must be handled immediately after Instance->performSema()");
// Check if we had any errors; if we did, don't proceed to IRGen.
if (Context.hadError())
return true;
// Convert SIL to a lowered form suitable for IRGen.
runSILLoweringPasses(*SM);
// TODO: remove once the frontend understands what action it should perform
IRGenOpts.OutputKind = getOutputKind(Action);
if (Action == FrontendOptions::Immediate) {
assert(!PrimarySourceFile && "-i doesn't work in -primary-file mode");
IRGenOpts.UseJIT = true;
IRGenOpts.DebugInfoKind = IRGenDebugInfoKind::Normal;
const ProcessCmdLine &CmdLine = ProcessCmdLine(opts.ImmediateArgv.begin(),
opts.ImmediateArgv.end());
Instance->setSILModule(std::move(SM));
if (observer) {
observer->aboutToRunImmediately(*Instance);
}
ReturnValue =
RunImmediately(*Instance, CmdLine, IRGenOpts, Invocation.getSILOptions());
return Context.hadError();
}
// FIXME: We shouldn't need to use the global context here, but
// something is persisting across calls to performIRGeneration.
auto &LLVMContext = getGlobalLLVMContext();
std::unique_ptr<llvm::Module> IRModule;
llvm::GlobalVariable *HashGlobal;
if (PrimarySourceFile) {
IRModule = performIRGeneration(IRGenOpts, *PrimarySourceFile, std::move(SM),
opts.getSingleOutputFilename(), LLVMContext,
0, &HashGlobal);
} else {
IRModule = performIRGeneration(IRGenOpts, Instance->getMainModule(),
std::move(SM),
opts.getSingleOutputFilename(), LLVMContext,
&HashGlobal);
}
// Just because we had an AST error it doesn't mean we can't performLLVM.
bool HadError = Instance->getASTContext().hadError();
// If the AST Context has no errors but no IRModule is available,
// parallelIRGen happened correctly, since parallel IRGen produces multiple
// modules.
if (!IRModule) {
return HadError;
}
if (opts.ValidateTBDAgainstIR) {
auto hasMultipleIRGenThreads = Invocation.getSILOptions().NumThreads > 1;
bool error;
if (PrimarySourceFile)
error =
validateTBD(PrimarySourceFile, *IRModule, hasMultipleIRGenThreads);
else
error = validateTBD(Instance->getMainModule(), *IRModule,
hasMultipleIRGenThreads);
if (error)
return true;
}
std::unique_ptr<llvm::TargetMachine> TargetMachine =
createTargetMachine(IRGenOpts, Context);
version::Version EffectiveLanguageVersion =
Context.LangOpts.EffectiveLanguageVersion;
DiagnosticEngine &Diags = Context.Diags;
const DiagnosticOptions &DiagOpts = Invocation.getDiagnosticOptions();
// Delete the compiler instance now that we have an IRModule.
if (DiagOpts.VerifyMode == DiagnosticOptions::NoVerify) {
SM.reset();
Instance.reset();
}
// Now that we have a single IR Module, hand it over to performLLVM.
return performLLVM(IRGenOpts, &Diags, nullptr, HashGlobal, IRModule.get(),
TargetMachine.get(), EffectiveLanguageVersion,
opts.getSingleOutputFilename()) || HadError;
}
/// Returns true if an error occurred.
static bool dumpAPI(ModuleDecl *Mod, StringRef OutDir) {
using namespace llvm::sys;
auto getOutPath = [&](SourceFile *SF) -> std::string {
SmallString<256> Path = OutDir;
StringRef Filename = SF->getFilename();
path::append(Path, path::filename(Filename));
return Path.str();
};
std::unordered_set<std::string> Filenames;
auto dumpFile = [&](SourceFile *SF) -> bool {
SmallString<512> TempBuf;
llvm::raw_svector_ostream TempOS(TempBuf);
PrintOptions PO = PrintOptions::printInterface();
PO.PrintOriginalSourceText = true;
PO.Indent = 2;
PO.PrintAccessibility = false;
PO.SkipUnderscoredStdlibProtocols = true;
SF->print(TempOS, PO);
if (TempOS.str().trim().empty())
return false; // nothing to show.
std::string OutPath = getOutPath(SF);
bool WasInserted = Filenames.insert(OutPath).second;
if (!WasInserted) {
llvm::errs() << "multiple source files ended up with the same dump API "
"filename to write to: " << OutPath << '\n';
return true;
}
std::error_code EC;
llvm::raw_fd_ostream OS(OutPath, EC, fs::OpenFlags::F_RW);
if (EC) {
llvm::errs() << "error opening file '" << OutPath << "': "
<< EC.message() << '\n';
return true;
}
OS << TempOS.str();
return false;
};
std::error_code EC = fs::create_directories(OutDir);
if (EC) {
llvm::errs() << "error creating directory '" << OutDir << "': "
<< EC.message() << '\n';
return true;
}
for (auto *FU : Mod->getFiles()) {
if (SourceFile *SF = dyn_cast<SourceFile>(FU))
if (dumpFile(SF))
return true;
}
return false;
}
int swift::performFrontend(ArrayRef<const char *> Args,
const char *Argv0, void *MainAddr,
FrontendObserver *observer) {
llvm::InitializeAllTargets();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmPrinters();
llvm::InitializeAllAsmParsers();
std::unique_ptr<CompilerInstance> Instance =
llvm::make_unique<CompilerInstance>();
PrintingDiagnosticConsumer PDC;
Instance->addDiagnosticConsumer(&PDC);
if (Args.empty()) {
Instance->getDiags().diagnose(SourceLoc(), diag::error_no_frontend_args);
return 1;
}
CompilerInvocation Invocation;
std::string MainExecutablePath = llvm::sys::fs::getMainExecutable(Argv0,
MainAddr);
Invocation.setMainExecutablePath(MainExecutablePath);
SmallString<128> workingDirectory;
llvm::sys::fs::current_path(workingDirectory);
// Parse arguments.
if (Invocation.parseArgs(Args, Instance->getDiags(), workingDirectory)) {
return 1;
}
// Setting DWARF Version depend on platform
IRGenOptions &IRGenOpts = Invocation.getIRGenOptions();
IRGenOpts.DWARFVersion = swift::DWARFVersion;
// The compiler invocation is now fully configured; notify our observer.
if (observer) {
observer->parsedArgs(Invocation);
}
if (Invocation.getFrontendOptions().PrintHelp ||
Invocation.getFrontendOptions().PrintHelpHidden) {
unsigned IncludedFlagsBitmask = options::FrontendOption;
unsigned ExcludedFlagsBitmask =
Invocation.getFrontendOptions().PrintHelpHidden ? 0 :
llvm::opt::HelpHidden;
std::unique_ptr<llvm::opt::OptTable> Options(createSwiftOptTable());
Options->PrintHelp(llvm::outs(), displayName(MainExecutablePath).c_str(),
"Swift frontend", IncludedFlagsBitmask,
ExcludedFlagsBitmask);
return 0;
}
if (Invocation.getFrontendOptions().RequestedAction ==
FrontendOptions::NoneAction) {
Instance->getDiags().diagnose(SourceLoc(),
diag::error_missing_frontend_action);
return 1;
}
// Because the serialized diagnostics consumer is initialized here,
// diagnostics emitted above, within CompilerInvocation::parseArgs, are never
// serialized. This is a non-issue because, in nearly all cases, frontend
// arguments are generated by the driver, not directly by a user. The driver
// is responsible for emitting diagnostics for its own errors. See SR-2683
// for details.
std::unique_ptr<DiagnosticConsumer> SerializedConsumer;
{
const std::string &SerializedDiagnosticsPath =
Invocation.getFrontendOptions().SerializedDiagnosticsPath;
if (!SerializedDiagnosticsPath.empty()) {
std::error_code EC;
std::unique_ptr<llvm::raw_fd_ostream> OS;
OS.reset(new llvm::raw_fd_ostream(SerializedDiagnosticsPath,
EC,
llvm::sys::fs::F_None));
if (EC) {
Instance->getDiags().diagnose(SourceLoc(),
diag::cannot_open_serialized_file,
SerializedDiagnosticsPath, EC.message());
return 1;
}
SerializedConsumer.reset(
serialized_diagnostics::createConsumer(std::move(OS)));
Instance->addDiagnosticConsumer(SerializedConsumer.get());
}
}
std::unique_ptr<DiagnosticConsumer> FixitsConsumer;
{
const std::string &FixitsOutputPath =
Invocation.getFrontendOptions().FixitsOutputPath;
if (!FixitsOutputPath.empty()) {
std::error_code EC;
std::unique_ptr<llvm::raw_fd_ostream> OS;
OS.reset(new llvm::raw_fd_ostream(FixitsOutputPath,
EC,
llvm::sys::fs::F_None));
if (EC) {
Instance->getDiags().diagnose(SourceLoc(),
diag::cannot_open_file,
FixitsOutputPath, EC.message());
return 1;
}
FixitsConsumer.reset(new JSONFixitWriter(std::move(OS),
Invocation.getDiagnosticOptions()));
Instance->addDiagnosticConsumer(FixitsConsumer.get());
}
}
if (Invocation.getDiagnosticOptions().UseColor)
PDC.forceColors();
if (Invocation.getFrontendOptions().DebugTimeCompilation)
SharedTimer::enableCompilationTimers();
if (Invocation.getFrontendOptions().PrintStats) {
llvm::EnableStatistics();
}
const std::string &StatsOutputDir =
Invocation.getFrontendOptions().StatsOutputDir;
std::unique_ptr<UnifiedStatsReporter> StatsReporter;
if (!StatsOutputDir.empty()) {
auto &opts = Invocation.getFrontendOptions();
std::string TargetName = opts.ModuleName;
if (opts.PrimaryInput.hasValue() &&
opts.PrimaryInput.getValue().isFilename()) {
auto Index = opts.PrimaryInput.getValue().Index;
TargetName += ".";
TargetName += llvm::sys::path::filename(opts.InputFilenames[Index]);
}
StatsReporter = llvm::make_unique<UnifiedStatsReporter>("swift-frontend",
TargetName,
StatsOutputDir);
}
const DiagnosticOptions &diagOpts = Invocation.getDiagnosticOptions();
if (diagOpts.VerifyMode != DiagnosticOptions::NoVerify) {
enableDiagnosticVerifier(Instance->getSourceMgr());
}
DependencyTracker depTracker;
if (!Invocation.getFrontendOptions().DependenciesFilePath.empty() ||
!Invocation.getFrontendOptions().ReferenceDependenciesFilePath.empty()) {
Instance->setDependencyTracker(&depTracker);
}
if (Instance->setup(Invocation)) {
return 1;
}
// The compiler instance has been configured; notify our observer.
if (observer) {
observer->configuredCompiler(*Instance);
}
int ReturnValue = 0;
bool HadError =
performCompile(Instance, Invocation, Args, ReturnValue, observer,
StatsReporter.get());
if (!HadError) {
Mangle::printManglingStats();
}
if (!HadError && !Invocation.getFrontendOptions().DumpAPIPath.empty()) {
HadError = dumpAPI(Instance->getMainModule(),
Invocation.getFrontendOptions().DumpAPIPath);
}
if (diagOpts.VerifyMode != DiagnosticOptions::NoVerify) {
HadError = verifyDiagnostics(
Instance->getSourceMgr(),
Instance->getInputBufferIDs(),
diagOpts.VerifyMode == DiagnosticOptions::VerifyAndApplyFixes,
diagOpts.VerifyIgnoreUnknown);
DiagnosticEngine &diags = Instance->getDiags();
if (diags.hasFatalErrorOccurred() &&
!Invocation.getDiagnosticOptions().ShowDiagnosticsAfterFatalError) {
diags.resetHadAnyError();
diags.diagnose(SourceLoc(), diag::verify_encountered_fatal);
HadError = true;
}
}
return (HadError ? 1 : ReturnValue);
}
void FrontendObserver::parsedArgs(CompilerInvocation &invocation) {}
void FrontendObserver::configuredCompiler(CompilerInstance &instance) {}
void FrontendObserver::performedSemanticAnalysis(CompilerInstance &instance) {}
void FrontendObserver::performedSILGeneration(SILModule &module) {}
void FrontendObserver::performedSILDiagnostics(SILModule &module) {}
void FrontendObserver::performedSILOptimization(SILModule &module) {}
void FrontendObserver::aboutToRunImmediately(CompilerInstance &instance) {}